CINXE.COM

Indian mathematics - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Indian mathematics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"947a4422-7f17-49a9-82fd-afb388943947","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Indian_mathematics","wgTitle":"Indian mathematics","wgCurRevisionId":1275572617,"wgRevisionId":1275572617,"wgArticleId":1848052,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Use Indian English from June 2020","All Wikipedia articles written in Indian English","Use dmy dates from May 2022","Articles containing Arabic-language text","Articles containing Latin-language text","Articles containing French-language text","Articles containing Italian-language text","All articles with unsourced statements","Articles with unsourced statements from March 2011","All articles lacking reliable references","Articles lacking reliable references from April 2017","All articles with dead external links","Articles with dead external links from November 2024","CS1 maint: location missing publisher","Indian mathematics","Science and technology in India"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Indian_mathematics","wgRelevantArticleId":1848052,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1279571","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Indian mathematics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Indian_mathematics"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Indian_mathematics&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Indian_mathematics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Indian_mathematics rootpage-Indian_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Indian+mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Indian+mathematics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Indian+mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Indian+mathematics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Prehistory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Prehistory"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Prehistory</span> </div> </a> <ul id="toc-Prehistory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vedic_period" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vedic_period"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Vedic period</span> </div> </a> <button aria-controls="toc-Vedic_period-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Vedic period subsection</span> </button> <ul id="toc-Vedic_period-sublist" class="vector-toc-list"> <li id="toc-Samhitas_and_Brahmanas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Samhitas_and_Brahmanas"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Samhitas and Brahmanas</span> </div> </a> <ul id="toc-Samhitas_and_Brahmanas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Śulba_Sūtras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Śulba_Sūtras"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Śulba Sūtras</span> </div> </a> <ul id="toc-Śulba_Sūtras-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Pingala_(300_BCE_–_200_BCE)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pingala_(300_BCE_–_200_BCE)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Pingala (300 BCE – 200 BCE)</span> </div> </a> <ul id="toc-Pingala_(300_BCE_–_200_BCE)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jain_mathematics_(400_BCE_–_200_CE)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Jain_mathematics_(400_BCE_–_200_CE)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Jain mathematics (400 BCE – 200 CE)</span> </div> </a> <ul id="toc-Jain_mathematics_(400_BCE_–_200_CE)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oral_tradition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Oral_tradition"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Oral tradition</span> </div> </a> <button aria-controls="toc-Oral_tradition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Oral tradition subsection</span> </button> <ul id="toc-Oral_tradition-sublist" class="vector-toc-list"> <li id="toc-Styles_of_memorisation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Styles_of_memorisation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Styles of memorisation</span> </div> </a> <ul id="toc-Styles_of_memorisation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Sutra_genre" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Sutra_genre"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>The <i>Sutra</i> genre</span> </div> </a> <ul id="toc-The_Sutra_genre-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_written_tradition:_prose_commentary" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_written_tradition:_prose_commentary"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>The written tradition: prose commentary</span> </div> </a> <ul id="toc-The_written_tradition:_prose_commentary-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerals_and_the_decimal_number_system" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numerals_and_the_decimal_number_system"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Numerals and the decimal number system</span> </div> </a> <ul id="toc-Numerals_and_the_decimal_number_system-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bakhshali_Manuscript" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bakhshali_Manuscript"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Bakhshali Manuscript</span> </div> </a> <ul id="toc-Bakhshali_Manuscript-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Classical_period_(400–1300)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Classical_period_(400–1300)"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Classical period (400–1300)</span> </div> </a> <button aria-controls="toc-Classical_period_(400–1300)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Classical period (400–1300) subsection</span> </button> <ul id="toc-Classical_period_(400–1300)-sublist" class="vector-toc-list"> <li id="toc-Fourth_to_sixth_centuries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourth_to_sixth_centuries"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Fourth to sixth centuries</span> </div> </a> <ul id="toc-Fourth_to_sixth_centuries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Seventh_and_eighth_centuries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Seventh_and_eighth_centuries"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Seventh and eighth centuries</span> </div> </a> <ul id="toc-Seventh_and_eighth_centuries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ninth_to_twelfth_centuries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ninth_to_twelfth_centuries"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Ninth to twelfth centuries</span> </div> </a> <ul id="toc-Ninth_to_twelfth_centuries-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Medieval_and_early_modern_mathematics_(1300–1800)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Medieval_and_early_modern_mathematics_(1300–1800)"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Medieval and early modern mathematics (1300–1800)</span> </div> </a> <button aria-controls="toc-Medieval_and_early_modern_mathematics_(1300–1800)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Medieval and early modern mathematics (1300–1800) subsection</span> </button> <ul id="toc-Medieval_and_early_modern_mathematics_(1300–1800)-sublist" class="vector-toc-list"> <li id="toc-Navya-Nyaya" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Navya-Nyaya"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Navya-Nyaya</span> </div> </a> <ul id="toc-Navya-Nyaya-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kerala_School" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kerala_School"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Kerala School</span> </div> </a> <ul id="toc-Kerala_School-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Others" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Others"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Others</span> </div> </a> <ul id="toc-Others-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Charges_of_Eurocentrism" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Charges_of_Eurocentrism"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Charges of Eurocentrism</span> </div> </a> <ul id="toc-Charges_of_Eurocentrism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Source_books_in_Sanskrit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Source_books_in_Sanskrit"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Source books in Sanskrit</span> </div> </a> <ul id="toc-Source_books_in_Sanskrit-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Indian mathematics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 31 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-31" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">31 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA_%D9%81%D9%8A_%D8%A7%D9%84%D9%87%D9%86%D8%AF_%D8%A7%D9%84%D9%82%D8%AF%D9%8A%D9%85%D8%A9" title="الرياضيات في الهند القديمة – Arabic" lang="ar" hreflang="ar" data-title="الرياضيات في الهند القديمة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-awa mw-list-item"><a href="https://awa.wikipedia.org/wiki/%E0%A4%AD%E0%A4%BE%E0%A4%B0%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%9C%E0%A5%8D%E0%A4%9E" title="भारतीय गणितज्ञ – Awadhi" lang="awa" hreflang="awa" data-title="भारतीय गणितज्ञ" data-language-autonym="अवधी" data-language-local-name="Awadhi" class="interlanguage-link-target"><span>अवधी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AD%E0%A6%BE%E0%A6%B0%E0%A6%A4%E0%A7%80%E0%A6%AF%E0%A6%BC_%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="ভারতীয় গণিত – Bangla" lang="bn" hreflang="bn" data-title="ভারতীয় গণিত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Indijska_matematika" title="Indijska matematika – Bosnian" lang="bs" hreflang="bs" data-title="Indijska matematika" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matem%C3%A0tiques_a_l%27%C3%8Dndia" title="Matemàtiques a l&#039;Índia – Catalan" lang="ca" hreflang="ca" data-title="Matemàtiques a l&#039;Índia" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Indische_Mathematik" title="Indische Mathematik – German" lang="de" hreflang="de" data-title="Indische Mathematik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matem%C3%A1tica_india" title="Matemática india – Spanish" lang="es" hreflang="es" data-title="Matemática india" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Math%C3%A9matiques_indiennes" title="Mathématiques indiennes – French" lang="fr" hreflang="fr" data-title="Mathématiques indiennes" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B8%EB%8F%84%EC%9D%98_%EC%88%98%ED%95%99" title="인도의 수학 – Korean" lang="ko" hreflang="ko" data-title="인도의 수학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1%D5%B5%D5%AB_%D5%BA%D5%A1%D5%BF%D5%B4%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6%D5%A8_%D5%80%D5%B6%D5%A4%D5%AF%D5%A1%D5%BD%D5%BF%D5%A1%D5%B6%D5%B8%D6%82%D5%B4" title="Մաթեմատիկայի պատմությունը Հնդկաստանում – Armenian" lang="hy" hreflang="hy" data-title="Մաթեմատիկայի պատմությունը Հնդկաստանում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AD%E0%A4%BE%E0%A4%B0%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="भारतीय गणित – Hindi" lang="hi" hreflang="hi" data-title="भारतीय गणित" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Indijska_matematika" title="Indijska matematika – Croatian" lang="hr" hreflang="hr" data-title="Indijska matematika" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matematika_India" title="Matematika India – Indonesian" lang="id" hreflang="id" data-title="Matematika India" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AA%E0%B3%8D%E0%B2%B0%E0%B2%BE%E0%B2%9A%E0%B3%80%E0%B2%A8_%E0%B2%AD%E0%B2%BE%E0%B2%B0%E0%B2%A4%E0%B3%80%E0%B2%AF_%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತ – Kannada" lang="kn" hreflang="kn" data-title="ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AD%E0%A4%BE%E0%A4%B0%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="भारतीय गणित – Marathi" lang="mr" hreflang="mr" data-title="भारतीय गणित" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Matematik_India" title="Matematik India – Malay" lang="ms" hreflang="ms" data-title="Matematik India" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Indiase_wiskunde" title="Indiase wiskunde – Dutch" lang="nl" hreflang="nl" data-title="Indiase wiskunde" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%AD%E0%A4%BE%E0%A4%B0%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%BF%E0%A4%9C%E0%A5%8D%E0%A4%9E%E0%A4%A4%E0%A5%87%E0%A4%97%E0%A5%81_%E0%A4%A7%E0%A4%B2%E0%A4%83" title="भारतीय गणितिज्ञतेगु धलः – Newari" lang="new" hreflang="new" data-title="भारतीय गणितिज्ञतेगु धलः" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%B3%E3%83%89%E3%81%AE%E6%95%B0%E5%AD%A6" title="インドの数学 – Japanese" lang="ja" hreflang="ja" data-title="インドの数学" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Indisk_matematikk" title="Indisk matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Indisk matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AD%E0%A8%BE%E0%A8%B0%E0%A8%A4%E0%A9%80_%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਭਾਰਤੀ ਗਣਿਤ – Punjabi" lang="pa" hreflang="pa" data-title="ਭਾਰਤੀ ਗਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matem%C3%A1tica_indiana" title="Matemática indiana – Portuguese" lang="pt" hreflang="pt" data-title="Matemática indiana" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B8_%D0%B2_%D0%98%D0%BD%D0%B4%D0%B8%D0%B8" title="История математики в Индии – Russian" lang="ru" hreflang="ru" data-title="История математики в Индии" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sa mw-list-item"><a href="https://sa.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%9A%E0%A5%80%E0%A4%A8%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%AE%E0%A5%8D" title="प्राचीनगणितम् – Sanskrit" lang="sa" hreflang="sa" data-title="प्राचीनगणितम्" data-language-autonym="संस्कृतम्" data-language-local-name="Sanskrit" class="interlanguage-link-target"><span>संस्कृतम्</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Matematika_indase" title="Matematika indase – Albanian" lang="sq" hreflang="sq" data-title="Matematika indase" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B8%D1%98%D1%81%D0%BA%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Индијска математика – Serbian" lang="sr" hreflang="sr" data-title="Индијска математика" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Indijska_matematika" title="Indijska matematika – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Indijska matematika" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%BD%D0%B4%D1%96%D0%B9%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Індійська математика – Ukrainian" lang="uk" hreflang="uk" data-title="Індійська математика" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DB%81%D9%86%D8%AF%D9%88%D8%B3%D8%AA%D8%A7%D9%86%DB%8C_%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="ہندوستانی ریاضی – Urdu" lang="ur" hreflang="ur" data-title="ہندوستانی ریاضی" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/To%C3%A1n_h%E1%BB%8Dc_%E1%BA%A4n_%C4%90%E1%BB%99" title="Toán học Ấn Độ – Vietnamese" lang="vi" hreflang="vi" data-title="Toán học Ấn Độ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%B0%E5%BA%A6%E6%95%B0%E5%AD%A6" title="印度数学 – Chinese" lang="zh" hreflang="zh" data-title="印度数学" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1279571#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Indian_mathematics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Indian_mathematics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Indian_mathematics"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Indian_mathematics"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Indian_mathematics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Indian_mathematics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;oldid=1275572617" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Indian_mathematics&amp;id=1275572617&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndian_mathematics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndian_mathematics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Indian_mathematics&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Indian_mathematics&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Indian_mathematics" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Indian_mathematics" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1279571" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Development of mathematics in South Asia</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Mathematics in India" redirects here. For the 2009 monograph by Kim Plofker, see <a href="/wiki/Mathematics_in_India_(book)" title="Mathematics in India (book)">Mathematics in India (book)</a>.</div> <p class="mw-empty-elt"> </p><p><b>Indian mathematics</b> emerged in the <a href="/wiki/Indian_subcontinent" title="Indian subcontinent">Indian subcontinent</a><sup id="cite_ref-plofker_1-0" class="reference"><a href="#cite_note-plofker-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> from 1200 BCE<sup id="cite_ref-hayashi2005-p360-361_2-0" class="reference"><a href="#cite_note-hayashi2005-p360-361-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like <a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a>, <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a>, <a href="/wiki/Bhaskara_II" class="mw-redirect" title="Bhaskara II">Bhaskara II</a>, <a href="/wiki/Var%C4%81hamihira" title="Varāhamihira">Varāhamihira</a>, and <a href="/wiki/Madhava_of_Sangamagrama" title="Madhava of Sangamagrama">Madhava</a>. The <a href="/wiki/Decimal" title="Decimal">decimal number system</a> in use today<sup id="cite_ref-irfah346_3-0" class="reference"><a href="#cite_note-irfah346-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> was first recorded in Indian mathematics.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Indian mathematicians made early contributions to the study of the concept of <a href="/wiki/0_(number)" class="mw-redirect" title="0 (number)">zero</a> as a number,<sup id="cite_ref-bourbaki46_5-0" class="reference"><a href="#cite_note-bourbaki46-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Negative_numbers" class="mw-redirect" title="Negative numbers">negative numbers</a>,<sup id="cite_ref-bourbaki49_6-0" class="reference"><a href="#cite_note-bourbaki49-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a>, and <a href="/wiki/Algebra" title="Algebra">algebra</a>.<sup id="cite_ref-concise-britannica_7-0" class="reference"><a href="#cite_note-concise-britannica-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> In addition, <a href="/wiki/Trigonometry" title="Trigonometry">trigonometry</a><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> was further advanced in India, and, in particular, the modern definitions of <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> were developed there.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> These mathematical concepts were transmitted to the Middle East, China, and Europe<sup id="cite_ref-concise-britannica_7-1" class="reference"><a href="#cite_note-concise-britannica-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> and led to further developments that now form the foundations of many areas of mathematics. </p><p>Ancient and medieval Indian mathematical works, all composed in <a href="/wiki/Sanskrit" title="Sanskrit">Sanskrit</a>, usually consisted of a section of <i><a href="/wiki/Sutra" title="Sutra">sutras</a></i> in which a set of rules or problems were stated with great economy in verse in order to aid memorization by a student. This was followed by a second section consisting of a prose commentary (sometimes multiple commentaries by different scholars) that explained the problem in more detail and provided justification for the solution. In the prose section, the form (and therefore its memorization) was not considered so important as the ideas involved.<sup id="cite_ref-plofker_1-1" class="reference"><a href="#cite_note-plofker-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-filliozat-p140to143_10-0" class="reference"><a href="#cite_note-filliozat-p140to143-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> All mathematical works were orally transmitted until approximately 500 BCE; thereafter, they were transmitted both orally and in manuscript form. The oldest extant mathematical document produced on the Indian subcontinent is the birch bark <a href="/wiki/Bakhshali_Manuscript" class="mw-redirect" title="Bakhshali Manuscript">Bakhshali Manuscript</a>, discovered in 1881 in the village of <a href="/wiki/Bakhshali" title="Bakhshali">Bakhshali</a>, near <a href="/wiki/Peshawar" title="Peshawar">Peshawar</a> (modern day <a href="/wiki/Pakistan" title="Pakistan">Pakistan</a>) and is likely from the 7th century CE.<sup id="cite_ref-hayashi95_11-0" class="reference"><a href="#cite_note-hayashi95-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-plofker-brit6_12-0" class="reference"><a href="#cite_note-plofker-brit6-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>A later landmark in Indian mathematics was the development of the <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> expansions for <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a> (sine, cosine, and <a href="/wiki/Arc_tangent" class="mw-redirect" title="Arc tangent">arc tangent</a>) by mathematicians of the <a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school</a> in the 15th century CE. Their work, completed two centuries before the invention of <a href="/wiki/Calculus" title="Calculus">calculus</a> in Europe, provided what is now considered the first example of a <a href="/wiki/Power_series" title="Power series">power series</a> (apart from geometric series).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> However, they did not formulate a systematic theory of <a href="/wiki/Derivative" title="Derivative">differentiation</a> and <a href="/wiki/Integral" title="Integral">integration</a>, nor is there any evidence of their results being transmitted outside <a href="/wiki/Kerala" title="Kerala">Kerala</a>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Prehistory">Prehistory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=1" title="Edit section: Prehistory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Poids_cubiques_harapp%C3%A9ens_-_BM.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Poids_cubiques_harapp%C3%A9ens_-_BM.jpg/220px-Poids_cubiques_harapp%C3%A9ens_-_BM.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Poids_cubiques_harapp%C3%A9ens_-_BM.jpg/330px-Poids_cubiques_harapp%C3%A9ens_-_BM.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Poids_cubiques_harapp%C3%A9ens_-_BM.jpg/440px-Poids_cubiques_harapp%C3%A9ens_-_BM.jpg 2x" data-file-width="5847" data-file-height="3899" /></a><figcaption>Cubical weights standardised in the Indus Valley civilisation</figcaption></figure> <p>Excavations at <a href="/wiki/Harappa" title="Harappa">Harappa</a>, <a href="/wiki/Mohenjo-daro" title="Mohenjo-daro">Mohenjo-daro</a> and other sites of the <a href="/wiki/Indus_Valley_civilisation" class="mw-redirect" title="Indus Valley civilisation">Indus Valley civilisation</a> have uncovered evidence of the use of "practical mathematics". The people of the Indus Valley Civilization manufactured bricks whose dimensions were in the proportion 4:2:1, considered favourable for the stability of a brick structure. They used a standardised system of weights based on the ratios: 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50, 100, 200, and 500, with the unit weight equaling approximately 28&#160;grams (and approximately equal to the English ounce or Greek uncia). They mass-produced weights in regular <a href="/wiki/Geometrical" class="mw-redirect" title="Geometrical">geometrical</a> shapes, which included <a href="/wiki/Hexahedron" title="Hexahedron">hexahedra</a>, <a href="/wiki/Barrel" title="Barrel">barrels</a>, <a href="/wiki/Cone_(geometry)" class="mw-redirect" title="Cone (geometry)">cones</a>, and <a href="/wiki/Cylinder_(geometry)" class="mw-redirect" title="Cylinder (geometry)">cylinders</a>, thereby demonstrating knowledge of basic <a href="/wiki/Geometry" title="Geometry">geometry</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>The inhabitants of Indus civilisation also tried to standardise measurement of length to a high degree of accuracy. They designed a ruler—the <i>Mohenjo-daro ruler</i>—whose unit of length (approximately 1.32&#160;inches or 3.4 centimetres) was divided into ten equal parts. Bricks manufactured in ancient Mohenjo-daro often had dimensions that were integral multiples of this unit of length.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Hollow cylindrical objects made of shell and found at <a href="/wiki/Lothal" title="Lothal">Lothal</a> (2200 BCE) and <a href="/wiki/Dholavira" title="Dholavira">Dholavira</a> are demonstrated to have the ability to measure angles in a plane, as well as to determine the position of stars for navigation.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Vedic_period">Vedic period</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=2" title="Edit section: Vedic period"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1239334494">@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}</style><table class="sidebar nomobile nowraplinks" style="width: 18.0em; border: 1px solid #aabaaa;"><tbody><tr><td class="sidebar-top-image"><span typeof="mw:File"><a href="/wiki/File:Details_of_the_top_of_iron_pillar,_Qutub_Minar,_Delhi.jpg" class="mw-file-description"><img alt="The Iron Pillar of Delhi." src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg/100px-Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg" decoding="async" width="100" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg/150px-Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg/200px-Details_of_the_top_of_iron_pillar%2C_Qutub_Minar%2C_Delhi.jpg 2x" data-file-width="960" data-file-height="1280" /></a></span></td></tr><tr><th class="sidebar-title" style="background: #cb4154;"><a href="/wiki/History_of_science_and_technology_in_India" class="mw-redirect" title="History of science and technology in India"><span class="tmp-color" style="color:white">History of science and<br />technology in the <br />Indian subcontinent</span></a></th></tr><tr><td class="sidebar-content hlist" style="padding-top: 0.2em;"> <ul><li><a href="/wiki/List_of_Indian_inventions_and_discoveries" title="List of Indian inventions and discoveries">Inventions</a></li> <li><a href="/wiki/Science_and_technology_in_India" title="Science and technology in India">Science in India</a></li> <li><a href="/wiki/Science_and_technology_in_Bangladesh" title="Science and technology in Bangladesh">Science in Bangladesh</a></li> <li><a href="/wiki/Science_and_technology_in_Pakistan" title="Science and technology in Pakistan">Science in Pakistan</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background: #cb4154;;padding-top: 0; color: white;"> By subject</th></tr><tr><td class="sidebar-content hlist" style="padding-top: 0.2em;"> <ul><li><a class="mw-selflink selflink">Mathematics</a></li> <li><a href="/wiki/Indian_astronomy" title="Indian astronomy">Astronomy</a></li> <li><a href="/wiki/Indian_national_calendar" title="Indian national calendar">Calendar</a></li> <li><a href="/wiki/History_of_measurement_systems_in_India" title="History of measurement systems in India">Measurement systems</a> <ul><li><a href="/wiki/Indian_units_of_measurement" title="Indian units of measurement">Units of measurement</a></li></ul></li> <li><a href="/wiki/Cartography_of_India" title="Cartography of India">Cartography</a></li> <li><a href="/wiki/Indian_geography" class="mw-redirect" title="Indian geography">Geography</a></li> <li><a href="/wiki/History_of_printing#In_India" title="History of printing">Printing</a></li> <li><a href="/wiki/History_of_metallurgy_in_the_Indian_subcontinent" title="History of metallurgy in the Indian subcontinent">Metallurgy</a></li> <li><a href="/wiki/Indian_coinage" class="mw-redirect" title="Indian coinage">Coinage</a></li> <li><a href="/wiki/History_of_metallurgy_in_the_Indian_subcontinent" title="History of metallurgy in the Indian subcontinent">Indian Alchemy</a></li> <li><a href="/wiki/Ayurveda" title="Ayurveda">Traditional medicine</a></li> <li><a href="/wiki/History_of_agriculture_in_India" class="mw-redirect" title="History of agriculture in India">Agriculture</a></li> <li><a href="/wiki/History_of_education_in_the_Indian_subcontinent" title="History of education in the Indian subcontinent">Education</a></li> <li><a href="/wiki/Indian_architecture" class="mw-redirect" title="Indian architecture">Architecture</a> <ul><li><a href="/wiki/List_of_bridges_in_India" title="List of bridges in India">Bridges</a></li></ul></li> <li><a href="/wiki/Transport_in_India" title="Transport in India">Transport</a> <ul><li><a href="/wiki/Indian_maritime_history" title="Indian maritime history">Maritime history</a></li> <li><a href="/wiki/Naval_history_of_India" class="mw-redirect" title="Naval history of India">Navigation</a></li></ul></li> <li><a href="/wiki/Military_history_of_India" title="Military history of India">Military</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Science_and_technology_in_India" title="Template:Science and technology in India"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Science_and_technology_in_India" title="Template talk:Science and technology in India"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Science_and_technology_in_India" title="Special:EditPage/Template:Science and technology in India"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Vedanga" title="Vedanga">Vedanga</a> and <a href="/wiki/Vedas" title="Vedas">Vedas</a></div> <div class="mw-heading mw-heading3"><h3 id="Samhitas_and_Brahmanas">Samhitas and Brahmanas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=3" title="Edit section: Samhitas and Brahmanas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The texts of the <a href="/wiki/Vedic_Period" class="mw-redirect" title="Vedic Period">Vedic Period</a> provide evidence for the use of <a href="/wiki/History_of_large_numbers" title="History of large numbers">large numbers</a>. By the time of the <i><a href="/wiki/Yajurveda" title="Yajurveda"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Yajurvedasaṃhitā-</i></span></a></i> (1200–900 BCE), numbers as high as <span class="texhtml">10<sup>12</sup></span> were being included in the texts.<sup id="cite_ref-hayashi2005-p360-361_2-1" class="reference"><a href="#cite_note-hayashi2005-p360-361-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> For example, the <i><a href="/wiki/Mantra" title="Mantra">mantra</a></i> (sacred recitation) at the end of the <i>annahoma</i> ("food-oblation rite") performed during the <a href="/wiki/Ashvamedha" title="Ashvamedha"><i>aśvamedha</i></a>, and uttered just before-, during-, and just after sunrise, invokes powers of ten from a hundred to a trillion:<sup id="cite_ref-hayashi2005-p360-361_2-2" class="reference"><a href="#cite_note-hayashi2005-p360-361-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>Hail to <i>śata</i> ("hundred," <span class="texhtml">10<sup>2</sup></span>), hail to <i>sahasra</i> ("thousand," <span class="texhtml">10<sup>3</sup></span>), hail to <i>ayuta</i> ("ten thousand," <span class="texhtml">10<sup>4</sup></span>), hail to <i>niyuta</i> ("hundred thousand," <span class="texhtml">10<sup>5</sup></span>), hail to <i>prayuta</i> ("million," <span class="texhtml">10<sup>6</sup></span>), hail to <i>arbuda</i> ("ten million," <span class="texhtml">10<sup>7</sup></span>), hail to <i>nyarbuda</i> ("hundred million," <span class="texhtml">10<sup>8</sup></span>), hail to <i>samudra</i> ("billion," <span class="texhtml">10<sup>9</sup></span>, literally "ocean"), hail to <i>madhya</i> ("ten billion," <span class="texhtml">10<sup>10</sup></span>, literally "middle"), hail to <i>anta</i> ("hundred billion," <span class="texhtml">10<sup>11</sup></span>, lit., "end"), hail to <i>parārdha</i> ("one trillion," <span class="texhtml">10<sup>12</sup></span> lit., "beyond parts"), hail to the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">uṣas</i></span></i> (dawn) , hail to the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">vyuṣṭi</i></span></i> (twilight), hail to <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">udeṣyat</i></span></i> (the one which is going to rise), hail to <i>udyat</i> (the one which is rising), hail <i>udita</i> (to the one which has just risen), hail to <i>svarga</i> (the heaven), hail to <i>martya</i> (the world), hail to all.<sup id="cite_ref-hayashi2005-p360-361_2-3" class="reference"><a href="#cite_note-hayashi2005-p360-361-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>The solution to partial fraction was known to the Rigvedic People as states in the purush Sukta (RV 10.90.4): </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>With three-fourths Puruṣa went up: one-fourth of him again was here.</p></blockquote> <p>The <a href="/wiki/Satapatha_Brahmana" class="mw-redirect" title="Satapatha Brahmana">Satapatha Brahmana</a> (<abbr title="circa">c.</abbr> 7th century BCE) contains rules for ritual geometric constructions that are similar to the Sulba Sutras.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Śulba_Sūtras"><span id=".C5.9Aulba_S.C5.ABtras"></span>Śulba Sūtras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=4" title="Edit section: Śulba Sūtras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Shulba_Sutras" title="Shulba Sutras">Shulba Sutras</a></div> <p>The <i><a href="/wiki/Shulba_Sutras" title="Shulba Sutras">Śulba Sūtras</a></i> (literally, "Aphorisms of the Chords" in <a href="/wiki/Vedic_Sanskrit" title="Vedic Sanskrit">Vedic Sanskrit</a>) (c. 700–400 BCE) list rules for the construction of sacrificial fire altars.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Most mathematical problems considered in the <i>Śulba Sūtras</i> spring from "a single theological requirement,"<sup id="cite_ref-hayashi2003-p118_24-0" class="reference"><a href="#cite_note-hayashi2003-p118-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> that of constructing fire altars which have different shapes but occupy the same area. The altars were required to be constructed of five layers of burnt brick, with the further condition that each layer consist of 200 bricks and that no two adjacent layers have congruent arrangements of bricks.<sup id="cite_ref-hayashi2003-p118_24-1" class="reference"><a href="#cite_note-hayashi2003-p118-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p> According to Hayashi, the <i>Śulba Sūtras</i> contain "the earliest extant verbal expression of the <a href="/wiki/Pythagorean_Theorem" class="mw-redirect" title="Pythagorean Theorem">Pythagorean Theorem</a> in the world, although it had already been known to the <a href="/wiki/First_Babylonian_dynasty" class="mw-redirect" title="First Babylonian dynasty">Old Babylonians</a>." </p><blockquote><p>The diagonal rope (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">akṣṇayā-rajju</i></span></i>) of an oblong (rectangle) produces both which the flank (<i>pārśvamāni</i>) and the horizontal (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">tiryaṇmānī</i></span></i>) &lt;ropes&gt; produce separately."<sup id="cite_ref-hayashi2005-p363_25-0" class="reference"><a href="#cite_note-hayashi2005-p363-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup></p></blockquote><p> Since the statement is a <i>sūtra</i>, it is necessarily compressed and what the ropes <i>produce</i> is not elaborated on, but the context clearly implies the square areas constructed on their lengths, and would have been explained so by the teacher to the student.<sup id="cite_ref-hayashi2005-p363_25-1" class="reference"><a href="#cite_note-hayashi2005-p363-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>They contain lists of <a href="/wiki/Pythagorean_triples" class="mw-redirect" title="Pythagorean triples">Pythagorean triples</a>,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> which are particular cases of <a href="/wiki/Diophantine_equations" class="mw-redirect" title="Diophantine equations">Diophantine equations</a>.<sup id="cite_ref-cooke198_27-0" class="reference"><a href="#cite_note-cooke198-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> They also contain statements (that with hindsight we know to be approximate) about <a href="/wiki/Squaring_the_circle" title="Squaring the circle">squaring the circle</a> and "circling the square."<sup id="cite_ref-cooke199-200_28-0" class="reference"><a href="#cite_note-cooke199-200-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Baudhayana" class="mw-redirect" title="Baudhayana">Baudhayana</a> (c. 8th century BCE) composed the <i>Baudhayana Sulba Sutra</i>, the best-known <i>Sulba Sutra</i>, which contains examples of simple Pythagorean triples, such as: <span class="texhtml">(3, 4, 5)</span>, <span class="texhtml">(5, 12, 13)</span>, <span class="texhtml">(8, 15, 17)</span>, <span class="texhtml">(7, 24, 25)</span>, and <span class="texhtml">(12, 35, 37)</span>,<sup id="cite_ref-joseph229_29-0" class="reference"><a href="#cite_note-joseph229-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> as well as a statement of the Pythagorean theorem for the sides of a square: "The rope which is stretched across the diagonal of a square produces an area double the size of the original square."<sup id="cite_ref-joseph229_29-1" class="reference"><a href="#cite_note-joseph229-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> It also contains the general statement of the Pythagorean theorem (for the sides of a rectangle): "The rope stretched along the length of the diagonal of a rectangle makes an area which the vertical and horizontal sides make together."<sup id="cite_ref-joseph229_29-2" class="reference"><a href="#cite_note-joseph229-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Baudhayana gives an expression for the <a href="/wiki/Square_root_of_two" class="mw-redirect" title="Square root of two">square root of two</a>:<sup id="cite_ref-cooke200_31-0" class="reference"><a href="#cite_note-cooke200-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}\approx 1+{\frac {1}{3}}+{\frac {1}{3\cdot 4}}-{\frac {1}{3\cdot 4\cdot 34}}=1.4142156\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>&#x22c5;<!-- ⋅ --></mo> <mn>4</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>&#x22c5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22c5;<!-- ⋅ --></mo> <mn>34</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1.4142156</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}\approx 1+{\frac {1}{3}}+{\frac {1}{3\cdot 4}}-{\frac {1}{3\cdot 4\cdot 34}}=1.4142156\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0be7f431a09bc860f840316312504241192a605" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:47.719ex; height:5.343ex;" alt="{\displaystyle {\sqrt {2}}\approx 1+{\frac {1}{3}}+{\frac {1}{3\cdot 4}}-{\frac {1}{3\cdot 4\cdot 34}}=1.4142156\ldots }" /></span></dd></dl></dd></dl> <p>The expression is accurate up to five decimal places, the true value being 1.41421356...<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> This expression is similar in structure to the expression found on a Mesopotamian tablet<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> from the Old Babylonian period (1900–1600 <a href="/wiki/BCE" class="mw-redirect" title="BCE">BCE</a>):<sup id="cite_ref-cooke200_31-1" class="reference"><a href="#cite_note-cooke200-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}\approx 1+{\frac {24}{60}}+{\frac {51}{60^{2}}}+{\frac {10}{60^{3}}}=1.41421297\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>24</mn> <mn>60</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>51</mn> <msup> <mn>60</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>10</mn> <msup> <mn>60</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1.41421297</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}\approx 1+{\frac {24}{60}}+{\frac {51}{60^{2}}}+{\frac {10}{60^{3}}}=1.41421297\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab02a36548a68463f14c1cbd8f706dcd1733adf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:44.79ex; height:5.676ex;" alt="{\displaystyle {\sqrt {2}}\approx 1+{\frac {24}{60}}+{\frac {51}{60^{2}}}+{\frac {10}{60^{3}}}=1.41421297\ldots }" /></span></dd></dl></dd></dl> <p>which expresses <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> in the sexagesimal system, and which is also accurate up to 5 decimal places. </p><p>According to mathematician S. G. Dani, the Babylonian cuneiform tablet <a href="/wiki/Plimpton_322" title="Plimpton 322">Plimpton 322</a> written c. 1850 BCE<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> "contains fifteen Pythagorean triples with quite large entries, including (13500, 12709, 18541) which is a primitive triple,<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> indicating, in particular, that there was sophisticated understanding on the topic" in Mesopotamia in 1850 BCE. "Since these tablets predate the Sulbasutras period by several centuries, taking into account the contextual appearance of some of the triples, it is reasonable to expect that similar understanding would have been there in India."