CINXE.COM
Engineering Chemistry Vol. 5 | Scientific.Net
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This journal volume is dedicated to current issues in developing modern effective energy storage devices. Synthesis of biobased solid polymer electrolytes for various types of batteries and materials for electrodes, analysis of electrochemical performance and capacitive properties of supercapacitors, etc. are topics of research the results of which are here presented. The edition will be helpful to specialists in electrochemistry whose activities are related to the design of energy storage devices." /> <link rel="canonical" href="https://www.scientific.net/EC.5" /> <meta property="og:title" content="Engineering Chemistry Vol. 5 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/EC.5" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Engineering Chemistry Vol. 5 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FEC.5" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FEC.5" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/EC.7" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 7</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.6" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 6</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.5" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 5</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.4" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 4</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.3" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 3</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.2" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 2</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/EC.1" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Engineering Chemistry <br /> <span class="paper-volume-number">Vol. 1</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/EC">Engineering Chemistry</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Engineering Chemistry Vol. 5</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Engineering Chemistry Vol. 5</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-RnY83U">https://doi.org/10.4028/v-RnY83U</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/EC.5/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/EC.5_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.1">The Effect of Sodium Acetate on Biodegradable Rice Starch-Based Solid Polymer Electrolyte for Supercapacitor</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Agung Nugroho, Muchammad Syaifudin, Sylvia Ayu Pradanawati </div> </div> <div id="abstractTextBlock594516" class="volume-info volume-info-text volume-info-description"> Abstract: This study examined the use of sodium acetate salt as an ionic dopant in biodegradable solid polymer electrolyte (SPE). In the solution casting method for making polymer electrolyte, rice starch is used as the host polymer and glycerol is used as the plasticizer. The characteristics of SPE film were investigated using X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Thermogravimetric Analysis (TGA). Salt enhances the amorphous structure by decreasing the crystallinity of the polymer. Alternatively, it decreases the temperature of thermal breakdown. In addition, the biodegradability of SPE was investigated using the soil burial method. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate the ionic conductivity behavior and temperature dependent of SPE. The 35% sodium acetate salt addition makes the supercapacitor's electrolyte have the highest ionic conductivity at room temperature, which is 5.57x10<sup>-4</sup> S/cm. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594516', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.13">Synthesis and Electrochemical Performance of Sodium Iron Phosphate Cathode Battery Based on Water-Chitosan Slurry</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Mohammad Arrafi Azhar, Andyan Rafi Setopratama, Phahul Zhemas Zul Nehan, Revaldo Anugerah Putra Pradana, Chanifa Zulaiha Ahmad, Darminto Darminto </div> </div> <div id="abstractTextBlock594753" class="volume-info volume-info-text volume-info-description"> Abstract: The implementation of water-chitosan slurry is needed to achieve better battery, in terms of enviromentally friendly and cheapest cost. In this research, sodium-ion cathode batteries based on sodium iron phosphate and the water-chitosan slurry were successfully synthesized with the sol-gel method. The result of the X-Ray Diffraction (XRD) test confirmed the two phases of sodium iron phosphate, which are Na<sub>3</sub>Fe<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> and Na<sub>3</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>4</sub>, with the percentage weight of the phases of 31.19% and 68.81%, respectively. Then, this sample was examined using Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) test, it is known that the morphology of particles look like agglomerate thin sponges and no other elements besides Na, Fe, P, and O were found in the sample. Cyclic Voltammetry (CV) dan Electrical Impedance Spectroscopy (EIS) tests were also carried out to determine the electrochemical performance of the cathode material. The CV test was carried out to determine the specific capacity value of each sample. From the test results, it is known that sodium iron phosphate cathode with PVDF binder had a higher specific capacity value than cathode with chitosan binder, which was 44.13 mAh/g and 26.78 mAh/g, respectively. From the EIS results, it was found that sodium iron phosphate cathode with chitosan binder had better electrical conductivity and Na<sup>+</sup> ion diffusion, with values of 7.44×10<sup>-3</sup> S.cm<sup>-1</sup> and 1.48×10<sup>-11</sup> cm<sup>2 </sup>s<sup>-1</sup> respectively. