CINXE.COM
compact Lie group in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> compact Lie group in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> compact Lie group </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11793/#Item_9" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> <h4 id="topology">Topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topology">topology</a></strong> (<a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a>, <a class="existingWikiWord" href="/nlab/show/point-free+topology">point-free topology</a>)</p> <p>see also <em><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a></em> and <em><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a> <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></em></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology">Introduction</a></p> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a>, <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+for+the+topology">base for the topology</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood+base">neighbourhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finer+topology">finer/coarser topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a>, <a class="existingWikiWord" href="/nlab/show/topological+interior">interior</a>, <a class="existingWikiWord" href="/nlab/show/topological+boundary">boundary</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separation+axiom">separation</a>, <a class="existingWikiWord" href="/nlab/show/sober+topological+space">sobriety</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>, <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/uniformly+continuous+function">uniformly continuous function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+embedding">embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+map">open map</a>, <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence">sequence</a>, <a class="existingWikiWord" href="/nlab/show/net">net</a>, <a class="existingWikiWord" href="/nlab/show/sub-net">sub-net</a>, <a class="existingWikiWord" href="/nlab/show/filter">filter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/convergence">convergence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a><a class="existingWikiWord" href="/nlab/show/Top">Top</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a></li> </ul> </li> </ul> <p><strong><a href="Top#UniversalConstructions">Universal constructions</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+topology">initial topology</a>, <a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a>,</p> </li> <li> <p>fiber space, <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product+space">product space</a>, <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colimits+of+normal+spaces">colimits of normal spaces</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">Extra stuff, structure, properties</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>, <a class="existingWikiWord" href="/nlab/show/metrisable+space">metrisable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov space</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff space</a>, <a class="existingWikiWord" href="/nlab/show/regular+space">regular space</a>, <a class="existingWikiWord" href="/nlab/show/normal+space">normal space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sober+space">sober space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+space">compact space</a>, <a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+topological+space">sequentially compact</a>, <a class="existingWikiWord" href="/nlab/show/countably+compact+topological+space">countably compact</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, <a class="existingWikiWord" href="/nlab/show/sigma-compact+topological+space">sigma-compact</a>, <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>, <a class="existingWikiWord" href="/nlab/show/countably+paracompact+topological+space">countably paracompact</a>, <a class="existingWikiWord" href="/nlab/show/strongly+compact+topological+space">strongly compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+space">compactly generated space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable space</a>, <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contractible+space">contractible space</a>, <a class="existingWikiWord" href="/nlab/show/locally+contractible+space">locally contractible space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+space">connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+connected+space">locally connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simply-connected+space">simply-connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+simply-connected+space">locally simply-connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>, <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, <a class="existingWikiWord" href="/nlab/show/point+space">point