CINXE.COM
group of units in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> group of units in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> group of units </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6671/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, <a class="existingWikiWord" href="/nlab/show/semigroup">semigroup</a>, <a class="existingWikiWord" href="/nlab/show/quasigroup">quasigroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/nonassociative+algebra">nonassociative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/associative+unital+algebra">associative unital algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Jordan+algebra">Jordan algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Leibniz+algebra">Leibniz algebra</a>, <a class="existingWikiWord" href="/nlab/show/pre-Lie+algebra">pre-Lie algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+algebra">Frobenius algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/quantale">quantale</a></li> <li><a class="existingWikiWord" href="/nlab/show/Boolean+ring">Boolean ring</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutator">commutator</a>, <a class="existingWikiWord" href="/nlab/show/center">center</a></li> <li><a class="existingWikiWord" href="/nlab/show/monad">monad</a>, <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a></li> <li><a class="existingWikiWord" href="/nlab/show/distributive+law">distributive law</a></li> </ul> <h2 id="group_theory">Group theory</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/Cayley%27s+theorem">Cayley's theorem</a></li> <li><a class="existingWikiWord" href="/nlab/show/centralizer">centralizer</a>, <a class="existingWikiWord" href="/nlab/show/normalizer">normalizer</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>, <a class="existingWikiWord" href="/nlab/show/Galois+extension">Galois extension</a></li> <li><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a>, <a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> <h2 id="ring_theory">Ring theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+ring">local ring</a>, <a class="existingWikiWord" href="/nlab/show/Artinian+ring">Artinian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Noetherian+ring">Noetherian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/skewfield">skewfield</a>, <a class="existingWikiWord" href="/nlab/show/field">field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+domain">integral domain</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ideal">ideal</a>, <a class="existingWikiWord" href="/nlab/show/prime+ideal">prime ideal</a>, <a class="existingWikiWord" href="/nlab/show/maximal+ideal">maximal ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ore+localization">Ore localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/central+simple+algebra">central simple algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivation">derivation</a>, <a class="existingWikiWord" href="/nlab/show/Ore+extension">Ore extension</a></p> </li> </ul> <h2 id="module_theory">Module theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>, <a class="existingWikiWord" href="/nlab/show/linear+algebra">linear algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/matrix">matrix</a>, <a class="existingWikiWord" href="/nlab/show/eigenvalue">eigenvalue</a>, <a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/determinant">determinant</a>, <a class="existingWikiWord" href="/nlab/show/quasideterminant">quasideterminant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a>, <a class="existingWikiWord" href="/nlab/show/Schur+lemma">Schur lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/restriction+of+scalars">restriction of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frobenius+reciprocity">Frobenius reciprocity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Morita+equivalence">Morita equivalence</a>, <a class="existingWikiWord" href="/nlab/show/Morita+context">Morita context</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wedderburn-Artin+theorem">Wedderburn-Artin theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a>, <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> </ul> <h2 id=""><a class="existingWikiWord" href="/nlab/show/gebra+theory">Gebras</a></h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coalgebra">coalgebra</a>, <a class="existingWikiWord" href="/nlab/show/coring">coring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bialgebra">bialgebra</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comodule">comodule</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+module">Hopf module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yetter-Drinfeld+module">Yetter-Drinfeld module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associative+bialgebroid">associative bialgebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+gebra">dual gebra</a>, <a class="existingWikiWord" href="/nlab/show/cotensor+product">cotensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf-Galois+extension">Hopf-Galois extension</a></p> </li> </ul> </div></div> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#relation_to_the_multiplicative_group'>Relation to the multiplicative group</a></li> <li><a href='#relation_to_the_group_ring'>Relation to the group ring</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Definition">Definition</h2> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/ring">ring</a>, its <em>group of units</em>, denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>R</mi> <mo>×</mo></msup></mrow><annotation encoding="application/x-tex">R^\times</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>GL</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">GL_1(R)</annotation></semantics></math>, is the <a class="existingWikiWord" href="/nlab/show/group">group</a> whose <a class="existingWikiWord" href="/nlab/show/elements">elements</a> are the elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> that are <a class="existingWikiWord" href="/nlab/show/invertible+element">invertible</a> under the product (<em><a class="existingWikiWord" href="/nlab/show/units">units</a></em> of the ring), and whose group operation is the multiplication in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>.