CINXE.COM

Search results for: structural engineering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: structural engineering</title> <meta name="description" content="Search results for: structural engineering"> <meta name="keywords" content="structural engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="structural engineering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="structural engineering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6987</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: structural engineering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6987</span> Structural and Thermodynamic Properties of MnNi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Benkhettoua">N. Benkhettoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Barkata"> Y. Barkata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present first-principles studies of structural and thermodynamic properties of MnNi According to the calculated total energies, by using an all-electron full-potential linear muffin–tin orbital method (FP-LMTO) within LDA and the quasi-harmonic Debye model implemented in the Gibbs program is used for the temperature effect on structural and calorific properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20and%20materials%20engineering" title=" metallurgical and materials engineering"> metallurgical and materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/14206/structural-and-thermodynamic-properties-of-mnni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6986</span> Creative Thinking in Structural Design of Historic Constructions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avraham%20Mosseri">Avraham Mosseri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The architectural conservation process of the built heritage is a very complex process dealing with the integration of professional knowledge from many fields like history, sociology, economy, engineering, etc. One of the most important fields is the structural field, which has a great influence on the final architectural and aesthetic solution of the built heritage. In many cases, the ability to protect and save the heritage values of the historical buildings is an outcome of the structural creativity and conceptual design of the conservation engineers. This creativity is especially important when dealing with structural engineering of historic construction, where there are a lot of constraints and contradictions between different aspects like aesthetics, artistic values, culture, authenticity, structural performance, etc. But in spite of the importance of this creativity in conservation engineering, many research efforts are mainly devoted to the structural analysis of historic construction, which of course is very important and vital. But, in general, more attention can be paid to the creative process in the conceptual stage. In this situation there is a need, in parallel to analysis research, to devote more resources in order to improve the creative and conceptual theories in relation to conservation engineering. This paper focuses on the creativity aspects in the structural design process in the conservation of historic buildings as part of conservation theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20constructions" title=" historic constructions"> historic constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/77877/creative-thinking-in-structural-design-of-historic-constructions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6985</span> Kalman Filter Design in Structural Identification with Unknown Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Masoumi">Z. Masoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Moaveni"> B. Moaveni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter%20%28KF%29" title="Kalman filter (KF)">Kalman filter (KF)</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20estimation%20%28LSE%29" title=" least square estimation (LSE)"> least square estimation (LSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring%20%28SHM%29" title=" structural health monitoring (SHM)"> structural health monitoring (SHM)</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20system%20identification" title=" structural system identification"> structural system identification</a> </p> <a href="https://publications.waset.org/abstracts/49817/kalman-filter-design-in-structural-identification-with-unknown-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6984</span> Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tofigh%20Hamidavi">Tofigh Hamidavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepehr%20Abrishami"> Sepehr Abrishami</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Ponterosso"> Pasquale Ponterosso</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Begg"> David Begg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information" title="building information">building information</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture-engineering-construction" title=" architecture-engineering-construction"> architecture-engineering-construction</a>, <a href="https://publications.waset.org/abstracts/search?q=AEC" title=" AEC"> AEC</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a>, <a href="https://publications.waset.org/abstracts/search?q=offspring" title=" offspring"> offspring</a> </p> <a href="https://publications.waset.org/abstracts/91873/optimisation-of-structural-design-by-integrating-genetic-algorithms-in-the-building-information-modelling-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6983</span> Improving Carbon Fiber Structural Battery Performance with Polymer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kathleen%20Moyer">Kathleen Moyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Ait%20Boucherbil"> Nora Ait Boucherbil</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Zohair"> Murtaza Zohair</a>, <a href="https://publications.waset.org/abstracts/search?q=Janna%20Eaves-Rathert"> Janna Eaves-Rathert</a>, <a href="https://publications.waset.org/abstracts/search?q=Cary%20Pint"> Cary Pint</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20interface" title=" polymer interface"> polymer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20batteries" title=" structural batteries"> structural batteries</a> </p> <a href="https://publications.waset.org/abstracts/153279/improving-carbon-fiber-structural-battery-performance-with-polymer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6982</span> (Re)Assessing Clinical Spaces: How Do We Critically Provide Mental Health and Disability Support and Effective Care for Young People Who Are Impacted by Structural Violence and Structural Racism?