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594753', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 13 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.19">Corn Starch-Sodium Acetat Composite Material from Industrial Waste Fly Ash for Solid Electrolyte Polymer Ionic Conductivity in Supercapacitor Application</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Irfani Faiq Erlangga, Sylvia Ayu Pradanawati, Azzah Dyah Pramata, Nur Laila Hamidah </div> </div> <div id="abstractTextBlock594789" class="volume-info volume-info-text volume-info-description"> Abstract: Solid polymer electrolyte (SPE) is a safer alternative to use than liquid electrolytes. This research focuses on the highest conductivity with fly ash filler in solid polymer electrolyte (SPE) based on corn starch, using the solution casting method. The crystallinity and interaction between fly ash and Na<sup>+</sup> ions of solid polymer electrolyte were seen by X-ray Diffraction (XRD), then Fourier Transform Infra-Red (FTIR), showing a shift in functional groups due to the interaction of SiO<sub>2</sub> in fly ash and Na<sup>+</sup> ions, and surface morphology forms was observed by Scanning Electron Microscopy (SEM). Ionic conductivity was analyzed by Electrochemical impedance Spectrometry (EIS). solid polymer electrolyte with fly ash showed the highest ionic conductivity 2,51 x 10<sup>-4</sup> S/cm, at room temperature with addition fly ash 10%. the highest conductivity result was corresponding with amorphous peak with same concetration on XRD. SPE based on corn starch with Fly ash filler has potential to be used as a solid polymer electrolyte in supercapacitors. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594789', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 19 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.27">Solid Polymer Electrolyte (SPE) from Corn Starch and Aluminum Nitrate Salt Composites for Aluminum - Ion Battery</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Khoirul Anam, Sylvia Ayu Pradanawati, Azzah Dyah Pramata, Nur Laila Hamidah </div> </div> <div id="abstractTextBlock594832" class="volume-info volume-info-text volume-info-description"> Abstract: The increasing of need for portable electrical energy makes the demand for rechargeable batteries high. Aluminum-ion battery with Solid Polymer Electrolyte (SPE) produced from the natural polymer corn starch with salt additive has the potential to be developed. The flexibility and resilience of SPE are enhanced by glycerol (C<sub>3</sub>H<sub>8</sub>O<sub>3</sub>). Throughing gelatinization of the linear monomer chains to become amorphous, the space for the ions in it is more free so that the ionic conductivity is high. By means of solution casting, heating temperature of 50°C for 9 hours found SPE with a strong structure. With the same concentration CS-Al has a higher conductivity with σ = 4.93 x 10<sup>-5</sup> S/cm than CS-Na whose value is σ = 2,92 x 10<sup>-5</sup> S/cm. This is due to the SPE CS-Al show more amorphous structure which allow more flexible ionic segmental motion. This is in accordance with XRD resulting which shows that the addition of aluminum nitrate salt is more amorphous than sodium acetate; the shift in peak pattern is also greater due to cation intercalation Al<sup>3+</sup> with corn starch. FTIR is the result found that nitrate fixed by corn starch, indicated a change in the hydroxyl group of corn starch amylopectin. SEM photo of result also showed aluminum nitrate salt ion more easily in overcoming than sodium acetate. The indicate of SPE was more homogeneous because corn starch was already intercalated. They are combined to Al<sup>3+</sup> and NO<sub>3</sub><sup>-</sup> ions. With this value it can be an appropriate reference for developing SPE on Aluminum-ion batteries with aluminum nitrate salts have higher performance and environment friendly Keywords: Aluminum-ion battery, Solid Polymer Electrolyte, corn starch, ionic conductivity, and Amorphous </div> <div> <a data-readmore="{ block: '#abstractTextBlock594832', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 27 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.37">Enhanced Ionic Conductivity of Fluoride-Doped LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> as Solid Electrolyte of Lithium-Ion Battery</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Muhammad Rial Afif, Vania Mitha Pratiwi, Lukman Noerochim </div> </div> <div id="abstractTextBlock595636" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (LTP) was synthesized by the addition of lithium fluoride (LiF) of 0 %, 5 %, and 10 wt.