</p> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>GL</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">GL_1(R)</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/affine+variety">affine variety</a> (in fact an affine <a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a>) over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, namely <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>R</mi> <mn>2</mn></msup><mo>:</mo><mi>x</mi><mi>y</mi><mo>=</mo><mn>1</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{(x, y) \in R^2: x y = 1\}</annotation></semantics></math>.</p> </div> <p>This leads us to the following alternative perspective:</p> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>In a <a class="existingWikiWord" href="/nlab/show/category">category</a> with <a class="existingWikiWord" href="/nlab/show/finite+limits">finite limits</a>, with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a> therein, the <em>group of units</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a> of the two maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>,</mo><msub><mi>c</mi> <mn>1</mn></msub><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">m, c_1: R \times R \to R</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> is the ring multiplication and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">c_1</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/constant+map">constant map</a> with value the multiplicative identity.</p> </div> <p>Cf. Example <a class="maruku-ref" href="#idele"></a> below.</p> <h2 id="properties">Properties</h2> <h3 id="relation_to_the_multiplicative_group">Relation to the multiplicative group</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>The group of units of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is equivalently the collection of <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mi>R</mi></mrow><annotation encoding="application/x-tex">Spec R</annotation></semantics></math> into the <a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔾</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{G}_m</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>GL</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>R</mi> <mo>×</mo></msup><mo>≃</mo><mi>Hom</mi><mo stretchy="false">(</mo><mi>Spec</mi><mi>R</mi><mo>,</mo><msub><mi>𝔾</mi> <mi>m</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> GL_1(R) = R^\times \simeq Hom(Spec R, \mathbb{G}_m) \,. </annotation></semantics></math></div></div> <h3 id="relation_to_the_group_ring">Relation to the group ring</h3> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>There is an <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo><mo>⊣</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>×</mo></msup><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><msub><mi>Alg</mi> <mi>R</mi></msub><mover><munder><mo>→</mo><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>×</mo></msup></mrow></munder><mover><mo>←</mo><mrow><mi>R</mi><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow></mover></mover><mi>Grp</mi></mrow><annotation encoding="application/x-tex"> (R[-]\dashv (-)^\times) \colon Alg_R \stackrel{\overset{R[-]}{\leftarrow}}{\underset{(-)^\times}{\to}} Grp </annotation></semantics></math></div> <p>between the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/associative+algebras">associative algebras</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> and that of <a class="existingWikiWord" href="/nlab/show/groups">groups</a>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">R[-]</annotation></semantics></math> forms the <a class="existingWikiWord" href="/nlab/show/group+algebra">group algebra</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> and where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>×</mo></msup></mrow><annotation encoding="application/x-tex">(-)^\times</annotation></semantics></math> assigns to an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-algebra its group of units.</p> </div> <h2 id="examples">Examples</h2> <div class="num_example"> <h6 id="example">Example</h6> <p>The multiplicative group of the <a class="existingWikiWord" href="/nlab/show/ring">ring</a> of <a class="existingWikiWord" href="/nlab/show/integers">integers</a> modulo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> is the <em><a class="existingWikiWord" href="/nlab/show/multiplicative+group+of+integers+modulo+n">multiplicative group of integers modulo n</a></em>.</p> </div> <div class="num_example" id="idele"> <h6 id="example_2">Example</h6> <p>The group of units of the <a class="existingWikiWord" href="/nlab/show/ring+of+adeles">ring of adeles</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔸</mi></mrow><annotation encoding="application/x-tex">\mathbb{A}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/group+of+ideles">group of ideles</a>. The topology on the idele group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕀</mi></mrow><annotation encoding="application/x-tex">\mathbb{I}</annotation></semantics></math> arises by considering <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕀</mi></mrow><annotation encoding="application/x-tex">\mathbb{I}</annotation></semantics></math> as an affine variety in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝔸</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{A}^2</annotation></semantics></math> as above, and giving it the subspace topology. This is <em>not</em> the subspace topology induced by the inclusion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕀</mi><mo>↪</mo><mi>𝔸</mi></mrow><annotation encoding="application/x-tex">\mathbb{I} \hookrightarrow\mathbb{A}</annotation></semantics></math> into the ring of adeles.