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sireen%20Irsheid">Sireen Irsheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Keeney%20Parks"> Stephanie Keeney Parks</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Lindsey"> Michael A. Lindsey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medical and mental health field have been organized as reactive systems to respond to symptoms of mental health problems and disability. This becomes problematic particularly for those harmed by structural violence and racism, typically pushing us in the direction of alleviating symptoms and personalizing structural problems. The current paper examines how we assess, diagnose, and treat mental health and disability challenges in clinical spaces. We provide the readers with some context to think about the problem of racism and mental health/disability, ways to deconstruct the problem through the lens of structural violence, and recommendations to critically engage in clinical assessments, diagnosis, and treatment for young people impacted by structural violence and racism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title="mental health">mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=disability" title=" disability"> disability</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20and%20ethnicity" title=" race and ethnicity"> race and ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20violence" title=" structural violence"> structural violence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20racism" title=" structural racism"> structural racism</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20people" title=" young people"> young people</a> </p> <a href="https://publications.waset.org/abstracts/184549/reassessing-clinical-spaces-how-do-we-critically-provide-mental-health-and-disability-support-and-effective-care-for-young-people-who-are-impacted-by-structural-violence-and-structural-racism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6981</span> Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin">Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif"> Saba Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title="turbocharger">turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20steel" title=" structural steel"> structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/97552/stress-analysis-of-turbine-blades-of-turbocharger-using-structural-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6980</span> Effect of Structural Change on Productivity Convergence: A Panel Unit Root Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naveed">Amjad Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analysed the role of structural change in the process of labour productivity convergence at country and regional levels. Many forms of structural changes occurred within the European Union (EU) countries i.e. variation in sectoral employment share, changes in demand for products, variations in trade patterns and advancement in technology which may have an influence on the process of convergence. Earlier studies on convergence have neglected the role of structural changes which can have resulted in different conclusion on the nature of convergence. The contribution of this study is to examine the role of structural change in testing labour productivity convergence at various levels. For the empirical purpose, the data of 19 EU countries, 259 regions and 6 industries is used for the period of 1991-2009. The results indicate that convergence varies across regional and country levels for different industries when considered the role of structural change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=labor%20produvitivty" title="labor produvitivty">labor produvitivty</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20change" title=" structural change"> structural change</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20unit%20root" title=" panel unit root"> panel unit root</a> </p> <a href="https://publications.waset.org/abstracts/59813/effect-of-structural-change-on-productivity-convergence-a-panel-unit-root-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6979</span> Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamla%20Thungathaa">Lamla Thungathaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Conrad%20Mahlasea"> Conrad Mahlasea</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Ngcebesha"> Lisa Ngcebesha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LLM-119" title="LLM-119">LLM-119</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20rings" title=" fused rings"> fused rings</a>, <a href="https://publications.waset.org/abstracts/search?q=azole" title=" azole"> azole</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20isomers" title=" structural isomers"> structural isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=detonation%20properties" title=" detonation properties"> detonation properties</a> </p> <a href="https://publications.waset.org/abstracts/166859/evaluating-the-effect-of-structural-reorientation-to-thermochemical-and-energetic-properties-of-14-diamino-36-dinitropyrazolo43-cpyrazole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6978</span> Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhu">Qian Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidong%20Nie"> Shidong Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Yang"> Bo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Xiong"> Gang Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoxin%20Dai"> Guoxin