space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+space">discrete space</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+space">codiscrete space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/order+topology">order topology</a>, <a class="existingWikiWord" href="/nlab/show/specialization+topology">specialization topology</a>, <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/real+line">real line</a>, <a class="existingWikiWord" href="/nlab/show/plane">plane</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder">cylinder</a>, <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere">sphere</a>, <a class="existingWikiWord" href="/nlab/show/ball">ball</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle">circle</a>, <a class="existingWikiWord" href="/nlab/show/torus">torus</a>, <a class="existingWikiWord" href="/nlab/show/annulus">annulus</a>, <a class="existingWikiWord" href="/nlab/show/Moebius+strip">Moebius strip</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polytope">polytope</a>, <a class="existingWikiWord" href="/nlab/show/polyhedron">polyhedron</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+space">projective space</a> (<a class="existingWikiWord" href="/nlab/show/real+projective+space">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+projective+space">complex</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space+%28mathematics%29">configuration space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path">path</a>, <a class="existingWikiWord" href="/nlab/show/loop">loop</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+spaces">mapping spaces</a>: <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>, <a class="existingWikiWord" href="/nlab/show/topology+of+uniform+convergence">topology of uniform convergence</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/path+space">path space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zariski+topology">Zariski topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cantor+space">Cantor space</a>, <a class="existingWikiWord" href="/nlab/show/Mandelbrot+space">Mandelbrot space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+curve">Peano curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+with+two+origins">line with two origins</a>, <a class="existingWikiWord" href="/nlab/show/long+line">long line</a>, <a class="existingWikiWord" href="/nlab/show/Sorgenfrey+line">Sorgenfrey line</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-topology">K-topology</a>, <a class="existingWikiWord" href="/nlab/show/Dowker+space">Dowker space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Warsaw+circle">Warsaw circle</a>, <a class="existingWikiWord" href="/nlab/show/Hawaiian+earring+space">Hawaiian earring space</a></p> </li> </ul> <p><strong>Basic statements</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+spaces+are+sober">Hausdorff spaces are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schemes+are+sober">schemes are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+images+of+compact+spaces+are+compact">continuous images of compact spaces are compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces">closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact">open subspaces of compact Hausdorff spaces are locally compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff">quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lebesgue+number+lemma">Lebesgue number lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces">sequentially compact metric spaces are equivalently compact metric spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded">sequentially compact metric spaces are totally bounded</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous">continuous metric space valued function on compact metric space is uniformly continuous</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+are+normal">paracompact Hausdorff spaces are normal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity">paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+injections+are+embeddings">closed injections are embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+maps+to+locally+compact+spaces+are+closed">proper maps to locally compact spaces are closed</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings">injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact">locally compact and sigma-compact spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces">CW-complexes are paracompact Hausdorff spaces</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Urysohn%27s+lemma">Urysohn's lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tietze+extension+theorem">Tietze extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tychonoff+theorem">Tychonoff theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tube+lemma">tube lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael%27s+theorem">Michael's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brouwer%27s+fixed+point+theorem">Brouwer's