</p> </div> <div class="num_example"> <h6 id="example_3">Example</h6> <p>The group of units of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-adic integers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_p</annotation></semantics></math> fits in an <a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>→</mo><mn>1</mn><mo>+</mo><mi>p</mi><msub><mi>ℤ</mi> <mi>p</mi></msub><mo>↪</mo><msubsup><mi>ℤ</mi> <mi>p</mi> <mo>×</mo></msubsup><mo>→</mo><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo><msup><mo stretchy="false">)</mo> <mo>×</mo></msup><mo>→</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1 \to 1 + p \mathbb{Z}_p \hookrightarrow \mathbb{Z}_p^\times \to (\mathbb{Z}/(p))^\times \to 1</annotation></semantics></math></div> <p>where the <a class="existingWikiWord" href="/nlab/show/quotient">quotient</a> is isomorphic to the <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{Z}/(p-1)</annotation></semantics></math> (see <a class="existingWikiWord" href="/nlab/show/root+of+unity">root of unity</a>) and the <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a> is, at least when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>></mo><mn>2</mn></mrow><annotation encoding="application/x-tex">p \gt 2</annotation></semantics></math>, isomorphic to the <em>additive group</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_p</annotation></semantics></math>. Explicitly, for such <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> the formal <a class="existingWikiWord" href="/nlab/show/exponential+map">exponential map</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>exp</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mfrac><mrow><msup><mi>x</mi> <mi>n</mi></msup></mrow><mrow><mi>n</mi><mo>!</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">\exp(x) = \sum_{n \geq 0} \frac{x^n}{n!}</annotation></semantics></math> converges when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>p</mi><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">x \in p \mathbb{Z}_p</annotation></semantics></math> and maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">p \mathbb{Z}_p</annotation></semantics></math> isomorphically onto the multiplicative group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>+</mo><mi>p</mi><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">1 + p \mathbb{Z}_p</annotation></semantics></math>. The formal logarithm <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>log</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><mfrac><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><msup><mo stretchy="false">)</mo> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo> <mi>n</mi></msup></mrow><mi>n</mi></mfrac></mrow><annotation encoding="application/x-tex">\log(x) = \sum_{n \geq 1} \frac{(-1)^{n-1} (x - 1)^n}{n}</annotation></semantics></math> is also <a class="existingWikiWord" href="/nlab/show/convergence">convergent</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mn>1</mn><mo>+</mo><mi>p</mi><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">x \in 1 + p \mathbb{Z}_p</annotation></semantics></math> and provides the <a class="existingWikiWord" href="/nlab/show/inverse">inverse</a>.</p> <p>By <a class="existingWikiWord" href="/nlab/show/Henselian+ring">Hensel's lemma</a>, the group of units <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>ℤ</mi> <mi>p</mi> <mo>×</mo></msubsup></mrow><annotation encoding="application/x-tex">\mathbb{Z}_p^\times</annotation></semantics></math> has <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo> <mi>th</mi></msup></mrow><annotation encoding="application/x-tex">(p-1)^{th}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/roots+of+unity">roots of unity</a> and therefore the exact sequence above <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">splits</a>. This splitting descends to the quotient ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>p</mi> <mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{Z}/(p^n)</annotation></semantics></math> and its group of units, giving an isomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>GL</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>p</mi> <mi>n</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≅</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>p</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>⊕</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">GL_1(\mathbb{Z}/(p^n)) \cong \mathbb{Z}/(p^{n-1}) \oplus \mathbb{Z}/(p-1)</annotation></semantics></math>.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><strong>group of units</strong>/<a class="existingWikiWord" href="/nlab/show/multiplicative+group">multiplicative group</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+submonoid+of+cancellative+elements">multiplicative submonoid of cancellative elements</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+of+units">∞-group of units</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+group">multiplicative group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/exponential+sequence">exponential sequence</a>, <a class="existingWikiWord" href="/nlab/show/Kummer+sequence">Kummer sequence</a></p> </li> </ul> <h2 id="references">References</h2> <p>For instance:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Anthony+Knapp">Anthony Knapp</a>, p. 143 in: <em>Basic Algebra</em>, Springer (2006) [<a href="https://doi.org/10.1007/978-0-8176-4529-8">doi:10.1007/978-0-8176-4529-8</a>, <a href="https://www.math.mcgill.ca/darmon/courses/19-20/algebra2/knapp.pdf">pdf</a>]</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 25, 2024 at 04:08:00. See the <a href="/nlab/history/group+of+units" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/group+of+units" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6671/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/group+of+units/16" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/group+of+units" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/group+of+units" accesskey="S" class="navlink" id="history" rel="nofollow">History (16 revisions)</a> <a href="/nlab/show/group+of+units/cite" style="color: black">Cite</a> <a href="/nlab/print/group+of+units" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/group+of+units" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>