<sup id="cite_ref-dani_36-0" class="reference"><a href="#cite_note-dani-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Dani goes on to say: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>As the main objective of the <i>Sulvasutras</i> was to describe the constructions of altars and the geometric principles involved in them, the subject of Pythagorean triples, even if it had been well understood may still not have featured in the <i>Sulvasutras</i>. The occurrence of the triples in the <i>Sulvasutras</i> is comparable to mathematics that one may encounter in an introductory book on architecture or another similar applied area, and would not correspond directly to the overall knowledge on the topic at that time. Since, unfortunately, no other contemporaneous sources have been found it may never be possible to settle this issue satisfactorily.<sup id="cite_ref-dani_36-1" class="reference"><a href="#cite_note-dani-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>In all, three <i>Sulba Sutras</i> were composed. The remaining two, the <i>Manava Sulba Sutra</i> composed by <a href="/wiki/Manava" title="Manava">Manava</a> (fl. 750–650 BCE) and the <i>Apastamba Sulba Sutra</i>, composed by <a href="/wiki/Apastamba" class="mw-redirect" title="Apastamba">Apastamba</a> (c. 600 BCE), contained results similar to the <i>Baudhayana Sulba Sutra</i>. </p> <dl><dt>Vyakarana</dt></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Vyakarana" class="mw-redirect" title="Vyakarana">Vyakarana</a></div> <p>The Vedic period saw the work of Sanskrit grammarian <span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn"><a href="/wiki/P%C4%81%E1%B9%87ini" title="Pāṇini">Pāṇini</a></i></span> (c. 520–460 BCE). His grammar includes a precursor of the <a href="/wiki/Backus%E2%80%93Naur_form" title="Backus–Naur form">Backus–Naur form</a> (used in the description <a href="/wiki/Programming_languages" class="mw-redirect" title="Programming languages">programming languages</a>).<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Pingala_(300_BCE_–_200_BCE)"><span id="Pingala_.28300_BCE_.E2.80.93_200_BCE.29"></span>Pingala (300 BCE – 200 BCE)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=5" title="Edit section: Pingala (300 BCE – 200 BCE)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Among the scholars of the post-Vedic period who contributed to mathematics, the most notable is <a href="/wiki/Pingala" title="Pingala">Pingala</a> (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">piṅgalá</i></span></i>) (<a href="/wiki/Floruit" title="Floruit">fl.</a> 300–200 BCE), a <a href="/wiki/Music_theory" title="Music theory">music theorist</a> who authored the <a href="/wiki/Chhandas" class="mw-redirect" title="Chhandas">Chhandas</a> <a href="/wiki/Shastra" title="Shastra">Shastra</a> (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">chandaḥ-śāstra</i></span></i>, also Chhandas Sutra <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">chhandaḥ-sūtra</i></span></i>), a <a href="/wiki/Sanskrit" title="Sanskrit">Sanskrit</a> treatise on <a href="/wiki/Sanskrit_prosody" title="Sanskrit prosody">prosody</a>. Pingala's work also contains the basic ideas of <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci numbers</a> (called <i>maatraameru</i>). Although the <i>Chandah sutra</i> hasn't survived in its entirety, a 10th-century commentary on it by Halāyudha has. Halāyudha, who refers to the Pascal triangle as <i><a href="/wiki/Mount_Meru_(mythology)" class="mw-redirect" title="Mount Meru (mythology)">Meru</a>-prastāra</i> (literally "the staircase to Mount Meru"), has this to say: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>Draw a square. Beginning at half the square, draw two other similar squares below it; below these two, three other squares, and so on. The marking should be started by putting <b>1</b> in the first square. Put <b>1</b> in each of the two squares of the second line. In the third line put <b>1</b> in the two squares at the ends and, in the middle square, the sum of the digits in the two squares lying above it. In the fourth line put <b>1</b> in the two squares at the ends. In the middle ones put the sum of the digits in the two squares above each. Proceed in this way. Of these lines, the second gives the combinations with one syllable, the third the combinations with two syllables, ...<sup id="cite_ref-fowler96_38-0" class="reference"><a href="#cite_note-fowler96-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>The text also indicates that Pingala was aware of the <a href="/wiki/Combinatorics" title="Combinatorics">combinatorial</a> identity:<sup id="cite_ref-singh36_39-0" class="reference"><a href="#cite_note-singh36-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n \choose 0}+{n \choose 1}+{n \choose 2}+\cdots +{n \choose n-1}+{n \choose n}=2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>0</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n \choose 0}+{n \choose 1}+{n \choose 2}+\cdots +{n \choose n-1}+{n \choose n}=2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c0b9285e3435dbdc53de3091cb85b6b818c396" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.487ex; height:6.176ex;" alt="{\displaystyle {n \choose 0}+{n \choose 1}+{n \choose 2}+\cdots +{n \choose n-1}+{n \choose n}=2^{n}}" /></span></dd></dl></dd></dl> <dl><dt>Kātyāyana</dt></dl> <p><a href="/wiki/K%C4%81ty%C4%81yana" title="Kātyāyana">Kātyāyana</a> (c. 3rd century BCE) is notable for being the last of the Vedic mathematicians. He wrote the <i>Katyayana Sulba Sutra</i>, which presented much <a href="/wiki/Geometry" title="Geometry">geometry</a>, including the general <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> and a computation of the <a href="/wiki/Square_root_of_2" title="Square root of 2">square root of 2</a> correct to five decimal places. </p> <div class="mw-heading mw-heading2"><h2 id="Jain_mathematics_(400_BCE_–_200_CE)"><span id="Jain_mathematics_.28400_BCE_.E2.80.93_200_CE.29"></span>Jain mathematics (400 BCE – 200 CE)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=6" title="Edit section: Jain mathematics (400 BCE – 200 CE)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although <a href="/wiki/Jainism" title="Jainism">Jainism</a> as a religion and philosophy predates its most famous exponent, the great <a href="/wiki/Mahavira" title="Mahavira">Mahaviraswami</a> (6th century BCE), most Jain texts on mathematical topics were composed after the 6th century BCE. <a href="/wiki/Jain" class="mw-redirect" title="Jain">Jain</a> mathematicians are important historically as crucial links between the mathematics of the Vedic period and that of the "classical period." </p><p>A significant historical contribution of Jain mathematicians lay in their freeing Indian mathematics from its religious and ritualistic constraints. In particular, their fascination with the enumeration of very large numbers and <a href="/wiki/Infinity" title="Infinity">infinities</a> led them to classify numbers into three classes: enumerable, innumerable and <a href="/wiki/Infinity" title="Infinity">infinite</a>. Not content with a simple notion of infinity, their texts define five different types of infinity: the infinite in one direction, the infinite in two directions, the infinite in area, the infinite everywhere, and the infinite perpetually. In addition, Jain mathematicians devised notations for simple powers (and exponents) of numbers like squares and cubes, which enabled them to define simple <a href="/wiki/Algebraic_equations" class="mw-redirect" title="Algebraic equations">algebraic equations</a> (<span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">bījagaṇita samīkaraṇa</i></span>). Jain mathematicians were apparently also the first to use the word <i>shunya</i> (literally <i>void</i> in <a href="/wiki/Sanskrit_language" class="mw-redirect" title="Sanskrit language">Sanskrit</a>) to refer to zero. This word is the ultimate <a href="/wiki/0_(number)#Etymology" class="mw-redirect" title="0 (number)">etymological origin of the English word "zero"</a>, as it was <a href="/wiki/Calque" title="Calque">calqued</a> into Arabic as <span title="Arabic-language text"><i lang="ar">ṣifr</i></span> and then subsequently borrowed into <a href="/wiki/Medieval_Latin" title="Medieval Latin">Medieval Latin</a> as <span title="Latin-language text"><i lang="la">zephirum</i></span>, finally arriving at English after passing through one or more <a href="/wiki/Romance_languages" title="Romance languages">Romance languages</a> (c.f. French <span title="French-language text"><i lang="fr">zéro</i></span>, Italian <span title="Italian-language text"><i lang="it">zero</i></span>).<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p><p>In addition to <i>Surya Prajnapti</i>, important Jain works on mathematics included the <i><a href="/wiki/Sth%C4%81n%C4%81%E1%B9%85ga_S%C5%ABtra" class="mw-redirect" title="Sthānāṅga Sūtra">Sthānāṅga Sūtra</a></i> (c. 300 BCE – 200 CE); the <i>Anuyogadwara Sutra</i> (c. 200 BCE – 100 CE), which includes the earliest known description of <a href="/wiki/Factorial" title="Factorial">factorials</a> in Indian mathematics;<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> and the <i><a href="/wiki/%E1%B9%A2a%E1%B9%ADkha%E1%B9%85%E1%B8%8D%C4%81gama" class="mw-redirect" title="Ṣaṭkhaṅḍāgama">Ṣaṭkhaṅḍāgama</a></i> (c. 2nd century CE). Important Jain mathematicians included <a href="/wiki/Bhadrabahu" class="mw-redirect" title="Bhadrabahu">Bhadrabahu</a> (d. 298 BCE), the author of two astronomical works, the <i>Bhadrabahavi-Samhita</i> and a commentary on the <i>Surya Prajinapti</i>; Yativrisham Acharya (c. 176 BCE), who authored a mathematical text called <i><a href="/wiki/Tiloya_Panatti" title="Tiloya Panatti">Tiloyapannati</a></i>; and <a href="/wiki/Umasvati" class="mw-redirect" title="Umasvati">Umasvati</a> (c. 150 BCE), who, although better known for his influential writings on Jain philosophy and <a href="/wiki/Metaphysics" title="Metaphysics">metaphysics</a>, composed a mathematical work called the <i><a href="/wiki/Tattv%C4%81rtha_S%C5%ABtra" class="mw-redirect" title="Tattvārtha Sūtra">Tattvārtha Sūtra</a></i>. </p> <div class="mw-heading mw-heading2"><h2 id="Oral_tradition">Oral tradition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=7" title="Edit section: Oral tradition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mathematicians of ancient and early medieval India were almost all <a href="/wiki/Sanskrit" title="Sanskrit">Sanskrit</a> <a href="/wiki/Pandit" title="Pandit">pandits</a> (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">paṇḍita</i></span></i> "learned man"),<sup id="cite_ref-filliozat-p137_42-0" class="reference"><a href="#cite_note-filliozat-p137-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> who were trained in Sanskrit language and literature, and possessed "a common stock of knowledge in grammar (<a href="/wiki/Vyakarana" class="mw-redirect" title="Vyakarana"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">vyākaraṇa</i></span></i></a>), <a href="/wiki/Exegesis" title="Exegesis">exegesis</a> (<a href="/wiki/Mimamsa" class="mw-redirect" title="Mimamsa"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">mīmāṃsā</i></span></i></a>) and logic (<a href="/wiki/Nyaya" title="Nyaya"><i>nyāya</i></a>)."<sup id="cite_ref-filliozat-p137_42-1" class="reference"><a href="#cite_note-filliozat-p137-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Memorisation of "what is heard" (<i><a href="/wiki/%C5%9Aruti" title="Śruti">śruti</a></i> in Sanskrit) through recitation played a major role in the transmission of sacred texts in ancient India. Memorisation and recitation was also used to transmit philosophical and literary works, as well as treatises on ritual and grammar. Modern scholars of ancient India have noted the "truly remarkable achievements of the Indian pandits who have preserved enormously bulky texts orally for millennia."<sup id="cite_ref-pingree1988a_43-0" class="reference"><a href="#cite_note-pingree1988a-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Styles_of_memorisation">Styles of memorisation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=8" title="Edit section: Styles of memorisation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Prodigious energy was expended by ancient Indian culture in ensuring that these texts were transmitted from generation to generation with inordinate fidelity.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> For example, memorisation of the sacred <i><a href="/wiki/Veda" class="mw-redirect" title="Veda">Vedas</a></i> included up to eleven forms of recitation of the same text. The texts were subsequently "proof-read" by comparing the different recited versions. Forms of recitation included the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">jaṭā-pāṭha</i></span></i> (literally "mesh recitation") in which every two adjacent words in the text were first recited in their original order, then repeated in the reverse order, and finally repeated in the original order.<sup id="cite_ref-filliozat-p139_45-0" class="reference"><a href="#cite_note-filliozat-p139-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> The recitation thus proceeded as: </p> <div style="text-align: center;"> <b>word1word2, word2word1, word1word2; word2word3, word3word2, word2word3; ...</b></div> <p>In another form of recitation, <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">dhvaja-pāṭha</i></span></i><sup id="cite_ref-filliozat-p139_45-1" class="reference"><a href="#cite_note-filliozat-p139-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> (literally "flag recitation") a sequence of <i>N</i> words were recited (and memorised) by pairing the first two and last two words and then proceeding as: </p> <div style="text-align: center;"> <b>word<sub>1</sub>word<sub>2</sub>, word<sub><i>N</i> − 1</sub>word<sub><i>N</i></sub>; word<sub>2</sub>word<sub>3</sub>, word<sub><i>N</i> − 2</sub>word<sub><i>N</i> − 1</sub>; ..; word<sub><i>N</i> − 1</sub>word<sub><i>N</i></sub>, word<sub>1</sub>word<sub>2</sub>;</b></div> <p>The most complex form of recitation, <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">ghana-pāṭha</i></span></i> (literally "dense recitation"), according to Filliozat,<sup id="cite_ref-filliozat-p139_45-2" class="reference"><a href="#cite_note-filliozat-p139-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> took the form: </p> <div style="text-align: center;"><b>word1word2, word2word1, word1word2word3, word3word2word1, word1word2word3; word2word3, word3word2, word2word3word4, word4word3word2, word2word3word4; ... </b></div> <p>That these methods have been effective is testified to by the preservation of the most ancient Indian religious text, the <i><a href="/wiki/Rigveda" title="Rigveda"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Ṛgveda</i></span></a></i> (c. 1500 BCE), as a single text, without any variant readings.<sup id="cite_ref-filliozat-p139_45-3" class="reference"><a href="#cite_note-filliozat-p139-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> Similar methods were used for memorising mathematical texts, whose transmission remained exclusively oral until the end of the <a href="/wiki/Vedic_period" title="Vedic period">Vedic period</a> (c. 500 BCE). </p> <div class="mw-heading mw-heading3"><h3 id="The_Sutra_genre">The <i>Sutra</i> genre</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=9" title="Edit section: The Sutra genre"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mathematical activity in ancient India began as a part of a "methodological reflexion" on the sacred <a href="/wiki/Veda" class="mw-redirect" title="Veda">Vedas</a>, which took the form of works called <a href="/wiki/Vedanga" title="Vedanga"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Vedāṇgas</i></span></i></a>, or, "Ancillaries of the Veda" (7th–4th century BCE).<sup id="cite_ref-filliozat2004-p140-141_46-0" class="reference"><a href="#cite_note-filliozat2004-p140-141-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> The need to conserve the sound of sacred text by use of <a href="/wiki/Shiksha" title="Shiksha"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">śikṣā</i></span></i></a> (<a href="/wiki/Phonetics" title="Phonetics">phonetics</a>) and <i><a href="/wiki/Chhandas" class="mw-redirect" title="Chhandas">chhandas</a></i> (<a href="/wiki/Metre_(poetry)" title="Metre (poetry)">metrics</a>); to conserve its meaning by use of <a href="/wiki/Vyakarana" class="mw-redirect" title="Vyakarana"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">vyākaraṇa</i></span></i></a> (<a href="/wiki/Grammar" title="Grammar">grammar</a>) and <i><a href="/wiki/Nirukta" title="Nirukta">nirukta</a></i> (<a href="/wiki/Etymology" title="Etymology">etymology</a>); and to correctly perform the rites at the correct time by the use of <i><a href="/wiki/Kalpa_(aeon)" class="mw-redirect" title="Kalpa (aeon)">kalpa</a></i> (<a href="/wiki/Ritual" title="Ritual">ritual</a>) and <a href="/wiki/Jyotisha" class="mw-redirect" title="Jyotisha"><i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">jyotiṣa</i></span></i></a> (<a href="/wiki/Astrology" title="Astrology">astrology</a>), gave rise to the six disciplines of the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Vedāṇgas</i></span></i>.<sup id="cite_ref-filliozat2004-p140-141_46-1" class="reference"><a href="#cite_note-filliozat2004-p140-141-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Mathematics arose as a part of the last two disciplines, ritual and astronomy (which also included astrology). Since the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Vedāṇgas</i></span></i> immediately preceded the use of writing in ancient India, they formed the last of the exclusively oral literature. They were expressed in a highly compressed mnemonic form, the <a href="/wiki/Sutra" title="Sutra"><i>sūtra</i></a> (literally, "thread"): </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>The knowers of the <i>sūtra</i> know it as having few phonemes, being devoid of ambiguity, containing the essence, facing everything, being without pause and unobjectionable.<sup id="cite_ref-filliozat2004-p140-141_46-2" class="reference"><a href="#cite_note-filliozat2004-p140-141-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>Extreme brevity was achieved through multiple means, which included using <a href="/wiki/Ellipsis" title="Ellipsis">ellipsis</a> "beyond the tolerance of natural language,"<sup id="cite_ref-filliozat2004-p140-141_46-3" class="reference"><a href="#cite_note-filliozat2004-p140-141-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> using technical names instead of longer descriptive names, abridging lists by only mentioning the first and last entries, and using markers and variables.<sup id="cite_ref-filliozat2004-p140-141_46-4" class="reference"><a href="#cite_note-filliozat2004-p140-141-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> The <i>sūtras</i> create the impression that communication through the text was "only a part of the whole instruction. The rest of the instruction must have been transmitted by the so-called <a href="/wiki/Guru-shishya_tradition" class="mw-redirect" title="Guru-shishya tradition"><i>Guru-shishya parampara</i></a>, 'uninterrupted succession from teacher (<i>guru</i>) to the student (<i>śisya</i>),' and it was not open to the general public" and perhaps even kept secret.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> The brevity achieved in a <i>sūtra</i> is demonstrated in the following example from the Baudhāyana <i>Śulba Sūtra</i> (700 BCE). </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Domestic_fire_altar.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Domestic_fire_altar.jpg/300px-Domestic_fire_altar.jpg" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Domestic_fire_altar.jpg/450px-Domestic_fire_altar.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/7/70/Domestic_fire_altar.jpg 2x" data-file-width="560" data-file-height="420" /></a><figcaption>The design of the domestic fire altar in the <i>Śulba Sūtra</i></figcaption></figure> <p>The domestic fire-altar in the <a href="/wiki/Vedic_period" title="Vedic period">Vedic period</a> was required by ritual to have a square base and be constituted of five layers of bricks with 21 bricks in each layer. One method of constructing the altar was to divide one side of the square into three equal parts using a cord or rope, to next divide the transverse (or perpendicular) side into seven equal parts, and thereby sub-divide the square into 21 congruent rectangles. The bricks were then designed to be of the shape of the constituent rectangle and the layer was created. To form the next layer, the same formula was used, but the bricks were arranged transversely.<sup id="cite_ref-filliozat2004-p143-144_48-0" class="reference"><a href="#cite_note-filliozat2004-p143-144-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> The process was then repeated three more times (with alternating directions) in order to complete the construction. In the Baudhāyana <i>Śulba Sūtra</i>, this procedure is described in the following words: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>II.64. After dividing the quadri-lateral in seven, one divides the transverse [cord] in three.<br />II.65. In another layer one places the [bricks] North-pointing.<sup id="cite_ref-filliozat2004-p143-144_48-1" class="reference"><a href="#cite_note-filliozat2004-p143-144-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>According to Filliozat,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> the officiant constructing the altar has only a few tools and materials at his disposal: a cord (Sanskrit, <i>rajju</i>, f.), two pegs (Sanskrit, <i>śanku</i>, m.), and clay to make the bricks (Sanskrit, <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">iṣṭakā</i></span></i>, f.). Concision is achieved in the <i>sūtra</i>, by not explicitly mentioning what the adjective "transverse" qualifies; however, from the feminine form of the (Sanskrit) adjective used, it is easily inferred to qualify "cord." Similarly, in the second stanza, "bricks" are not explicitly mentioned, but inferred again by the feminine plural form of "North-pointing." Finally, the first stanza, never explicitly says that the first layer of bricks are oriented in the east–west direction, but that too is implied by the explicit mention of "North-pointing" in the <i>second</i> stanza; for, if the orientation was meant to be the same in the two layers, it would either not be mentioned at all or be only mentioned in the first stanza. All these inferences are made by the officiant as he recalls the formula from his memory.<sup id="cite_ref-filliozat2004-p143-144_48-2" class="reference"><a href="#cite_note-filliozat2004-p143-144-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="The_written_tradition:_prose_commentary">The written tradition: prose commentary</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=10" title="Edit section: The written tradition: prose commentary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With the increasing complexity of mathematics and other exact sciences, both writing and computation were required. Consequently, many mathematical works began to be written down in manuscripts that were then copied and re-copied from generation to generation. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>India today is estimated to have about thirty million manuscripts, the largest body of handwritten reading material anywhere in the world. The literate culture of Indian science goes back to at least the fifth century B.C. ... as is shown by the elements of Mesopotamian omen literature and astronomy that entered India at that time and (were) definitely not ... preserved orally.<sup id="cite_ref-pingree1988b_50-0" class="reference"><a href="#cite_note-pingree1988b-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>The earliest mathematical prose commentary was that on the work, <i><a href="/wiki/Aryabhatiya" title="Aryabhatiya"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya</i></span></a></i> (written 499 CE), a work on astronomy and mathematics. The mathematical portion of the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya</i></span></i> was composed of 33 <i>sūtras</i> (in verse form) consisting of mathematical statements or rules, but without any proofs.<sup id="cite_ref-hayashi03-p122-123_51-0" class="reference"><a href="#cite_note-hayashi03-p122-123-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> However, according to Hayashi,<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> "this does not necessarily mean that their authors did not prove them. It was probably a matter of style of exposition." From the time of <a href="/wiki/Bhaskara_I" class="mw-redirect" title="Bhaskara I">Bhaskara I</a> (600 CE onwards), prose commentaries increasingly began to include some derivations (<i>upapatti</i>). Bhaskara I's commentary on the <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya</i></span></i>, had the following structure:<sup id="cite_ref-hayashi03-p122-123_51-1" class="reference"><a href="#cite_note-hayashi03-p122-123-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><b>Rule</b> ('sūtra') in verse by <a href="/wiki/Aryabhata" title="Aryabhata"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭa</i></span></a></li> <li><b>Commentary</b> by Bhāskara I, consisting of: <ul><li><b>Elucidation</b> of rule (derivations were still rare then, but became more common later)</li> <li><b>Example</b> (<i>uddeśaka</i>) usually in verse.</li> <li><b>Setting</b> (<i>nyāsa/sthāpanā</i>) of the numerical data.</li> <li><b>Working</b> (<i>karana</i>) of the solution.</li> <li><b>Verification</b> (<i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">pratyayakaraṇa</i></span></i>, literally "to make conviction") of the answer. These became rare by the 13th century, derivations or proofs being favoured by then.<sup id="cite_ref-hayashi03-p122-123_51-2" class="reference"><a href="#cite_note-hayashi03-p122-123-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup></li></ul></li></ul> <p>Typically, for any mathematical topic, students in ancient India first memorised the <i>sūtras</i>, which, as explained earlier, were "deliberately inadequate"<sup id="cite_ref-pingree1988b_50-1" class="reference"><a href="#cite_note-pingree1988b-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> in explanatory details (in order to pithily convey the bare-bone mathematical rules). The students then worked through the topics of the prose commentary by writing (and drawing diagrams) on chalk- and dust-boards (<i>i.e.</i> boards covered with dust). The latter activity, a staple of mathematical work, was to later prompt mathematician-astronomer, <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a> (<a href="/wiki/Floruit" title="Floruit">fl.</a> 7th century CE), to characterise astronomical computations as "dust work" (Sanskrit: <i>dhulikarman</i>).<sup id="cite_ref-hayashi2003-p119_53-0" class="reference"><a href="#cite_note-hayashi2003-p119-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Numerals_and_the_decimal_number_system">Numerals and the decimal number system</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=11" title="Edit section: Numerals and the decimal number system"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is well known that the decimal place-value system <i>in use today</i> was first recorded in India, then transmitted to the Islamic world, and eventually to Europe.<sup id="cite_ref-plofker2007-p395_54-0" class="reference"><a href="#cite_note-plofker2007-p395-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> The Syrian bishop <a href="/wiki/Severus_Sebokht" title="Severus Sebokht">Severus Sebokht</a> wrote in the mid-7th century CE about the "nine signs" of the Indians for expressing numbers.<sup id="cite_ref-plofker2007-p395_54-1" class="reference"><a href="#cite_note-plofker2007-p395-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> However, how, when, and where the first decimal place value system was invented is not so clear.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>The earliest extant <a href="/wiki/Writing_system" title="Writing system">script</a> used in India was the <a href="/wiki/Kharo%E1%B9%A3%E1%B9%ADh%C4%AB" class="mw-redirect" title="Kharoṣṭhī"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Kharoṣṭhī</i></span></a> script used in the <a href="/wiki/Gandhara" title="Gandhara">Gandhara</a> culture of the north-west. It is thought to be of <a href="/wiki/Aramaic" title="Aramaic">Aramaic</a> origin and it was in use from the 4th century BCE to the 4th century CE. Almost contemporaneously, another script, the <a href="/wiki/Br%C4%81hm%C4%AB_script" class="mw-redirect" title="Brāhmī script">Brāhmī script</a>, appeared on much of the sub-continent, and would later become the foundation of many scripts of South Asia and South-east Asia. Both scripts had numeral symbols and numeral systems, which were initially <i>not</i> based on a place-value system.<sup id="cite_ref-hayashi2005-p366_56-0" class="reference"><a href="#cite_note-hayashi2005-p366-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>The earliest surviving evidence of decimal place value numerals in India and southeast Asia is from the middle of the first millennium CE.<sup id="cite_ref-plofker2009-p45_57-0" class="reference"><a href="#cite_note-plofker2009-p45-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> A copper plate from Gujarat, India mentions the date 595 CE, written in a decimal place value notation, although there is some doubt as to the authenticity of the plate.<sup id="cite_ref-plofker2009-p45_57-1" class="reference"><a href="#cite_note-plofker2009-p45-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> Decimal numerals recording the years 683 CE have also been found in stone inscriptions in Indonesia and Cambodia, where Indian cultural influence was substantial.<sup id="cite_ref-plofker2009-p45_57-2" class="reference"><a href="#cite_note-plofker2009-p45-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are older textual sources, although the extant manuscript copies of these texts are from much later dates.<sup id="cite_ref-plofker2009-p46_58-0" class="reference"><a href="#cite_note-plofker2009-p46-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Probably the earliest such source is the work of the Buddhist philosopher Vasumitra dated likely to the 1st century CE.<sup id="cite_ref-plofker2009-p46_58-1" class="reference"><a href="#cite_note-plofker2009-p46-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Discussing the counting pits of merchants, Vasumitra remarks, "When [the same] clay counting-piece is in the place of units, it is denoted as one, when in hundreds, one hundred."<sup id="cite_ref-plofker2009-p46_58-2" class="reference"><a href="#cite_note-plofker2009-p46-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Although such references seem to imply that his readers had knowledge of a decimal place value representation, the "brevity of their allusions and the ambiguity of their dates, however, do not solidly establish the chronology of the development of this concept."<sup id="cite_ref-plofker2009-p46_58-3" class="reference"><a href="#cite_note-plofker2009-p46-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p><p>A third decimal representation was employed in a verse composition technique, later labelled <i><a href="/wiki/Bhuta-sankhya" class="mw-redirect" title="Bhuta-sankhya">Bhuta-sankhya</a></i> (literally, "object numbers") used by early Sanskrit authors of technical books.<sup id="cite_ref-plofker2009-p47_59-0" class="reference"><a href="#cite_note-plofker2009-p47-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> Since many early technical works were composed in verse, numbers were often represented by objects in the natural or religious world that correspondence to them; this allowed a many-to-one correspondence for each number and made verse composition easier.<sup id="cite_ref-plofker2009-p47_59-1" class="reference"><a href="#cite_note-plofker2009-p47-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> According to Plofker,<sup id="cite_ref-Plofker_2009_60-0" class="reference"><a href="#cite_note-Plofker_2009-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> the number 4, for example, could be represented by the word "<a href="/wiki/Veda" class="mw-redirect" title="Veda">Veda</a>" (since there were four of these religious texts), the number 32 by the word "teeth" (since a full set consists of 32), and the number 1 by "moon" (since there is only one moon).<sup id="cite_ref-plofker2009-p47_59-2" class="reference"><a href="#cite_note-plofker2009-p47-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> So, Veda/teeth/moon would correspond to the decimal numeral 1324, as the convention for numbers was to enumerate their digits from right to left.<sup id="cite_ref-plofker2009-p47_59-3" class="reference"><a href="#cite_note-plofker2009-p47-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> The earliest reference employing object numbers is a c. 269 CE Sanskrit text, <a href="/wiki/Yavanajataka" title="Yavanajataka"><i>Yavanajātaka</i></a> (literally "Greek horoscopy") of Sphujidhvaja, a versification of an earlier (c. 150 CE) Indian prose adaptation of a lost work of Hellenistic astrology.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Such use seems to make the case that by the mid-3rd century CE, the decimal place value system was familiar, at least to readers of astronomical and astrological texts in India.<sup id="cite_ref-plofker2009-p47_59-4" class="reference"><a href="#cite_note-plofker2009-p47-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p><p> It has been hypothesized that the Indian decimal place value system was based on the symbols used on Chinese counting boards from as early as the middle of the first millennium BCE.<sup id="cite_ref-plofker2009-p48_62-0" class="reference"><a href="#cite_note-plofker2009-p48-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> According to Plofker,<sup id="cite_ref-Plofker_2009_60-1" class="reference"><a href="#cite_note-Plofker_2009-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><blockquote><p>These counting boards, like the Indian counting pits, ..., had a decimal place value structure ... Indians may well have learned of these decimal place value "rod numerals" from Chinese Buddhist pilgrims or other travelers, or they may have developed the concept independently from their earlier non-place-value system; no documentary evidence survives to confirm either conclusion."<sup id="cite_ref-plofker2009-p48_62-1" class="reference"><a href="#cite_note-plofker2009-p48-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Bakhshali_Manuscript">Bakhshali Manuscript</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=12" title="Edit section: Bakhshali Manuscript"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The oldest extant mathematical manuscript in India is the <i><a href="/wiki/Bakhshali_Manuscript" class="mw-redirect" title="Bakhshali Manuscript">Bakhshali Manuscript</a></i>, a birch bark manuscript written in "Buddhist hybrid Sanskrit"<sup id="cite_ref-plofker-brit6_12-1" class="reference"><a href="#cite_note-plofker-brit6-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> in the <i>Śāradā</i> script, which was used in the northwestern region of the Indian subcontinent between the 8th and 12th centuries CE.<sup id="cite_ref-hayashi2005-371_63-0" class="reference"><a href="#cite_note-hayashi2005-371-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> The manuscript was discovered in 1881 by a farmer while digging in a stone enclosure in the village of Bakhshali, near <a href="/wiki/Peshawar" title="Peshawar">Peshawar</a> (then in <a href="/wiki/British_India" class="mw-redirect" title="British India">British India</a> and now in <a href="/wiki/Pakistan" title="Pakistan">Pakistan</a>). Of unknown authorship and now preserved in the <a href="/wiki/Bodleian_Library" title="Bodleian Library">Bodleian Library</a> in the <a href="/wiki/University_of_Oxford" title="University of Oxford">University of Oxford</a>, the manuscript has been dated recently as 224 AD- 383 AD.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p><p>The surviving manuscript has seventy leaves, some of which are in fragments. Its mathematical content consists of rules and examples, written in verse, together with prose commentaries, which include solutions to the examples.<sup id="cite_ref-hayashi2005-371_63-1" class="reference"><a href="#cite_note-hayashi2005-371-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> The topics treated include arithmetic (fractions, square roots, profit and loss, simple interest, the <a href="/wiki/Rule_of_three_(mathematics)" class="mw-redirect" title="Rule of three (mathematics)">rule of three</a>, and <i><a href="/wiki/Regula_falsi" title="Regula falsi">regula falsi</a></i>) and algebra (simultaneous linear equations and <a href="/wiki/Quadratic_equations" class="mw-redirect" title="Quadratic equations">quadratic equations</a>), and arithmetic progressions. In addition, there is a handful of geometric problems (including problems about volumes of irregular solids). The Bakhshali manuscript also "employs a decimal place value system with a dot for zero."<sup id="cite_ref-hayashi2005-371_63-2" class="reference"><a href="#cite_note-hayashi2005-371-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> Many of its problems are of a category known as 'equalisation problems' that lead to systems of linear equations. One example from Fragment III-5-3v is the following: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>One merchant has seven <i>asava</i> horses, a second has nine <i>haya</i> horses, and a third has ten camels. They are equally well off in the value of their animals if each gives two animals, one to each of the others. Find the price of each animal and the total value for the animals possessed by each merchant.<sup id="cite_ref-anton_65-0" class="reference"><a href="#cite_note-anton-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>The prose commentary accompanying the example solves the problem by converting it to three (under-determined) equations in four unknowns and assuming that the prices are all integers.<sup id="cite_ref-anton_65-1" class="reference"><a href="#cite_note-anton-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2017, three samples from the manuscript were shown by <a href="/wiki/Radiocarbon_dating" title="Radiocarbon dating">radiocarbon dating</a> to come from three different centuries: from 224 to 383 AD, 680-779 AD, and 885-993 AD. It is not known how fragments from different centuries came to be packaged together.<sup id="cite_ref-Devlin_66-0" class="reference"><a href="#cite_note-Devlin-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Mason_67-0" class="reference"><a href="#cite_note-Mason-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bodleian_Library_68-0" class="reference"><a href="#cite_note-Bodleian_Library-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Classical_period_(400–1300)"><span id="Classical_period_.28400.E2.80.931300.29"></span>Classical period (400–1300)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=13" title="Edit section: Classical period (400–1300)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This period is often known as the golden age of Indian Mathematics. This period saw mathematicians such as <a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a>, <a href="/wiki/Varahamihira" class="mw-redirect" title="Varahamihira">Varahamihira</a>, <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a>, <a href="/wiki/Bhaskara_I" class="mw-redirect" title="Bhaskara I">Bhaskara I</a>, <a href="/wiki/Mahavira_(mathematician)" class="mw-redirect" title="Mahavira (mathematician)">Mahavira</a>, <a href="/wiki/Bhaskara_II" class="mw-redirect" title="Bhaskara II">Bhaskara II</a>, <a href="/wiki/Madhava_of_Sangamagrama" title="Madhava of Sangamagrama">Madhava of Sangamagrama</a> and <a href="/wiki/Nilakantha_Somayaji" title="Nilakantha Somayaji">Nilakantha Somayaji</a> give broader and clearer shape to many branches of mathematics. Their contributions would spread to Asia, the Middle East, and eventually to Europe. Unlike Vedic mathematics, their works included both astronomical and mathematical contributions. In fact, mathematics of that period was included in the 'astral science' (<i>jyotiḥśāstra</i>) and consisted of three sub-disciplines: mathematical sciences (<i>gaṇita</i> or <i>tantra</i>), horoscope astrology (<i>horā</i> or <i>jātaka</i>) and divination (saṃhitā).