fixed point theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+invariance+of+dimension">topological invariance of dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jordan+curve+theorem">Jordan curve theorem</a></p> </li> </ul> <p><strong>Analysis Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heine-Borel+theorem">Heine-Borel theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/intermediate+value+theorem">intermediate value theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extreme+value+theorem">extreme value theorem</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological homotopy theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a>, <a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, <a class="existingWikiWord" href="/nlab/show/deformation+retract">deformation retract</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, <a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+extension+property">homotopy extension property</a>, <a class="existingWikiWord" href="/nlab/show/Hurewicz+cofibration">Hurewicz cofibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+cofiber+sequence">cofiber sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Str%C3%B8m+model+category">Strøm model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#maximal_tori'>Maximal tori</a></li> <li><a href='#AbelianCompactLieGroups'>Abelian compact Lie groups</a></li> <li><a href='#InvariantMetric'>Invariant metric</a></li> <li><a href='#smooth_actions'>Smooth actions</a></li> <li><a href='#EquivariantTriangulationTheorem'>Equivariant triangulation theorem</a></li> <li><a href='#spaces_of_homomorphisms'>Spaces of homomorphisms</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#applications'>Applications</a></li> <ul> <li><a href='#InEquivariantHomotopyTheory'>In equivariant homotopy theory</a></li> <li><a href='#in_gauge_theory'>In gauge theory</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>A real <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> is <strong>compact</strong> if its underlying <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a> is a <a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>.</p> <h2 id="properties">Properties</h2> <h3 id="maximal_tori">Maximal tori</h3> <p>All <a class="existingWikiWord" href="/nlab/show/maximal+torus">maximal tori</a> of a compact Lie group are conjugate by <a class="existingWikiWord" href="/nlab/show/inner+automorphisms">inner automorphisms</a>. The <a class="existingWikiWord" href="/nlab/show/dimension">dimension</a> of a maximal torus <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> of a compact Lie group is called the <em><a class="existingWikiWord" href="/nlab/show/rank+of+a+Lie+group">rank</a></em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/normalizer">normalizer</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(T)</annotation></semantics></math> of a maximal torus <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> determines <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/Weyl+group">Weyl group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>=</mo><mi>W</mi><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">W(G)=W(G,T)</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> with respect to a choice of a maximal torus <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/group+of+automorphisms">group of automorphisms</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> which are restrictions of <a class="existingWikiWord" href="/nlab/show/inner+automorphisms">inner automorphisms</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>The maximal torus is of <a class="existingWikiWord" href="/nlab/show/finite+number">finite</a> <a class="existingWikiWord" href="/nlab/show/index+of+a+subgroup">index</a> in its normalizer; the <a class="existingWikiWord" href="/nlab/show/quotient+group">quotient</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">N(T)/T</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">W(G)</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/cardinality">cardinality</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">W(G)</annotation></semantics></math> for a compact <a class="existingWikiWord" href="/nlab/show/connected+topological+space">connected</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, equals the <a class="existingWikiWord" href="/nlab/show/Euler+characteristic">Euler characteristic</a> of the <a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">G/T</annotation></semantics></math> (“<a class="existingWikiWord" href="/nlab/show/flag+variety">flag variety</a>”).