%. A wet solid-state reaction method is applied by mixing Li<sub>2</sub>CO<sub>3</sub>, TiO<sub>2</sub><sub>,</sub> and NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> into a ball mill, then calcined at 900<sup>o</sup> C for 12 hr. XRD pattern of Fluoride-doped LTP is indexed and found in two phases. First is the Nasicon phase (LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>) with rhombohedral structure, and second, the Olivine phase (LiTiPO5) with orthorhombic structure at the addition of 5 % and 10 wt. % of LiF. The higher LiF decreases the cell volume while the crystallite size, particle size, and material density increase. The morphology of the Fluoride-doped LTP is increasingly homogeneous and more rectangle-shape. LTP 2, adding 10 wt. % of LiF, has high ionic conductivity at 4.77 10<sup>-4</sup> S cm<sup>-1</sup> as a promising candidate material for solid-electrolyte of lithium-ion battery. </div> <div> <a data-readmore="{ block: '#abstractTextBlock595636', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 37 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.43">Study of Addition Metal (Ti, Zn) Dopan on the Structure of NASICON as Solid Electrolyte Batteries</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Vania Mitha Pratiwi, Lukman Noerochim, Hariyati Purwaningsih, Agung Ari Wibowo, Fakhri Akbar Maulana </div> </div> <div id="abstractTextBlock599667" class="volume-info volume-info-text volume-info-description"> Abstract: This study aims to analysized the effect of addition doped metal (Ti and Zn) on NASICON structure to morphology, materials structure, and electrochemical performance especially ionic conductivity properties. NASICON is a sodium super ionic conductor that it could be as solid electrolyte batteries. One of the problems that exist in the secondary battery is the low working temperature of the electrolyte, which makes it easy to explode when exposed to free air. The common electrolyte in liquid phase, so NASICON as replacement alternative. The synthesis method used is the solid-state reaction method by mixing sodium carbonate, silicon dioxide, zirconium oxide, ammonium dihydrogen phosphate, doped metal (titanium oxide and zinc oxide) and some anhydrous ethanol into a planetary ball mill, dried then calcined. Then the material is pressed to produce pellets and the sintered. The doping used varies from 0 to 5 mol% of titanium and zinc. XRD results showed that all variations in titanium doped had found rhombohedral and monoclinic. whereas in zinc doping also have those phase. The highest ionic conductivity is 7.8x10<sup>-3</sup> S/m on 2% mol Zinc Addition </div> <div> <a data-readmore="{ block: '#abstractTextBlock599667', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 43 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/EC.5.49">The Effect of Nitrogen on the Capacitive Properties of N-Doped rGO/CuCr<sub>2</sub>O<sub>4</sub> Composites as Materials for Supercapacitors</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Diah Susanti, Adzon Nugraha Rizky Pratama, Haniffudin Nurdiansah </div> </div> <div id="abstractTextBlock599740" class="volume-info volume-info-text volume-info-description"> Abstract: A hybrid supercapacitor is an energy storage device that combines the properties of EDLCs and pseudocapacitors. In this research, the goal was to analyze the effect of hydrothermal temperature on the structure, morphology, and capacitive properties of the N-Doped reduced graphene oxide/Copper Chromite (N-Doped rGO/CuCr<sub>2</sub>O<sub>4</sub>) composite, which was being investigated as a potential material for hybrid supercapacitor electrodes. The method used was hydrothermal, with temperature variations of 120°C, 140°C, and 160°C. The structure and morphology of the composites were analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX), X-Ray Diffractometer (XRD), and Fourier Transform Infrared Spectrometer (FTIR). Meanwhile, the capacitance and conductivity values of N-doped rGO/CuCr<sub>2</sub>O<sub>4</sub> were measured using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) tests. The results of the XRD tests showed that an increase in temperature led to a greater d<sub>spacing</sub> value, indicating the presence of more substituted nitrogen atoms. This was supported by the results from EDX, which showed that the sample with a hydrothermal temperature of 160°C had the largest percentage of nitrogen. Nitrogen is important in increasing the conductivity of the material. The FTIR results revealed a covalent bond between Carbon (C) and Nitrogen (N). Meanwhile, the results of the CV test, performed at a scan rate of 5 mV/s and a potential window of 0-0.8 V, showed that the specific capacitance values were 99.5, 196.16, and 221.59 Fg<sup>-1</sup> for the samples with hydrothermal temperatures of 120°C, 140°C, and 160°C, respectively. The EIS test measured the conductivity values of the samples, which were 0.123, 0.518, and 0.549 S/m for the samples with hydrothermal temperatures of 120°C, 140°C, and 160°C, respectively. Thus, the specific capacitance values were influenced by the electrical conductivity of the materials and the nitrogen doping content in the electrode composite material. </div> <div> <a data-readmore="{ block: '#abstractTextBlock599740', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 49 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 7 of 7 Paper Titles</p> </div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read & Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=EC&volumeBegin=5&volumeEnd=5', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>