<sup id="cite_ref-hayashi2003-p119_53-1" class="reference"><a href="#cite_note-hayashi2003-p119-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> This tripartite division is seen in Varāhamihira's 6th century compilation—<i>Pancasiddhantika</i><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> (literally <i>panca</i>, "five," <i>siddhānta</i>, "conclusion of deliberation", dated 575 <a href="/wiki/Common_Era" title="Common Era">CE</a>)—of five earlier works, <a href="/wiki/Surya_Siddhanta" title="Surya Siddhanta">Surya Siddhanta</a>, <a href="/wiki/Romaka_Siddhanta" title="Romaka Siddhanta">Romaka Siddhanta</a>, <a href="/wiki/Paulisa_Siddhanta" title="Paulisa Siddhanta">Paulisa Siddhanta</a>, <a href="/wiki/Vasishtha_Siddhanta" title="Vasishtha Siddhanta">Vasishtha Siddhanta</a> and <a href="/wiki/Paitamaha_Siddhanta" class="mw-redirect" title="Paitamaha Siddhanta">Paitamaha Siddhanta</a>, which were adaptations of still earlier works of Mesopotamian, Greek, Egyptian, Roman and Indian astronomy. As explained earlier, the main texts were composed in Sanskrit verse, and were followed by prose commentaries.<sup id="cite_ref-hayashi2003-p119_53-2" class="reference"><a href="#cite_note-hayashi2003-p119-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fourth_to_sixth_centuries">Fourth to sixth centuries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=14" title="Edit section: Fourth to sixth centuries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Surya Siddhanta</dt></dl> <p>Though its authorship is unknown, the <i><a href="/wiki/Surya_Siddhanta" title="Surya Siddhanta">Surya Siddhanta</a></i> (c. 400) contains the roots of modern <a href="/wiki/Trigonometry" title="Trigonometry">trigonometry</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2011)">citation needed</span></a></i>&#93;</sup> Because it contains many words of foreign origin, some authors consider that it was written under the influence of <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Mesopotamia</a> and Greece.<sup id="cite_ref-Origins_of_Sulva_Sutras_and_Siddhanta_70-0" class="reference"><a href="#cite_note-Origins_of_Sulva_Sutras_and_Siddhanta-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint noexcerpt Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:NOTRS" class="mw-redirect" title="Wikipedia:NOTRS"><span title="This claim needs references to better sources. (April 2017)">better&#160;source&#160;needed</span></a></i>&#93;</sup> </p><p>This ancient text uses the following as trigonometric functions for the first time:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2011)">citation needed</span></a></i>&#93;</sup> </p> <ul><li>Sine (<i><a href="/wiki/Jya" class="mw-redirect" title="Jya">Jya</a></i>).</li> <li>Cosine (<i><a href="/wiki/Kojya" class="mw-redirect" title="Kojya">Kojya</a></i>).</li> <li><a href="/wiki/Inverse_sine" class="mw-redirect" title="Inverse sine">Inverse sine</a> (<i>Otkram jya</i>).</li></ul> <p>Later Indian mathematicians such as Aryabhata made references to this text, while later <a href="/wiki/Arabic" title="Arabic">Arabic</a> and <a href="/wiki/Latin" title="Latin">Latin</a> translations were very influential in Europe and the Middle East. </p> <dl><dt>Chhedi calendar</dt></dl> <p>This Chhedi calendar (594) contains an early use of the modern <a href="/wiki/Place-value" class="mw-redirect" title="Place-value">place-value</a> <a href="/wiki/Hindu%E2%80%93Arabic_numeral_system" title="Hindu–Arabic numeral system">Hindu–Arabic numeral system</a> now used universally. </p> <dl><dt>Aryabhata I</dt></dl> <p><a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a> (476–550) wrote the <i>Aryabhatiya.</i> He described the important fundamental principles of mathematics in 332 <a href="/wiki/Shlokas" class="mw-redirect" title="Shlokas">shlokas</a>. The treatise contained: </p> <ul><li><a href="/wiki/Quadratic_equation" title="Quadratic equation">Quadratic equations</a></li> <li><a href="/wiki/Trigonometry" title="Trigonometry">Trigonometry</a></li> <li>The value of <a href="/wiki/Pi" title="Pi">π</a>, correct to 4 decimal places.</li></ul> <p>Aryabhata also wrote the <i>Arya Siddhanta</i>, which is now lost. Aryabhata's contributions include: </p><p>Trigonometry: </p><p>(See also&#160;: <a href="/wiki/Aryabhata%27s_sine_table" class="mw-redirect" title="Aryabhata&#39;s sine table">Aryabhata's sine table</a>) </p> <ul><li>Introduced the <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a>.</li> <li>Defined the sine (<i><a href="/wiki/Jya" class="mw-redirect" title="Jya">jya</a></i>) as the modern relationship between half an angle and half a chord.</li> <li>Defined the cosine (<i><a href="/wiki/Kojya" class="mw-redirect" title="Kojya">kojya</a></i>).</li> <li>Defined the <a href="/wiki/Versine" title="Versine">versine</a> (<i><a href="/wiki/Utkrama-jya" class="mw-redirect" title="Utkrama-jya">utkrama-jya</a></i>).</li> <li>Defined the inverse sine (<i>otkram jya</i>).</li> <li>Gave methods of calculating their approximate numerical values.</li> <li>Contains the earliest tables of sine, cosine and versine values, in 3.75° intervals from 0° to 90°, to 4 decimal places of accuracy.</li> <li>Contains the trigonometric formula sin(<i>n</i> + 1)<i>x</i> − sin <i>nx</i> = sin <i>nx</i> − sin(<i>n</i> − 1)<i>x</i> − (1/225)sin <i>nx</i>.</li> <li><a href="/wiki/Spherical_trigonometry" title="Spherical trigonometry">Spherical trigonometry</a>.</li></ul> <p>Arithmetic: </p> <ul><li><a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">Simple continued fractions</a>.</li></ul> <p>Algebra: </p> <ul><li>Solutions of simultaneous quadratic equations.</li> <li>Whole number solutions of <a href="/wiki/Linear_equations" class="mw-redirect" title="Linear equations">linear equations</a> by a method equivalent to the modern method.</li> <li>General solution of the indeterminate linear equation .</li></ul> <p>Mathematical astronomy: </p> <ul><li>Accurate calculations for astronomical constants, such as the: <ul><li><a href="/wiki/Solar_eclipse" title="Solar eclipse">Solar eclipse</a>.</li> <li><a href="/wiki/Lunar_eclipse" title="Lunar eclipse">Lunar eclipse</a>.</li> <li>The formula for the sum of the <a href="/wiki/Cube_(algebra)" title="Cube (algebra)">cubes</a>, which was an important step in the development of integral calculus.<sup id="cite_ref-katz_71-0" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup></li></ul></li></ul> <dl><dt>Varahamihira</dt></dl> <p><a href="/wiki/Varahamihira" class="mw-redirect" title="Varahamihira">Varahamihira</a> (505–587) produced the <i>Pancha Siddhanta</i> (<i>The Five Astronomical Canons</i>). He made important contributions to trigonometry, including sine and cosine tables to 4 decimal places of accuracy and the following formulas relating <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> functions: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/890c54228f31bf6d711a0fcb0b7e130ebf58fa51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.454ex; height:3.176ex;" alt="{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3c0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d801ebcf28716d0e509afa5743fe2e963906c247" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.318ex; height:4.843ex;" alt="{\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1-\cos(2x)}{2}}=\sin ^{2}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1-\cos(2x)}{2}}=\sin ^{2}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e9ed0ecaf0ffec7c0644f52d0968274fcdb4f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.399ex; height:5.676ex;" alt="{\displaystyle {\frac {1-\cos(2x)}{2}}=\sin ^{2}(x)}" /></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Seventh_and_eighth_centuries">Seventh and eighth centuries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=15" title="Edit section: Seventh and eighth centuries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Brahmaguptra%27s_theorem.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Brahmaguptra%27s_theorem.svg/200px-Brahmaguptra%27s_theorem.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Brahmaguptra%27s_theorem.svg/300px-Brahmaguptra%27s_theorem.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Brahmaguptra%27s_theorem.svg/400px-Brahmaguptra%27s_theorem.svg.png 2x" data-file-width="234" data-file-height="234" /></a><figcaption><a href="/wiki/Brahmagupta%27s_theorem" class="mw-redirect" title="Brahmagupta&#39;s theorem">Brahmagupta's theorem</a> states that <i>AF</i> = <i>FD</i>.</figcaption></figure> <p>In the 7th century, two separate fields, <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> (which included <a href="/wiki/Measurement" title="Measurement">measurement</a>) and <a href="/wiki/Algebra" title="Algebra">algebra</a>, began to emerge in Indian mathematics. The two fields would later be called <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">pāṭī-gaṇita</i></span></i> (literally "mathematics of algorithms") and <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">bīja-gaṇita</i></span></i> (lit. "mathematics of seeds," with "seeds"—like the seeds of plants—representing unknowns with the potential to generate, in this case, the solutions of equations).<sup id="cite_ref-hayashi2005-p369_72-0" class="reference"><a href="#cite_note-hayashi2005-p369-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a>, in his astronomical work <i><a href="/wiki/Brahmasphutasiddhanta" class="mw-redirect" title="Brahmasphutasiddhanta"><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Brāhma Sphuṭa Siddhānta</i></span></a></i> (628 CE), included two chapters (12 and 18) devoted to these fields. Chapter 12, containing 66 Sanskrit verses, was divided into two sections: "basic operations" (including cube roots, fractions, ratio and proportion, and barter) and "practical mathematics" (including mixture, mathematical series, plane figures, stacking bricks, sawing of timber, and piling of grain).<sup id="cite_ref-hayashi2003-p121-122_73-0" class="reference"><a href="#cite_note-hayashi2003-p121-122-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> In the latter section, he stated his famous theorem on the diagonals of a <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a>:<sup id="cite_ref-hayashi2003-p121-122_73-1" class="reference"><a href="#cite_note-hayashi2003-p121-122-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Brahmagupta's theorem:</b> If a cyclic quadrilateral has diagonals that are <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to each other, then the perpendicular line drawn from the point of intersection of the diagonals to any side of the quadrilateral always bisects the opposite side. </p><p>Chapter 12 also included a formula for the area of a cyclic quadrilateral (a generalisation of <a href="/wiki/Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a>), as well as a complete description of <a href="/wiki/Rational_triangle" class="mw-redirect" title="Rational triangle">rational triangles</a> (<i>i.e.</i> triangles with rational sides and rational areas). </p><p><b>Brahmagupta's formula:</b> The area, <i>A</i>, of a cyclic quadrilateral with sides of lengths <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, respectively, is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\sqrt {(s-a)(s-b)(s-c)(s-d)}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\sqrt {(s-a)(s-b)(s-c)(s-d)}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48e283116b6c89d65af7214a4d2ed55dbd421841" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.963ex; height:4.843ex;" alt="{\displaystyle A={\sqrt {(s-a)(s-b)(s-c)(s-d)}}\,}" /></span></dd></dl> <p>where <i>s</i>, the <a href="/wiki/Semiperimeter" title="Semiperimeter">semiperimeter</a>, given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s={\frac {a+b+c+d}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s={\frac {a+b+c+d}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c00b5b950826ed62c4a7d026fc6a118ea62ffbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.643ex; height:5.343ex;" alt="{\displaystyle s={\frac {a+b+c+d}{2}}.}" /></span> </p><p><b>Brahmagupta's Theorem on rational triangles:</b> A triangle with rational sides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}" /></span> and rational area is of the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {u^{2}}{v}}+v,\ \ b={\frac {u^{2}}{w}}+w,\ \ c={\frac {u^{2}}{v}}+{\frac {u^{2}}{w}}-(v+w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> </mfrac> </mrow> <mo>+</mo> <mi>v</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <mi>b</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>w</mi> </mfrac> </mrow> <mo>+</mo> <mi>w</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>w</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {u^{2}}{v}}+v,\ \ b={\frac {u^{2}}{w}}+w,\ \ c={\frac {u^{2}}{v}}+{\frac {u^{2}}{w}}-(v+w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bdc80a0589adca6e57a155cd71dca6379b6b05a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.395ex; height:5.676ex;" alt="{\displaystyle a={\frac {u^{2}}{v}}+v,\ \ b={\frac {u^{2}}{w}}+w,\ \ c={\frac {u^{2}}{v}}+{\frac {u^{2}}{w}}-(v+w)}" /></span></dd></dl> <p>for some rational numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,v,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,v,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb98c62121b5b3c9c84158b9c64d7d57c4eb3c81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.138ex; height:2.009ex;" alt="{\displaystyle u,v,}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}" /></span>.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p><p>Chapter 18 contained 103 Sanskrit verses which began with rules for arithmetical operations involving zero and negative numbers<sup id="cite_ref-hayashi2003-p121-122_73-2" class="reference"><a href="#cite_note-hayashi2003-p121-122-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> and is considered the first systematic treatment of the subject. The rules (which included <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+0=\ a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mtext>&#xa0;</mtext> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+0=\ a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33ae5811b8adee3281ed20336f0954afe203c2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.142ex; height:2.343ex;" alt="{\displaystyle a+0=\ a}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times 0=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#xd7;<!-- × --></mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times 0=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c086c199718699c3a64124ef56a1fec50cc071c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.494ex; height:2.176ex;" alt="{\displaystyle a\times 0=0}" /></span>) were all correct, with one exception: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {0}{0}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0</mn> <mn>0</mn> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {0}{0}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/824c2ad35c100948390673d0c9175e409544e280" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.26ex; height:5.176ex;" alt="{\displaystyle {\frac {0}{0}}=0}" /></span>.<sup id="cite_ref-hayashi2003-p121-122_73-3" class="reference"><a href="#cite_note-hayashi2003-p121-122-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Later in the chapter, he gave the first explicit (although still not completely general) solution of the <b><a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equation</a></b>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ ax^{2}+bx=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ ax^{2}+bx=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/615c04bc20de8046e0425269d2d963ffd4d260cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.467ex; height:2.843ex;" alt="{\displaystyle \ ax^{2}+bx=c}" /></span></dd></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value.<sup id="cite_ref-stillwell2004-p87_75-0" class="reference"><a href="#cite_note-stillwell2004-p87-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>This is equivalent to: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {{\sqrt {4ac+b^{2}}}-b}{2a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mrow> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {{\sqrt {4ac+b^{2}}}-b}{2a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc34ee5d75442197c093aef961a8a0cf085feb86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.717ex; height:6.176ex;" alt="{\displaystyle x={\frac {{\sqrt {4ac+b^{2}}}-b}{2a}}}" /></span></dd></dl> <p>Also in chapter 18, Brahmagupta was able to make progress in finding (integral) solutions of <b><a href="/wiki/Pell%27s_equation" title="Pell&#39;s equation">Pell's equation</a></b>,<sup id="cite_ref-stillwell2004-p72-73_76-0" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{2}-Ny^{2}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{2}-Ny^{2}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5927fd6715685d5bda4aa12f76fe709d5f69a0d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.991ex; height:3.009ex;" alt="{\displaystyle \ x^{2}-Ny^{2}=1,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}" /></span> is a nonsquare integer. He did this by discovering the following identity:<sup id="cite_ref-stillwell2004-p72-73_76-1" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Brahmagupta's Identity:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ (x^{2}-Ny^{2})(x'^{2}-Ny'^{2})=(xx'+Nyy')^{2}-N(xy'+x'y)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">&#x2032;</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>N</mi> <mi>y</mi> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ (x^{2}-Ny^{2})(x'^{2}-Ny'^{2})=(xx'+Nyy')^{2}-N(xy'+x'y)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4e6cf62e1e08a707b6acb42fde1466eea3782b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.273ex; height:3.176ex;" alt="{\displaystyle \ (x^{2}-Ny^{2})(x&#39;^{2}-Ny&#39;^{2})=(xx&#39;+Nyy&#39;)^{2}-N(xy&#39;+x&#39;y)^{2}}" /></span> which was a generalisation of an earlier identity of <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a>:<sup id="cite_ref-stillwell2004-p72-73_76-2" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> Brahmagupta used his identity to prove the following lemma:<sup id="cite_ref-stillwell2004-p72-73_76-3" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Lemma (Brahmagupta):</b> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{1},\ \ y=y_{1}\ \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{1},\ \ y=y_{1}\ \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72f44811adf4a53885c03242faf9c46a3236d554" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.616ex; height:2.009ex;" alt="{\displaystyle x=x_{1},\ \ y=y_{1}\ \ }" /></span> is a solution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \ x^{2}-Ny^{2}=k_{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \ x^{2}-Ny^{2}=k_{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cc9ffea5caa0d09938673862cfdcf2cb57c4b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.675ex; height:3.009ex;" alt="{\displaystyle \ \ x^{2}-Ny^{2}=k_{1},}" /></span> and, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{2},\ \ y=y_{2}\ \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{2},\ \ y=y_{2}\ \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15bdb07dca9bf4ba84571431a34e7bed5bd2bb56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.616ex; height:2.009ex;" alt="{\displaystyle x=x_{2},\ \ y=y_{2}\ \ }" /></span> is a solution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \ x^{2}-Ny^{2}=k_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \ x^{2}-Ny^{2}=k_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0711ddd2665ac39bb73c785b0524af46a0153170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.675ex; height:3.009ex;" alt="{\displaystyle \ \ x^{2}-Ny^{2}=k_{2},}" /></span>, then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{1}x_{2}+Ny_{1}y_{2},\ \ y=x_{1}y_{2}+x_{2}y_{1}\ \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>N</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xa0;</mtext> <mtext>&#xa0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{1}x_{2}+Ny_{1}y_{2},\ \ y=x_{1}y_{2}+x_{2}y_{1}\ \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658a15a6d0bb70ec7e755aa5311df6558c9c106" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:38.093ex; height:2.509ex;" alt="{\displaystyle x=x_{1}x_{2}+Ny_{1}y_{2},\ \ y=x_{1}y_{2}+x_{2}y_{1}\ \ }" /></span> is a solution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{2}-Ny^{2}=k_{1}k_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{2}-Ny^{2}=k_{1}k_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7f7a8e6c836636109d9ca5d26fa77dacc2d4fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.713ex; height:3.009ex;" alt="{\displaystyle \ x^{2}-Ny^{2}=k_{1}k_{2}}" /></span></dd></dl> <p>He then used this lemma to both generate infinitely many (integral) solutions of Pell's equation, given one solution, and state the following theorem: </p><p><b>Theorem (Brahmagupta):</b> If the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{2}-Ny^{2}=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{2}-Ny^{2}=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceb899df296f0cbd7c8ca6219e38d82080f78cd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.393ex; height:3.009ex;" alt="{\displaystyle \ x^{2}-Ny^{2}=k}" /></span> has an integer solution for any one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ k=\pm 4,\pm 2,-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>k</mi> <mo>=</mo> <mo>&#xb1;<!-- ± --></mo> <mn>4</mn> <mo>,</mo> <mo>&#xb1;<!-- ± --></mo> <mn>2</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ k=\pm 4,\pm 2,-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/490107f763b9334d287b8d42f8ed7f337671e7e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.87ex; height:2.509ex;" alt="{\displaystyle \ k=\pm 4,\pm 2,-1}" /></span> then Pell's equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{2}-Ny^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{2}-Ny^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a32c9d593ecc3ebbcd518dcd72a1e1135772ebb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.344ex; height:3.009ex;" alt="{\displaystyle \ x^{2}-Ny^{2}=1}" /></span></dd></dl> <p>also has an integer solution.<sup id="cite_ref-stillwell2004-p74-76_77-0" class="reference"><a href="#cite_note-stillwell2004-p74-76-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p><p>Brahmagupta did not actually prove the theorem, but rather worked out examples using his method. The first example he presented was:<sup id="cite_ref-stillwell2004-p72-73_76-4" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Example (Brahmagupta):</b> Find integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x,\ y\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>x</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <mi>y</mi> <mtext>&#xa0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x,\ y\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/720767bb78dd07ec8359d10bbfeaf51a43637715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.261ex; height:2.009ex;" alt="{\displaystyle \ x,\ y\ }" /></span> such that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{2}-92y^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>92</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{2}-92y^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c42b19bf8e2aebb20884e57eda74f55b0041e1f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.606ex; height:3.009ex;" alt="{\displaystyle \ x^{2}-92y^{2}=1}" /></span></dd></dl> <p>In his commentary, Brahmagupta added, "a person solving this problem within a year is a mathematician."<sup id="cite_ref-stillwell2004-p72-73_76-5" class="reference"><a href="#cite_note-stillwell2004-p72-73-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> The solution he provided was: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x=1151,\ y=120}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>x</mi> <mo>=</mo> <mn>1151</mn> <mo>,</mo> <mtext>&#xa0;</mtext> <mi>y</mi> <mo>=</mo> <mn>120</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x=1151,\ y=120}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b573e8fedf27bddbd801f4559bfb7e54363a8318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.015ex; height:2.509ex;" alt="{\displaystyle \ x=1151,\ y=120}" /></span></dd></dl> <dl><dt>Bhaskara I</dt></dl> <p><a href="/wiki/Bhaskara_I" class="mw-redirect" title="Bhaskara I">Bhaskara I</a> (c. 600–680) expanded the work of Aryabhata in his books titled <i>Mahabhaskariya</i>, <i>Aryabhatiya-bhashya</i> and <i>Laghu-bhaskariya</i>. He produced: </p> <ul><li>Solutions of indeterminate equations.</li> <li>A rational approximation of the <a href="/wiki/Sine_function" class="mw-redirect" title="Sine function">sine function</a>.</li> <li>A formula for calculating the sine of an acute angle without the use of a table, correct to two decimal places.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Ninth_to_twelfth_centuries">Ninth to twelfth centuries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=16" title="Edit section: Ninth to twelfth centuries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Virasena</dt></dl> <p><a href="/wiki/Virasena" title="Virasena">Virasena</a> (8th century) was a Jain mathematician in the court of <a href="/wiki/Rashtrakuta" class="mw-redirect" title="Rashtrakuta">Rashtrakuta</a> King <a href="/wiki/Amoghavarsha" title="Amoghavarsha">Amoghavarsha</a> of <a href="/wiki/Manyakheta" class="mw-redirect" title="Manyakheta">Manyakheta</a>, Karnataka. He wrote the <i>Dhavala</i>, a commentary on Jain mathematics, which: </p> <ul><li>Deals with the concept of <i>ardhaccheda</i>, the number of times a number could be halved, and lists various rules involving this operation. This coincides with the <a href="/wiki/Binary_logarithm" title="Binary logarithm">binary logarithm</a> when applied to <a href="/wiki/Power_of_two" title="Power of two">powers of two</a>,<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Dhavala_79-0" class="reference"><a href="#cite_note-Dhavala-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> but differs on other numbers, more closely resembling the <a href="/wiki/P-adic_order" class="mw-redirect" title="P-adic order">2-adic order</a>.</li></ul> <p>Virasena also gave: </p> <ul><li>The derivation of the <a href="/wiki/Volume" title="Volume">volume</a> of a <a href="/wiki/Frustum" title="Frustum">frustum</a> by a sort of infinite procedure.</li></ul> <p>It is thought that much of the mathematical material in the <i>Dhavala</i> can attributed to previous writers, especially Kundakunda, Shamakunda, Tumbulura, Samantabhadra and Bappadeva and date who wrote between 200 and 600 CE.<sup id="cite_ref-Dhavala_79-1" class="reference"><a href="#cite_note-Dhavala-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt>Mahavira</dt></dl> <p><a href="/wiki/Mahavira_(mathematician)" class="mw-redirect" title="Mahavira (mathematician)">Mahavira Acharya</a> (c. 800–870) from <a href="/wiki/Karnataka" title="Karnataka">Karnataka</a>, the last of the notable Jain mathematicians, lived in the 9th century and was patronised by the Rashtrakuta king Amoghavarsha. He wrote a book titled <i>Ganit Saar Sangraha</i> on numerical mathematics, and also wrote treatises about a wide range of mathematical topics. These include the mathematics of: </p> <ul><li><a href="/wiki/0_(number)" class="mw-redirect" title="0 (number)">Zero</a></li> <li><a href="/wiki/Square_(algebra)" title="Square (algebra)">Squares</a></li> <li><a href="/wiki/Cube_(arithmetic)" class="mw-redirect" title="Cube (arithmetic)">Cubes</a></li> <li><a href="/wiki/Square_root" title="Square root">square roots</a>, <a href="/wiki/Cube_root" title="Cube root">cube roots</a>, and the <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> extending beyond these</li> <li>Plane geometry</li> <li><a href="/wiki/Solid_geometry" title="Solid geometry">Solid geometry</a></li> <li>Problems relating to the casting of <a href="/wiki/Shadows" class="mw-redirect" title="Shadows">shadows</a></li> <li>Formulae derived to calculate the area of an <a href="/wiki/Ellipse" title="Ellipse">ellipse</a> and <a href="/wiki/Quadrilateral" title="Quadrilateral">quadrilateral</a> inside a <a href="/wiki/Circle" title="Circle">circle</a>.</li></ul> <p>Mahavira also: </p> <ul><li>Asserted that the square root of a <a href="/wiki/Negative_number" title="Negative number">negative number</a> did not exist</li> <li>Gave the sum of a series whose terms are <a href="/wiki/Square_(algebra)" title="Square (algebra)">squares</a> of an <a href="/wiki/Arithmetical_progression" class="mw-redirect" title="Arithmetical progression">arithmetical progression</a>, and gave empirical rules for area and <a href="/wiki/Perimeter" title="Perimeter">perimeter</a> of an ellipse.</li> <li>Solved cubic equations.</li> <li>Solved quartic equations.</li> <li>Solved some <a href="/wiki/Quintic_equation" class="mw-redirect" title="Quintic equation">quintic equations</a> and higher-order <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>.</li> <li>Gave the general solutions of the higher order polynomial equations: <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ ax^{n}=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ ax^{n}=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d3c9f88b3fe6b21571d19c4991be0bf4da0359" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.527ex; height:2.676ex;" alt="{\displaystyle \ ax^{n}=q}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a{\frac {x^{n}-1}{x-1}}=p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a{\frac {x^{n}-1}{x-1}}=p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ed34d74c12a8cdb09fc8e74f650e949fbd63c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.885ex; height:5.343ex;" alt="{\displaystyle a{\frac {x^{n}-1}{x-1}}=p}" /></span></li></ul></li> <li>Solved indeterminate quadratic equations.</li> <li>Solved indeterminate cubic equations.</li> <li>Solved indeterminate higher order equations.</li></ul> <dl><dt>Shridhara</dt></dl> <p><a href="/wiki/Shridhara" class="mw-redirect" title="Shridhara">Shridhara</a> (c. 870–930), who lived in <a href="/wiki/Bengal" title="Bengal">Bengal</a>, wrote the books titled <i>Nav Shatika</i>, <i>Tri Shatika</i> and <i>Pati Ganita</i>. He gave: </p> <ul><li>A good rule for finding the volume of a <a href="/wiki/Sphere" title="Sphere">sphere</a>.</li> <li>The formula for solving <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equations</a>.</li></ul> <p>The <i>Pati Ganita</i> is a work on arithmetic and <a href="/wiki/Measurement" title="Measurement">measurement</a>. It deals with various operations, including: </p> <ul><li>Elementary operations</li> <li>Extracting square and cube roots.</li> <li>Fractions.</li> <li>Eight rules given for operations involving zero.</li> <li>Methods of <a href="/wiki/Summation" title="Summation">summation</a> of different arithmetic and geometric series, which were to become standard references in later works.</li></ul> <dl><dt>Manjula</dt></dl> <p>Aryabhata's equations were elaborated in the 10th century by Manjula (also <i>Munjala</i>), who realised that the expression<sup id="cite_ref-Joseph-298-300_80-0" class="reference"><a href="#cite_note-Joseph-298-300-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sin w'-\sin w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>w</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sin w'-\sin w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf932af1ef27956f10f338d799d4274ddd3d5222" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.307ex; height:2.676ex;" alt="{\displaystyle \ \sin w&#39;-\sin w}" /></span></dd></dl> <p>could be approximately expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ (w'-w)\cos w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mo stretchy="false">(</mo> <msup> <mi>w</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ (w'-w)\cos w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6848ddbc5320c8c18a5212f2508f0ecb6f3da222" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.793ex; height:3.009ex;" alt="{\displaystyle \ (w&#39;-w)\cos w}" /></span></dd></dl> <p>This was elaborated by his later successor Bhaskara ii thereby finding the derivative of sine.<sup id="cite_ref-Joseph-298-300_80-1" class="reference"><a href="#cite_note-Joseph-298-300-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt>Aryabhata II</dt></dl> <p><a href="/wiki/Aryabhata_II" title="Aryabhata II">Aryabhata II</a> (c. 920–1000) wrote a commentary on Shridhara, and an astronomical treatise <i><a href="/wiki/Maha-Siddhanta" class="mw-redirect" title="Maha-Siddhanta">Maha-Siddhanta</a></i>. The Maha-Siddhanta has 18 chapters, and discusses: </p> <ul><li>Numerical mathematics (<i>Ank Ganit</i>).</li> <li>Algebra.</li> <li>Solutions of indeterminate equations (<i>kuttaka</i>).</li></ul> <dl><dt>Shripati</dt></dl> <p><a href="/wiki/Sripati" class="mw-redirect" title="Sripati">Shripati Mishra</a> (1019–1066) wrote the books <i>Siddhanta Shekhara</i>, a major work on astronomy in 19 chapters, and <i>Ganit Tilaka</i>, an incomplete <a href="/wiki/Arithmetic" title="Arithmetic">arithmetical</a> treatise in 125 verses based on a work by Shridhara. He worked mainly on: </p> <ul><li><a href="/wiki/Permutation" title="Permutation">Permutations and combinations</a>.</li> <li>General solution of the simultaneous indeterminate linear equation.</li></ul> <p>He was also the author of <i>Dhikotidakarana</i>, a work of twenty verses on: </p> <ul><li><a href="/wiki/Solar_eclipse" title="Solar eclipse">Solar eclipse</a>.</li> <li><a href="/wiki/Lunar_eclipse" title="Lunar eclipse">Lunar eclipse</a>.</li></ul> <p>The <i>Dhruvamanasa</i> is a work of 105 verses on: </p> <ul><li>Calculating planetary <a href="/wiki/Longitude" title="Longitude">longitudes</a></li> <li><a href="/wiki/Eclipse" title="Eclipse">eclipses</a>.</li> <li>planetary <a href="/wiki/Astronomical_transit" title="Astronomical transit">transits</a>.</li></ul> <dl><dt>Nemichandra Siddhanta Chakravati</dt></dl> <p>Nemichandra Siddhanta Chakravati (c. 1100) authored a mathematical treatise titled <i>Gome-mat Saar</i>. </p> <dl><dt>Bhaskara II</dt></dl> <p><a href="/wiki/Bh%C4%81skara_II" title="Bhāskara II">Bhāskara II</a> (1114–1185) was a mathematician-astronomer who wrote a number of important treatises, namely the <i>Siddhanta Shiromani</i>, <i><a href="/wiki/Lilavati" class="mw-redirect" title="Lilavati">Lilavati</a></i>, <i><a href="/wiki/Bijaganita" title="Bijaganita">Bijaganita</a></i>, <i>Gola Addhaya</i>, <i>Griha Ganitam</i> and <i>Karan Kautoohal</i>. A number of his contributions were later transmitted to the Middle East and Europe. His contributions include: </p><p>Arithmetic: </p> <ul><li>Interest computation</li> <li>Arithmetical and geometrical progressions</li> <li>Plane geometry</li> <li>Solid geometry</li> <li>The shadow of the <a href="/wiki/Gnomon" title="Gnomon">gnomon</a></li> <li>Solutions of <a href="/wiki/Combinations" class="mw-redirect" title="Combinations">combinations</a></li> <li>Gave a proof for division by zero being <a href="/wiki/Infinity" title="Infinity">infinity</a>.</li></ul> <p>Algebra: </p> <ul><li>The recognition of a positive number having two square roots.</li> <li><a href="/wiki/Nth_root" title="Nth root">Surds</a>.</li> <li>Operations with products of several unknowns.</li> <li>The solutions of: <ul><li>Quadratic equations.</li> <li>Cubic equations.</li> <li>Quartic equations.</li> <li>Equations with more than one unknown.</li> <li>Quadratic equations with more than one unknown.</li> <li>The general form of <a href="/wiki/Pell%27s_equation" title="Pell&#39;s equation">Pell's equation</a> using the <a href="/wiki/Chakravala_method" title="Chakravala method"><i>chakravala</i> method</a>.</li> <li>The general indeterminate quadratic equation using the <i>chakravala</i> method.</li> <li>Indeterminate cubic equations.</li> <li>Indeterminate quartic equations.</li> <li>Indeterminate higher-order polynomial equations.</li></ul></li></ul> <p>Geometry: </p> <ul><li>Gave a proof of the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a>.</li></ul> <p>Calculus: </p> <ul><li>Preliminary concept of differentiation</li> <li>Discovered the <a href="/wiki/Differential_coefficient" title="Differential coefficient">differential coefficient</a>.</li> <li>Stated early form of <a href="/wiki/Rolle%27s_theorem" title="Rolle&#39;s theorem">Rolle's theorem</a>, a special case of the <a href="/wiki/Mean_value_theorem" title="Mean value theorem">mean value theorem</a> (one of the most important theorems of calculus and analysis).</li> <li>Derived the differential of the sine function although didn't perceive the notion of derivative.</li> <li>Computed <a href="/wiki/Pi" title="Pi">π</a>, correct to five decimal places.</li> <li>Calculated the length of the Earth's revolution around the Sun to 9 decimal places.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>Trigonometry: </p> <ul><li>Developments of <a href="/wiki/Spherical_trigonometry" title="Spherical trigonometry">spherical trigonometry</a></li> <li>The trigonometric formulas: <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sin(a+b)=\sin(a)\cos(b)+\sin(b)\cos(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sin(a+b)=\sin(a)\cos(b)+\sin(b)\cos(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6b84d43083a6fad1e2d502e96ea8ee398f6b4fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.039ex; height:2.843ex;" alt="{\displaystyle \ \sin(a+b)=\sin(a)\cos(b)+\sin(b)\cos(a)}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sin(a-b)=\sin(a)\cos(b)-\sin(b)\cos(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xa0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sin(a-b)=\sin(a)\cos(b)-\sin(b)\cos(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af8cb20365b6d4e6122d1b4452badeaf6f34c7b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.039ex; height:2.843ex;" alt="{\displaystyle \ \sin(a-b)=\sin(a)\cos(b)-\sin(b)\cos(a)}" /></span></li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="Medieval_and_early_modern_mathematics_(1300–1800)"><span id="Medieval_and_early_modern_mathematics_.281300.E2.80.931800.29"></span>Medieval and early modern mathematics (1300–1800)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=17" title="Edit section: Medieval and early modern mathematics (1300–1800)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Navya-Nyaya">Navya-Nyaya</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=18" title="Edit section: Navya-Nyaya"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Navya-Ny%C4%81ya" title="Navya-Nyāya">Navya-Nyāya</a></div> <p>The Navya-Nyāya or Neo-Logical darśana (school) of Indian philosophy was founded in the 13th century by the philosopher <a href="/wiki/Gangesha_Upadhyaya" class="mw-redirect" title="Gangesha Upadhyaya">Gangesha Upadhyaya</a> of <a href="/wiki/Mithila_(India)" class="mw-redirect" title="Mithila (India)">Mithila</a>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> It was a development of the classical Nyāya darśana. Other influences on Navya-Nyāya were the work of earlier philosophers <a href="/wiki/V%C4%81caspati_Mi%C5%9Bra" class="mw-redirect" title="Vācaspati Miśra">Vācaspati Miśra</a> (900–980 CE) and <a href="/wiki/Udayana" title="Udayana">Udayana</a> (late 10th century). </p><p>Gangeśa's book <a href="/wiki/Tattvacint%C4%81ma%E1%B9%87i" class="mw-redirect" title="Tattvacintāmaṇi">Tattvacintāmaṇi</a> ("Thought-Jewel of Reality") was written partly in response to Śrīharśa's Khandanakhandakhādya, a defence of <a href="/wiki/Advaita_Vedanta" title="Advaita Vedanta">Advaita Vedānta</a>, which had offered a set of thorough criticisms of Nyāya theories of thought and language.