</p> <p>See also at <em><a class="existingWikiWord" href="/nlab/show/relation+between+compact+Lie+groups+and+reductive+algebraic+groups">relation between compact Lie groups and reductive algebraic groups</a></em></p> <h3 id="AbelianCompactLieGroups">Abelian compact Lie groups</h3> <p> <div class='num_prop' id='MaximalToriOfConnectedCompactLieGroupsAreMaximalAbelianSubgroups'> <h6>Proposition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/maximal+torus">maximal torus</a> of a <a class="existingWikiWord" href="/nlab/show/connected+topological+space">connected</a> <a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a> is also the maximal <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian</a> <a class="existingWikiWord" href="/nlab/show/subgroup">subgroup</a>.</p> </div> (e.g. <a href="#Salamon21">Salamon 2021, Lem. 6.5</a>)</p> <p>In particular: <div class='num_prop' id='ConnectedCompactLieGroupsAreTori'> <h6>Proposition</h6> <p>All connected compact abelian Lie groups are <a class="existingWikiWord" href="/nlab/show/tori">tori</a>, up to <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> </div> (<a href="#Adams82">Adams 1982, Thm. 2.19, Cor. 2.20</a>)</p> <p> <div class='num_prop'> <h6>Proposition</h6> <p><strong>(Classification of compact abelian Lie groups)</strong> <br /> Assuming the <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a>, every <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian</a> <a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a> is <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a> to the <a class="existingWikiWord" href="/nlab/show/direct+product+group">direct product group</a> of an <a class="existingWikiWord" href="/nlab/show/n-torus">n-torus</a> with a <a class="existingWikiWord" href="/nlab/show/finite+group">finite</a> <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>.</p> </div> <div class='proof'> <h6>Proof</h6> <p>Write</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>G</mi></mrow><annotation encoding="application/x-tex"> G_{\mathrm{e}} \xhookrightarrow{\;\;} G </annotation></semantics></math></div> <p>for the <a class="existingWikiWord" href="/nlab/show/subgroup">subgroup</a> which is the <a class="existingWikiWord" href="/nlab/show/connected+component">connected component</a> of the <a class="existingWikiWord" href="/nlab/show/neutral+element">neutral element</a> in the given compact abelian Lie group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>. By Prop. <a class="maruku-ref" href="#ConnectedCompactLieGroupsAreTori"></a> this is a <a class="existingWikiWord" href="/nlab/show/torus">torus</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><msup><mi>T</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex"> G_{\mathrm{e}} \,\simeq\, T^n </annotation></semantics></math></div> <p>hence its <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a> is a <a class="existingWikiWord" href="/nlab/show/divisible+group">divisible group</a> and therefore, by <a href="injective+object#InjectiveAbelianGroupIsDivisibleGroup">this Prop.</a>, an <a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a> in the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> of <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>. This implies that the dashed <a class="existingWikiWord" href="/nlab/show/extension">extension</a> in the following <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> in <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> exists:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="115.664" height="89.589" viewBox="0 0 115.664 89.589"> <defs> <g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-0"> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-1"> <path d="M 11.140625 -10.375 C 11.140625 -10.515625 11.03125 -10.515625 11.015625 -10.515625 C 10.984375 -10.515625 10.921875 -10.515625 10.796875 -10.359375 L 9.765625 -9.125 C 9.6875 -9.25 9.390625 -9.765625 8.8125 -10.109375 C 8.171875 -10.515625 7.53125 -10.515625 7.296875 -10.515625 C 4.109375 -10.515625 0.75 -7.265625 0.75 -3.734375 C 0.75 -1.265625 2.453125 0.3125 4.6875 0.3125 C 5.765625 0.3125 7.125 -0.046875 7.875 -0.984375 C 8.03125 -0.421875 8.359375 -0.015625 8.46875 -0.015625 C 8.546875 -0.015625 8.5625 -0.0625 8.578125 -0.0625 C 8.59375 -0.09375 8.703125 -0.609375 8.78125 -0.875 L 9.015625 -1.84375 C 9.140625 -2.328125 9.203125 -2.546875 9.3125 -2.984375 C 9.453125 -3.5625 9.484375 -3.59375 10.3125 -3.609375 C 10.359375 -3.609375 10.546875 -3.609375 10.546875 -3.90625 C 10.546875 -4.046875 10.390625 -4.046875 10.359375 -4.046875 C 10.09375 -4.046875 9.8125 -4.015625 9.546875 -4.015625 L 8.734375 -4.015625 C 8.109375 -4.015625 7.453125 -4.046875 6.84375 -4.046875 C 6.703125 -4.046875 6.53125 -4.046875 6.53125 -3.78125 C 6.53125 -3.625 6.640625 -3.625 6.640625 -3.609375 L 7.015625 -3.609375 C 8.203125 -3.609375 8.203125 -3.5 8.203125 -3.265625 C 8.203125 -3.25 7.921875 -1.75 7.640625 -1.296875 C 7.0625 -0.46875 5.890625 -0.125 5 -0.125 C 3.859375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.296875 2.34375 -6.59375 3.796875 -8.28125 C 4.734375 -9.34375 6.125 -10.078125 7.4375 -10.078125 C 9.203125 -10.078125 9.828125 -8.578125 9.828125 -7.203125 C 9.828125 -6.953125 9.765625 -6.625 9.765625 -6.421875 C 9.765625 -6.28125 9.921875 -6.28125 9.96875 -6.28125 C 10.125 -6.28125 10.140625 -6.296875 10.203125 -6.578125 Z M 11.140625 -10.375 "></path> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-2"> <path d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-1-0"> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-1-1"> <path d="M 4.109375 -2.265625 C 4.34375 -2.265625 4.390625 -2.265625 4.390625 -2.5 C 4.390625 -3.390625 3.90625 -4.453125 2.5 -4.453125 C 1.265625 -4.453125 0.296875 -3.421875 0.296875 -2.1875 C 0.296875 -0.890625 1.375 0.09375 2.625 0.09375 C 3.890625 0.09375 4.390625 -0.96875 4.390625 -1.203125 C 4.390625 -1.234375 4.359375 -1.328125 4.234375 -1.328125 C 4.125 -1.328125 4.109375 -1.265625 4.09375 -1.203125 C 3.734375 -0.234375 2.875 -0.203125 2.6875 -0.203125 C 2.25 -0.203125 1.78125 -0.421875 1.484375 -0.875 C 1.1875 -1.328125 1.1875 -1.96875 1.1875 -2.265625 Z M 1.203125 -2.53125 C 1.28125 -3.921875 2.140625 -4.171875 2.5 -4.171875 C 3.671875 -4.171875 3.703125 -2.765625 3.71875 -2.53125 Z M 1.203125 -2.53125 "></path> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-2-0"> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-2-1"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-2-2"> <path d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-1" x="6.434" y="15.681"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-1-1" x="17.9765" y="17.92225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-1" x="92.361" y="15.681"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-1-1" x="103.90225" y="17.92225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-1" x="9.098" y="81.214"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-0-2" x="23.136394" y="81.214"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -27.843719 33.845781 L 27.843781 33.845781 " transform="matrix(1, 0, 0, -1, 57.832, 44.795)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -27.843719 31.853594 L 27.843781 31.853594 " transform="matrix(1, 0, 0, -1, 57.832, 44.795)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -42.964813 19.431719 L -42.964813 -20.013594 " transform="matrix(1, 0, 0, -1, 57.832, 44.795)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00087125 2.342377 C 0.819441 2.342377 1.483504 1.81894 1.483504 1.170502 C 1.483504 0.525971 0.819441 -0.0013725 -0.00087125 -0.0013725 " transform="matrix(0, -1, 1, 0, 14.86856, 25.36241)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487226 2.869901 C -2.034101 1.147245 -1.018476 0.334745 0.001055 -0.0011925 C -1.018476 -0.333224 -2.034101 -1.145724 -2.487226 -2.86838 " transform="matrix(0, 1, 1, 0, 14.86838, 65.04582)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-2-1" x="7.749" y="47.756"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -30.507781 -23.185469 L 27.464875 21.037187 " transform="matrix(1, 0, 0, -1, 57.832, 44.795)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487472 2.86964 C -2.032742 1.147041 -1.020532 0.335592 0.000241009 -0.000889788 C -1.01974 -0.333218 -2.033492 -1.146886 -2.487425 -2.869101 " transform="matrix(0.79504, -0.60648, -0.60648, -0.79504, 85.48755, 23.61272)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2_Ogj5bOybJWm2Tx2BTB3bceQMo=-glyph-2-2" x="47.656" y="40.271"></use> </g> </svg> <p>hence that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/retraction">retracts</a> onto <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">G_0</annotation></semantics></math>.</p> <p>While this is, a priori, a diagram in abelian <a class="existingWikiWord" href="/nlab/show/discrete+groups">discrete groups</a> not it abelian Lie group, the fact that the dashed morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>→</mo><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub></mrow><annotation encoding="application/x-tex">p \colon G \to G_{\mathrm{e}}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/restriction">restricts</a> to the <a class="existingWikiWord" href="/nlab/show/identity+morphism">identity morphism</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub></mrow><annotation encoding="application/x-tex">G_{\mathrm{e}}</annotation></semantics></math>, together with the assumption that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a> of copies of this connected component and using the <a class="existingWikiWord" href="/nlab/show/homomorphism">homomorphism</a> property implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/continuous+function">continuous</a> homomorphism. But <a class="existingWikiWord" href="/nlab/show/continuous+homomorphisms+of+Lie+groups+are+smooth">continuous homomorphisms of Lie groups are smooth</a>, so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is in fact smooth.