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Navya-Nyāya developed a sophisticated language and conceptual scheme that allowed it to raise, analyze, and solve problems in logic and epistemology. It involves naming each object to be analyzed, identifying a distinguishing characteristic for the named object, and verifying the appropriateness of the defining characteristic using <i>pramanas</i>.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kerala_School">Kerala School</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=19" title="Edit section: Kerala School"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school of astronomy and mathematics</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kerala_school_chain_of_teachers.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Kerala_school_chain_of_teachers.jpg/250px-Kerala_school_chain_of_teachers.jpg" decoding="async" width="220" height="167" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Kerala_school_chain_of_teachers.jpg/330px-Kerala_school_chain_of_teachers.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Kerala_school_chain_of_teachers.jpg/500px-Kerala_school_chain_of_teachers.jpg 2x" data-file-width="2193" data-file-height="1668" /></a><figcaption>Chain of teachers of <a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school of astronomy and mathematics</a></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Pages_from_Yuktibhasa.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Pages_from_Yuktibhasa.jpg/220px-Pages_from_Yuktibhasa.jpg" decoding="async" width="220" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Pages_from_Yuktibhasa.jpg/330px-Pages_from_Yuktibhasa.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Pages_from_Yuktibhasa.jpg/440px-Pages_from_Yuktibhasa.jpg 2x" data-file-width="3750" data-file-height="1214" /></a><figcaption>Pages from the <a href="/wiki/Yuktibh%C4%81%E1%B9%A3%C4%81" title="Yuktibhāṣā">Yuktibhasa</a> c.1530</figcaption></figure> <p>The <a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school of astronomy and mathematics</a> was founded by <a href="/wiki/Madhava_of_Sangamagrama" title="Madhava of Sangamagrama">Madhava of Sangamagrama</a> in Kerala, <a href="/wiki/South_India" title="South India">South India</a> and included among its members: <a href="/wiki/Parameshvara" class="mw-redirect" title="Parameshvara">Parameshvara</a>, <a href="/wiki/Neelakanta_Somayaji" class="mw-redirect" title="Neelakanta Somayaji">Neelakanta Somayaji</a>, <a href="/wiki/Jyeshtadeva" class="mw-redirect" title="Jyeshtadeva">Jyeshtadeva</a>, <a href="/wiki/Achyuta_Pisharati" class="mw-redirect" title="Achyuta Pisharati">Achyuta Pisharati</a>, <a href="/wiki/Melpathur_Narayana_Bhattathiri" title="Melpathur Narayana Bhattathiri">Melpathur Narayana Bhattathiri</a> and Achyuta Panikkar. It flourished between the 14th and 16th centuries and the original discoveries of the school seems to have ended with Narayana Bhattathiri (1559–1632). In attempting to solve astronomical problems, the Kerala school astronomers <i>independently</i> created a number of important mathematics concepts. The most important results, series expansion for <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a>, were given in <a href="/wiki/Sanskrit" title="Sanskrit">Sanskrit</a> verse in a book by Neelakanta called <i>Tantrasangraha</i> and a commentary on this work called <i>Tantrasangraha-vakhya</i> of unknown authorship. The theorems were stated without proof, but proofs for the series for <i>sine</i>, <i>cosine</i>, and inverse <i>tangent</i> were provided a century later in the work <i><a href="/wiki/Yuktibh%C4%81%E1%B9%A3%C4%81" title="Yuktibhāṣā">Yuktibhāṣā</a></i> (c.1500–c.1610), written in <a href="/wiki/Malayalam" title="Malayalam">Malayalam</a>, by <a href="/wiki/Jyesthadeva" class="mw-redirect" title="Jyesthadeva">Jyesthadeva</a>.<sup id="cite_ref-roy_85-0" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </p><p>Their discovery of these three important series expansions of <a href="/wiki/Calculus" title="Calculus">calculus</a>—several centuries before calculus was developed in Europe by <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> and <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a>—was an achievement. However, the Kerala School did not invent <i>calculus</i>,<sup id="cite_ref-bressoud_86-0" class="reference"><a href="#cite_note-bressoud-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> because, while they were able to develop <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansions for the important <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a>, they developed neither a theory of <a href="/wiki/Derivative" title="Derivative">differentiation</a> or <a href="/wiki/Integral" title="Integral">integration</a>, nor the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a>.<sup id="cite_ref-katz_71-1" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> The results obtained by the Kerala school include: </p> <ul><li>The (infinite) <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1-x}}=1+x+x^{2}+x^{3}+x^{4}+\cdots {\text{ for }}|x|&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xa0;for&#xa0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1-x}}=1+x+x^{2}+x^{3}+x^{4}+\cdots {\text{ for }}|x|&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0adcb6bbc05ef1826f956b47d08395648b1e74e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:47.055ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{1-x}}=1+x+x^{2}+x^{3}+x^{4}+\cdots {\text{ for }}|x|&lt;1}" /></span><sup id="cite_ref-singh_87-0" class="reference"><a href="#cite_note-singh-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup></li> <li>A semi-rigorous proof (see "induction" remark below) of the result: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{p}+2^{p}+\cdots +n^{p}\approx {\frac {n^{p+1}}{p+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{p}+2^{p}+\cdots +n^{p}\approx {\frac {n^{p+1}}{p+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54eca5f4e177d583418540fc66581d0421b0a33d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.248ex; height:6.176ex;" alt="{\displaystyle 1^{p}+2^{p}+\cdots +n^{p}\approx {\frac {n^{p+1}}{p+1}}}" /></span> for large <i>n</i>.<sup id="cite_ref-roy_85-1" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li>Intuitive use of <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a>, however, the <i><a href="/wiki/Mathematical_induction#Description" title="Mathematical induction">inductive hypothesis</a></i> was not formulated or employed in proofs.<sup id="cite_ref-roy_85-2" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li>Applications of ideas from (what was to become) differential and integral calculus to obtain <a href="/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">(Taylor–Maclaurin) infinite series</a> for sin x, cos x, and arctan x.<sup id="cite_ref-bressoud_86-1" class="reference"><a href="#cite_note-bressoud-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> The <i>Tantrasangraha-vakhya</i> gives the series in verse, which when translated to mathematical notation, can be written as:<sup id="cite_ref-roy_85-3" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\arctan \left({\frac {y}{x}}\right)={\frac {1}{1}}\cdot {\frac {ry}{x}}-{\frac {1}{3}}\cdot {\frac {ry^{3}}{x^{3}}}+{\frac {1}{5}}\cdot {\frac {ry^{5}}{x^{5}}}-\cdots ,{\text{ where }}y/x\leq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>r</mi> <mi>y</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>r</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>r</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xa0;where&#xa0;</mtext> </mrow> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\arctan \left({\frac {y}{x}}\right)={\frac {1}{1}}\cdot {\frac {ry}{x}}-{\frac {1}{3}}\cdot {\frac {ry^{3}}{x^{3}}}+{\frac {1}{5}}\cdot {\frac {ry^{5}}{x^{5}}}-\cdots ,{\text{ where }}y/x\leq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aac0095704595975d16be37eaa662098def9974" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:66.543ex; height:6.009ex;" alt="{\displaystyle r\arctan \left({\frac {y}{x}}\right)={\frac {1}{1}}\cdot {\frac {ry}{x}}-{\frac {1}{3}}\cdot {\frac {ry^{3}}{x^{3}}}+{\frac {1}{5}}\cdot {\frac {ry^{5}}{x^{5}}}-\cdots ,{\text{ where }}y/x\leq 1.}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\sin x=x-x{\frac {x^{2}}{(2^{2}+2)r^{2}}}+x{\frac {x^{2}}{(2^{2}+2)r^{2}}}\cdot {\frac {x^{2}}{(4^{2}+4)r^{2}}}-\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\sin x=x-x{\frac {x^{2}}{(2^{2}+2)r^{2}}}+x{\frac {x^{2}}{(2^{2}+2)r^{2}}}\cdot {\frac {x^{2}}{(4^{2}+4)r^{2}}}-\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef425a8c3e8a783197747f28eb15952d135c52e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:58.923ex; height:6.676ex;" alt="{\displaystyle r\sin x=x-x{\frac {x^{2}}{(2^{2}+2)r^{2}}}+x{\frac {x^{2}}{(2^{2}+2)r^{2}}}\cdot {\frac {x^{2}}{(4^{2}+4)r^{2}}}-\cdots }" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r-\cos x=r{\frac {x^{2}}{(2^{2}-2)r^{2}}}-r{\frac {x^{2}}{(2^{2}-2)r^{2}}}{\frac {x^{2}}{(4^{2}-4)r^{2}}}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r-\cos x=r{\frac {x^{2}}{(2^{2}-2)r^{2}}}-r{\frac {x^{2}}{(2^{2}-2)r^{2}}}{\frac {x^{2}}{(4^{2}-4)r^{2}}}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82a5a87f9944ef59edd46f6e538f5765247384aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:56.254ex; height:6.676ex;" alt="{\displaystyle r-\cos x=r{\frac {x^{2}}{(2^{2}-2)r^{2}}}-r{\frac {x^{2}}{(2^{2}-2)r^{2}}}{\frac {x^{2}}{(4^{2}-4)r^{2}}}+\cdots ,}" /></span></dd></dl></dd> <dd>where, for <i>r</i>&#160;=&#160;1, the series reduces to the standard power series for these trigonometric functions, for example: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a9027c77b90e40215c01281b39d37730e7e537" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.746ex; height:5.843ex;" alt="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }" /></span></dd></dl></dd> <dd>and <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mrow> <mn>6</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ec2d1dd64d61a18f031ed242dd310840bcbbc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.834ex; height:5.843ex;" alt="{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots }" /></span></dd></dl></dd></dl> <ul><li>Use of rectification (computation of length) of the arc of a circle to give a proof of these results. (The later method of Leibniz, using quadrature, <i>i.e.</i> computation of <i>area under</i> the arc of the circle, was <i>not</i> used.)<sup id="cite_ref-roy_85-4" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li>Use of the series expansion of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arctan x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arctan x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7315ab90c047f16ec0972c15e14988ed737c1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.183ex; height:2.009ex;" alt="{\displaystyle \arctan x}" /></span> to obtain the <a href="/wiki/Leibniz_formula_for_%CF%80" title="Leibniz formula for π">Leibniz formula for π</a>:<sup id="cite_ref-roy_85-5" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{4}}=1-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3c0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mrow> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{4}}=1-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00ac5f27203f1869a2c740c98202f11a0e78e30a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.51ex; height:5.343ex;" alt="{\displaystyle {\frac {\pi }{4}}=1-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+\cdots }" /></span></dd></dl></dd></dl> <ul><li>A rational approximation of <i>error</i> for the finite sum of their series of interest. For example, the error, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0c8921836dbb46968f58a4ccb43b50bfb7b38e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.146ex; height:2.843ex;" alt="{\displaystyle f_{i}(n+1)}" /></span>, (for <i>n</i> odd, and <i>i</i> = 1, 2, 3) for the series:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{4}}\approx 1-{\frac {1}{3}}+{\frac {1}{5}}-\cdots +(-1)^{(n-1)/2}{\frac {1}{n}}+(-1)^{(n+1)/2}f_{i}(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3c0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{4}}\approx 1-{\frac {1}{3}}+{\frac {1}{5}}-\cdots +(-1)^{(n-1)/2}{\frac {1}{n}}+(-1)^{(n+1)/2}f_{i}(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e6d2748ac039769ab8aa95cc91e20166de30b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.772ex; height:5.176ex;" alt="{\displaystyle {\frac {\pi }{4}}\approx 1-{\frac {1}{3}}+{\frac {1}{5}}-\cdots +(-1)^{(n-1)/2}{\frac {1}{n}}+(-1)^{(n+1)/2}f_{i}(n+1)}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{where }}f_{1}(n)={\frac {1}{2n}},\ f_{2}(n)={\frac {n/2}{n^{2}+1}},\ f_{3}(n)={\frac {(n/2)^{2}+1}{(n^{2}+5)n/2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>where&#xa0;</mtext> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xa0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xa0;</mtext> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{where }}f_{1}(n)={\frac {1}{2n}},\ f_{2}(n)={\frac {n/2}{n^{2}+1}},\ f_{3}(n)={\frac {(n/2)^{2}+1}{(n^{2}+5)n/2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c57e7b86173924c707fe9bd2f3b9e535f11f7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:59.39ex; height:6.676ex;" alt="{\displaystyle {\text{where }}f_{1}(n)={\frac {1}{2n}},\ f_{2}(n)={\frac {n/2}{n^{2}+1}},\ f_{3}(n)={\frac {(n/2)^{2}+1}{(n^{2}+5)n/2}}.}" /></span></dd></dl></dd></dl> <ul><li>Manipulation of error term to derive a faster converging series for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }" /></span>:<sup id="cite_ref-roy_85-6" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}+{\frac {1}{3^{3}-3}}-{\frac {1}{5^{3}-5}}+{\frac {1}{7^{3}-7}}-\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3c0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}+{\frac {1}{3^{3}-3}}-{\frac {1}{5^{3}-5}}+{\frac {1}{7^{3}-7}}-\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8ef8b29347050c41378497b9957830d2c09f620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.517ex; height:5.843ex;" alt="{\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}+{\frac {1}{3^{3}-3}}-{\frac {1}{5^{3}-5}}+{\frac {1}{7^{3}-7}}-\cdots }" /></span></dd></dl></dd></dl> <ul><li>Using the improved series to derive a rational expression,<sup id="cite_ref-roy_85-7" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> 104348/33215 for <i>&#960;</i> correct up to <i>nine</i> decimal places, <i>i.e.</i>&#160;3.141592653.</li> <li>Use of an intuitive notion of limit to compute these results.<sup id="cite_ref-roy_85-8" class="reference"><a href="#cite_note-roy-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li>A semi-rigorous (see remark on limits above) method of differentiation of some trigonometric functions.<sup id="cite_ref-katz_71-2" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> However, they did not formulate the notion of a <i>function</i>, or have knowledge of the exponential or logarithmic functions.</li></ul> <p>The works of the Kerala school were first written up for the Western world by Englishman <a href="/wiki/C.M._Whish" class="mw-redirect" title="C.M. Whish">C.M. Whish</a> in 1835. According to Whish, the Kerala mathematicians had "<i>laid the foundation for a complete system of fluxions</i>" and these works abounded "<i>with fluxional forms and series to be found in no work of foreign countries.</i>"<sup id="cite_ref-whish_88-0" class="reference"><a href="#cite_note-whish-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p><p>However, Whish's results were almost completely neglected, until over a century later, when the discoveries of the Kerala school were investigated again by C. Rajagopal and his associates. Their work includes commentaries on the proofs of the arctan series in <i>Yuktibhāṣā</i> given in two papers,<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> a commentary on the <i>Yuktibhāṣā'</i>s proof of the sine and cosine series<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> and two papers that provide the Sanskrit verses of the <i>Tantrasangrahavakhya</i> for the series for arctan, sin, and cosine (with English translation and commentary).<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p><p>Parameshvara (c. 1370–1460) wrote commentaries on the works of <a href="/wiki/Bhaskara_I" class="mw-redirect" title="Bhaskara I">Bhaskara I</a>, <a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a> and Bhaskara II. His <i>Lilavati Bhasya</i>, a commentary on Bhaskara II's <i>Lilavati</i>, contains one of his important discoveries: a version of the <a href="/wiki/Mean_value_theorem" title="Mean value theorem">mean value theorem</a>. <a href="/wiki/Nilakantha_Somayaji" title="Nilakantha Somayaji">Nilakantha Somayaji</a> (1444–1544) composed the <i>Tantra Samgraha</i> (which 'spawned' a later anonymous commentary <i>Tantrasangraha-vyakhya</i> and a further commentary by the name <i>Yuktidipaika</i>, written in 1501). He elaborated and extended the contributions of Madhava. </p><p><a href="/wiki/Citrabhanu" class="mw-redirect" title="Citrabhanu">Citrabhanu</a> (c. 1530) was a 16th-century mathematician from Kerala who gave integer solutions to 21 types of systems of two <a href="/wiki/Simultaneous_equation" class="mw-redirect" title="Simultaneous equation">simultaneous</a> algebraic equations in two unknowns. These types are all the possible pairs of equations of the following seven forms: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;x+y=a,\ x-y=b,\ xy=c,x^{2}+y^{2}=d,\\[8pt]&amp;x^{2}-y^{2}=e,\ x^{3}+y^{3}=f,\ x^{3}-y^{3}=g\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.1em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd></mtd> <mtd> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mi>b</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>c</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>e</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mtext>&#xa0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mi>g</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;x+y=a,\ x-y=b,\ xy=c,x^{2}+y^{2}=d,\\[8pt]&amp;x^{2}-y^{2}=e,\ x^{3}+y^{3}=f,\ x^{3}-y^{3}=g\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f7c2147f7c241cb7c7eaf65c879c86be5dfb2ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:43.081ex; height:8.176ex;" alt="{\displaystyle {\begin{aligned}&amp;x+y=a,\ x-y=b,\ xy=c,x^{2}+y^{2}=d,\\[8pt]&amp;x^{2}-y^{2}=e,\ x^{3}+y^{3}=f,\ x^{3}-y^{3}=g\end{aligned}}}" /></span></dd></dl> <p>For each case, Citrabhanu gave an explanation and justification of his rule as well as an example. Some of his explanations are algebraic, while others are geometric. <a href="/wiki/Jyesthadeva" class="mw-redirect" title="Jyesthadeva">Jyesthadeva</a> (c. 1500–1575) was another member of the Kerala School. His key work was the <i>Yukti-bhāṣā</i> (written in Malayalam, a regional language of Kerala). Jyesthadeva presented proofs of most mathematical theorems and infinite series earlier discovered by Madhava and other Kerala School mathematicians. </p> <div class="mw-heading mw-heading3"><h3 id="Others">Others</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=20" title="Edit section: Others"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Narayana_Pandit" class="mw-redirect" title="Narayana Pandit">Narayana Pandit</a> was a 14th century mathematician who composed two important mathematical works, an arithmetical treatise, <i>Ganita Kaumudi</i>, and an algebraic treatise, <i>Bijganita Vatamsa</i>. <i>Ganita Kaumudi</i> is one of the most revolutionary works in the field of combinatorics with developing a method for <a href="/wiki/Permutation#Generation_in_lexicographic_order" title="Permutation">systematic generation of all permutations</a> of a given sequence. In his <i>Ganita Kaumudi</i> Narayana proposed the following problem on a herd of cows and calves: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>A cow produces one calf every year. Beginning in its fourth year, each calf produces one calf at the beginning of each year. How many cows and calves are there altogether after 20 years?</p></blockquote> <p>Translated into the modern mathematical language of <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence sequences</a>: </p> <dl><dd><span class="texhtml">N<sub>n</sub> = N<sub>n-1</sub> + N<sub>n-3</sub></span> for <span class="texhtml">n &gt; 2</span>,</dd></dl> <p>with initial values </p> <dl><dd><span class="texhtml">N<sub>0</sub> = N<sub>1</sub> = N<sub>2</sub> = 1</span>.</dd></dl> <p>The first few terms are 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88,... (sequence <span class="nowrap external"><a href="//oeis.org/A000930" class="extiw" title="oeis:A000930">A000930</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>). The limit ratio between consecutive terms is the <a href="/wiki/Supergolden_ratio" title="Supergolden ratio">supergolden ratio</a>. . Narayana is also thought to be the author of an elaborate commentary of <a href="/wiki/Bhaskara_II" class="mw-redirect" title="Bhaskara II">Bhaskara II</a>'s <a href="/wiki/Lilavati" class="mw-redirect" title="Lilavati">Lilavati</a>, titled <a href="/wiki/Ganita_Kaumudi" title="Ganita Kaumudi">G<i>anita Kaumudia</i></a>(or <i>Karma-Paddhati</i>).<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Charges_of_Eurocentrism">Charges of Eurocentrism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=21" title="Edit section: Charges of Eurocentrism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It has been suggested that Indian contributions to mathematics have not been given due acknowledgement in modern history and that many discoveries and inventions by <a href="/wiki/Indian_mathematicians" class="mw-redirect" title="Indian mathematicians">Indian mathematicians</a> are presently culturally attributed to their <a href="/wiki/Western_world" title="Western world">Western</a> counterparts, as a result of <a href="/wiki/Eurocentrism" title="Eurocentrism">Eurocentrism</a>. According to G. G. Joseph's take on "<a href="/wiki/Ethnomathematics" title="Ethnomathematics">Ethnomathematics</a>": </p> <blockquote><p>[Their work] takes on board some of the objections raised about the classical Eurocentric trajectory. The awareness [of Indian and Arabic mathematics] is all too likely to be tempered with dismissive rejections of their importance compared to Greek mathematics. The contributions from other civilisations – most notably China and India, are perceived either as borrowers from Greek sources or having made only minor contributions to mainstream mathematical development. An openness to more recent research findings, especially in the case of Indian and Chinese mathematics, is sadly missing"<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>Historian of mathematics <a href="/wiki/Florian_Cajori" title="Florian Cajori">Florian Cajori</a> wrote that he and others "suspect that <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> got his first glimpse of algebraic knowledge from India".<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> He also wrote that "it is certain that portions of Hindu mathematics are of Greek origin".<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> </p><p>More recently, as discussed in the above section, the infinite series of <a href="/wiki/Calculus" title="Calculus">calculus</a> for trigonometric functions (rediscovered by Gregory, Taylor, and Maclaurin in the late 17th century) were described in India, by mathematicians of the <a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school</a>, some two centuries earlier. Some scholars have recently suggested that knowledge of these results might have been transmitted to Europe through the trade route from <a href="/wiki/Kerala" title="Kerala">Kerala</a> by traders and <a href="/wiki/Jesuit" class="mw-redirect" title="Jesuit">Jesuit</a> missionaries.<sup id="cite_ref-almeida_98-0" class="reference"><a href="#cite_note-almeida-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> Kerala was in continuous contact with China and <a href="/wiki/Arabia" class="mw-redirect" title="Arabia">Arabia</a>, and, from around 1500, with Europe. The fact that the communication routes existed and the chronology is suitable certainly make such transmission a possibility. However, no evidence of transmission has been found.<sup id="cite_ref-almeida_98-1" class="reference"><a href="#cite_note-almeida-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> According to <a href="/wiki/David_Bressoud" title="David Bressoud">David Bressoud</a>, "there is no evidence that the Indian work of series was known beyond India, or even outside of Kerala, until the nineteenth century".<sup id="cite_ref-bressoud_86-2" class="reference"><a href="#cite_note-bressoud-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-gold_99-0" class="reference"><a href="#cite_note-gold-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p><p>Both Arab and Indian scholars made discoveries before the 17th century that are now considered a part of calculus.<sup id="cite_ref-katz_71-3" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> However, they did not (as <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a> and <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Leibniz</a> did) "combine many differing ideas under the two unifying themes of the <a href="/wiki/Derivative" title="Derivative">derivative</a> and the <a href="/wiki/Integral" title="Integral">integral</a>, show the connection between the two, and turn calculus into the great problem-solving tool we have today".<sup id="cite_ref-katz_71-4" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> The intellectual careers of both Newton and Leibniz are well-documented and there is no indication of their work not being their own;<sup id="cite_ref-katz_71-5" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> however, it is not known with certainty whether the immediate <i>predecessors</i> of Newton and Leibniz, "including, in particular, Fermat and Roberval, [may have] learned of some of the ideas of the Islamic and Indian mathematicians through sources we are not now aware."<sup id="cite_ref-katz_71-6" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> This is an area of current research, especially in the manuscript collections of Spain and <a href="/wiki/Maghreb" title="Maghreb">Maghreb</a>, and is being pursued, among other places, at the <a href="/wiki/CNRS" class="mw-redirect" title="CNRS">CNRS</a>.<sup id="cite_ref-katz_71-7" class="reference"><a href="#cite_note-katz-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 27em;"> <ul><li><a href="/wiki/Shulba_Sutras" title="Shulba Sutras">Shulba Sutras</a></li> <li><a href="/wiki/Kerala_school_of_astronomy_and_mathematics" title="Kerala school of astronomy and mathematics">Kerala school of astronomy and mathematics</a></li> <li><a href="/wiki/Surya_Siddhanta" title="Surya Siddhanta">Surya Siddhanta</a></li> <li><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a></li> <li><a href="/wiki/Srinivasa_Ramanujan" title="Srinivasa Ramanujan">Srinivasa Ramanujan</a></li> <li><a href="/wiki/Bakhshali_manuscript" title="Bakhshali manuscript">Bakhshali manuscript</a></li> <li><a href="/wiki/List_of_Indian_mathematicians" title="List of Indian mathematicians">List of Indian mathematicians</a></li> <li><a href="/wiki/Indian_science_and_technology" class="mw-redirect" title="Indian science and technology">Indian science and technology</a></li> <li><a href="/wiki/Indian_logic" title="Indian logic">Indian logic</a></li> <li><a href="/wiki/Indian_astronomy" title="Indian astronomy">Indian astronomy</a></li> <li><a href="/wiki/History_of_mathematics" title="History of mathematics">History of mathematics</a></li> <li><a href="/wiki/List_of_numbers_in_Hindu_scriptures" title="List of numbers in Hindu scriptures">List of numbers in Hindu scriptures</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=23" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-plofker-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFKim_Plofker2007">Kim Plofker 2007</a>, p.&#160;1)</span> </li> <li id="cite_note-hayashi2005-p360-361-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2005-p360-361_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2005-p360-361_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hayashi2005-p360-361_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-hayashi2005-p360-361_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2005">Hayashi 2005</a>, pp.&#160;360–361)</span> </li> <li id="cite_note-irfah346-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-irfah346_3-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFIfrah2000">Ifrah 2000</a>, p.&#160;346): "The measure of the genius of Indian civilisation, to which we owe our modern (number) system, is all the greater in that it was the only one in all history to have achieved this triumph. Some cultures succeeded, earlier than the Indian, in discovering one or at best two of the characteristics of this intellectual feat. But none of them managed to bring together into a complete and coherent system the necessary and sufficient conditions for a number-system with the same potential as our own."</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>, pp.&#160;44–47)</span> </li> <li id="cite_note-bourbaki46-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-bourbaki46_5-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBourbaki1998">Bourbaki 1998</a>, p.&#160;46): "...our decimal system, which (by the agency of the Arabs) is derived from Hindu mathematics, where its use is attested already from the first centuries of our era. It must be noted moreover that the conception of zero as a number and not as a simple symbol of separation) and its introduction into calculations, also count amongst the original contribution of the Hindus."</span> </li> <li id="cite_note-bourbaki49-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-bourbaki49_6-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBourbaki1998">Bourbaki 1998</a>, p.&#160;49): Modern arithmetic was known during medieval times as "Modus Indorum" or method of the Indians. <a href="/wiki/Leonardo_of_Pisa" class="mw-redirect" title="Leonardo of Pisa">Leonardo of Pisa</a> wrote that compared to method of the Indians all other methods is a mistake. This method of the Indians is none other than our very simple arithmetic of addition, subtraction, multiplication and division. Rules for these four simple procedures was first written down by <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a> during 7th century AD. "On this point, the Hindus are already conscious of the interpretation that negative numbers must have in certain cases (a debt in a commercial problem, for instance). In the following centuries, as there is a diffusion into the West (by intermediary of the Arabs) of the methods and results of Greek and Hindu mathematics, one becomes more used to the handling of these numbers, and one begins to have other "representation" for them which are geometric or dynamic."</span> </li> <li id="cite_note-concise-britannica-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-concise-britannica_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-concise-britannica_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">"algebra" 2007. <a rel="nofollow" class="external text" href="https://www.britannica.com/ebc/article-231064"><i>Britannica Concise Encyclopedia</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070929134632/http://www.britannica.com/ebc/article-231064">Archived</a> 29 September 2007 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Encyclopædia Britannica Online. 16 May 2007. Quote: "A full-fledged decimal, positional system certainly existed in India by the 9th century (AD), yet many of its central ideas had been transmitted well before that time to China and the Islamic world. Indian arithmetic, moreover, developed consistent and correct rules for operating with positive and negative numbers and for treating zero like any other number, even in problematic contexts such as division. Several hundred years passed before European mathematicians fully integrated such ideas into the developing discipline of algebra."</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPingree2003">Pingree 2003</a>, p.&#160;45) Quote: "Geometry, and its branch trigonometry, was the mathematics Indian astronomers used most frequently. Greek mathematicians used the full chord and never imagined the half chord that we use today. Half chord was first used by Aryabhata which made trigonometry much more simple. In fact, the Indian astronomers in the third or fourth century, using a pre-Ptolemaic Greek table of chords, produced tables of sines and versines, from which it was trivial to derive cosines. This new system of trigonometry, produced in India, was transmitted to the Arabs in the late eighth century and by them, in an expanded form, to the Latin West and the Byzantine East in the twelfth century."</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBourbaki1998">Bourbaki 1998</a>, p.&#160;126): "As for trigonometry, it is disdained by geometers and abandoned to surveyors and astronomers; it is these latter (<a href="/wiki/Aristarchus_of_Samos" title="Aristarchus of Samos">Aristarchus</a>, <a href="/wiki/Hipparchus" title="Hipparchus">Hipparchus</a>, <a href="/wiki/Ptolemy" title="Ptolemy">Ptolemy</a>) who establish the fundamental relations between the sides and angles of a right angled triangle (plane or spherical) and draw up the first tables (they consist of tables giving the <i>chord</i> of the arc cut out by an angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta &lt;\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b8;<!-- θ --></mi> <mo>&lt;</mo> <mi>&#x3c0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta &lt;\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/053c2f5cb3d9460d5fe43fcc48920484fb2ce4c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.521ex; height:2.176ex;" alt="{\displaystyle \theta &lt;\pi }" /></span> on a circle of radius <i>r</i>, in other words the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2r\sin \left(\theta /2\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x3b8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2r\sin \left(\theta /2\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ca756adcc10a403716e769f6214640ed6802c32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.678ex; height:2.843ex;" alt="{\displaystyle 2r\sin \left(\theta /2\right)}" /></span>; the introduction of the sine, more easily handled, is due to Hindu mathematicians of the Middle Ages)."</span> </li> <li id="cite_note-filliozat-p140to143-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-filliozat-p140to143_10-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, pp.&#160;140–143)</span> </li> <li id="cite_note-hayashi95-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-hayashi95_11-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHayashi1995">Hayashi 1995</a>)</span> </li> <li id="cite_note-plofker-brit6-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker-brit6_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker-brit6_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFKim_Plofker2007">Kim Plofker 2007</a>, p.&#160;6)</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStillwell2004">Stillwell 2004</a>, p.&#160;173)</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBressoud2002">Bressoud 2002</a>, p.&#160;12) Quote: "There is no evidence that the Indian work on series was known beyond India, or even outside Kerala, until the nineteenth century. Gold and Pingree assert [4] that by the time these series were rediscovered in Europe, they had, for all practical purposes, been lost to India. The expansions of the sine, cosine, and arc tangent had been passed down through several generations of disciples, but they remained sterile observations for which no one could find much use."</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPlofker2001">Plofker 2001</a>, p.&#160;293) Quote: "It is not unusual to encounter in discussions of Indian mathematics such assertions as that "the concept of differentiation was understood [in India] from the time of Manjula (... in the 10th century)" [Joseph 1991, 300], or that "we may consider Madhava to have been the founder of mathematical analysis" (Joseph 1991, 293), or that Bhaskara II may claim to be "the precursor of Newton and Leibniz in the discovery of the principle of the differential calculus" (Bag 1979, 294). ... The points of resemblance, particularly between early European calculus and the Keralese work on power series, have even inspired suggestions of a possible transmission of mathematical ideas from the Malabar coast in or after the 15th century to the Latin scholarly world (e.g., in (Bag 1979, 285)). ... It should be borne in mind, however, that such an emphasis on the similarity of Sanskrit (or Malayalam) and Latin mathematics risks diminishing our ability fully to see and comprehend the former. To speak of the Indian "discovery of the principle of the differential calculus" somewhat obscures the fact that Indian techniques for expressing changes in the Sine by means of the Cosine or vice versa, as in the examples we have seen, remained within that specific trigonometric context. The differential "principle" was not generalised to arbitrary functions—in fact, the explicit notion of an arbitrary function, not to mention that of its derivative or an algorithm for taking the derivative, is irrelevant here"</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPingree1992">Pingree 1992</a>, p.&#160;562) Quote:"One example I can give you relates to the Indian Mādhava's demonstration, in about 1400 A.D., of the infinite power series of trigonometrical functions using geometrical and algebraic arguments. When this was first described in English by <a href="/wiki/C.M._Whish" class="mw-redirect" title="C.M. Whish">Charles Matthew Whish</a>, in the 1830s, it was heralded as the Indians' discovery of the calculus. This claim and Mādhava's achievements were ignored by Western historians, presumably at first because they could not admit that an Indian discovered the calculus, but later because no one read anymore the <i>Transactions of the Royal Asiatic Society</i>, in which Whish's article was published. The matter resurfaced in the 1950s, and now we have the Sanskrit texts properly edited, and we understand the clever way that Mādhava derived the series <i>without</i> the calculus; but many historians still find it impossible to conceive of the problem and its solution in terms of anything other than the calculus and proclaim that the calculus is what Mādhava found. In this case the elegance and brilliance of Mādhava's mathematics are being distorted as they are buried under the current mathematical solution to a problem to which he discovered an alternate and powerful solution."</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">(<a href="#CITEREFKatz1995">Katz 1995</a>, pp.&#160;173–174) Quote:"How close did Islamic and Indian scholars come to inventing the calculus? Islamic scholars nearly developed a general formula for finding integrals of polynomials by A.D. 1000—and evidently could find such a formula for any polynomial in which they were interested. But, it appears, they were not interested in any polynomial of degree higher than four, at least in any of the material that has come down to us. Indian scholars, on the other hand, were by 1600 able to use ibn al-Haytham's sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested. By the same time, they also knew how to calculate the differentials of these functions. So some of the basic ideas of calculus were known in Egypt and India many centuries before Newton. It does not appear, however, that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus. They were apparently only interested in specific cases in which these ideas were needed. ... There is no danger, therefore, that we will have to rewrite the history texts to remove the statement that Newton and Leibniz invented calculus. They were certainly the ones who were able to combine many differing ideas under the two unifying themes of the derivative and the integral, show the connection between them, and turn the calculus into the great problem-solving tool we have today."</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSergent1997" class="citation cs2 cs1-prop-foreign-lang-source">Sergent, Bernard (1997), <i>Genèse de l'Inde</i> (in French), Paris: Payot, p.