</p> <p>Therefore we have a <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">split exact sequence</a> of Lie groups <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="221.677" height="42.407" viewBox="0 0 221.677 42.407"> <defs> <g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-0"> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-1"> <path d="M 11.140625 -10.375 C 11.140625 -10.515625 11.03125 -10.515625 11.015625 -10.515625 C 10.984375 -10.515625 10.921875 -10.515625 10.796875 -10.359375 L 9.765625 -9.125 C 9.6875 -9.25 9.390625 -9.765625 8.8125 -10.109375 C 8.171875 -10.515625 7.53125 -10.515625 7.296875 -10.515625 C 4.109375 -10.515625 0.75 -7.265625 0.75 -3.734375 C 0.75 -1.265625 2.453125 0.3125 4.6875 0.3125 C 5.765625 0.3125 7.125 -0.046875 7.875 -0.984375 C 8.03125 -0.421875 8.359375 -0.015625 8.46875 -0.015625 C 8.546875 -0.015625 8.5625 -0.0625 8.578125 -0.0625 C 8.59375 -0.09375 8.703125 -0.609375 8.78125 -0.875 L 9.015625 -1.84375 C 9.140625 -2.328125 9.203125 -2.546875 9.3125 -2.984375 C 9.453125 -3.5625 9.484375 -3.59375 10.3125 -3.609375 C 10.359375 -3.609375 10.546875 -3.609375 10.546875 -3.90625 C 10.546875 -4.046875 10.390625 -4.046875 10.359375 -4.046875 C 10.09375 -4.046875 9.8125 -4.015625 9.546875 -4.015625 L 8.734375 -4.015625 C 8.109375 -4.015625 7.453125 -4.046875 6.84375 -4.046875 C 6.703125 -4.046875 6.53125 -4.046875 6.53125 -3.78125 C 6.53125 -3.625 6.640625 -3.625 6.640625 -3.609375 L 7.015625 -3.609375 C 8.203125 -3.609375 8.203125 -3.5 8.203125 -3.265625 C 8.203125 -3.25 7.921875 -1.75 7.640625 -1.296875 C 7.0625 -0.46875 5.890625 -0.125 5 -0.125 C 3.859375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.296875 2.34375 -6.59375 3.796875 -8.28125 C 4.734375 -9.34375 6.125 -10.078125 7.4375 -10.078125 C 9.203125 -10.078125 9.828125 -8.578125 9.828125 -7.203125 C 9.828125 -6.953125 9.765625 -6.625 9.765625 -6.421875 C 9.765625 -6.28125 9.921875 -6.28125 9.96875 -6.28125 C 10.125 -6.28125 10.140625 -6.296875 10.203125 -6.578125 Z M 11.140625 -10.375 "></path> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-2"> <path d="M 6.40625 -10.65625 C 6.40625 -10.671875 6.5 -10.890625 6.5 -10.921875 C 6.5 -11.09375 6.34375 -11.203125 6.234375 -11.203125 C 6.15625 -11.203125 6.015625 -11.203125 5.90625 -10.875 L 0.890625 3.1875 C 0.890625 3.203125 0.8125 3.421875 0.8125 3.453125 C 0.8125 3.625 0.953125 3.734375 1.078125 3.734375 C 1.171875 3.734375 1.296875 3.71875 1.40625 3.40625 Z M 6.40625 -10.65625 "></path> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-3"> <path d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-1-0"> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-1-1"> <path d="M 4.109375 -2.265625 C 4.34375 -2.265625 4.390625 -2.265625 4.390625 -2.5 C 4.390625 -3.390625 3.90625 -4.453125 2.5 -4.453125 C 1.265625 -4.453125 0.296875 -3.421875 0.296875 -2.1875 C 0.296875 -0.890625 1.375 0.09375 2.625 0.09375 C 3.890625 0.09375 4.390625 -0.96875 4.390625 -1.203125 C 4.390625 -1.234375 4.359375 -1.328125 4.234375 -1.328125 C 4.125 -1.328125 4.109375 -1.265625 4.09375 -1.203125 C 3.734375 -0.234375 2.875 -0.203125 2.6875 -0.203125 C 2.25 -0.203125 1.78125 -0.421875 1.484375 -0.875 C 1.1875 -1.328125 1.1875 -1.96875 1.1875 -2.265625 Z M 1.203125 -2.53125 C 1.28125 -3.921875 2.140625 -4.171875 2.5 -4.171875 C 3.671875 -4.171875 3.703125 -2.765625 3.71875 -2.53125 Z M 1.203125 -2.53125 "></path> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-2-0"> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-2-1"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-2-2"> <path d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-1" x="6.434" y="32.824"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-1-1" x="17.9765" y="35.06525"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-1" x="92.361" y="32.824"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-1" x="172.96" y="32.824"></use> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-2" x="184.502746" y="32.824"></use> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-1" x="191.819328" y="32.824"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-1-1" x="203.36" y="35.06525"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-0-3" x="211.1775" y="32.824"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -79.130969 -0.00184375 L -25.638781 -0.00184375 " transform="matrix(1, 0, 0, -1, 110.838, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00019125 2.341906 C 0.820121 2.341906 1.484184 1.818469 1.484184 1.170031 C 1.484184 0.5255 0.820121 -0.00184375 -0.00019125 -0.00184375 " transform="matrix(-1, 0, 0, -1, 31.70684, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488341 2.86925 C -2.03131 1.146594 -1.019591 0.334094 -0.00006 -0.00184375 C -1.019591 -0.333875 -2.03131 -1.146375 -2.488341 -2.869031 " transform="matrix(1, 0, 0, -1, 85.43756, 29.088)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-2-1" x="56.03" y="39.19"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.252062 -0.00184375 L 54.958875 -0.00184375 " transform="matrix(1, 0, 0, -1, 110.838, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.169024 2.533312 C -1.770586 1.013781 -0.887774 0.295031 -0.001055 -0.00184375 C -0.887774 -0.294813 -1.770586 -1.013563 -2.169024 -2.533094 " transform="matrix(1, 0, 0, -1, 