&#160;113, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-2-228-89116-5" title="Special:BookSources/978-2-228-89116-5"><bdi>978-2-228-89116-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gen%C3%A8se+de+l%27Inde&amp;rft.place=Paris&amp;rft.pages=113&amp;rft.pub=Payot&amp;rft.date=1997&amp;rft.isbn=978-2-228-89116-5&amp;rft.aulast=Sergent&amp;rft.aufirst=Bernard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCoppa2006" class="citation cs2">Coppa, A.; et&#160;al. (6 April 2006), "Early Neolithic tradition of dentistry: Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population", <i>Nature</i>, <b>440</b> (7085): <span class="nowrap">755–</span>6, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.440..755C">2006Natur.440..755C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F440755a">10.1038/440755a</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16598247">16598247</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6787162">6787162</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Early+Neolithic+tradition+of+dentistry%3A+Flint+tips+were+surprisingly+effective+for+drilling+tooth+enamel+in+a+prehistoric+population&amp;rft.volume=440&amp;rft.issue=7085&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E755-%3C%2Fspan%3E6&amp;rft.date=2006-04-06&amp;rft_id=info%3Adoi%2F10.1038%2F440755a&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6787162%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16598247&amp;rft_id=info%3Abibcode%2F2006Natur.440..755C&amp;rft.aulast=Coppa&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBisht1982" class="citation cs2">Bisht, R. S. (1982), "Excavations at Banawali: 1974–77", in Possehl, Gregory L. (ed.), <i>Harappan Civilisation: A Contemporary Perspective</i>, New Delhi: Oxford and IBH Publishing Co., pp.&#160;<span class="nowrap">113–</span>124</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Excavations+at+Banawali%3A+1974%E2%80%9377&amp;rft.btitle=Harappan+Civilisation%3A+A+Contemporary+Perspective&amp;rft.place=New+Delhi&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E113-%3C%2Fspan%3E124&amp;rft.pub=Oxford+and+IBH+Publishing+Co.&amp;rft.date=1982&amp;rft.aulast=Bisht&amp;rft.aufirst=R.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRao1992" class="citation journal cs1">Rao, S. R. (July 1992). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170808011822/http://drs.nio.org/drs/bitstream/handle/2264/3082/J_Mar_Archaeol_3_61.pdf?sequence=2">"A Navigational Instrument of the Harappan Sailors"</a> <span class="cs1-format">(PDF)</span>. <i>Marine Archaeology</i>. <b>3</b>: <span class="nowrap">61–</span>62. Archived from <a rel="nofollow" class="external text" href="http://drs.nio.org/drs/bitstream/handle/2264/3082/J_Mar_Archaeol_3_61.pdf?sequence=2">the original</a> <span class="cs1-format">(PDF)</span> on 8 August 2017.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Marine+Archaeology&amp;rft.atitle=A+Navigational+Instrument+of+the+Harappan+Sailors&amp;rft.volume=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E61-%3C%2Fspan%3E62&amp;rft.date=1992-07&amp;rft.aulast=Rao&amp;rft.aufirst=S.+R.&amp;rft_id=http%3A%2F%2Fdrs.nio.org%2Fdrs%2Fbitstream%2Fhandle%2F2264%2F3082%2FJ_Mar_Archaeol_3_61.pdf%3Fsequence%3D2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">A. Seidenberg, 1978. The origin of mathematics. Archive for History of Exact Sciences, vol 18.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStaal1999">Staal 1999</a>)</span> </li> <li id="cite_note-hayashi2003-p118-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2003-p118_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2003-p118_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2003">Hayashi 2003</a>, p.&#160;118)</span> </li> <li id="cite_note-hayashi2005-p363-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2005-p363_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2005-p363_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2005">Hayashi 2005</a>, p.&#160;363)</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Pythagorean triples are triples of integers <span class="texhtml">(a, b, c)</span> with the property: <span class="texhtml">a<sup>2</sup>+b<sup>2</sup> = c<sup>2</sup></span>. Thus, <span class="texhtml">3<sup>2</sup>+4<sup>2</sup> = 5<sup>2</sup></span>, <span class="texhtml">8<sup>2</sup>+15<sup>2</sup> = 17<sup>2</sup></span>, <span class="texhtml">12<sup>2</sup>+35<sup>2</sup> = 37<sup>2</sup></span>, etc.</span> </li> <li id="cite_note-cooke198-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-cooke198_27-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFCooke2005">Cooke 2005</a>, p.&#160;198): "The arithmetic content of the <i>Śulva Sūtras</i> consists of rules for finding Pythagorean triples such as <span class="texhtml">(3, 4, 5)</span>, <span class="texhtml">(5, 12, 13)</span>, <span class="texhtml">(8, 15, 17)</span>, and <span class="texhtml">(12, 35, 37)</span>. It is not certain what practical use these arithmetic rules had. The best conjecture is that they were part of religious ritual. A Hindu home was required to have three fires burning at three different altars. The three altars were to be of different shapes, but all three were to have the same area. These conditions led to certain "Diophantine" problems, a particular case of which is the generation of Pythagorean triples, so as to make one square integer equal to the sum of two others."</span> </li> <li id="cite_note-cooke199-200-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-cooke199-200_28-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFCooke2005">Cooke 2005</a>, pp.&#160;199–200): "The requirement of three altars of equal areas but different shapes would explain the interest in transformation of areas. Among other transformation of area problems the Hindus considered in particular the problem of squaring the circle. The <i>Bodhayana Sutra</i> states the converse problem of constructing a circle equal to a given square. The following approximate construction is given as the solution.... this result is only approximate. The authors, however, made no distinction between the two results. In terms that we can appreciate, this construction gives a value for <span class="texhtml">π</span> of 18&#8201;(3&#160;−&#160;2<span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span>), which is about 3.088."</span> </li> <li id="cite_note-joseph229-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-joseph229_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-joseph229_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-joseph229_29-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFJoseph2000">Joseph 2000</a>, p.&#160;229)</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.theintellibrain.com/vedicmaths/">"Vedic Maths Complete Detail"</a>. <i>ALLEN IntelliBrain</i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 October</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ALLEN+IntelliBrain&amp;rft.atitle=Vedic+Maths+Complete+Detail&amp;rft_id=https%3A%2F%2Fwww.theintellibrain.com%2Fvedicmaths%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-cooke200-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-cooke200_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cooke200_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFCooke2005">Cooke 2005</a>, p.&#160;200)</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">The value of this approximation, 577/408, is the seventh in a sequence of increasingly accurate approximations 3/2, 7/5, 17/12, ... to <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span>, the numerators and denominators of which were known as "side and diameter numbers" to the ancient Greeks, and in modern mathematics are called the <a href="/wiki/Pell_numbers" class="mw-redirect" title="Pell numbers">Pell numbers</a>. If <i>x</i>/<i>y</i> is one term in this sequence of approximations, the next is (<i>x</i>&#160;+&#160;2<i>y</i>)/(<i>x</i>&#160;+&#160;<i>y</i>). These approximations may also be derived by truncating the <a href="/wiki/Continued_fraction" title="Continued fraction">continued fraction</a> representation of <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Neugebauer, O. and A. Sachs. 1945. <i>Mathematical Cuneiform Texts</i>, New Haven, CT, Yale University Press. p. 45.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Mathematics Department, University of British Columbia, <a rel="nofollow" class="external text" href="http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html"><i>The Babylonian tabled Plimpton 322</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200617151320/http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html">Archived</a> 17 June 2020 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Three positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae973a762a92b9cd3eafe7f283890ccfa9b887e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.111ex; height:2.843ex;" alt="{\displaystyle (a,b,c)}" /></span> form a <i>primitive</i> Pythagorean triple if <span class="texhtml">c<sup>2</sup> = a<sup>2</sup>+b<sup>2</sup></span> and if the highest common factor of <span class="texhtml">a, b, c</span> is 1. In the particular Plimpton322 example, this means that <span class="texhtml">13500<sup>2</sup>+12709<sup>2</sup> = 18541<sup>2</sup></span> and that the three numbers do not have any common factors. However some scholars have disputed the Pythagorean interpretation of this tablet; see Plimpton 322 for details.</span> </li> <li id="cite_note-dani-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-dani_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dani_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFDani2003">Dani 2003</a>)</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIngerman1967" class="citation journal cs1">Ingerman, Peter Zilahy (1 March 1967). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F363162.363165">"<span class="cs1-kern-left"></span>"Pānini-Backus Form" suggested"</a>. <i>Communications of the ACM</i>. <b>10</b> (3): 137. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F363162.363165">10.1145/363162.363165</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0001-0782">0001-0782</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52817672">52817672</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+ACM&amp;rft.atitle=%22P%C4%81nini-Backus+Form%22+suggested&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=137&amp;rft.date=1967-03-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52817672%23id-name%3DS2CID&amp;rft.issn=0001-0782&amp;rft_id=info%3Adoi%2F10.1145%2F363162.363165&amp;rft.aulast=Ingerman&amp;rft.aufirst=Peter+Zilahy&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F363162.363165&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-fowler96-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-fowler96_38-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFFowler1996">Fowler 1996</a>, p.&#160;11)</span> </li> <li id="cite_note-singh36-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-singh36_39-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFSingh1936">Singh 1936</a>, pp.&#160;623–624)</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist" style="display:inline;"><ul style="display:inline;"><li style="margin-bottom:.5em; display:block;;display:inline; margin:0;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHarper2011" class="citation encyclopaedia cs1">Harper, Douglas (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170703014638/http://www.etymonline.com/index.php?allowed_in_frame=0&amp;search=zero&amp;searchmode=none">"Zero"</a>. <i>Etymonline Etymology Dictionary</i>. Archived from <a rel="nofollow" class="external text" href="https://www.etymonline.com/index.php?allowed_in_frame=0&amp;search=zero&amp;searchmode=none">the original</a> on 3 July 2017. <q>figure which stands for naught in the Arabic notation," also "the absence of all quantity considered as quantity", <abbr title="circa">c.</abbr> 1600, from French zéro or directly from Italian zero, from Medieval Latin zephirum, from Arabic sifr "cipher", translation of Sanskrit sunya-m "empty place, desert, naught</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Zero&amp;rft.btitle=Etymonline+Etymology+Dictionary&amp;rft.date=2011&amp;rft.aulast=Harper&amp;rft.aufirst=Douglas&amp;rft_id=https%3A%2F%2Fwww.etymonline.com%2Findex.php%3Fallowed_in_frame%3D0%26search%3Dzero%26searchmode%3Dnone&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li><li style="margin-bottom:.5em; display:block;;margin-top:.5em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMenninger1992" class="citation book cs1">Menninger, Karl (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BFJHzSIj2u0C"><i>Number Words and Number Symbols: A cultural history of numbers</i></a>. Courier Dover Publications. pp.&#160;<span class="nowrap">399–</span>404. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-27096-8" title="Special:BookSources/978-0-486-27096-8"><bdi>978-0-486-27096-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">5 January</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Number+Words+and+Number+Symbols%3A+A+cultural+history+of+numbers&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E399-%3C%2Fspan%3E404&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=1992&amp;rft.isbn=978-0-486-27096-8&amp;rft.aulast=Menninger&amp;rft.aufirst=Karl&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBFJHzSIj2u0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li><li style="margin-bottom:.5em; display:block;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.oed.com/view/Entry/232803?rskey=zGcSoq&amp;result=1&amp;isAdvanced=false">"zero, n."</a> <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">OED</a> Online</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. December 2011. <a rel="nofollow" class="external text" href="https://www.webcitation.org/65yd7ur9u?url=http://www.oed.com/view/Entry/232803?rskey=zGcSoq&amp;result=1&amp;isAdvanced=false">Archived</a> from the original on 7 March 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 March</span> 2012</span>. <q>French zéro (1515 in Hatzfeld &amp; Darmesteter) or its source Italian zero, for *zefiro, &lt; Arabic çifr</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=OED+Online&amp;rft.atitle=zero%2C+n.&amp;rft.date=2011-12&amp;rft_id=http%3A%2F%2Fwww.oed.com%2Fview%2FEntry%2F232803%3Frskey%3DzGcSoq%26result%3D1%26isAdvanced%3Dfalse&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li></ul></div></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDattaSingh2019" class="citation book cs1">Datta, Bibhutibhusan; Singh, Awadhesh Narayan (2019). "Use of permutations and combinations in India". In Kolachana, Aditya; Mahesh, K.; Ramasubramanian, K. (eds.). <i>Studies in Indian Mathematics and Astronomy: Selected Articles of Kripa Shankar Shukla</i>. Sources and Studies in the History of Mathematics and Physical Sciences. Springer Singapore. pp.&#160;<span class="nowrap">356–</span>376. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-981-13-7326-8_18">10.1007/978-981-13-7326-8_18</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-13-7325-1" title="Special:BookSources/978-981-13-7325-1"><bdi>978-981-13-7325-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:191141516">191141516</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Use+of+permutations+and+combinations+in+India&amp;rft.btitle=Studies+in+Indian+Mathematics+and+Astronomy%3A+Selected+Articles+of+Kripa+Shankar+Shukla&amp;rft.series=Sources+and+Studies+in+the+History+of+Mathematics+and+Physical+Sciences&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E356-%3C%2Fspan%3E376&amp;rft.pub=Springer+Singapore&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A191141516%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-981-13-7326-8_18&amp;rft.isbn=978-981-13-7325-1&amp;rft.aulast=Datta&amp;rft.aufirst=Bibhutibhusan&amp;rft.au=Singh%2C+Awadhesh+Narayan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>. Revised by K. S. Shukla from a paper in <i>Indian Journal of History of Science</i> 27 (3): 231–249, 1992, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=MR1189487">MR1189487</a>. See p. 363.</span> </li> <li id="cite_note-filliozat-p137-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-filliozat-p137_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-filliozat-p137_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, p.&#160;137)</span> </li> <li id="cite_note-pingree1988a-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-pingree1988a_43-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPingree1988">Pingree 1988</a>, p.&#160;637)</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStaal1986">Staal 1986</a>)</span> </li> <li id="cite_note-filliozat-p139-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-filliozat-p139_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-filliozat-p139_45-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-filliozat-p139_45-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-filliozat-p139_45-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, p.&#160;139)</span> </li> <li id="cite_note-filliozat2004-p140-141-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-filliozat2004-p140-141_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-filliozat2004-p140-141_46-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-filliozat2004-p140-141_46-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-filliozat2004-p140-141_46-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-filliozat2004-p140-141_46-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, pp.&#160;140–141)</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">(<a href="#CITEREFYano2006">Yano 2006</a>, p.&#160;146)</span> </li> <li id="cite_note-filliozat2004-p143-144-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-filliozat2004-p143-144_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-filliozat2004-p143-144_48-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-filliozat2004-p143-144_48-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, pp.&#160;143–144)</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">(<a href="#CITEREFFilliozat2004">Filliozat 2004</a>, p.&#160;144)</span> </li> <li id="cite_note-pingree1988b-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-pingree1988b_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pingree1988b_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPingree1988">Pingree 1988</a>, p.&#160;638)</span> </li> <li id="cite_note-hayashi03-p122-123-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi03-p122-123_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi03-p122-123_51-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hayashi03-p122-123_51-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2003">Hayashi 2003</a>, pp.&#160;122–123)</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHayashi2003">Hayashi 2003</a>, p.&#160;123)</span> </li> <li id="cite_note-hayashi2003-p119-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2003-p119_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2003-p119_53-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hayashi2003-p119_53-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2003">Hayashi 2003</a>, p.&#160;119)</span> </li> <li id="cite_note-plofker2007-p395-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker2007-p395_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker2007-p395_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2007">Plofker 2007</a>, p.&#160;395)</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPlofker2007">Plofker 2007</a>, p.&#160;395); (<a href="#CITEREFPlofker2009">Plofker 2009</a>, pp.&#160;47–48)</span> </li> <li id="cite_note-hayashi2005-p366-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-hayashi2005-p366_56-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHayashi2005">Hayashi 2005</a>, p.&#160;366)</span> </li> <li id="cite_note-plofker2009-p45-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker2009-p45_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker2009-p45_57-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-plofker2009-p45_57-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>, p.&#160;45)</span> </li> <li id="cite_note-plofker2009-p46-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker2009-p46_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker2009-p46_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-plofker2009-p46_58-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-plofker2009-p46_58-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>, p.&#160;46)</span> </li> <li id="cite_note-plofker2009-p47-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker2009-p47_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker2009-p47_59-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-plofker2009-p47_59-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-plofker2009-p47_59-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-plofker2009-p47_59-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>, p.&#160;47)</span> </li> <li id="cite_note-Plofker_2009-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Plofker_2009_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Plofker_2009_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>)</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPingree1978">Pingree 1978</a>, p.&#160;494)</span> </li> <li id="cite_note-plofker2009-p48-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-plofker2009-p48_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plofker2009-p48_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFPlofker2009">Plofker 2009</a>, p.&#160;48)</span> </li> <li id="cite_note-hayashi2005-371-63"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2005-371_63-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2005-371_63-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hayashi2005-371_63-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2005">Hayashi 2005</a>, p.&#160;371)</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://blog.sciencemuseum.org.uk/illuminating-india-starring-oldest-recorded-origins-zero-bakhshali-manuscript/">"Illuminating India: Starring the oldest recorded origins of 'zero', the Bakhshali manuscript"</a>. 14 September 2017.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Illuminating+India%3A+Starring+the+oldest+recorded+origins+of+%27zero%27%2C+the+Bakhshali+manuscript&amp;rft.date=2017-09-14&amp;rft_id=https%3A%2F%2Fblog.sciencemuseum.org.uk%2Filluminating-india-starring-oldest-recorded-origins-zero-bakhshali-manuscript%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-anton-65"><span class="mw-cite-backlink">^ <a href="#cite_ref-anton_65-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-anton_65-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Anton, Howard and Chris Rorres. 2005. <i>Elementary Linear Algebra with Applications.</i> 9th edition. New York: John Wiley and Sons. 864 pages. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-66959-8" title="Special:BookSources/0-471-66959-8">0-471-66959-8</a>.</span> </li> <li id="cite_note-Devlin-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Devlin_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDevlin2017" class="citation news cs1">Devlin, Hannah (13 September 2017). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2017/sep/14/much-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol">"Much ado about nothing: ancient Indian text contains earliest zero symbol"</a>. <i>The Guardian</i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0261-3077">0261-3077</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 September</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Guardian&amp;rft.atitle=Much+ado+about+nothing%3A+ancient+Indian+text+contains+earliest+zero+symbol&amp;rft.date=2017-09-13&amp;rft.issn=0261-3077&amp;rft.aulast=Devlin&amp;rft.aufirst=Hannah&amp;rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2017%2Fsep%2F14%2Fmuch-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Mason-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mason_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMason2017" class="citation news cs1">Mason, Robyn (14 September 2017). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170914215605/http://www.arch.ox.ac.uk/reader/items/oxford-radiocarbon-accelerator-unit-dates-the-worlds-oldest-recorded-origin-of-the-zero-symbol.html">"Oxford Radiocarbon Accelerator Unit dates the world's oldest recorded origin of the zero symbol"</a>. <i>School of Archaeology, University of Oxford</i>. Archived from <a rel="nofollow" class="external text" href="http://www.arch.ox.ac.uk/reader/items/oxford-radiocarbon-accelerator-unit-dates-the-worlds-oldest-recorded-origin-of-the-zero-symbol.html">the original</a> on 14 September 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 September</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=School+of+Archaeology%2C+University+of+Oxford&amp;rft.atitle=Oxford+Radiocarbon+Accelerator+Unit+dates+the+world%27s+oldest+recorded+origin+of+the+zero+symbol&amp;rft.date=2017-09-14&amp;rft.aulast=Mason&amp;rft.aufirst=Robyn&amp;rft_id=http%3A%2F%2Fwww.arch.ox.ac.uk%2Freader%2Fitems%2Foxford-radiocarbon-accelerator-unit-dates-the-worlds-oldest-recorded-origin-of-the-zero-symbol.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Bodleian_Library-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bodleian_Library_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.bodleian.ox.ac.uk/bodley/news/2017/sep-14">"Carbon dating finds Bakhshali manuscript contains oldest recorded origins of the symbol 'zero'<span class="cs1-kern-right"></span>"</a>. <i>Bodleian Library</i>. 14 September 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 September</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bodleian+Library&amp;rft.atitle=Carbon+dating+finds+Bakhshali+manuscript+contains+oldest+recorded+origins+of+the+symbol+%27zero%27&amp;rft.date=2017-09-14&amp;rft_id=http%3A%2F%2Fwww.bodleian.ox.ac.uk%2Fbodley%2Fnews%2F2017%2Fsep-14&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">(<a href="#CITEREFNeugebauerPingree1970">Neugebauer &amp; Pingree 1970</a>)</span> </li> <li id="cite_note-Origins_of_Sulva_Sutras_and_Siddhanta-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-Origins_of_Sulva_Sutras_and_Siddhanta_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCooke1997" class="citation cs2"><a href="/w/index.php?title=Roger_Cooke_(mathematician)&amp;action=edit&amp;redlink=1" class="new" title="Roger Cooke (mathematician) (page does not exist)">Cooke, Roger</a> (1997), <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema0000cook/page/197">"The Mathematics of the Hindus"</a>, <i>The History of Mathematics: A Brief Course</i>, Wiley-Interscience, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema0000cook/page/197">197</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-18082-1" title="Special:BookSources/978-0-471-18082-1"><bdi>978-0-471-18082-1</bdi></a>, <q>The word <i>Siddhanta</i> means <i>that which is proved or established</i>. The <i>Sulva Sutras</i> are of Hindu origin, but the <i>Siddhantas</i> contain so many words of foreign origin that they undoubtedly have roots in <a href="/wiki/Mesopotamia" title="Mesopotamia">Mesopotamia</a> and Greece.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Mathematics+of+the+Hindus&amp;rft.btitle=The+History+of+Mathematics%3A+A+Brief+Course&amp;rft.pages=197&amp;rft.pub=Wiley-Interscience&amp;rft.date=1997&amp;rft.isbn=978-0-471-18082-1&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema0000cook%2Fpage%2F197&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-katz-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-katz_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-katz_71-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-katz_71-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-katz_71-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-katz_71-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-katz_71-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-katz_71-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-katz_71-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFKatz1995">Katz 1995</a>)</span> </li> <li id="cite_note-hayashi2005-p369-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-hayashi2005-p369_72-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHayashi2005">Hayashi 2005</a>, p.&#160;369)</span> </li> <li id="cite_note-hayashi2003-p121-122-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-hayashi2003-p121-122_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hayashi2003-p121-122_73-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hayashi2003-p121-122_73-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-hayashi2003-p121-122_73-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHayashi2003">Hayashi 2003</a>, pp.&#160;121–122)</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStillwell2004">Stillwell 2004</a>, p.&#160;77)</span> </li> <li id="cite_note-stillwell2004-p87-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-stillwell2004-p87_75-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStillwell2004">Stillwell 2004</a>, p.&#160;87)</span> </li> <li id="cite_note-stillwell2004-p72-73-76"><span class="mw-cite-backlink">^ <a href="#cite_ref-stillwell2004-p72-73_76-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-stillwell2004-p72-73_76-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-stillwell2004-p72-73_76-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-stillwell2004-p72-73_76-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-stillwell2004-p72-73_76-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-stillwell2004-p72-73_76-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFStillwell2004">Stillwell 2004</a>, pp.&#160;72–73)</span> </li> <li id="cite_note-stillwell2004-p74-76-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-stillwell2004-p74-76_77-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFStillwell2004">Stillwell 2004</a>, pp.&#160;74–76)</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGupta2000" class="citation cs2">Gupta, R. C. (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-xzljvnQ1vAC&amp;q=Virasena+logarithm&amp;pg=PA329">"History of Mathematics in India"</a>, in Hoiberg, Dale; Ramchandani, Indu (eds.), <i>Students' Britannica India: Select essays</i>, Popular Prakashan, p.&#160;329</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=History+of+Mathematics+in+India&amp;rft.btitle=Students%27+Britannica+India%3A+Select+essays&amp;rft.pages=329&amp;rft.pub=Popular+Prakashan&amp;rft.date=2000&amp;rft.aulast=Gupta&amp;rft.aufirst=R.+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-xzljvnQ1vAC%26q%3DVirasena%2Blogarithm%26pg%3DPA329&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Dhavala-79"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dhavala_79-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dhavala_79-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSingh" class="citation cs2">Singh, A. N., <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110511032215/http://www.jainworld.com/JWHindi/Books/shatkhandagama-4/02.htm"><i>Mathematics of Dhavala</i></a>, Lucknow University, archived from <a rel="nofollow" class="external text" href="http://www.jainworld.com/JWHindi/Books/shatkhandagama-4/02.htm">the original</a> on 11 May 2011<span class="reference-accessdate">, retrieved <span class="nowrap">31 July</span> 2010</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+of+Dhavala&amp;rft.place=Lucknow+University&amp;rft.aulast=Singh&amp;rft.aufirst=A.+N.&amp;rft_id=http%3A%2F%2Fwww.jainworld.com%2FJWHindi%2FBooks%2Fshatkhandagama-4%2F02.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Joseph-298-300-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-Joseph-298-300_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Joseph-298-300_80-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Joseph (2000), p. 298–300.</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCooke1997" class="citation book cs1">Cooke, Roger (1997). <a rel="nofollow" class="external text" href="http://archive.org/details/historyofmathema0000cook"><i>The history of mathematics&#160;: a brief course</i></a>. Internet Archive. New York&#160;: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-18082-1" title="Special:BookSources/978-0-471-18082-1"><bdi>978-0-471-18082-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+history+of+mathematics+%3A+a+brief+course&amp;rft.pub=New+York+%3A+Wiley&amp;rft.date=1997&amp;rft.isbn=978-0-471-18082-1&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema0000cook&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFVidyabhusana1920" class="citation book cs1">Vidyabhusana, Satis Chandra (1920). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0lG85RD9YZoC"><i>A History of Indian Logic: Ancient, Mediaeval and Modern Schools</i></a>. Delhi: Motilal Banarsidass. pp.&#160;<span class="nowrap">405–</span>6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9788120805651" title="Special:BookSources/9788120805651"><bdi>9788120805651</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Indian+Logic%3A+Ancient%2C+Mediaeval+and+Modern+Schools&amp;rft.place=Delhi&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E405-%3C%2Fspan%3E6&amp;rft.pub=Motilal+Banarsidass&amp;rft.date=1920&amp;rft.isbn=9788120805651&amp;rft.aulast=Vidyabhusana&amp;rft.aufirst=Satis+Chandra&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0lG85RD9YZoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSatis_Chandra_Vidyabhusana1920" class="citation book cs1">Satis Chandra Vidyabhusana (1920). <a rel="nofollow" class="external text" href="https://archive.org/details/historyindianlog00vidy"><i>A History of Indian Logic: Ancient, Mediaeval and Modern Schools</i></a>. Delhi: Motilal Banarsidas. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/historyindianlog00vidy/page/n438">405</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9788120805651" title="Special:BookSources/9788120805651"><bdi>9788120805651</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Indian+Logic%3A+Ancient%2C+Mediaeval+and+Modern+Schools&amp;rft.place=Delhi&amp;rft.pages=405&amp;rft.pub=Motilal+Banarsidas&amp;rft.date=1920&amp;rft.isbn=9788120805651&amp;rft.au=Satis+Chandra+Vidyabhusana&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryindianlog00vidy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGaneri2023" class="citation cs2">Ganeri, Jonardon (2023), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/win2023/entries/early-modern-india/">"Analytic Philosophy in Early Modern India"</a>, in Zalta, Edward N.; Nodelman, Uri (eds.), <i>The Stanford Encyclopedia of Philosophy</i> (Winter 2023&#160;ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">23 January</span> 2024</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Analytic+Philosophy+in+Early+Modern+India&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Winter+2023&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2023&amp;rft.aulast=Ganeri&amp;rft.aufirst=Jonardon&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fwin2023%2Fentries%2Fearly-modern-india%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-roy-85"><span class="mw-cite-backlink">^ <a href="#cite_ref-roy_85-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-roy_85-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-roy_85-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-roy_85-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-roy_85-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-roy_85-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-roy_85-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-roy_85-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-roy_85-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFRoy1990">Roy 1990</a>)</span> </li> <li id="cite_note-bressoud-86"><span class="mw-cite-backlink">^ <a href="#cite_ref-bressoud_86-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bressoud_86-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-bressoud_86-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBressoud2002">Bressoud 2002</a>)</span> </li> <li id="cite_note-singh-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-singh_87-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFSingh1936">Singh 1936</a>)</span> </li> <li id="cite_note-whish-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-whish_88-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFWhish1835">Whish 1835</a>)</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRajagopalRangachari1949" class="citation cs2">Rajagopal, C.; Rangachari, M. S. (1949), "A Neglected Chapter of Hindu Mathematics", <i><a href="/wiki/Scripta_Mathematica" title="Scripta Mathematica">Scripta Mathematica</a></i>, <b>15</b>: <span class="nowrap">201–</span>209.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scripta+Mathematica&amp;rft.atitle=A+Neglected+Chapter+of+Hindu+Mathematics&amp;rft.volume=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E201-%3C%2Fspan%3E209&amp;rft.date=1949&amp;rft.aulast=Rajagopal&amp;rft.aufirst=C.&amp;rft.au=Rangachari%2C+M.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRajagopalRangachari1951" class="citation cs2">Rajagopal, C.; Rangachari, M. S. (1951), "On the Hindu proof of Gregory's series", <i><a href="/wiki/Scripta_Mathematica" title="Scripta Mathematica">Scripta Mathematica</a></i>, <b>17</b>: <span class="nowrap">65–</span>74.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scripta+Mathematica&amp;rft.atitle=On+the+Hindu+proof+of+Gregory%27s+series&amp;rft.volume=17&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E65-%3C%2Fspan%3E74&amp;rft.date=1951&amp;rft.aulast=Rajagopal&amp;rft.aufirst=C.&amp;rft.au=Rangachari%2C+M.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRajagopalVenkataraman1949" class="citation cs2">Rajagopal, C.; Venkataraman, A. (1949), "The sine and cosine power series in Hindu mathematics", <i>Journal of the Royal Asiatic Society of Bengal (Science)</i>, <b>15</b>: <span class="nowrap">1–</span>13.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Asiatic+Society+of+Bengal+%28Science%29&amp;rft.atitle=The+sine+and+cosine+power+series+in+Hindu+mathematics&amp;rft.volume=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E13&amp;rft.date=1949&amp;rft.aulast=Rajagopal&amp;rft.aufirst=C.&amp;rft.au=Venkataraman%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRajagopalRangachari1977" class="citation cs2">Rajagopal, C.; Rangachari, M. S. (1977), "On an untapped source of medieval Keralese mathematics", <i>Archive for History of Exact Sciences</i>, <b>18</b> (2): <span class="nowrap">89–</span>102, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00348142">10.1007/BF00348142</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51861422">51861422</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=On+an+untapped+source+of+medieval+Keralese+mathematics&amp;rft.volume=18&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E89-%3C%2Fspan%3E102&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1007%2FBF00348142&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51861422%23id-name%3DS2CID&amp;rft.aulast=Rajagopal&amp;rft.aufirst=C.&amp;rft.au=Rangachari%2C+M.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRajagopalRangachari1986" class="citation cs2">Rajagopal, C.; Rangachari, M. S. (1986), "On Medieval Kerala Mathematics", <i>Archive for History of Exact Sciences</i>, <b>35</b> (2): <span class="nowrap">91–</span>99, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00357622">10.1007/BF00357622</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121678430">121678430</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=On+Medieval+Kerala+Mathematics&amp;rft.volume=35&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E91-%3C%2Fspan%3E99&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1007%2FBF00357622&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121678430%23id-name%3DS2CID&amp;rft.aulast=Rajagopal&amp;rft.aufirst=C.&amp;rft.au=Rangachari%2C+M.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDivakaran2018" class="citation cs2">Divakaran, P. P. (2018), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-981-13-1774-3_6">"From 500 BCE to 500 CE"</a>, <i>The Mathematics of India</i>, Sources and Studies in the History of Mathematics and Physical Sciences, Singapore: Springer Singapore, pp.&#160;<span class="nowrap">143–</span>173, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-981-13-1774-3_6">10.1007/978-981-13-1774-3_6</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-13-1773-6" title="Special:BookSources/978-981-13-1773-6"><bdi>978-981-13-1773-6</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">18 June</span> 2024</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=From+500+BCE+to+500+CE&amp;rft.btitle=The+Mathematics+of+India&amp;rft.place=Singapore&amp;rft.series=Sources+and+Studies+in+the+History+of+Mathematics+and+Physical+Sciences&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E143-%3C%2Fspan%3E173&amp;rft.pub=Springer+Singapore&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1007%2F978-981-13-1774-3_6&amp;rft.isbn=978-981-13-1773-6&amp;rft.aulast=Divakaran&amp;rft.aufirst=P.+P.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-981-13-1774-3_6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">Joseph, G. G., 1997. "Foundations of Eurocentrism in Mathematics". In <i>Ethnomathematics: Challenging Eurocentrism in Mathematics Education</i> (Eds. Powell, A. B. et al.). SUNY Press. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7914-3352-8" title="Special:BookSources/0-7914-3352-8">0-7914-3352-8</a>. p.67-68.</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCajori1893" class="citation cs2"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1893), "The Hindoos", <i>A History of Mathematics P 86</i>, Macmillan &amp; Co., <q>In algebra, there was probably a mutual giving and receiving [between Greece and India]. We suspect that Diophantus got his first glimpse of algebraic knowledge from India</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Hindoos&amp;rft.btitle=A+History+of+Mathematics+P+86&amp;rft.pub=Macmillan+%26+Co.&amp;rft.date=1893&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">Florian Cajori (2010). "<i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=gZ2Us3F7dSwC&amp;pg=PA94">A History of Elementary Mathematics – With Hints on Methods of Teaching</a></i>". p.94. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4460-2221-8" title="Special:BookSources/1-4460-2221-8">1-4460-2221-8</a></span> </li> <li id="cite_note-almeida-98"><span class="mw-cite-backlink">^ <a href="#cite_ref-almeida_98-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-almeida_98-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAlmeidaJohnZadorozhnyy2001" class="citation cs2">Almeida, D. F.; John, J. K.; Zadorozhnyy, A. (2001), "Keralese Mathematics: Its Possible Transmission to Europe and the Consequential Educational Implications", <i>Journal of Natural Geometry</i>, <b>20</b>: <span class="nowrap">77–</span>104.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Natural+Geometry&amp;rft.atitle=Keralese+Mathematics%3A+Its+Possible+Transmission+to+Europe+and+the+Consequential+Educational+Implications&amp;rft.volume=20&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E77-%3C%2Fspan%3E104&amp;rft.date=2001&amp;rft.aulast=Almeida&amp;rft.aufirst=D.+F.&amp;rft.au=John%2C+J.+K.&amp;rft.au=Zadorozhnyy%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-gold-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-gold_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGoldPingree1991" class="citation cs2">Gold, D.; Pingree, D. (1991), "A hitherto unknown Sanskrit work concerning Madhava's derivation of the power series for sine and cosine", <i>Historia Scientiarum</i>, <b>42</b>: <span class="nowrap">49–</span>65.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Scientiarum&amp;rft.atitle=A+hitherto+unknown+Sanskrit+work+concerning+Madhava%27s+derivation+of+the+power+series+for+sine+and+cosine&amp;rft.volume=42&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E49-%3C%2Fspan%3E65&amp;rft.date=1991&amp;rft.aulast=Gold&amp;rft.aufirst=D.&amp;rft.au=Pingree%2C+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBourbaki1998" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1998), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/elementsofhistor0000bour"><i>Elements of the History of Mathematics</i></a></span>, Berlin, Heidelberg, and New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, 301 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-64767-6" title="Special:BookSources/978-3-540-64767-6"><bdi>978-3-540-64767-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+the+History+of+Mathematics&amp;rft.pub=Berlin%2C+Heidelberg%2C+and+New+York%3A+Springer-Verlag%2C+301+pages&amp;rft.date=1998&amp;rft.isbn=978-3-540-64767-6&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementsofhistor0000bour&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBoyerMerzback_(fwd._by_Isaac_Asimov)1991" class="citation cs2">Boyer, C. B.; Merzback (fwd. by Isaac Asimov), U. C. (1991), <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>History of Mathematics</i></a>, New York: John Wiley and Sons, 736 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-54397-8" title="Special:BookSources/978-0-471-54397-8"><bdi>978-0-471-54397-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+Mathematics&amp;rft.pub=New+York%3A+John+Wiley+and+Sons%2C+736+pages&amp;rft.date=1991&amp;rft.isbn=978-0-471-54397-8&amp;rft.aulast=Boyer&amp;rft.aufirst=C.+B.&amp;rft.au=Merzback+%28fwd.+by+Isaac+Asimov%29%2C+U.+C.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBressoud2002" class="citation cs2"><a href="/wiki/David_Bressoud" title="David Bressoud">Bressoud, David</a> (2002), "Was Calculus Invented in India?", <i>The College Mathematics Journal</i>, <b>33</b> (1): <span class="nowrap">2–</span>13, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1558972">10.2307/1558972</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1558972">1558972</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+College+Mathematics+Journal&amp;rft.atitle=Was+Calculus+Invented+in+India%3F&amp;rft.volume=33&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2-%3C%2Fspan%3E13&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.2307%2F1558972&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1558972%23id-name%3DJSTOR&amp;rft.aulast=Bressoud&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBronkhorst2001" class="citation cs2"><a href="/wiki/Johannes_Bronkhorst" title="Johannes Bronkhorst">Bronkhorst, Johannes</a> (2001), "Panini and Euclid: Reflections on Indian Geometry", <i>Journal of Indian Philosophy</i>, <b>29</b> (<span class="nowrap">1–</span>2), Springer Netherlands: <span class="nowrap">43–</span>80, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1017506118885">10.1023/A:1017506118885</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115779583">115779583</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Panini+and+Euclid%3A+Reflections+on+Indian+Geometry&amp;rft.volume=29&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E43-%3C%2Fspan%3E80&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1017506118885&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115779583%23id-name%3DS2CID&amp;rft.aulast=Bronkhorst&amp;rft.aufirst=Johannes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBurnett2006" class="citation cs2">Burnett, Charles (2006), "The Semantics of Indian Numerals in Arabic, Greek and Latin", <i>Journal of Indian Philosophy</i>, <b>34</b> (<span class="nowrap">1–</span>2), Springer-Netherlands: <span class="nowrap">15–</span>30, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10781-005-8153-z">10.1007/s10781-005-8153-z</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170783929">170783929</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=The+Semantics+of+Indian+Numerals+in+Arabic%2C+Greek+and+Latin&amp;rft.volume=34&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E15-%3C%2Fspan%3E30&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1007%2Fs10781-005-8153-z&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170783929%23id-name%3DS2CID&amp;rft.aulast=Burnett&amp;rft.aufirst=Charles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBurton1997" class="citation cs2">Burton, David M. (1997), <i>The History of Mathematics: An Introduction</i>, The McGraw-Hill Companies, Inc., pp.&#160;<span class="nowrap">193–</span>220</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics%3A+An+Introduction&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E193-%3C%2Fspan%3E220&amp;rft.pub=The+McGraw-Hill+Companies%2C+Inc.&amp;rft.date=1997&amp;rft.aulast=Burton&amp;rft.aufirst=David+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCooke2005" class="citation cs2">Cooke, Roger (2005), <i>The History of Mathematics: A Brief Course</i>, New York: Wiley-Interscience, 632 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-44459-6" title="Special:BookSources/978-0-471-44459-6"><bdi>978-0-471-44459-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics%3A+A+Brief+Course&amp;rft.pub=New+York%3A+Wiley-Interscience%2C+632+pages&amp;rft.date=2005&amp;rft.isbn=978-0-471-44459-6&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDani2003" class="citation cs2">Dani, S. G. (25 July 2003), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20030804220258/http://www.ias.ac.in/currsci/jul252003/219.pdf">"On the Pythagorean triples in the Śulvasūtras"</a> <span class="cs1-format">(PDF)</span>, <i>Current Science</i>, <b>85</b> (2): <span class="nowrap">219–</span>224, archived from <a rel="nofollow" class="external text" href="http://www.ias.ac.in/currsci/jul252003/219.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 August 2003</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Science&amp;rft.atitle=On+the+Pythagorean+triples+in+the+%C5%9Aulvas%C5%ABtras&amp;rft.volume=85&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E219-%3C%2Fspan%3E224&amp;rft.date=2003-07-25&amp;rft.aulast=Dani&amp;rft.aufirst=S.+G.&amp;rft_id=http%3A%2F%2Fwww.ias.ac.in%2Fcurrsci%2Fjul252003%2F219.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>. <sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged November 2024">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDatta1931" class="citation cs2">Datta, Bibhutibhusan (December 1931), "Early Literary Evidence of the Use of the Zero in India", <i>The American Mathematical Monthly</i>, <b>38</b> (10): <span class="nowrap">566–</span>572, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2301384">10.2307/2301384</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2301384">2301384</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Early+Literary+Evidence+of+the+Use+of+the+Zero+in+India&amp;rft.volume=38&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E566-%3C%2Fspan%3E572&amp;rft.date=1931-12&amp;rft_id=info%3Adoi%2F10.2307%2F2301384&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2301384%23id-name%3DJSTOR&amp;rft.aulast=Datta&amp;rft.aufirst=Bibhutibhusan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDattaSingh1962" class="citation cs2">Datta, Bibhutibhusan; Singh, Avadesh Narayan (1962), <a href="/wiki/History_of_Hindu_Mathematics:_A_Source_Book" class="mw-redirect" title="History of Hindu Mathematics: A Source Book"><i>History of Hindu Mathematics&#160;: A source book</i></a>, Bombay: Asia Publishing House</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+Hindu+Mathematics+%3A+A+source+book&amp;rft.pub=Bombay%3A+Asia+Publishing+House&amp;rft.date=1962&amp;rft.aulast=Datta&amp;rft.aufirst=Bibhutibhusan&amp;rft.au=Singh%2C+Avadesh+Narayan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDe_Young1995" class="citation cs2">De Young, Gregg (1995), "Euclidean Geometry in the Mathematical Tradition of Islamic India", <i>Historia Mathematica</i>, <b>22</b> (2): <span class="nowrap">138–</span>153, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1995.1014">10.1006/hmat.1995.1014</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Euclidean+Geometry+in+the+Mathematical+Tradition+of+Islamic+India&amp;rft.volume=22&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E138-%3C%2Fspan%3E153&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.1995.1014&amp;rft.aulast=De+Young&amp;rft.aufirst=Gregg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKim_Plofker2007" class="citation cs2">Kim Plofker (2007), <a rel="nofollow" class="external text" href="https://www.britannica.com/eb/article-9389286">"mathematics, South Asian"</a>, <i>Encyclopaedia Britannica Online</i>, pp.&#160;<span class="nowrap">1–</span>12<span class="reference-accessdate">, retrieved <span class="nowrap">18 May</span> 2007</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=mathematics%2C+South+Asian&amp;rft.btitle=Encyclopaedia+Britannica+Online&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E12&amp;rft.date=2007&amp;rft.au=Kim+Plofker&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Feb%2Farticle-9389286&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFilliozat2004" class="citation cs2">Filliozat, Pierre-Sylvain (2004), <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-4020-2321-9_7">"Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature"</a>, in <a href="/wiki/Karine_Chemla" title="Karine Chemla">Chemla, Karine</a>; Cohen, Robert S.; Renn, Jürgen; et&#160;al. (eds.), <i>History of Science, History of Text (Boston Series in the Philosophy of Science)</i>, Dordrecht: Springer Netherlands, 254 pages, pp. 137–157, pp.&#160;<span class="nowrap">360–</span>375, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-4020-2321-9_7">10.1007/1-4020-2321-9_7</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4020-2320-0" title="Special:BookSources/978-1-4020-2320-0"><bdi>978-1-4020-2320-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Ancient+Sanskrit+Mathematics%3A+An+Oral+Tradition+and+a+Written+Literature&amp;rft.btitle=History+of+Science%2C+History+of+Text+%28Boston+Series+in+the+Philosophy+of+Science%29&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E360-%3C%2Fspan%3E375&amp;rft.pub=Dordrecht%3A+Springer+Netherlands%2C+254+pages%2C+pp.+137%E2%80%93157&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1007%2F1-4020-2321-9_7&amp;rft.isbn=978-1-4020-2320-0&amp;rft.aulast=Filliozat&amp;rft.aufirst=Pierre-Sylvain&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252F1-4020-2321-9_7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFowler1996" class="citation cs2"><a href="/wiki/David_Fowler_(mathematician)" title="David Fowler (mathematician)">Fowler, David</a> (1996), "Binomial Coefficient Function", <i>The American Mathematical Monthly</i>, <b>103</b> (1): <span class="nowrap">1–</span>17, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2975209">10.2307/2975209</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2975209">2975209</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Binomial+Coefficient+Function&amp;rft.volume=103&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E17&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.2307%2F2975209&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2975209%23id-name%3DJSTOR&amp;rft.aulast=Fowler&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHayashi1995" class="citation cs2">Hayashi, Takao (1995), <i>The Bakhshali Manuscript, An ancient Indian mathematical treatise</i>, Groningen: Egbert Forsten, 596 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-90-6980-087-5" title="Special:BookSources/978-90-6980-087-5"><bdi>978-90-6980-087-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Bakhshali+Manuscript%2C+An+ancient+Indian+mathematical+treatise&amp;rft.pub=Groningen%3A+Egbert+Forsten%2C+596+pages&amp;rft.date=1995&amp;rft.isbn=978-90-6980-087-5&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHayashi1997" class="citation cs2">Hayashi, Takao (1997), "Aryabhata's Rule and Table of Sine-Differences", <i>Historia Mathematica</i>, <b>24</b> (4): <span class="nowrap">396–</span>406, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1997.2160">10.1006/hmat.1997.2160</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Aryabhata%27s+Rule+and+Table+of+Sine-Differences&amp;rft.volume=24&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E396-%3C%2Fspan%3E406&amp;rft.date=1997&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.1997.2160&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHayashi2003" class="citation cs2">Hayashi, Takao (2003), "Indian Mathematics", in Grattan-Guinness, Ivor (ed.), <i>Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences</i>, vol.&#160;1, Baltimore, MD: The Johns Hopkins University Press, pp.&#160;<span class="nowrap">118–</span>130, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8018-7396-6" title="Special:BookSources/978-0-8018-7396-6"><bdi>978-0-8018-7396-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Indian+Mathematics&amp;rft.btitle=Companion+Encyclopedia+of+the+History+and+Philosophy+of+the+Mathematical+Sciences&amp;rft.place=Baltimore%2C+MD&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E118-%3C%2Fspan%3E130&amp;rft.pub=The+Johns+Hopkins+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-8018-7396-6&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHayashi2005" class="citation cs2">Hayashi, Takao (2005), "Indian Mathematics", in Flood, Gavin (ed.), <i>The Blackwell Companion to Hinduism</i>, Oxford: Basil Blackwell, 616 pages, pp. 360–375, pp.&#160;<span class="nowrap">360–</span>375, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4051-3251-0" title="Special:BookSources/978-1-4051-3251-0"><bdi>978-1-4051-3251-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Indian+Mathematics&amp;rft.btitle=The+Blackwell+Companion+to+Hinduism&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E360-%3C%2Fspan%3E375&amp;rft.pub=Oxford%3A+Basil+Blackwell%2C+616+pages%2C+pp.+360%E2%80%93375&amp;rft.date=2005&amp;rft.isbn=978-1-4051-3251-0&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHenderson2000" class="citation cs2">Henderson, David W. (2000), <a rel="nofollow" class="external text" href="http://www.math.cornell.edu/~dwh/papers/sulba/sulba.html">"Square roots in the Sulba Sutras"</a>, in Gorini, Catherine A. (ed.), <i>Geometry at Work: Papers in Applied Geometry</i>, vol.&#160;53, Washington DC: <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">Mathematical Association of America</a> Notes, pp.&#160;<span class="nowrap">39–</span>45, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-164-7" title="Special:BookSources/978-0-88385-164-7"><bdi>978-0-88385-164-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Square+roots+in+the+Sulba+Sutras&amp;rft.btitle=Geometry+at+Work%3A+Papers+in+Applied+Geometry&amp;rft.place=Washington+DC&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E39-%3C%2Fspan%3E45&amp;rft.pub=Mathematical+Association+of+America+Notes&amp;rft.date=2000&amp;rft.isbn=978-0-88385-164-7&amp;rft.aulast=Henderson&amp;rft.aufirst=David+W.&amp;rft_id=http%3A%2F%2Fwww.math.cornell.edu%2F~dwh%2Fpapers%2Fsulba%2Fsulba.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIfrah2000" class="citation book cs1"><a href="/wiki/Georges_Ifrah" title="Georges Ifrah">Ifrah, Georges</a> (2000). <i>A Universal History of Numbers: From Prehistory to Computers</i>. New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0471393401" title="Special:BookSources/0471393401"><bdi>0471393401</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Universal+History+of+Numbers%3A+From+Prehistory+to+Computers&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=2000&amp;rft.isbn=0471393401&amp;rft.aulast=Ifrah&amp;rft.aufirst=Georges&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJoseph2000" class="citation cs2">Joseph, G. G. (2000), <a rel="nofollow" class="external text" href="https://archive.org/details/crestofpeacockno00jose"><i>The Crest of the Peacock: The Non-European Roots of Mathematics</i></a>, Princeton, NJ: Princeton University Press, 416 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-00659-8" title="Special:BookSources/978-0-691-00659-8"><bdi>978-0-691-00659-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Crest+of+the+Peacock%3A+The+Non-European+Roots+of+Mathematics&amp;rft.pub=Princeton%2C+NJ%3A+Princeton+University+Press%2C+416+pages&amp;rft.date=2000&amp;rft.isbn=978-0-691-00659-8&amp;rft.aulast=Joseph&amp;rft.aufirst=G.+G.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcrestofpeacockno00jose&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKatz1995" class="citation cs2">Katz, Victor J. (1995), "Ideas of Calculus in Islam and India", <i>Mathematics Magazine</i>, <b>68</b> (3): <span class="nowrap">163–</span>174, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2691411">10.2307/2691411</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2691411">2691411</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Ideas+of+Calculus+in+Islam+and+India&amp;rft.volume=68&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E163-%3C%2Fspan%3E174&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.2307%2F2691411&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2691411%23id-name%3DJSTOR&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKatz2007" class="citation cs2">Katz, Victor J., ed. (2007), <i>The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook</i>, Princeton, NJ: Princeton University Press, pp.&#160;<span class="nowrap">385–</span>514, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11485-9" title="Special:BookSources/978-0-691-11485-9"><bdi>978-0-691-11485-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mathematics+of+Egypt%2C+Mesopotamia%2C+China%2C+India%2C+and+Islam%3A+A+Sourcebook&amp;rft.place=Princeton%2C+NJ&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E385-%3C%2Fspan%3E514&amp;rft.pub=Princeton+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-691-11485-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKeller2005" class="citation cs2">Keller, Agathe (2005), <a rel="nofollow" class="external text" href="https://halshs.archives-ouvertes.fr/halshs-00000445/file/Diags.pdf">"Making diagrams speak, in Bhāskara I's commentary on the <i>Aryabhaṭīya</i>"</a> <span class="cs1-format">(PDF)</span>, <i>Historia Mathematica</i>, <b>32</b> (3): <span class="nowrap">275–</span>302, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2004.09.001">10.1016/j.hm.2004.09.001</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Making+diagrams+speak%2C+in+Bh%C4%81skara+I%27s+commentary+on+the+Aryabha%E1%B9%AD%C4%ABya&amp;rft.volume=32&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E275-%3C%2Fspan%3E302&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2004.09.001&amp;rft.aulast=Keller&amp;rft.aufirst=Agathe&amp;rft_id=https%3A%2F%2Fhalshs.archives-ouvertes.fr%2Fhalshs-00000445%2Ffile%2FDiags.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKichenassamy2006" class="citation cs2">Kichenassamy, Satynad (2006), "Baudhāyana's rule for the quadrature of the circle", <i>Historia Mathematica</i>, <b>33</b> (2): <span class="nowrap">149–</span>183, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2005.05.001">10.1016/j.hm.2005.05.001</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Baudh%C4%81yana%27s+rule+for+the+quadrature+of+the+circle&amp;rft.volume=33&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E149-%3C%2Fspan%3E183&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2005.05.001&amp;rft.aulast=Kichenassamy&amp;rft.aufirst=Satynad&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFNeugebauerPingree1970" class="citation cs2"><a href="/wiki/Otto_Neugebauer" class="mw-redirect" title="Otto Neugebauer">Neugebauer, Otto</a>; <a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a>, eds. (1970), <i>The Pañcasiddhāntikā of Varāhamihira</i>, Copenhagen</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Pa%C3%B1casiddh%C4%81ntik%C4%81+of+Var%C4%81hamihira&amp;rft.place=Copenhagen&amp;rft.date=1970&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span>. New edition with translation and commentary, (2 Vols.).</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree1971" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a> (1971), "On the Greek Origin of the Indian Planetary Model Employing a Double Epicycle", <i>Journal of Historical Astronomy</i>, <b>2</b> (1): <span class="nowrap">80–</span>85, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971JHA.....2...80P">1971JHA.....2...80P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F002182867100200202">10.1177/002182867100200202</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118053453">118053453</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Historical+Astronomy&amp;rft.atitle=On+the+Greek+Origin+of+the+Indian+Planetary+Model+Employing+a+Double+Epicycle&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E80-%3C%2Fspan%3E85&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118053453%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1177%2F002182867100200202&amp;rft_id=info%3Abibcode%2F1971JHA.....2...80P&amp;rft.aulast=Pingree&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree1973" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a> (1973), "The Mesopotamian Origin of Early Indian Mathematical Astronomy", <i>Journal of Historical Astronomy</i>, <b>4</b> (1): <span class="nowrap">1–</span>12, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973JHA.....4....1P">1973JHA.....4....1P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F002182867300400102">10.1177/002182867300400102</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125228353">125228353</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Historical+Astronomy&amp;rft.atitle=The+Mesopotamian+Origin+of+Early+Indian+Mathematical+Astronomy&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E12&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125228353%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1177%2F002182867300400102&amp;rft_id=info%3Abibcode%2F1973JHA.....4....1P&amp;rft.aulast=Pingree&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree1978" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a>, ed. (1978), <i>The Yavanajātaka of Sphujidhvaja</i>, <a href="/wiki/Harvard_Oriental_Series" title="Harvard Oriental Series">Harvard Oriental Series</a> 48 (2 vols.), Edited, translated and commented by D. Pingree, Cambridge, MA</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Yavanaj%C4%81taka+of+Sphujidhvaja&amp;rft.place=Cambridge%2C+MA&amp;rft.series=Harvard+Oriental+Series+48+%282+vols.%29&amp;rft.date=1978&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree1988" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a> (1988), "Reviewed Work(s): The Fidelity of Oral Tradition and the Origins of Science by Frits Staal", <i>Journal of the American Oriental Society</i>, <b>108</b> (4): <span class="nowrap">637–</span>638, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F603154">10.2307/603154</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/603154">603154</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Oriental+Society&amp;rft.atitle=Reviewed+Work%28s%29%3A+The+Fidelity+of+Oral+Tradition+and+the+Origins+of+Science+by+Frits+Staal&amp;rft.volume=108&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E637-%3C%2Fspan%3E638&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.2307%2F603154&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F603154%23id-name%3DJSTOR&amp;rft.aulast=Pingree&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree1992" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a> (1992), "Hellenophilia versus the History of Science", <i>Isis</i>, <b>83</b> (4): <span class="nowrap">554–</span>563, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992Isis...83..554P">1992Isis...83..554P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F356288">10.1086/356288</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/234257">234257</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:68570164">68570164</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Isis&amp;rft.atitle=Hellenophilia+versus+the+History+of+Science&amp;rft.volume=83&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E554-%3C%2Fspan%3E563&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1086%2F356288&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A68570164%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F234257%23id-name%3DJSTOR&amp;rft_id=info%3Abibcode%2F1992Isis...83..554P&amp;rft.aulast=Pingree&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPingree2003" class="citation cs2"><a href="/wiki/David_Pingree" title="David Pingree">Pingree, David</a> (2003), "The logic of non-Western science: mathematical discoveries in medieval India", <i>Daedalus</i>, <b>132</b> (4): <span class="nowrap">45–</span>54, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1162%2F001152603771338779">10.1162/001152603771338779</a></span>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:57559157">57559157</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Daedalus&amp;rft.atitle=The+logic+of+non-Western+science%3A+mathematical+discoveries+in+medieval+India&amp;rft.volume=132&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E45-%3C%2Fspan%3E54&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1162%2F001152603771338779&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A57559157%23id-name%3DS2CID&amp;rft.aulast=Pingree&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPlofker1996" class="citation cs2"><a href="/wiki/Kim_Plofker" title="Kim Plofker">Plofker, Kim</a> (1996), "An Example of the Secant Method of Iterative Approximation in a Fifteenth-Century Sanskrit Text", <i>Historia Mathematica</i>, <b>23</b> (3): <span class="nowrap">246–</span>256, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1996.0026">10.1006/hmat.1996.0026</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=An+Example+of+the+Secant+Method+of+Iterative+Approximation+in+a+Fifteenth-Century+Sanskrit+Text&amp;rft.volume=23&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E246-%3C%2Fspan%3E256&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.1996.0026&amp;rft.aulast=Plofker&amp;rft.aufirst=Kim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPlofker2001" class="citation cs2">Plofker, Kim (2001), "The "Error" in the Indian "Taylor Series Approximation" to the Sine", <i>Historia Mathematica</i>, <b>28</b> (4): <span class="nowrap">283–</span>295, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.2001.2331">10.1006/hmat.2001.2331</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=The+%22Error%22+in+the+Indian+%22Taylor+Series+Approximation%22+to+the+Sine&amp;rft.volume=28&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E283-%3C%2Fspan%3E295&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.2001.2331&amp;rft.aulast=Plofker&amp;rft.aufirst=Kim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPlofker2007" class="citation cs2">Plofker, K. (2007), "Mathematics of India", in Katz, Victor J. (ed.), <i>The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook</i>, Princeton, NJ: Princeton University Press, pp.&#160;<span class="nowrap">385–</span>514, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11485-9" title="Special:BookSources/978-0-691-11485-9"><bdi>978-0-691-11485-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+of+India&amp;rft.btitle=The+Mathematics+of+Egypt%2C+Mesopotamia%2C+China%2C+India%2C+and+Islam%3A+A+Sourcebook&amp;rft.place=Princeton%2C+NJ&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E385-%3C%2Fspan%3E514&amp;rft.pub=Princeton+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-691-11485-9&amp;rft.aulast=Plofker&amp;rft.aufirst=K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPlofker2009" class="citation cs2">Plofker, Kim (2009), <a href="/wiki/Mathematics_in_India_(book)" title="Mathematics in India (book)"><i>Mathematics in India: 500 BCE–1800 CE</i></a>, Princeton, NJ: Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-12067-6" title="Special:BookSources/978-0-691-12067-6"><bdi>978-0-691-12067-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+in+India%3A+500+BCE%E2%80%931800+CE&amp;rft.place=Princeton%2C+NJ&amp;rft.pub=Princeton+University+Press&amp;rft.date=2009&amp;rft.isbn=978-0-691-12067-6&amp;rft.aulast=Plofker&amp;rft.aufirst=Kim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPrice2000" class="citation cs2">Price, John F. (2000), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070927032626/http://www.ithaca.edu/osman/crs/sp07/265/cal/lec/week11/SulbaSutras.pdf">"Applied geometry of the Sulba Sutras"</a> <span class="cs1-format">(PDF)</span>, in Gorini, Catherine A. (ed.), <i>Geometry at Work: Papers in Applied Geometry</i>, vol.&#160;53, Washington DC: Mathematical Association of America Notes, pp.&#160;<span class="nowrap">46–</span>58, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-164-7" title="Special:BookSources/978-0-88385-164-7"><bdi>978-0-88385-164-7</bdi></a>, archived from <a rel="nofollow" class="external text" href="http://www.ithaca.edu/osman/crs/sp07/265/cal/lec/week11/SulbaSutras.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 27 September 2007<span class="reference-accessdate">, retrieved <span class="nowrap">20 May</span> 2007</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Applied+geometry+of+the+Sulba+Sutras&amp;rft.btitle=Geometry+at+Work%3A+Papers+in+Applied+Geometry&amp;rft.place=Washington+DC&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E46-%3C%2Fspan%3E58&amp;rft.pub=Mathematical+Association+of+America+Notes&amp;rft.date=2000&amp;rft.isbn=978-0-88385-164-7&amp;rft.aulast=Price&amp;rft.aufirst=John+F.&amp;rft_id=http%3A%2F%2Fwww.ithaca.edu%2Fosman%2Fcrs%2Fsp07%2F265%2Fcal%2Flec%2Fweek11%2FSulbaSutras.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRoy1990" class="citation cs2">Roy, Ranjan (1990), "Discovery of the Series Formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }" /></span> by Leibniz, Gregory, and Nilakantha", <i>Mathematics Magazine</i>, <b>63</b> (5): <span class="nowrap">291–</span>306, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2690896">10.2307/2690896</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2690896">2690896</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Discovery+of+the+Series+Formula+for+MATH+RENDER+ERROR+by+Leibniz%2C+Gregory%2C+and+Nilakantha&amp;rft.volume=63&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E291-%3C%2Fspan%3E306&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.2307%2F2690896&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2690896%23id-name%3DJSTOR&amp;rft.aulast=Roy&amp;rft.aufirst=Ranjan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSingh1936" class="citation cs2">Singh, A. N. (1936), "On the Use of Series in Hindu Mathematics", <i>Osiris</i>, <b>1</b> (1): <span class="nowrap">606–</span>628, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F368443">10.1086/368443</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/301627">301627</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:144760421">144760421</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Osiris&amp;rft.atitle=On+the+Use+of+Series+in+Hindu+Mathematics&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E606-%3C%2Fspan%3E628&amp;rft.date=1936&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A144760421%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F301627%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1086%2F368443&amp;rft.aulast=Singh&amp;rft.aufirst=A.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStaal1986" class="citation cs2"><a href="/wiki/Frits_Staal" title="Frits Staal">Staal, Frits</a> (1986), "The Fidelity of Oral Tradition and the Origins of Science", <i>Mededelingen der Koninklijke Nederlandse Akademie von Wetenschappen, Afd. Letterkunde</i>, New Series, <b>49</b> (8), Amsterdam: North Holland Publishing Company</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mededelingen+der+Koninklijke+Nederlandse+Akademie+von+Wetenschappen%2C+Afd.+Letterkunde&amp;rft.atitle=The+Fidelity+of+Oral+Tradition+and+the+Origins+of+Science&amp;rft.volume=49&amp;rft.issue=8&amp;rft.date=1986&amp;rft.aulast=Staal&amp;rft.aufirst=Frits&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStaal1995" class="citation cs2"><a href="/wiki/Frits_Staal" title="Frits Staal">Staal, Frits</a> (1995), "The Sanskrit of science", <i>Journal of Indian Philosophy</i>, <b>23</b> (1), Springer Netherlands: <span class="nowrap">73–</span>127, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01062067">10.1007/BF01062067</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170755274">170755274</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=The+Sanskrit+of+science&amp;rft.volume=23&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E73-%3C%2Fspan%3E127&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1007%2FBF01062067&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170755274%23id-name%3DS2CID&amp;rft.aulast=Staal&amp;rft.aufirst=Frits&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStaal1999" class="citation cs2"><a href="/wiki/Frits_Staal" title="Frits Staal">Staal, Frits</a> (1999), "Greek and Vedic Geometry", <i>Journal of Indian Philosophy</i>, <b>27</b> (<span class="nowrap">1–</span>2): <span class="nowrap">105–</span>127, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1004364417713">10.1023/A:1004364417713</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170894641">170894641</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Greek+and+Vedic+Geometry&amp;rft.volume=27&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E105-%3C%2Fspan%3E127&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1004364417713&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170894641%23id-name%3DS2CID&amp;rft.aulast=Staal&amp;rft.aufirst=Frits&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStaal2001" class="citation cs2"><a href="/wiki/Frits_Staal" title="Frits Staal">Staal, Frits</a> (2001), "Squares and oblongs in the Veda", <i>Journal of Indian Philosophy</i>, <b>29</b> (<span class="nowrap">1–</span>2), Springer Netherlands: <span class="nowrap">256–</span>272, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1017527129520">10.1023/A:1017527129520</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170403804">170403804</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Squares+and+oblongs+in+the+Veda&amp;rft.volume=29&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E256-%3C%2Fspan%3E272&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1017527129520&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170403804%23id-name%3DS2CID&amp;rft.aulast=Staal&amp;rft.aufirst=Frits&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStaal2006" class="citation cs2"><a href="/wiki/Frits_Staal" title="Frits Staal">Staal, Frits</a> (2006), "Artificial Languages Across Sciences and Civilisations", <i>Journal of Indian Philosophy</i>, <b>34</b> (1), Springer Netherlands: <span class="nowrap">89–</span>141, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10781-005-8189-0">10.1007/s10781-005-8189-0</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170968871">170968871</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Artificial+Languages+Across+Sciences+and+Civilisations&amp;rft.volume=34&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E89-%3C%2Fspan%3E141&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1007%2Fs10781-005-8189-0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170968871%23id-name%3DS2CID&amp;rft.aulast=Staal&amp;rft.aufirst=Frits&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStillwell2004" class="citation cs2">Stillwell, John (2004), <i>Mathematics and its History</i>, Undergraduate Texts in Mathematics (2&#160;ed.), Springer, Berlin and New York, 568 pages, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4684-9281-1">10.1007/978-1-4684-9281-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95336-6" title="Special:BookSources/978-0-387-95336-6"><bdi>978-0-387-95336-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+and+its+History&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.edition=2&amp;rft.pub=Springer%2C+Berlin+and+New+York%2C+568+pages&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4684-9281-1&amp;rft.isbn=978-0-387-95336-6&amp;rft.aulast=Stillwell&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFThibaut1984" class="citation cs2"><a href="/wiki/George_Thibaut" title="George Thibaut">Thibaut, George</a> (1984) [1875], <i>Mathematics in the Making in Ancient India: reprints of 'On the Sulvasutras' and 'Baudhyayana Sulva-sutra'<span></span></i>, Calcutta and Delhi: K. P. Bagchi and Company (orig. Journal of the Asiatic Society of Bengal), 133 pages</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+in+the+Making+in+Ancient+India%3A+reprints+of+%27On+the+Sulvasutras%27+and+%27Baudhyayana+Sulva-sutra%27&amp;rft.pub=Calcutta+and+Delhi%3A+K.+P.+Bagchi+and+Company+%28orig.+Journal+of+the+Asiatic+Society+of+Bengal%29%2C+133+pages&amp;rft.date=1984&amp;rft.aulast=Thibaut&amp;rft.aufirst=George&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFvan_der_Waerden1983" class="citation cs2"><a href="/wiki/B._L._van_der_Waerden" class="mw-redirect" title="B. L. van der Waerden">van der Waerden, B. L.