163.39168, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.166656 2.533312 C -1.772125 1.013781 -0.889313 0.295031 0.0013125 -0.00184375 C -0.889313 -0.294813 -1.772125 -1.013563 -2.166656 -2.533094 " transform="matrix(1, 0, 0, -1, 166.03775, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -25.162219 7.185656 C -43.732531 18.603625 -61.677844 19.099719 -80.43175 8.951281 " transform="matrix(1, 0, 0, -1, 110.838, 29.088)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485161 2.868089 C -2.030479 1.147382 -1.018565 0.33329 0.000165747 -0.000339852 C -1.021012 -0.336089 -2.033122 -1.147571 -2.485686 -2.870365 " transform="matrix(-0.87944, 0.4759, 0.4759, 0.87944, 30.19562, 20.25022)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#kEcxUTIT0UPlas9btmvHrThEFdk=-glyph-2-2" x="55.393" y="7.507"></use> </g> </svg> and hence an isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub><mo>×</mo><mi>G</mi><mo stretchy="false">/</mo><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msup><mi>T</mi> <mi>n</mi></msup><mo>×</mo><mi>A</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> G \;\simeq\; G_{\mathrm{e}} \times G/G_{\mathrm{e}} \;\simeq\; T^n \times A \,. </annotation></semantics></math></div> <p>By the assumption that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> was compact abelian, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo stretchy="false">/</mo><msub><mi>G</mi> <mi mathvariant="normal">e</mi></msub></mrow><annotation encoding="application/x-tex">A \,\coloneqq\, G/G_{\mathrm{e}}</annotation></semantics></math> is finite abelian.</p> </div> </p> <h3 id="InvariantMetric">Invariant metric</h3> <p> <div class='num_prop' id='CompactLieGroupsAdmitBiinvariantMetrics'> <h6>Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/compact+Lie+groups">compact Lie groups</a> admit <a class="existingWikiWord" href="/nlab/show/bi-invariant+Riemannian+metrics">bi-invariant Riemannian metrics</a>)</strong><br /> Every compact Lie group admits a <a class="existingWikiWord" href="/nlab/show/bi-invariant+Riemannian+metric">bi-invariant Riemannian metric</a>.</p> </div> </p> <p>(<a href="invariant+metric#Milnor76">Milnor 76, Cor. 1.4</a>)</p> <h3 id="smooth_actions">Smooth actions</h3> <div class="num_prop" id="SmoothActionOfCompactLieGroupOnSmoothManifoldIsProper"> <h6 id="proposition">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a>. Then every <a class="existingWikiWord" href="/nlab/show/smooth+function">smooth</a> <a class="existingWikiWord" href="/nlab/show/action">action</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/proper+action">proper</a>.</p> </div> <p>(e.g. <a href="#Lee12">Lee 12, Corollary 21.6</a>)</p> <h3 id="EquivariantTriangulationTheorem">Equivariant triangulation theorem</h3> <p>The <em><a class="existingWikiWord" href="/nlab/show/equivariant+triangulation+theorem">equivariant triangulation theorem</a></em> (<a href="equivariant+triangulation+theorem#Illman78">Illman 78</a>, <a href="equivariant+triangulation+theorem#Illman83">Illman 83</a>) says that for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a compact Lie group and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact</a> <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> equipped with a <a class="existingWikiWord" href="/nlab/show/smooth+function">smooth</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/action">action</a>, there exists a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/equivariant+triangulation">equivariant triangulation</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <h3 id="spaces_of_homomorphisms">Spaces of homomorphisms</h3> <ul> <li><a class="existingWikiWord" href="/nlab/show/nearby+homomorphisms+from+compact+Lie+groups+are+conjugate">nearby homomorphisms from compact Lie groups are conjugate</a></li> </ul> <h2 id="examples">Examples</h2> <ul> <li> <p>A <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a> is a compact Lie group iff it is a <a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a>.</p> </li> <li> <p>The <a class="existingWikiWord" href="/nlab/show/classical+Lie+groups">classical Lie groups</a> for <em>definite</em> <a class="existingWikiWord" href="/nlab/show/inner+product+space">inner products</a> are compact, such as the <a class="existingWikiWord" href="/nlab/show/orthogonal+groups">orthogonal groups</a>, the <a class="existingWikiWord" href="/nlab/show/unitary+groups">unitary groups</a>, the <a class="existingWikiWord" href="/nlab/show/quaternionic+unitary+groups">quaternionic unitary groups</a>, etc., but not the <a class="existingWikiWord" href="/nlab/show/Lorentz+group">Lorentz group</a> etc.</p> </li> </ul> <h2 id="applications">Applications</h2> <h3 id="InEquivariantHomotopyTheory">In equivariant homotopy theory</h3> <p>Compact Lie groups make a somewhat unexpected appearance as <a class="existingWikiWord" href="/nlab/show/equivariance+groups">equivariance groups</a> in <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a>, where the compact Lie condition on the <a class="existingWikiWord" href="/nlab/show/equivariance+group">equivariance group</a> is needed in order for (the available proofs of) the <a class="existingWikiWord" href="/nlab/show/equivariant+Whitehead+theorem">equivariant Whitehead theorem</a> to hold.