</a> (1983), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/geometryalgebrai0000waer"><i>Geometry and Algebra in Ancient Civilisations</i></a></span>, Berlin and New York: Springer, 223 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-12159-8" title="Special:BookSources/978-0-387-12159-8"><bdi>978-0-387-12159-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+and+Algebra+in+Ancient+Civilisations&amp;rft.pub=Berlin+and+New+York%3A+Springer%2C+223+pages&amp;rft.date=1983&amp;rft.isbn=978-0-387-12159-8&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=B.+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometryalgebrai0000waer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFvan_der_Waerden1988" class="citation cs2"><a href="/wiki/B._L._van_der_Waerden" class="mw-redirect" title="B. L. van der Waerden">van der Waerden, B. L.</a> (1988), "On the Romaka-Siddhānta", <i>Archive for History of Exact Sciences</i>, <b>38</b> (1): <span class="nowrap">1–</span>11, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00329976">10.1007/BF00329976</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189788738">189788738</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=On+the+Romaka-Siddh%C4%81nta&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E11&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1007%2FBF00329976&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189788738%23id-name%3DS2CID&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=B.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFvan_der_Waerden1988" class="citation cs2"><a href="/wiki/B._L._van_der_Waerden" class="mw-redirect" title="B. L. van der Waerden">van der Waerden, B. L.</a> (1988), "Reconstruction of a Greek table of chords", <i>Archive for History of Exact Sciences</i>, <b>38</b> (1): <span class="nowrap">23–</span>38, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988AHES...38...23V">1988AHES...38...23V</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00329978">10.1007/BF00329978</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189793547">189793547</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Reconstruction+of+a+Greek+table+of+chords&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E23-%3C%2Fspan%3E38&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189793547%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00329978&amp;rft_id=info%3Abibcode%2F1988AHES...38...23V&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=B.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFVan_Nooten1993" class="citation cs2">Van Nooten, B. (1993), "Binary numbers in Indian antiquity", <i>Journal of Indian Philosophy</i>, <b>21</b> (1), Springer Netherlands: <span class="nowrap">31–</span>50, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01092744">10.1007/BF01092744</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:171039636">171039636</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Binary+numbers+in+Indian+antiquity&amp;rft.volume=21&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E31-%3C%2Fspan%3E50&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1007%2FBF01092744&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A171039636%23id-name%3DS2CID&amp;rft.aulast=Van+Nooten&amp;rft.aufirst=B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWhish1835" class="citation cs2"><a href="/wiki/C.M._Whish" class="mw-redirect" title="C.M. Whish">Whish, Charles</a> (1835), <a rel="nofollow" class="external text" href="https://zenodo.org/record/2223599">"On the Hindú Quadrature of the Circle, and the infinite Series of the proportion of the circumference to the diameter exhibited in the four S'ástras, the Tantra Sangraham, Yucti Bháshá, Carana Padhati, and Sadratnamála"</a>, <i>Transactions of the Royal Asiatic Society of Great Britain and Ireland</i>, <b>3</b> (3): <span class="nowrap">509–</span>523, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0950473700001221">10.1017/S0950473700001221</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/25581775">25581775</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+Royal+Asiatic+Society+of+Great+Britain+and+Ireland&amp;rft.atitle=On+the+Hind%C3%BA+Quadrature+of+the+Circle%2C+and+the+infinite+Series+of+the+proportion+of+the+circumference+to+the+diameter+exhibited+in+the+four+S%27%C3%A1stras%2C+the+Tantra+Sangraham%2C+Yucti+Bh%C3%A1sh%C3%A1%2C+Carana+Padhati%2C+and+Sadratnam%C3%A1la&amp;rft.volume=3&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E509-%3C%2Fspan%3E523&amp;rft.date=1835&amp;rft_id=info%3Adoi%2F10.1017%2FS0950473700001221&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F25581775%23id-name%3DJSTOR&amp;rft.aulast=Whish&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2223599&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFYano2006" class="citation cs2">Yano, Michio (2006), "Oral and Written Transmission of the Exact Sciences in Sanskrit", <i>Journal of Indian Philosophy</i>, <b>34</b> (<span class="nowrap">1–</span>2), Springer Netherlands: <span class="nowrap">143–</span>160, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10781-005-8175-6">10.1007/s10781-005-8175-6</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:170679879">170679879</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Indian+Philosophy&amp;rft.atitle=Oral+and+Written+Transmission+of+the+Exact+Sciences+in+Sanskrit&amp;rft.volume=34&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E143-%3C%2Fspan%3E160&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1007%2Fs10781-005-8175-6&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A170679879%23id-name%3DS2CID&amp;rft.aulast=Yano&amp;rft.aufirst=Michio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=25" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Source_books_in_Sanskrit">Source books in Sanskrit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=26" title="Edit section: Source books in Sanskrit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKeller2006" class="citation cs2">Keller, Agathe (2006), <i>Expounding the Mathematical Seed. Vol. 1: The Translation: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya</i>, Basel, Boston, and Berlin: Birkhäuser Verlag, 172 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-7291-0" title="Special:BookSources/978-3-7643-7291-0"><bdi>978-3-7643-7291-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Expounding+the+Mathematical+Seed.+Vol.+1%3A+The+Translation%3A+A+Translation+of+Bhaskara+I+on+the+Mathematical+Chapter+of+the+Aryabhatiya&amp;rft.pub=Basel%2C+Boston%2C+and+Berlin%3A+Birkh%C3%A4user+Verlag%2C+172+pages&amp;rft.date=2006&amp;rft.isbn=978-3-7643-7291-0&amp;rft.aulast=Keller&amp;rft.aufirst=Agathe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKeller2006" class="citation cs2">Keller, Agathe (2006), <i>Expounding the Mathematical Seed. Vol. 2: The Supplements: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya</i>, Basel, Boston, and Berlin: Birkhäuser Verlag, 206 pages, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-7292-7" title="Special:BookSources/978-3-7643-7292-7"><bdi>978-3-7643-7292-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Expounding+the+Mathematical+Seed.+Vol.+2%3A+The+Supplements%3A+A+Translation+of+Bhaskara+I+on+the+Mathematical+Chapter+of+the+Aryabhatiya&amp;rft.pub=Basel%2C+Boston%2C+and+Berlin%3A+Birkh%C3%A4user+Verlag%2C+206+pages&amp;rft.date=2006&amp;rft.isbn=978-3-7643-7292-7&amp;rft.aulast=Keller&amp;rft.aufirst=Agathe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSarma1976" class="citation cs2"><a href="/wiki/K._V._Sarma" title="K. V. Sarma">Sarma, K. V.</a>, ed. (1976), <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya</i></span> of <span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭa</i></span> with the commentary of Sūryadeva Yajvan</i>, critically edited with Introduction and Appendices, New Delhi: Indian National Science Academy</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%3Cspan+title%3D%22International+Alphabet+of+Sanskrit+transliteration%22%3E%3Ci+lang%3D%22sa-Latn%22%3E%C4%80ryabha%E1%B9%AD%C4%ABya%3C%2Fi%3E%3C%2Fspan%3E+of+%3Cspan+title%3D%22International+Alphabet+of+Sanskrit+transliteration%22%3E%3Ci+lang%3D%22sa-Latn%22%3E%C4%80ryabha%E1%B9%ADa%3C%2Fi%3E%3C%2Fspan%3E+with+the+commentary+of+S%C5%ABryadeva+Yajvan&amp;rft.pub=critically+edited+with+Introduction+and+Appendices%2C+New+Delhi%3A+Indian+National+Science+Academy&amp;rft.date=1976&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSenBag1983" class="citation cs2">Sen, S. N.; Bag, A. K., eds. (1983), <i>The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava</i>, with Text, English Translation and Commentary, New Delhi: Indian National Science Academy</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+%C5%9Aulbas%C5%ABtras+of+Baudh%C4%81yana%2C+%C4%80pastamba%2C+K%C4%81ty%C4%81yana+and+M%C4%81nava&amp;rft.pub=with+Text%2C+English+Translation+and+Commentary%2C+New+Delhi%3A+Indian+National+Science+Academy&amp;rft.date=1983&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFShukla1976" class="citation cs2">Shukla, K. S., ed. (1976), <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya</i></span> of <span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭa</i></span> with the commentary of Bhāskara I and Someśvara</i>, critically edited with Introduction, English Translation, Notes, Comments and Indexes, New Delhi: Indian National Science Academy</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%3Cspan+title%3D%22International+Alphabet+of+Sanskrit+transliteration%22%3E%3Ci+lang%3D%22sa-Latn%22%3E%C4%80ryabha%E1%B9%AD%C4%ABya%3C%2Fi%3E%3C%2Fspan%3E+of+%3Cspan+title%3D%22International+Alphabet+of+Sanskrit+transliteration%22%3E%3Ci+lang%3D%22sa-Latn%22%3E%C4%80ryabha%E1%B9%ADa%3C%2Fi%3E%3C%2Fspan%3E+with+the+commentary+of+Bh%C4%81skara+I+and+Some%C5%9Bvara&amp;rft.pub=critically+edited+with+Introduction%2C+English+Translation%2C+Notes%2C+Comments+and+Indexes%2C+New+Delhi%3A+Indian+National+Science+Academy&amp;rft.date=1976&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFShukla1988" class="citation cs2">Shukla, K. S., ed. (1988), <i><span title="International Alphabet of Sanskrit transliteration"><i lang="sa-Latn">Āryabhaṭīya of Āryabhaṭa</i></span></i>, critically edited with Introduction, English Translation, Notes, Comments and Indexes, in collaboration with <a href="/wiki/K.V._Sarma" class="mw-redirect" title="K.V. Sarma">K.V. Sarma</a>, New Delhi: Indian National Science Academy</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%3Cspan+title%3D%22International+Alphabet+of+Sanskrit+transliteration%22%3E%3Ci+lang%3D%22sa-Latn%22%3E%C4%80ryabha%E1%B9%AD%C4%ABya+of+%C4%80ryabha%E1%B9%ADa%3C%2Fi%3E%3C%2Fspan%3E&amp;rft.pub=critically+edited+with+Introduction%2C+English+Translation%2C+Notes%2C+Comments+and+Indexes%2C+in+collaboration+with+K.V.+Sarma%2C+New+Delhi%3A+Indian+National+Science+Academy&amp;rft.date=1988&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndian+mathematics" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Indian_mathematics&amp;action=edit&amp;section=27" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409" /> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiquote-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Indian_mathematics" class="extiw" title="q:Special:Search/Indian mathematics">Indian mathematics</a></b></i>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120627102333/http://www.indohistory.com/science_and_mathematics.html">Science and Mathematics in India</a><sup><a href="/wiki/Template:Usurped/doc" title="Template:Usurped/doc">[usurped]</a></sup></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20021015003732/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Indian_mathematics.html">An overview of Indian mathematics</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/St_Andrews_University" class="mw-redirect" title="St Andrews University">St Andrews University</a>, 2000.</li> <li><a rel="nofollow" class="external text" href="http://www.famousmathematicians.net/famous-indian-mathematicians/">Indian Mathematicians</a></li> <li><a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/Indexes/Indians.html">Index of Ancient Indian mathematics</a>, <i>MacTutor History of Mathematics Archive</i>, St Andrews University, 2004.</li> <li><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce">Indian Mathematics: Redressing the balance</a>, <a rel="nofollow" class="external text" href="http://www-history.mcs.st-and.ac.uk/Projects">Student Projects in the History of Mathematics</a>. Ian Pearce. <i>MacTutor History of Mathematics Archive</i>, St Andrews University, 2002.</li> <li><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/programmes/p0038xb0">Indian Mathematics</a> on <a href="/wiki/In_Our_Time_(radio_series)" title="In Our Time (radio series)"><i>In Our Time</i></a> at the <a href="/wiki/BBC" title="BBC">BBC</a></li> <li><a rel="nofollow" class="external text" href="http://cs.annauniv.edu/insight/index.htm">InSIGHT 2009</a>, a workshop on traditional Indian sciences for school children conducted by the Computer Science department of Anna University, Chennai, India.</li> <li><a rel="nofollow" class="external text" href="https://drive.google.com/file/d/0BxearzN4q-babEVJZ2g0VnZCQzA/view?usp=sharing">Mathematics in ancient India by R. Sridharan</a></li> <li><a rel="nofollow" class="external text" href="https://drive.google.com/file/d/0BxearzN4q-baeVBEZ1RoUVJrcG8/view">Combinatorial methods in ancient India </a></li> <li><a rel="nofollow" class="external text" href="https://drive.google.com/file/d/0BxearzN4q-baaXZFcE5fZGk0SW8/view">Mathematics before S. Ramanujan</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /></div><div role="navigation" class="navbox" aria-labelledby="India_topics37" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:India_topics" title="Template:India topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:India_topics" title="Template talk:India topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:India_topics" title="Special:EditPage/Template:India topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="India_topics37" style="font-size:114%;margin:0 4em"><a href="/wiki/India" title="India">India</a> <a href="/wiki/Outline_of_India" title="Outline of India">topics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="History37" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_India" title="History of India">History</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Overviews</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_Indian_history" title="Timeline of Indian history">Timeline</a></li> <li><a href="/wiki/List_of_years_in_India" title="List of years in India">Years</a></li></ul> <ul><li><a href="/wiki/Indian_astronomy" title="Indian astronomy">Astronomy</a></li> <li><a href="/wiki/History_of_clothing_in_the_Indian_subcontinent" title="History of clothing in the Indian subcontinent">Clothing</a></li> <li><a href="/wiki/Coinage_of_India" title="Coinage of India">Coinage</a></li> <li><a href="/wiki/Economic_history_of_India" title="Economic history of India">Economics</a></li> <li><a href="/wiki/LGBTQ_history_in_India" title="LGBTQ history in India">LGBTQ</a></li> <li><a href="/wiki/Linguistic_history_of_India" title="Linguistic history of India">Linguistics</a></li> <li><a href="/wiki/Indian_maritime_history" title="Indian maritime history">Maritime</a></li> <li><a class="mw-selflink selflink">Mathematics</a></li> <li><a href="/wiki/History_of_metallurgy_in_the_Indian_subcontinent" title="History of metallurgy in the Indian subcontinent">Metallurgy</a></li> <li><a href="/wiki/Military_history_of_India" title="Military history of India">Military</a></li> <li><a href="/wiki/History_of_paper_currency_in_Indian_subcontinent" title="History of paper currency in Indian subcontinent">Paper currency</a></li> <li><a href="/wiki/Postage_stamps_and_postal_history_of_India" title="Postage stamps and postal history of India">Postal</a></li> <li><a href="/wiki/History_of_science_and_technology_on_the_Indian_subcontinent" title="History of science and technology on the Indian subcontinent">Science and technology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ancient_history" title="Ancient history">Ancient </a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/South_Asian_Stone_Age" title="South Asian Stone Age">Stone Age</a></li> <li><a href="/wiki/Indus_Valley_Civilisation" title="Indus Valley Civilisation">Indus Valley Civilisation</a></li> <li><a href="/wiki/Vedic_period" title="Vedic period">Vedic period</a></li> <li><a href="/wiki/Mahajanapadas" title="Mahajanapadas">Mahajanapadas</a></li> <li><a href="/wiki/Maurya_Empire" title="Maurya Empire">Mauryas</a></li> <li><a href="/wiki/Indo-Greek_Kingdom" title="Indo-Greek Kingdom">Indo-Greek Kingdom</a></li> <li><a href="/wiki/Achaemenid_conquest_of_the_Indus_Valley" title="Achaemenid conquest of the Indus Valley">Achaemenid conquest of the Indus Valley</a></li> <li><a href="/wiki/Indo-Parthian_kingdom" title="Indo-Parthian kingdom">Indo-Parthian kingdom</a></li> <li><a href="/wiki/Kushan_Empire" title="Kushan Empire">Kushan Empire</a></li> <li><a href="/wiki/Alchon_Huns" title="Alchon Huns">Alchon Huns</a></li> <li><a href="/wiki/Seleucid%E2%80%93Mauryan_war" class="mw-redirect" title="Seleucid–Mauryan war">Seleucid–Mauryan war</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Middle Kingdoms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Middle_kingdoms_of_India" title="Middle kingdoms of India">Middle kingdoms</a></li> <li><a href="/wiki/Chola_dynasty" title="Chola dynasty">Chola</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Middle_Ages" title="Middle Ages">Middle Ages</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Medieval_India" title="Medieval India">Medieval India</a></li> <li><a href="/wiki/Hoysala_Empire" class="mw-redirect" title="Hoysala Empire">Hoysala</a></li> <li><a href="/wiki/Pala_Empire" title="Pala Empire">Pala</a></li> <li><a href="/wiki/Kakatiya_dynasty" title="Kakatiya dynasty">Kakatiya</a></li> <li><a href="/wiki/Delhi_Sultanate" title="Delhi Sultanate">Delhi Sultanate</a></li> <li><a href="/wiki/Vijayanagara_Empire" title="Vijayanagara Empire">Vijayanagara</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Early_Modern" class="mw-redirect" title="Early Modern">Early Modern</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mughal_Empire" title="Mughal Empire">Mughals</a></li> <li><a href="/wiki/Maratha_Empire" class="mw-redirect" title="Maratha Empire">Marathas</a></li> <li><a href="/wiki/East_India_Company" title="East India Company">European trade</a></li> <li><a href="/wiki/Bengal_War" title="Bengal War">Bengal War</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Late_modern" class="mw-redirect" title="Late modern">Late modern</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Colonial_India" title="Colonial India">Colonial</a></li> <li><a href="/wiki/Princely_state" title="Princely state">Princely state</a></li> <li><a href="/wiki/East_India_Company" title="East India Company">East India Company</a></li> <li><a href="/wiki/Battle_of_Plassey" title="Battle of Plassey">Plassey</a></li> <li><a href="/wiki/Indian_Rebellion_of_1857" title="Indian Rebellion of 1857">1857 rebellion</a></li> <li><a href="/wiki/British_Raj" title="British Raj">British Raj</a></li> <li><a href="/wiki/Rail_transport_in_India#History" title="Rail transport in India">Railways</a></li> <li><a href="/wiki/Economy_of_India_under_the_British_Raj" title="Economy of India under the British Raj">Economy</a></li> <li><a href="/wiki/British_Indian_Army" title="British Indian Army">Army</a> <ul><li><a href="/wiki/Commander-in-Chief,_India" title="Commander-in-Chief, India">Commander-in-Chief</a></li></ul></li> <li><a href="/wiki/Zamindar#British_era" title="Zamindar">Zamindari</a></li> <li><a href="/wiki/Bengal_Renaissance" title="Bengal Renaissance">Bengal Renaissance</a></li> <li><a href="/wiki/Indian_Councils_Act_1909" title="Indian Councils Act 1909">Political reforms</a></li> <li><a href="/wiki/Partition_of_Bengal_(1905)" title="Partition of Bengal (1905)">Partition of Bengal</a></li> <li><a href="/wiki/Indian_independence_movement" title="Indian independence movement">Independence movement</a></li> <li><a href="/wiki/Bengal_famine_of_1943" title="Bengal famine of 1943">1943 famine</a></li> <li><a href="/wiki/India_in_World_War_II" title="India in World War II">World War II</a></li> <li><a href="/wiki/Partition_of_India" title="Partition of India">Partition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Republic</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Political_integration_of_India" title="Political integration of India">Integration</a></li> <li><a href="/wiki/India_and_the_Non-Aligned_Movement" title="India and the Non-Aligned Movement">Non-Aligned Movement</a></li> <li><a href="/wiki/Five-Year_Plans_of_India" title="Five-Year Plans of India">Five-Year Plans</a></li> <li><a href="/wiki/Sino-Indian_War" title="Sino-Indian War">Sino-Indian War</a></li> <li><a href="/wiki/Indo-Pakistani_wars_and_conflicts" title="Indo-Pakistani wars and conflicts">Indo-Pakistani wars</a></li> <li><a href="/wiki/Green_Revolution_in_India" title="Green Revolution in India">Green Revolution</a></li> <li><a href="/wiki/Operation_Flood" class="mw-redirect" title="Operation Flood">White Revolution</a></li> <li><a href="/wiki/Naxalite" class="mw-redirect" title="Naxalite">Naxal Insurgency</a></li> <li><a href="/wiki/Smiling_Buddha" title="Smiling Buddha">Smiling Buddha</a></li> <li><a href="/wiki/Indian_Space_Research_Organisation" class="mw-redirect" title="Indian Space Research Organisation">Space programme</a></li> <li><a href="/wiki/The_Emergency_(India)" title="The Emergency (India)">The Emergency</a></li> <li><a href="/wiki/Indian_Peace_Keeping_Force" title="Indian Peace Keeping Force">Indian Peace Keeping Force (IPKF)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Contemporary</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_India_(1947%E2%80%93present)" title="History of India (1947–present)">History of India (1947–present)</a></li> <li><a href="/wiki/Economic_liberalisation_in_India" title="Economic liberalisation in India">Economic liberalisation</a></li> <li><a href="/wiki/Pokhran-II" title="Pokhran-II">Pokhran-II</a></li> <li><a href="/wiki/COVID-19_pandemic_in_India" title="COVID-19 pandemic in India">COVID-19 pandemic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Geography37" style="font-size:114%;margin:0 4em"><a href="/wiki/Geography_of_India" title="Geography of India">Geography</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Geology_of_India" title="Category:Geology of India">Geology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fossil_Parks_of_India" class="mw-redirect" title="Fossil Parks of India">Fossil Parks</a></li> <li><a href="/wiki/Geology_of_India" title="Geology of India">Geology of India</a></li> <li><a href="/wiki/Indian_Plate" class="mw-redirect" title="Indian Plate">Indian Plate</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Heritage</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/National_Geological_Monuments_of_India" title="National Geological Monuments of India">National Geological Monuments of India</a></li> <li><a href="/wiki/Sacred_groves_of_India" title="Sacred groves of India">Sacred groves of India</a></li> <li><a href="/wiki/Sacred_mountains#India" title="Sacred mountains">Sacred mountains of India</a></li> <li><a href="/wiki/River#Sacred" title="River">Sacred rivers of India</a></li> <li><a href="/wiki/Stones_of_India" title="Stones of India">Stones of India</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Environment_of_India" title="Environment of India">Environment</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biogeographic_classification_of_India" title="Biogeographic classification of India">Biogeographic classification</a></li> <li><a href="/wiki/Biosphere_reserves_of_India" title="Biosphere reserves of India">Biosphere reserves</a></li> <li><a href="/wiki/Climate_of_India" title="Climate of India">Climate</a></li> <li><a href="/wiki/Climate_change_in_India" title="Climate change in India">Climate change</a></li> <li><a href="/wiki/List_of_earthquakes_in_India" title="List of earthquakes in India">Earthquakes</a></li> <li><a href="/wiki/List_of_ecoregions_in_India" title="List of ecoregions in India">Ecoregions</a></li> <li><a href="/wiki/Environmental_issues_in_India" title="Environmental issues in India">Environmental issues</a></li> <li><a href="/wiki/Fauna_of_India" title="Fauna of India">Fauna</a></li> <li><a href="/wiki/List_of_forests_in_India" title="List of forests in India">Forests</a></li> <li><a href="/wiki/Flora_of_India" title="Flora of India">Flora</a></li> <li><a href="/wiki/Geology_of_India" title="Geology of India">Geology</a></li> <li><a href="/wiki/List_of_national_parks_of_India" title="List of national parks of India">National parks</a></li> <li><a href="/wiki/Protected_areas_of_India" title="Protected areas of India">Protected areas</a></li> <li><a href="/wiki/Wildlife_of_India" title="Wildlife of India">Wildlife</a></li> <li><a href="/wiki/List_of_wildlife_sanctuaries_of_India" title="List of wildlife sanctuaries of India">sanctuaries</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Landforms</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_beaches_in_India" title="List of beaches in India">Beaches</a></li> <li><a href="/wiki/List_of_canals_in_India" title="List of canals in India">Canals</a></li> <li><a href="/wiki/Coastal_India" title="Coastal India">Coasts</a></li> <li><a href="/wiki/Thar_Desert" title="Thar Desert">Desert</a></li> <li><a href="/wiki/Exclusive_economic_zone_of_India" title="Exclusive economic zone of India">ECZ</a></li> <li><a href="/wiki/List_of_extreme_points_of_India" title="List of extreme points of India">Extreme points</a></li> <li><a href="/wiki/List_of_glaciers_of_India" class="mw-redirect" title="List of glaciers of India">Glaciers</a></li> <li><a href="/wiki/List_of_Indian_states_and_union_territories_by_highest_point" title="List of Indian states and union territories by highest point">Highest point by states</a></li> <li><a href="/wiki/List_of_islands_of_India" title="List of islands of India">Islands</a></li> <li><a href="/wiki/List_of_lakes_of_India" title="List of lakes of India">Lakes</a></li> <li><a href="/wiki/List_of_mountains_in_India" title="List of mountains in India">Mountains</a></li> <li><a href="/wiki/List_of_mountain_passes_of_India" title="List of mountain passes of India">Mountain passes</a></li> <li>Plains <ul><li><a href="/wiki/Indo-Gangetic_Plain" title="Indo-Gangetic Plain">Indo-Gangetic</a></li> <li><a href="/wiki/Eastern_Coastal_Plains" title="Eastern Coastal Plains">Eastern coastal</a></li> <li><a href="/wiki/Western_Coastal_Plains" title="Western Coastal Plains">Western coastal</a></li></ul></li> <li><a href="/wiki/List_of_rivers_of_India" title="List of rivers of India">Rivers</a></li> <li><a href="/wiki/List_of_valleys_in_India" title="List of valleys in India">Valleys</a></li> <li><a href="/wiki/List_of_volcanoes_in_India" title="List of volcanoes in India">Volcanoes</a></li> <li><a href="/wiki/List_of_waterfalls_of_India" class="mw-redirect" title="List of waterfalls of India">Waterfalls</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Administrative_divisions_of_India" title="Administrative divisions of India">Regions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_India" title="Central India">Central</a></li> <li><a href="/wiki/East_India" title="East India">East</a></li> <li><a href="/wiki/North_India" title="North India">North</a> <ul><li><a href="/wiki/Northwest_India" title="Northwest India">Northwest</a></li></ul></li> <li><a href="/wiki/Northeast_India" title="Northeast India">Northeast</a></li> <li><a href="/wiki/South_India" title="South India">South</a> <ul><li><a href="/wiki/Southwest_India" class="mw-redirect" title="Southwest India">Southwest</a></li> <li><a href="/wiki/Southeast_India" class="mw-redirect" title="Southeast India">Southeast</a></li></ul></li> <li><a href="/wiki/Western_India" title="Western India">West</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Administrative_divisions_of_India" title="Administrative divisions of India">Subdivisions</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autonomous_administrative_divisions_of_India" title="Autonomous administrative divisions of India">Autonomous administrative divisions</a></li> <li><a href="/wiki/Template:Borders_of_India" title="Template:Borders of India">Borders</a></li> <li><a href="/wiki/List_of_towns_in_India_by_population" title="List of towns in India by population">Towns</a></li> <li><a href="/wiki/List_of_cities_in_India_by_population" title="List of cities in India by population">Cities</a></li> <li><a href="/wiki/List_of_districts_in_India" title="List of districts in India">Districts</a></li> <li><a href="/wiki/Municipal_governance_in_India" title="Municipal governance in India">Municipalities</a></li> <li><a href="/wiki/States_and_union_territories_of_India" title="States and union territories of India">States and union territories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Monuments_of_National_Importance_of_India" class="mw-redirect" title="Monuments of National Importance of India">National monuments of India</a></li> <li><a href="/wiki/List_of_national_parks_of_India" title="List of national parks of India">National parks of India</a></li> <li><a href="/wiki/Nature_worship" title="Nature worship">Nature worship</a> in <a href="/wiki/Indian_religions" title="Indian religions">Indian-origin religions</a></li> <li><a href="/wiki/World_Heritage_Sites_in_India" class="mw-redirect" title="World Heritage Sites in India">World Heritage Sites in India</a></li> <li><a href="/wiki/Culture_of_India" title="Culture of India">Culture of India</a></li> <li><a href="/wiki/History_of_India" title="History of India">History of India</a></li> <li><a href="/wiki/Tourism_in_India" title="Tourism in India">Tourism in India</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Politics37" style="font-size:114%;margin:0 4em"><a href="/wiki/Politics_of_India" title="Politics of India">Politics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Government_of_India" title="Government of India">Government</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_agencies_of_the_government_of_India" title="List of agencies of the government of India">Agencies</a></li> <li><a href="/wiki/Energy_policy_of_India" title="Energy policy of India">Energy policy</a></li> <li><a href="/wiki/Foreign_relations_of_India" title="Foreign relations of India">Foreign relations</a></li> <li><a href="/wiki/Parliament_of_India" title="Parliament of India">Parliament</a> <ul><li><a href="/wiki/Lok_Sabha" title="Lok Sabha">Lok Sabha</a></li> <li><a href="/wiki/Rajya_Sabha" title="Rajya Sabha">Rajya Sabha</a></li></ul></li> <li><a href="/wiki/President_of_India" title="President of India">President</a></li> <li><a href="/wiki/Vice_President_of_India" title="Vice President of India">Vice President</a></li> <li><a href="/wiki/Prime_Minister_of_India" title="Prime Minister of India">Prime Minister</a></li> <li><a href="/wiki/Union_Council_of_Ministers" title="Union Council of Ministers">Union Council of Ministers</a></li> <li><a href="/wiki/Civil_Services_of_India" title="Civil Services of India">Civil Services</a></li> <li><a href="/wiki/Cabinet_Secretary_(India)" title="Cabinet Secretary (India)">Cabinet Secretary</a></li> <li><a href="/wiki/State_governments_of_India" title="State governments of India">State governments</a> <ul><li><a href="/wiki/State_legislative_assemblies_of_India" title="State legislative assemblies of India">State legislative assemblies</a></li> <li><a href="/wiki/State_legislative_councils_of_India" title="State legislative councils of India">State legislative councils</a></li></ul></li> <li><a href="/wiki/Governor_(India)" title="Governor (India)">Governors, Lieutenant Governors and Administrators</a></li> <li><a href="/wiki/Chief_minister_(India)" title="Chief minister (India)">Chief Ministers</a></li> <li><a href="/wiki/Chief_secretary_(India)" title="Chief secretary (India)">Chief Secretaries</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Law_of_India" title="Law of India">Law</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constitution_of_India" title="Constitution of India">Constitution</a></li> <li><a href="/wiki/Indian_Penal_Code" title="Indian Penal Code">Penal Code</a></li> <li><a href="/wiki/Fundamental_Rights,_Directive_Principles_and_Fundamental_Duties_of_India" title="Fundamental Rights, Directive Principles and Fundamental Duties of India">Fundamental rights, principles and duties</a></li> <li><a href="/wiki/Human_rights_in_India" title="Human rights in India">Human rights</a> <ul><li><a href="/wiki/LGBT_rights_in_India" class="mw-redirect" title="LGBT rights in India">LGBT</a></li></ul></li> <li><a href="/wiki/Supreme_Court_of_India" title="Supreme Court of India">Supreme Court</a></li> <li><a href="/wiki/Chief_Justice_of_India" title="Chief Justice of India">Chief Justice</a></li> <li><a href="/wiki/High_courts_of_India" title="High courts of India">High Courts</a></li> <li><a href="/wiki/District_courts_of_India" title="District courts of India">District Courts</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0.5em;padding-right:0.5em;font-weight:normal;"><a href="/wiki/Law_enforcement_in_India" title="Law enforcement in India">Enforcement</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0.5em;padding-right:0.5em;font-weight:normal;">Federal</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Border_Security_Force" title="Border Security Force">Border Security Force (BSF)</a></li> <li><a href="/wiki/Central_Industrial_Security_Force" title="Central Industrial Security Force">Central Industrial Security Force (CISF)</a></li> <li><a href="/wiki/Central_Reserve_Police_Force" title="Central Reserve Police Force">Central Reserve Police Force (CRPF)</a></li> <li><a href="/wiki/Indo-Tibetan_Border_Police" title="Indo-Tibetan Border Police">Indo-Tibetan Border Police (ITBP)</a></li> <li><a href="/wiki/National_Security_Guard" title="National Security Guard">National Security Guard (NSG)</a></li> <li><a href="/wiki/Railway_Protection_Force" title="Railway Protection Force">Railway Protection Force (RPF)</a></li> <li><a href="/wiki/Sashastra_Seema_Bal" title="Sashastra Seema Bal">Sashastra Seema Bal (SSB)</a></li> <li><a href="/wiki/Special_Protection_Group" title="Special Protection Group">Special Protection Group (SPG)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0.5em;padding-right:0.5em;font-weight:normal;"><a href="/wiki/List_of_Indian_intelligence_agencies" title="List of Indian intelligence agencies">Intelligence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bureau_of_Police_Research_and_Development" title="Bureau of Police Research and Development">Bureau of Police Research and Development (BPR&amp;D)</a></li> <li><a href="/wiki/Central_Bureau_of_Investigation" title="Central Bureau of Investigation">Central Bureau of Investigation (CBI)</a></li> <li><a href="/wiki/Directorate_of_Revenue_Intelligence" title="Directorate of Revenue Intelligence">Directorate of Revenue Intelligence (DRI)</a></li> <li><a href="/wiki/Enforcement_Directorate" title="Enforcement Directorate">Enforcement Directorate (ED)</a></li> <li><a href="/wiki/Intelligence_Bureau_(India)" title="Intelligence Bureau (India)">Intelligence Bureau (IB)</a></li> <li><a href="/wiki/National_Security_Council_(India)" title="National Security Council (India)">Joint Intelligence Committee (JIC)</a></li> <li><a href="/wiki/Narcotics_Control_Bureau" title="Narcotics Control Bureau">Narcotics Control Bureau (NCB)</a></li> <li><a href="/wiki/National_Investigation_Agency" title="National Investigation Agency">National Investigation Agency (NIA)</a></li> <li><a href="/wiki/Research_and_Analysis_Wing" title="Research and Analysis Wing">Research and Analysis Wing (R&amp;AW)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Indian_Armed_Forces" title="Indian Armed Forces">Military</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indian_Army" title="Indian Army">Army</a></li> <li><a href="/wiki/Indian_Navy" title="Indian Navy">Navy</a></li> <li><a href="/wiki/Indian_Air_Force" title="Indian Air Force">Air Force</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Politics_of_India" title="Politics of India">Politics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Censorship_in_India" title="Censorship in India">Censorship</a></li> <li><a href="/wiki/Indian_nationality_law" title="Indian nationality law">Citizenship</a></li> <li><a href="/wiki/Elections_in_India" title="Elections in India">Elections</a></li> <li><a href="/wiki/Democracy_in_India" title="Democracy in India">Democracy</a></li> <li><a href="/wiki/Indian_nationalism" title="Indian nationalism">Nationalism</a></li> <li><a href="/wiki/List_of_political_parties_in_India" title="List of political parties in India">Political parties</a></li> <li><a href="/wiki/Reservation_in_India" title="Reservation in India">Reservations</a></li> <li><a href="/wiki/List_of_scandals_in_India" title="List of scandals in India">Scandals</a></li> <li><a href="/wiki/Scheduled_Castes_and_Scheduled_Tribes" title="Scheduled Castes and Scheduled Tribes">Scheduled groups</a></li> <li><a href="/wiki/Secularism_in_India" title="Secularism in India">Secularism</a></li> <li><a href="/wiki/Women%27s_political_participation_in_India" title="Women&#39;s political participation in India">Women in politics</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Economy37" style="font-size:114%;margin:0 4em"><a href="/wiki/Economy_of_India" title="Economy of India">Economy</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_companies_of_India" title="List of companies of India">Companies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BSE_SENSEX" title="BSE SENSEX">BSE SENSEX</a></li> <li><a href="/wiki/NIFTY_50" title="NIFTY 50">NIFTY 50</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Governance</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ministry_of_Finance_(India)" title="Ministry of Finance (India)">Ministry of Finance</a> <ul><li><a href="/wiki/Minister_of_Finance_(India)" title="Minister of Finance (India)">Finance ministers</a></li></ul></li> <li><a href="/wiki/Ministry_of_Commerce_and_Industry_(India)" title="Ministry of Commerce and Industry (India)">Ministry of Commerce and Industry</a></li> <li><a href="/wiki/Finance_Commission" title="Finance Commission">Finance Commission</a></li> <li><a href="/wiki/Economic_Advisory_Council" class="mw-redirect" title="Economic Advisory Council">Economic Advisory Council</a></li> <li><a href="/wiki/Central_Statistics_Office_(India)" title="Central Statistics Office (India)">Central Statistical Office</a></li> <li><a href="/wiki/Securities_and_Exchange_Board_of_India" title="Securities and Exchange Board of India">Securities and Exchange Board of India</a></li> <li><a href="/wiki/Enforcement_Directorate" title="Enforcement Directorate">Enforcement Directorate</a></li> <li><a href="/wiki/External_debt_of_India" title="External debt of India">External debt</a></li> <li><a href="/wiki/Foreign_trade_of_India" title="Foreign trade of India">Foreign trade</a></li> <li><a href="/wiki/Foreign_direct_investment_in_India" title="Foreign direct investment in India">Foreign direct investment</a></li> <li><a href="/wiki/Foreign-exchange_reserves_of_India" title="Foreign-exchange reserves of India">Foreign exchange reserves</a></li> <li><a href="/wiki/Remittances_to_India" title="Remittances to India">Remittances</a></li> <li><a href="/wiki/Taxation_in_India" title="Taxation in India">Taxation</a></li> <li><a href="/wiki/Subsidies_in_India" title="Subsidies in India">Subsidies</a></li> <li><a href="/wiki/Industrial_licensing_in_India" title="Industrial licensing in India">Industrial licensing</a></li> <li><a href="/wiki/National_Voluntary_Guidelines_on_Social,_Environmental_and_Economic_Responsibilities_of_Business" title="National Voluntary Guidelines on Social, Environmental and Economic Responsibilities of Business">Voluntary guidelines</a></li> <li><a href="/wiki/NITI_Aayog" title="NITI Aayog">NITI Aayog</a></li> <li><a href="/wiki/Make_in_India" title="Make in India">Make in India</a></li> <li><a href="/wiki/Atmanirbhar_Bharat" title="Atmanirbhar Bharat">Atmanirbhar Bharat</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Currency</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indian_rupee" title="Indian rupee">Indian rupee</a> <ul><li><a href="/wiki/Indian_rupee_sign" title="Indian rupee sign">Sign</a></li> <li><a href="/wiki/History_of_the_rupee" title="History of the rupee">History</a></li> <li><a href="/wiki/Exchange_rate_history_of_the_Indian_rupee" title="Exchange rate history of the Indian rupee">Historical Forex</a></li> <li><a href="/wiki/Digital_rupee" title="Digital rupee">Digital rupee</a></li> <li><a href="/wiki/Coinage_of_India" title="Coinage of India">Coinage</a></li> <li><a href="/wiki/Indian_paisa" title="Indian paisa">Paisa</a></li></ul></li> <li><a href="/wiki/Reserve_Bank_of_India" title="Reserve Bank of India">Reserve Bank of India</a> <ul><li><a href="/wiki/List_of_governors_of_the_Reserve_Bank_of_India" title="List of governors of the Reserve Bank of India">Governor</a></li> <li><a href="/wiki/India_Government_Mint" title="India Government Mint">Mint</a></li></ul></li> <li><a href="/wiki/Inflation_in_India" title="Inflation in India">Inflation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Financial services</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banking_in_India" title="Banking in India">Banking</a></li> <li><a href="/wiki/Insurance_in_India" title="Insurance in India">Insurance</a></li> <li><a href="/wiki/Multi_Commodity_Exchange" title="Multi Commodity Exchange">Multi Commodity Exchange</a></li> <li><a href="/wiki/The_Gold_(Control)_Act,_1968" title="The Gold (Control) Act, 1968">Bullion</a></li> <li><a href="/wiki/Indian_black_money" title="Indian black money">Black money</a> <ul><li><a href="/wiki/Bombay_Stock_Exchange" title="Bombay Stock Exchange">Bombay</a></li> <li><a href="/wiki/National_Stock_Exchange_of_India" title="National Stock Exchange of India">National</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Economic_history_of_India" title="Economic history of India">History</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Economic_impact_of_the_COVID-19_pandemic_in_India" title="Economic impact of the COVID-19 pandemic in India">COVID-19 impact</a></li> <li><a href="/wiki/Economic_development_in_India" title="Economic development in India">Economic development</a></li> <li><a href="/wiki/Economic_liberalisation_in_India" title="Economic liberalisation in India">Liberalisation</a></li> <li><a href="/wiki/Licence_Raj" title="Licence Raj">Licence Raj</a></li> <li><a href="/wiki/Green_Revolution_in_India" title="Green Revolution in India">Green revolution</a></li> <li><a href="/wiki/List_of_schemes_of_the_government_of_India" title="List of schemes of the government of India">Government initiatives</a></li> <li><a href="/wiki/Indian_numbering_system" title="Indian numbering system">Numbering system</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">People</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_Indians_by_net_worth" title="List of Indians by net worth">By net worth</a></li> <li><a href="/wiki/Demographics_of_India" title="Demographics of India">Demography</a></li> <li><a href="/wiki/Income_in_India" title="Income in India">Income</a> <ul><li><a href="/wiki/Poverty_in_India" title="Poverty in India">Poverty</a></li></ul></li> <li><a href="/wiki/Indian_labour_law" title="Indian labour law">Labour law</a></li> <li><a href="/wiki/Pensions_in_India" title="Pensions in India">Pensions</a> <ul><li><a href="/wiki/Employees%27_Provident_Fund_Organisation" title="Employees&#39; Provident Fund Organisation">EPFO</a></li> <li><a href="/wiki/National_Pension_Scheme" class="mw-redirect" title="National Pension Scheme">NPS</a></li> <li><a href="/wiki/Public_Provident_Fund_(India)" title="Public Provident Fund (India)">PPF</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">States</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Economy_of_Andhra_Pradesh" title="Economy of Andhra Pradesh">Andhra Pradesh</a></li> <li><a href="/wiki/Economy_of_Assam" title="Economy of Assam">Assam</a></li> <li><a href="/wiki/Economy_of_Bihar" title="Economy of Bihar">Bihar</a></li> <li><a href="/wiki/Economy_of_Delhi" title="Economy of Delhi">Delhi</a></li> <li><a href="/wiki/Economy_of_Goa" class="mw-redirect" title="Economy of Goa">Goa</a></li> <li><a href="/wiki/Economy_of_Gujarat" title="Economy of Gujarat">Gujarat</a></li> <li><a href="/wiki/Economy_of_Haryana" title="Economy of Haryana">Haryana</a></li> <li><a href="/wiki/Economy_of_Himachal_Pradesh" title="Economy of Himachal Pradesh">Himachal Pradesh</a></li> <li><a href="/wiki/Economy_of_Jammu_and_Kashmir" class="mw-redirect" title="Economy of Jammu and Kashmir">Jammu and Kashmir</a></li> <li><a href="/wiki/Economy_of_Jharkhand" class="mw-redirect" title="Economy of Jharkhand">Jharkhand</a></li> <li><a href="/wiki/Economy_of_Karnataka" title="Economy of Karnataka">Karnataka</a></li> <li><a href="/wiki/Economy_of_Kerala" title="Economy of Kerala">Kerala</a></li> <li><a href="/wiki/Economy_of_Ladakh" class="mw-redirect" title="Economy of Ladakh">Ladakh</a></li> <li><a href="/wiki/Economy_of_Madhya_Pradesh" title="Economy of Madhya Pradesh">Madhya Pradesh</a></li> <li><a href="/wiki/Economy_of_Maharashtra" title="Economy of Maharashtra">Maharashtra</a></li> <li><a href="/wiki/Economy_of_Mizoram" title="Economy of Mizoram">Mizoram</a></li> <li><a href="/wiki/Economy_of_Odisha" title="Economy of Odisha">Odisha</a></li> <li><a href="/wiki/Economy_of_Punjab,_India" title="Economy of Punjab, India">Punjab</a></li> <li><a href="/wiki/Economy_of_Rajasthan" title="Economy of Rajasthan">Rajasthan</a></li> <li><a href="/wiki/Economy_of_Tamil_Nadu" title="Economy of Tamil Nadu">Tamil Nadu</a></li> <li><a href="/wiki/Economy_of_Telangana" title="Economy of Telangana">Telangana</a></li> <li><a href="/wiki/Economy_of_Uttarakhand" title="Economy of Uttarakhand">Uttarakhand</a></li> <li><a href="/wiki/Economy_of_Uttar_Pradesh" title="Economy of Uttar Pradesh">Uttar Pradesh</a></li> <li><a href="/wiki/Economy_of_West_Bengal" title="Economy of West Bengal">West Bengal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sectors</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Agriculture_in_India" title="Agriculture in India">Agriculture</a> <ul><li><a href="/wiki/Animal_husbandry_in_India" title="Animal husbandry in India">Livestock</a></li> <li><a href="/wiki/Fishing_in_India" title="Fishing in India">Fishing</a></li></ul></li> <li><a href="/wiki/Automotive_industry_in_India" title="Automotive industry in India">Automotive</a></li> <li><a href="/wiki/Chemical_industry_in_India" title="Chemical industry in India">Chemical</a></li> <li><a href="/wiki/Construction_industry_of_India" title="Construction industry of India">Construction</a></li> <li><a href="/wiki/Defence_industry_of_India" title="Defence industry of India">Defence</a></li> <li><a href="/wiki/Education_in_India" title="Education in India">Education</a></li> <li><a href="/wiki/Energy_in_India" title="Energy in India">Energy</a> <ul><li><a href="/wiki/Electricity_sector_in_India" title="Electricity sector in India">Electricity</a> <ul><li><a href="/wiki/Nuclear_power_in_India" title="Nuclear power in India">Nuclear</a></li> <li><a href="/wiki/Oil_and_gas_industry_in_India" title="Oil and gas industry in India">Oil and gas</a></li> <li><a href="/wiki/Solar_power_in_India" title="Solar power in India">Solar</a></li> <li><a href="/wiki/Wind_power_in_India" title="Wind power in India">Wind</a></li></ul></li></ul></li> <li><a href="/wiki/Electronics_and_semiconductor_manufacturing_industry_in_India" title="Electronics and semiconductor manufacturing industry in India">Electronics and semiconductor</a></li> <li><a href="/wiki/Entertainment_industry_in_India" class="mw-redirect" title="Entertainment industry in India">Entertainment</a></li> <li><a href="/wiki/Forestry_in_India" title="Forestry in India">Forestry</a></li> <li><a href="/wiki/Gambling_in_India" title="Gambling in India">Gambling</a></li> <li><a href="/wiki/Healthcare_in_India" title="Healthcare in India">Healthcare</a> <ul><li><a href="/wiki/List_of_hospitals_in_India" title="List of hospitals in India">Hospitals</a></li></ul></li> <li><a href="/wiki/Information_technology_in_India" title="Information technology in India">Information technology</a></li> <li><a href="/wiki/Media_of_India" class="mw-redirect" title="Media of India">Media</a> <ul><li><a href="/wiki/Cinema_of_India" title="Cinema of India">Cinema</a></li> <li><a href="/wiki/FM_broadcasting_in_India" title="FM broadcasting in India">FM Radio</a></li> <li><a href="/wiki/Television_in_India" title="Television in India">Television</a></li> <li><a href="/wiki/Printing_industry_in_India" title="Printing industry in India">Printing</a></li></ul></li> <li><a href="/wiki/Mining_in_India" title="Mining in India">Mining</a> <ul><li><a href="/wiki/Coal_in_India" title="Coal in India">Coal</a></li> <li><a href="/wiki/Iron_and_steel_industry_in_India" title="Iron and steel industry in India">Iron and Steel</a></li></ul></li> <li><a href="/wiki/Pharmaceutical_industry_in_India" title="Pharmaceutical industry in India">Pharmaceuticals</a></li> <li><a href="/wiki/Pulp_and_paper_industry_in_India" title="Pulp and paper industry in India">Pulp and paper</a></li> <li><a href="/wiki/Retailing_in_India" title="Retailing in India">Retail</a></li> <li><a href="/wiki/Science_and_technology_in_India" title="Science and technology in India">Science and technology</a> <ul><li><a href="/wiki/Biotechnology_in_India" title="Biotechnology in India">Biotechnology</a></li></ul></li> <li><a href="/wiki/Space_industry_of_India" title="Space industry of India">Space</a></li> <li><a href="/wiki/Telecommunications_in_India" title="Telecommunications in India">Telecommunications</a></li> <li><a href="/wiki/Textile_industry_in_India" title="Textile industry in India">Textiles</a></li> <li><a href="/wiki/Tourism_in_India" title="Tourism in India">Tourism</a></li> <li><a href="/wiki/Transport_in_India" title="Transport in India">Transport</a> <ul><li><a href="/wiki/Aviation_in_India" title="Aviation in India">Aviation</a> <ul><li><a href="/wiki/Civil_aviation_in_India" title="Civil aviation in India">Civil</a></li></ul></li> <li><a href="/wiki/List_of_ports_in_India" title="List of ports in India">Ports</a></li> <li><a href="/wiki/Rail_transport_in_India" title="Rail transport in India">Rail</a></li> <li><a href="/wiki/Roads_in_India" title="Roads in India">Roads</a></li> <li><a href="/wiki/List_of_electricity_organisations_in_India" title="List of electricity organisations in India">Electricity</a></li> <li><a href="/wiki/Water_supply_and_sanitation_in_India" title="Water supply and sanitation in India">Water</a></li> <li><a href="/wiki/Power_sector_in_India" class="mw-redirect" title="Power sector in India">Power</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Regulator</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Insurance_Regulatory_and_Development_Authority" title="Insurance Regulatory and Development Authority">IRDAI</a></li> <li><a href="/wiki/Reserve_Bank_of_India" title="Reserve Bank of India">RBI</a></li> <li><a href="/wiki/SEBI" class="mw-redirect" title="SEBI">SEBI</a></li> <li><a href="/wiki/Insolvency_and_Bankruptcy_Board_of_India" title="Insolvency and Bankruptcy Board of India">IBBI</a></li> <li><a href="/wiki/Pension_Fund_Regulatory_and_Development_Authority" title="Pension Fund Regulatory and Development Authority">PFRDA</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/National_Company_Law_Tribunal" title="National Company Law Tribunal">NCLT</a> <ul><li><a href="/wiki/National_Company_Law_Appellate_Tribunal" title="National Company Law Appellate Tribunal">NCLAT</a></li></ul></li> <li><a href="/wiki/Board_for_Industrial_and_Financial_Reconstruction" title="Board for Industrial and Financial Reconstruction">BIFR</a></li> <li><a href="/wiki/Insolvency_and_Bankruptcy_Board_of_India" title="Insolvency and Bankruptcy Board of India">IBBI</a></li> <li><a href="/wiki/Insolvency_and_Bankruptcy_Code,_2016" title="Insolvency and Bankruptcy Code, 2016">IBC</a></li> <li><a href="/wiki/Securitisation_and_Reconstruction_of_Financial_Assets_and_Enforcement_of_Security_Interest_Act,_2002" title="Securitisation and Reconstruction of Financial Assets and Enforcement of Security Interest Act, 2002">SARFESI Act</a></li> <li><a href="/wiki/Income-tax_Act,_1961" class="mw-redirect" title="Income-tax Act, 1961">Income Tax Act</a></li> <li><a href="/wiki/Companies_Act,_2013" class="mw-redirect" title="Companies Act, 2013">Companies Act</a></li> <li><a href="/wiki/Banking_Regulation_Act,_1949" title="Banking Regulation Act, 1949">Banking Act</a></li> <li><a href="/wiki/Insurance_Act,_1938" title="Insurance Act, 1938">Insurance Act</a></li> <li><a href="/wiki/Foreign_Exchange_Management_Act" title="Foreign Exchange Management Act">FEMA</a></li> <li><a href="/wiki/Mumbai_Consensus" title="Mumbai Consensus">Mumbai Consensus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Society_and_culture37" style="font-size:114%;margin:0 4em"><div class="hlist"><ul><li>Society and <a href="/wiki/Culture_of_India" title="Culture of India">culture</a></li></ul></div></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Society</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Caste_system_in_India" title="Caste system in India">Caste system</a></li> <li><a href="/wiki/Corruption_in_India" title="Corruption in India">Corruption</a></li> <li><a href="/wiki/Crime_in_India" title="Crime in India">Crime</a></li> <li><a href="/wiki/Demographics_of_India" title="Demographics of India">Demographics</a> <ul><li><a href="/wiki/Indian_people" title="Indian people">Indians</a></li></ul></li> <li><a href="/wiki/Education_in_India" title="Education in India">Education</a> <ul><li><a href="/wiki/List_of_universities_in_India" title="List of universities in India">Universities in India</a></li> <li><a href="/wiki/List_of_medical_colleges_in_India" title="List of medical colleges in India">Medical colleges in India</a></li> <li><a href="/wiki/List_of_law_schools_in_India" title="List of law schools in India">Law colleges in India</a></li> <li><a href="/wiki/Engineering_education_in_India" title="Engineering education in India">Engineering colleges in India</a></li></ul></li> <li><a href="/wiki/Ethnic_relations_in_India" title="Ethnic relations in India">Ethnic relations</a></li> <li><a href="/wiki/Health_in_India" title="Health in India">Health</a></li> <li><a href="/wiki/Languages_of_India" title="Languages of India">Languages</a></li> <li><a href="/wiki/List_of_Indian_states_by_life_expectancy_at_birth" title="List of Indian states by life expectancy at birth">Life expectancy</a></li> <li><a href="/wiki/Literacy_in_India" title="Literacy in India">Literacy</a></li> <li><a href="/wiki/Poverty_in_India" title="Poverty in India">Poverty</a></li> <li><a href="/wiki/Prisons_in_India" title="Prisons in India">Prisons</a></li> <li><a href="/wiki/Religion_in_India" title="Religion in India">Religion</a></li> <li><a href="/wiki/Social_issue#India" title="Social issue">Socio-economic issues</a></li> <li><a href="/wiki/Standard_of_living_in_India" title="Standard of living in India">Standard of living</a></li> <li><a href="/wiki/Water_supply_and_sanitation_in_India" title="Water supply and sanitation in India">Water supply and sanitation</a></li> <li><a href="/wiki/Women_in_India" title="Women in India">Women</a></li> <li><a href="/wiki/Sexuality_in_India" title="Sexuality in India">Sexuality</a></li> <li><a href="/wiki/Youth_in_India" title="Youth in India">Youth</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Culture_of_India" title="Culture of India">Culture</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arts_and_entertainment_in_India" title="Arts and entertainment in India">Arts and entertainment</a></li> <li><a href="/wiki/Architecture_of_India" title="Architecture of India">Architecture</a></li> <li><a href="/wiki/Indian_blogosphere" title="Indian blogosphere">Blogging</a></li> <li><a href="/wiki/Cinema_of_India" title="Cinema of India">Cinema</a></li> <li><a href="/wiki/Indian_comics" title="Indian comics">Comics</a> <ul><li><a href="/wiki/Webcomics_in_India" title="Webcomics in India">Webcomics</a></li></ul></li> <li><a href="/wiki/Indian_cuisine" title="Indian cuisine">Cuisine</a> <ul><li><a href="/wiki/Indian_wine" title="Indian wine">wine</a></li></ul></li> <li><a href="/wiki/Indian_classical_dance" title="Indian classical dance">Dance</a></li> <li><a href="/wiki/Clothing_in_India" title="Clothing in India">Dress</a></li> <li><a href="/wiki/Folklore_of_India" title="Folklore of India">Folklore</a></li> <li><a href="/wiki/List_of_festivals_in_India" title="List of festivals in India">Festivals</a></li> <li><a href="/wiki/Indian_literature" title="Indian literature">Literature</a></li> <li><a href="/wiki/Mass_media_in_India" title="Mass media in India">Media</a> <ul><li><a href="/wiki/Television_in_India" title="Television in India">television</a></li></ul></li> <li><a href="/wiki/Indian_martial_arts" title="Indian martial arts">Martial arts</a></li> <li><a href="/wiki/Music_of_India" title="Music of India">Music</a></li> <li><a href="/wiki/Indian_painting" title="Indian painting">Painting</a></li> <li><a href="/wiki/Indian_physical_culture" title="Indian physical culture">Physical culture</a></li> <li><a href="/wiki/Public_holidays_in_India" title="Public holidays in India">Public holidays</a></li> <li><a href="/wiki/Sculpture_in_the_Indian_subcontinent" title="Sculpture in the Indian subcontinent">Sculpture</a> <ul><li><a href="/wiki/List_of_the_tallest_statues_in_India" title="List of the tallest statues in India">tallest</a></li></ul></li> <li><a href="/wiki/Sport_in_India" title="Sport in India">Sport</a> <ul><li><a href="/wiki/Traditional_games_of_India" title="Traditional games of India">Traditional</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="History_of_mathematics_(timeline)250" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_mathematics" title="Template:History of mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_mathematics" title="Template talk:History of mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_mathematics" title="Special:EditPage/Template:History of mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_mathematics_(timeline)250" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_mathematics" title="History of mathematics">History of mathematics</a> (<a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">timeline</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">By topic</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_algebra" title="History of algebra">Algebra</a> <ul><li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">timeline</a></li></ul></li> <li>Algorithms <ul><li><a href="/wiki/Timeline_of_algorithms" title="Timeline of algorithms">timeline</a></li></ul></li> <li><a href="/wiki/History_of_arithmetic" class="mw-redirect" title="History of arithmetic">Arithmetic</a> <ul><li><a href="/wiki/Timeline_of_numerals_and_arithmetic" title="Timeline of numerals and arithmetic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">Calculus</a> <ul><li><a href="/wiki/Timeline_of_calculus_and_mathematical_analysis" title="Timeline of calculus and mathematical analysis">timeline</a></li> <li><a href="/wiki/History_of_Grandi%27s_series" title="History of Grandi&#39;s series">Grandi's series</a></li></ul></li> <li>Category theory <ul><li><a href="/wiki/Timeline_of_category_theory_and_related_mathematics" title="Timeline of category theory and related mathematics">timeline</a></li> <li><a href="/wiki/History_of_topos_theory" title="History of topos theory">Topos theory</a></li></ul></li> <li><a href="/wiki/History_of_combinatorics" title="History of combinatorics">Combinatorics</a></li> <li><a href="/wiki/History_of_the_function_concept" title="History of the function concept">Functions</a> <ul><li><a href="/wiki/History_of_logarithms" title="History of logarithms">Logarithms</a></li></ul></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">Geometry</a> <ul><li><a href="/wiki/History_of_trigonometry" title="History of trigonometry">Trigonometry</a></li> <li><a href="/wiki/Timeline_of_geometry" title="Timeline of geometry">timeline</a></li></ul></li> <li><a href="/wiki/History_of_group_theory" title="History of group theory">Group theory</a></li> <li><a href="/wiki/History_of_information_theory" title="History of information theory">Information theory</a> <ul><li><a href="/wiki/Timeline_of_information_theory" title="Timeline of information theory">timeline</a></li></ul></li> <li><a href="/wiki/History_of_logic" title="History of logic">Logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_mathematical_notation" title="History of mathematical notation">Math notation</a></li> <li>Number theory <ul><li><a href="/wiki/Timeline_of_number_theory" title="Timeline of number theory">timeline</a></li></ul></li> <li><a href="/wiki/History_of_statistics" title="History of statistics">Statistics</a> <ul><li><a href="/wiki/Timeline_of_probability_and_statistics" title="Timeline of probability and statistics">timeline</a></li> <li><a href="/wiki/History_of_probability" title="History of probability">Probability</a></li></ul></li> <li>Topology <ul><li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">Manifolds</a> <ul><li><a href="/wiki/Timeline_of_manifolds" title="Timeline of manifolds">timeline</a></li></ul></li> <li><a href="/wiki/History_of_the_separation_axioms" title="History of the separation axioms">Separation axioms</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Numeral systems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Prehistoric_counting" class="mw-redirect" title="Prehistoric counting">Prehistoric</a></li> <li><a href="/wiki/History_of_ancient_numeral_systems" title="History of ancient numeral systems">Ancient</a></li> <li><a href="/wiki/History_of_the_Hindu%E2%80%93Arabic_numeral_system" title="History of the Hindu–Arabic numeral system">Hindu-Arabic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By ancient cultures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Mesopotamia</a></li> <li><a href="/wiki/Ancient_Egyptian_mathematics" title="Ancient Egyptian mathematics">Ancient Egypt</a></li> <li><a href="/wiki/Greek_mathematics" title="Greek mathematics">Ancient Greece</a></li> <li><a href="/wiki/Chinese_mathematics" title="Chinese mathematics">China</a></li> <li><a class="mw-selflink selflink">India</a></li> <li><a href="/wiki/Mathematics_in_the_medieval_Islamic_world" title="Mathematics in the medieval Islamic world">Medieval Islamic world</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Controversies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Brouwer%E2%80%93Hilbert_controversy" title="Brouwer–Hilbert controversy">Brouwer–Hilbert</a></li> <li><a href="/wiki/Controversy_over_Cantor%27s_theory" title="Controversy over Cantor&#39;s theory">Over Cantor's theory</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton</a></li> <li><a href="/wiki/Hobbes%E2%80%93Wallis_controversy" title="Hobbes–Wallis controversy">Hobbes–Wallis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Women in mathematics <ul><li><a href="/wiki/Timeline_of_women_in_mathematics" title="Timeline of women in mathematics">timeline</a></li></ul></li> <li><a href="/wiki/Approximations_of_%CF%80" title="Approximations of π">Approximations of π</a> <ul><li><a href="/wiki/Chronology_of_computation_of_%CF%80" title="Chronology of computation of π">timeline</a></li></ul></li> <li><a href="/wiki/Future_of_mathematics" title="Future of mathematics">Future of mathematics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_mathematics" title="Category:History of mathematics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="History_of_science661" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_science" title="Template:History of science"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_science" class="mw-redirect" title="Template talk:History of science"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_science" title="Special:EditPage/Template:History of science"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_science661" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_science" title="History of science">History of science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sociology_of_the_history_of_science" title="Sociology of the history of science">Theories and sociology</a></li> <li><a href="/wiki/Historiography_of_science" title="Historiography of science">Historiography</a></li> <li><a href="/wiki/History_of_pseudoscience" title="History of pseudoscience">Pseudoscience</a></li> <li><a href="/wiki/History_and_philosophy_of_science" title="History and philosophy of science">History and philosophy of science</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/80px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg" decoding="async" width="80" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/120px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/160px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg 2x" data-file-width="3992" data-file-height="5880" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By era</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Science_in_the_ancient_world" title="Science in the ancient world">Ancient world</a></li> <li><a href="/wiki/Science_in_classical_antiquity" title="Science in classical antiquity">Classical Antiquity</a></li> <li><a href="/wiki/European_science_in_the_Middle_Ages" title="European science in the Middle Ages">Medieval European</a></li> <li><a href="/wiki/History_of_science_in_the_Renaissance" class="mw-redirect" title="History of science in the Renaissance">Renaissance</a></li> <li><a href="/wiki/Scientific_Revolution" title="Scientific Revolution">Scientific Revolution</a></li> <li><a href="/wiki/Science_in_the_Age_of_Enlightenment" title="Science in the Age of Enlightenment">Age of Enlightenment</a></li> <li><a href="/wiki/Romanticism_in_science" title="Romanticism in science">Romanticism</a></li> <li><a href="/wiki/19th_century_in_science" title="19th century in science">19th century in science</a></li> <li><a href="/wiki/20th_century_in_science" title="20th century in science">20th century in science</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By culture</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_science_and_technology_in_Africa" title="History of science and technology in Africa">African</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Argentina" title="History of science and technology in Argentina">Argentine</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Brazil" class="mw-redirect" title="History of science and technology in Brazil">Brazilian</a></li> <li><a href="/wiki/Byzantine_science" title="Byzantine science">Byzantine</a></li> <li><a href="/wiki/History_of_science_and_technology_in_China" title="History of science and technology in China">Chinese</a></li> <li><a href="/wiki/History_of_science_and_technology_in_France" class="mw-redirect" title="History of science and technology in France">French</a></li> <li><a href="/wiki/History_of_science_and_technology_in_the_Indian_subcontinent" class="mw-redirect" title="History of science and technology in the Indian subcontinent">Indian</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Japan" title="History of science and technology in Japan">Japanese</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Korea" title="History of science and technology in Korea">Korean</a></li> <li><a href="/wiki/Science_in_the_medieval_Islamic_world" title="Science in the medieval Islamic world">Medieval Islamic</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Mexico" title="History of science and technology in Mexico">Mexican</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Russia" class="mw-redirect" title="History of science and technology in Russia">Russian</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Spain" title="History of science and technology in Spain">Spanish</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_natural_science" class="mw-redirect" title="History of natural science">Natural sciences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_astronomy" title="History of astronomy">Astronomy</a></li> <li><a href="/wiki/History_of_biology" title="History of biology">Biology</a></li> <li><a href="/wiki/History_of_chemistry" title="History of chemistry">Chemistry</a></li> <li><a href="/wiki/Outline_of_Earth_sciences#History_of_Earth_science" title="Outline of Earth sciences">Earth science</a></li> <li><a href="/wiki/History_of_physics" title="History of physics">Physics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_mathematics" title="History of mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_algebra" title="History of algebra">Algebra</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">Calculus</a></li> <li><a href="/wiki/History_of_combinatorics" title="History of combinatorics">Combinatorics</a></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">Geometry</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">Logic</a></li> <li><a href="/wiki/History_of_probability" title="History of probability">Probability</a></li> <li><a href="/wiki/History_of_statistics" title="History of statistics">Statistics</a></li> <li><a href="/wiki/History_of_trigonometry" title="History of trigonometry">Trigonometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_the_social_sciences" title="History of the social sciences">Social sciences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_anthropology" title="History of anthropology">Anthropology</a></li> <li><a href="/wiki/History_of_archaeology" title="History of archaeology">Archaeology</a></li> <li><a href="/wiki/History_of_economic_thought" title="History of economic thought">Economics</a></li> <li><a href="/wiki/History" title="History">History</a></li> <li><a href="/wiki/History_of_political_science" title="History of political science">Political science</a></li> <li><a href="/wiki/History_of_psychology" title="History of psychology">Psychology</a></li> <li><a href="/wiki/History_of_sociology" title="History of sociology">Sociology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_technology" title="History of technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_agricultural_science" title="History of agricultural science">Agricultural science</a></li> <li><a href="/wiki/History_of_computer_science" title="History of computer science">Computer science</a></li> <li><a href="/wiki/History_of_materials_science" title="History of materials science">Materials science</a></li> <li><a href="/wiki/History_of_engineering" title="History of engineering">Engineering</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_medicine" title="History of medicine">Medicine</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_medicine" title="History of medicine">Human medicine</a></li> <li><a href="/wiki/History_of_veterinary_medicine" class="mw-redirect" title="History of veterinary medicine">Veterinary medicine</a></li> <li><a href="/wiki/History_of_anatomy" title="History of anatomy">Anatomy</a></li> <li><a href="/wiki/History_of_neuroscience" title="History of neuroscience">Neuroscience</a></li> <li><a href="/wiki/History_of_neurology_and_neurosurgery" title="History of neurology and neurosurgery">Neurology and neurosurgery </a></li> <li><a href="/wiki/History_of_nutrition" class="mw-redirect" title="History of nutrition">Nutrition</a></li> <li><a href="/wiki/History_of_pathology" title="History of pathology">Pathology</a></li> <li><a href="/wiki/History_of_pharmacy" title="History of pharmacy">Pharmacy</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="3" style="margin-right:0.5em; padding:0.1em 0 0.4em;line-height:1.7em;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_timelines#Science" title="List of timelines">Timelines</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/20px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/40px-Symbol_portal_class.svg.png 1.5x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:History_of_science" title="Portal:History of science">Portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_science" title="Category:History of science">Category</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐684955989f‐vzg9d Cached time: 20250331174753 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.433 seconds Real time usage: 1.719 seconds Preprocessor visited node count: 12076/1000000 Post‐expand include size: 423768/2097152 bytes Template argument size: 13615/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 14/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 352123/5000000 bytes Lua time usage: 0.801/10.000 seconds Lua memory usage: 17916449/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1262.623 1 -total 32.24% 407.112 1 Template:Reflist 29.16% 368.187 73 Template:Citation 10.20% 128.730 39 Template:IAST 9.89% 124.919 39 Template:Transliteration 8.58% 108.331 61 Template:Harv 6.65% 84.013 1 Template:Science_and_technology_in_India 6.43% 81.222 1 Template:Sidebar 5.69% 71.812 1 Template:Short_description 4.64% 58.589 1 Template:India_topics --> <!-- Saved in parser cache with key enwiki:pcache:1848052:|#|:idhash:canonical and timestamp 20250331174753 and revision id 1275572617. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Indian_mathematics&amp;oldid=1275572617">https://en.wikipedia.org/w/index.php?title=Indian_mathematics&amp;oldid=1275572617</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Indian_mathematics" title="Category:Indian mathematics">Indian mathematics</a></li><li><a href="/wiki/Category:Science_and_technology_in_India" title="Category:Science and technology in India">Science and technology in India</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_Indian_English_from_June_2020" title="Category:Use Indian English from June 2020">Use Indian English from June 2020</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_Indian_English" title="Category:All Wikipedia articles written in Indian English">All Wikipedia articles written in Indian English</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_May_2022" title="Category:Use dmy dates from May 2022">Use dmy dates from May 2022</a></li><li><a href="/wiki/Category:Articles_containing_Arabic-language_text" title="Category:Articles containing Arabic-language text">Articles containing Arabic-language text</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Articles_containing_French-language_text" title="Category:Articles containing French-language text">Articles containing French-language text</a></li><li><a href="/wiki/Category:Articles_containing_Italian-language_text" title="Category:Articles containing Italian-language text">Articles containing Italian-language text</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2011" title="Category:Articles with unsourced statements from March 2011">Articles with unsourced statements from March 2011</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_April_2017" title="Category:Articles lacking reliable references from April 2017">Articles lacking reliable references from April 2017</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_November_2024" title="Category:Articles with dead external links from November 2024">Articles with dead external links from November 2024</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 February 2025, at 20:38<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Indian_mathematics&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Indian mathematics</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>31 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-65585cc8dc-cq4nw","wgBackendResponseTime":298,"wgPageParseReport":{"limitreport":{"cputime":"1.433","walltime":"1.719","ppvisitednodes":{"value":12076,"limit":1000000},"postexpandincludesize":{"value":423768,"limit":2097152},"templateargumentsize":{"value":13615,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":352123,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1262.623 1 -total"," 32.24% 407.112 1 Template:Reflist"," 29.16% 368.187 73 Template:Citation"," 10.20% 128.730 39 Template:IAST"," 9.89% 124.919 39 Template:Transliteration"," 8.58% 108.331 61 Template:Harv"," 6.65% 84.013 1 Template:Science_and_technology_in_India"," 6.43% 81.222 1 Template:Sidebar"," 5.69% 71.812 1 Template:Short_description"," 4.64% 58.589 1 Template:India_topics"]},"scribunto":{"limitreport-timeusage":{"value":"0.801","limit":"10.000"},"limitreport-memusage":{"value":17916449,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAlmeidaJohnZadorozhnyy2001\"] = 1,\n [\"CITEREFBisht1982\"] = 1,\n [\"CITEREFBourbaki1998\"] = 1,\n [\"CITEREFBoyerMerzback_(fwd._by_Isaac_Asimov)1991\"] = 1,\n [\"CITEREFBressoud2002\"] = 1,\n [\"CITEREFBronkhorst2001\"] = 1,\n [\"CITEREFBurnett2006\"] = 1,\n [\"CITEREFBurton1997\"] = 1,\n [\"CITEREFCajori1893\"] = 1,\n [\"CITEREFCooke1997\"] = 2,\n [\"CITEREFCooke2005\"] = 1,\n [\"CITEREFCoppa2006\"] = 1,\n [\"CITEREFDani2003\"] = 1,\n [\"CITEREFDatta1931\"] = 1,\n [\"CITEREFDattaSingh1962\"] = 1,\n [\"CITEREFDattaSingh2019\"] = 1,\n [\"CITEREFDe_Young1995\"] = 1,\n [\"CITEREFDevlin2017\"] = 1,\n [\"CITEREFDivakaran2018\"] = 1,\n [\"CITEREFFilliozat2004\"] = 1,\n [\"CITEREFFowler1996\"] = 1,\n [\"CITEREFGaneri2023\"] = 1,\n [\"CITEREFGoldPingree1991\"] = 1,\n [\"CITEREFGupta2000\"] = 1,\n [\"CITEREFHarper2011\"] = 1,\n [\"CITEREFHayashi1995\"] = 1,\n [\"CITEREFHayashi1997\"] = 1,\n [\"CITEREFHayashi2003\"] = 1,\n [\"CITEREFHayashi2005\"] = 1,\n [\"CITEREFHenderson2000\"] = 1,\n [\"CITEREFIfrah2000\"] = 1,\n [\"CITEREFIngerman1967\"] = 1,\n [\"CITEREFJoseph2000\"] = 1,\n [\"CITEREFKatz1995\"] = 1,\n [\"CITEREFKatz2007\"] = 1,\n [\"CITEREFKeller2005\"] = 1,\n [\"CITEREFKeller2006\"] = 2,\n [\"CITEREFKichenassamy2006\"] = 1,\n [\"CITEREFKim_Plofker2007\"] = 1,\n [\"CITEREFMason2017\"] = 1,\n [\"CITEREFMenninger1992\"] = 1,\n [\"CITEREFNeugebauerPingree1970\"] = 1,\n [\"CITEREFPingree1971\"] = 1,\n [\"CITEREFPingree1973\"] = 1,\n [\"CITEREFPingree1978\"] = 1,\n [\"CITEREFPingree1988\"] = 1,\n [\"CITEREFPingree1992\"] = 1,\n [\"CITEREFPingree2003\"] = 1,\n [\"CITEREFPlofker1996\"] = 1,\n [\"CITEREFPlofker2001\"] = 1,\n [\"CITEREFPlofker2007\"] = 1,\n [\"CITEREFPlofker2009\"] = 1,\n [\"CITEREFPrice2000\"] = 1,\n [\"CITEREFRajagopalRangachari1949\"] = 1,\n [\"CITEREFRajagopalRangachari1951\"] = 1,\n [\"CITEREFRajagopalRangachari1977\"] = 1,\n [\"CITEREFRajagopalRangachari1986\"] = 1,\n [\"CITEREFRajagopalVenkataraman1949\"] = 1,\n [\"CITEREFRao1992\"] = 1,\n [\"CITEREFRoy1990\"] = 1,\n [\"CITEREFSarma1976\"] = 1,\n [\"CITEREFSatis_Chandra_Vidyabhusana1920\"] = 1,\n [\"CITEREFSenBag1983\"] = 1,\n [\"CITEREFSergent1997\"] = 1,\n [\"CITEREFShukla1976\"] = 1,\n [\"CITEREFShukla1988\"] = 1,\n [\"CITEREFSingh\"] = 1,\n [\"CITEREFSingh1936\"] = 1,\n [\"CITEREFStaal1986\"] = 1,\n [\"CITEREFStaal1995\"] = 1,\n [\"CITEREFStaal1999\"] = 1,\n [\"CITEREFStaal2001\"] = 1,\n [\"CITEREFStaal2006\"] = 1,\n [\"CITEREFStillwell2004\"] = 1,\n [\"CITEREFThibaut1984\"] = 1,\n [\"CITEREFVan_Nooten1993\"] = 1,\n [\"CITEREFVidyabhusana1920\"] = 1,\n [\"CITEREFWhish1835\"] = 1,\n [\"CITEREFYano2006\"] = 1,\n [\"CITEREFvan_der_Waerden1983\"] = 1,\n [\"CITEREFvan_der_Waerden1988\"] = 2,\n}\ntemplate_list = table#1 {\n [\"Better source needed\"] = 1,\n [\"Blockquote\"] = 10,\n [\"Circa\"] = 2,\n [\"Citation\"] = 73,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 6,\n [\"Cite encyclopedia\"] = 1,\n [\"Cite journal\"] = 2,\n [\"Cite news\"] = 3,\n [\"Cite web\"] = 3,\n [\"DEFAULTSORT:Indian Mathematics\"] = 1,\n [\"Dead link\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Harv\"] = 61,\n [\"HistOfScience\"] = 1,\n [\"History of mathematics\"] = 1,\n [\"IAST\"] = 39,\n [\"ISBN\"] = 2,\n [\"In Our Time\"] = 1,\n [\"India topics\"] = 1,\n [\"Isbn\"] = 1,\n [\"Lang\"] = 4,\n [\"MR\"] = 1,\n [\"Main\"] = 4,\n [\"Math\"] = 33,\n [\"Multiref2\"] = 1,\n [\"OEIS\"] = 1,\n [\"Radic\"] = 4,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"Science and technology in India\"] = 1,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"Use Indian English\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Usurped\"] = 1,\n [\"Webarchive\"] = 2,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-684955989f-vzg9d","timestamp":"20250331174753","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Indian mathematics","url":"https:\/\/en.wikipedia.org\/wiki\/Indian_mathematics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1279571","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1279571","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-05-06T04:48:52Z","dateModified":"2025-02-13T20:38:33Z","headline":"mathematics in a subcontinent"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10