</p> <p>(Namely, the <a class="existingWikiWord" href="/nlab/show/equivariant+triangulation+theorem">equivariant triangulation theorem</a> <a href="#EquivariantTriangulationTheorem">above</a> is used in these proofs to guaratee that <a class="existingWikiWord" href="/nlab/show/Cartesian+products">Cartesian products</a> of <a class="existingWikiWord" href="/nlab/show/coset+spaces">coset spaces</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">G/H</annotation></semantics></math> are themselves <a class="existingWikiWord" href="/nlab/show/G-CW-complexes">G-CW-complexes</a>.)</p> <h3 id="in_gauge_theory">In gauge theory</h3> <p>In <a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a> (<a class="existingWikiWord" href="/nlab/show/Yang-Mills+theory">Yang-Mills theory</a>/<a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>, …) …</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subgroup">closed subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+Lie+groupoid">proper Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/p-compact+group">p-compact group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+ad-equivariant+K-theory">twisted ad-equivariant K-theory</a></p> </li> </ul> <h2 id="references">References</h2> <p>Textbook accounts:</p> <ul> <li id="Bredon72"> <p><a class="existingWikiWord" href="/nlab/show/Glen+Bredon">Glen Bredon</a>, Section 0.6 of: <em><a class="existingWikiWord" href="/nlab/show/Introduction+to+compact+transformation+groups">Introduction to compact transformation groups</a></em>, Academic Press 1972 (<a href="https://www.elsevier.com/books/introduction-to-compact-transformation-groups/bredon/978-0-12-128850-1">ISBN 9780080873596</a>, <a href="http://www.indiana.edu/~jfdavis/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.pdf">pdf</a>)</p> </li> <li id="Adams82"> <p><a class="existingWikiWord" href="/nlab/show/Frank+Adams">Frank Adams</a>, <em>Lectures on Lie groups</em>, University of Chicago Press, 1982 (<a href="https://press.uchicago.edu/ucp/books/book/chicago/L/bo3614673.html">ISBN:9780226005300</a>, <a href="https://www.google.com/books/edition/Lectures_on_Lie_Groups/TC7d3ZcqjfsC?hl=en">gbooks</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hans+Duistermaat">Hans Duistermaat</a>, <a class="existingWikiWord" href="/nlab/show/Johan+A.+C.+Kolk">Johan A. C. Kolk</a>, Chapter 3 of: <em>Lie groups</em>, Springer (2000) [<a href="https://doi.org/10.1007/978-3-642-56936-4">doi:10.1007/978-3-642-56936-4</a>]</p> </li> </ul> <p>In the broader context of <a class="existingWikiWord" href="/nlab/show/smooth+manifolds">smooth manifolds</a>:</p> <ul> <li id="Lee12"><a class="existingWikiWord" href="/nlab/show/John+Lee">John Lee</a>, <em>Introduction to Smooth Manifolds</em>, Springer 2012 (<a href="https://doi.org/10.1007/978-1-4419-9982-5">doi:10.1007/978-1-4419-9982-5</a>, <a href="https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Introduction%20to%20Smooth%20Manifolds%20-%20J.%20Lee.pdf">Draft pdf of the 1st edition</a>)</li> </ul> <p>Dedicated lecture notes:</p> <ul> <li id="Salamon21"><a class="existingWikiWord" href="/nlab/show/Dietmar+Salamon">Dietmar Salamon</a>, <em>Notes on compact Lie groups</em>, 2021 (<a href="https://people.math.ethz.ch/~salamon/PREPRINTS/liegroup.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Salamon_CompactLieGroups.pdf" title="pdf">pdf</a>)</li> </ul> <p>Discussion in the context of <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Tammo+tom+Dieck">Tammo tom Dieck</a>, <a class="existingWikiWord" href="/nlab/show/Theodor+Br%C3%B6cker">Theodor Bröcker</a>, <em>Representations of compact Lie groups</em>, Springer 1985 (<a href="https://link.springer.com/book/10.1007/978-3-662-12918-0">doi:10.1007/978-3-662-12918-0</a>)</li> </ul> <p>For more see also the references at <em><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></em>.</p> </body></html> </div> <div class="revisedby"> <p> Last revised on March 20, 2023 at 14:07:12. See the <a href="/nlab/history/compact+Lie+group" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/compact+Lie+group" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11793/#Item_9">Discuss</a><span class="backintime"><a href="/nlab/revision/compact+Lie+group/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/compact+Lie+group" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/compact+Lie+group" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/compact+Lie+group/cite" style="color: black">Cite</a> <a href="/nlab/print/compact+Lie+group" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/compact+Lie+group" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>