Dai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q460GJ%20structural%20steel" title="Q460GJ structural steel">Q460GJ structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=sectioning%20method" title=" sectioning method"> sectioning method</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20medium-walled%20I-shaped%20sections" title=" welded medium-walled I-shaped sections"> welded medium-walled I-shaped sections</a> </p> <a href="https://publications.waset.org/abstracts/66348/experimental-investigation-on-residual-stresses-in-welded-medium-walled-i-shaped-sections-fabricated-from-q460gj-structural-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6977</span> Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Ang%20Li">Zi-Ang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Xuan%20Tao"> Mu-Xuan Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20composite%20structural%20system" title=" new composite structural system"> new composite structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance%20evaluation" title=" seismic performance evaluation"> seismic performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20pushover%20analysis" title=" static pushover analysis"> static pushover analysis</a> </p> <a href="https://publications.waset.org/abstracts/125678/seismic-performance-evaluation-of-the-composite-structural-system-with-separated-gravity-and-lateral-resistant-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6976</span> Study of Methods to Reduce Carbon Emissions in Structural Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Krijnen">Richard Krijnen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Wang"> Alan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20structural%20design" title="efficient structural design">efficient structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20material" title=" low-carbon material"> low-carbon material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20structural%20design" title=" sustainable structural design"> sustainable structural design</a> </p> <a href="https://publications.waset.org/abstracts/186101/study-of-methods-to-reduce-carbon-emissions-in-structural-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6975</span> Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kheyroddin">Ali Kheyroddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Mashhadiali"> Niloufar Mashhadiali</a>, <a href="https://publications.waset.org/abstracts/search?q=Frazaneh%20Kheyroddin"> Frazaneh Kheyroddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=braced%20tube" title="braced tube">braced tube</a>, <a href="https://publications.waset.org/abstracts/search?q=diagrid" title=" diagrid"> diagrid</a>, <a href="https://publications.waset.org/abstracts/search?q=framed%20tube" title=" framed tube"> framed tube</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagrid" title=" hexagrid"> hexagrid</a> </p> <a href="https://publications.waset.org/abstracts/88416/optimum-design-of-tall-tube-type-building-an-approach-to-structural-height-premium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6974</span> A Tool for Assessing Performance and Structural Quality of Business Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Kchaou">Mariem Kchaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiem%20Khlif"> Wiem Khlif</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiez%20Gargouri"> Faiez Gargouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance" title="performance">performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20quality" title=" structural quality"> structural quality</a>, <a href="https://publications.waset.org/abstracts/search?q=perspectives" title=" perspectives"> perspectives</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20framework" title=" classification framework"> classification framework</a>, <a href="https://publications.waset.org/abstracts/search?q=measures" title=" measures"> measures</a> </p> <a href="https://publications.waset.org/abstracts/120242/a-tool-for-assessing-performance-and-structural-quality-of-business-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6973</span> Finite Element Analysis of Reinforced Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintesinot%20Teshome%20Mengsha">Mintesinot Teshome Mengsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20openings" title=" small openings"> small openings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structural%20walls" title=" reinforced concrete structural walls"> reinforced concrete structural walls</a> </p> <a href="https://publications.waset.org/abstracts/186309/finite-element-analysis-of-reinforced-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6972</span> Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaygan">E. Kaygan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gatto"> A. Gatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=morphing" title=" morphing"> morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=skin" title=" skin"> skin</a>, <a href="https://publications.waset.org/abstracts/search?q=twist" title=" twist"> twist</a> </p> <a href="https://publications.waset.org/abstracts/92569/structural-analysis-of-an-active-morphing-wing-for-enhancing-uav-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6971</span> Structural Performance of a Bridge Pier on Dubious Deep Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADctor%20Cecilio">Víctor Cecilio</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20G%C3%B3mez"> Roberto Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Alberto%20Escobar"> J. Alberto Escobar</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20Guerrero"> Héctor Guerrero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20models" title=" inelastic models"> inelastic models</a>, <a href="https://publications.waset.org/abstracts/search?q=dubious%20foundation" title=" dubious foundation"> dubious foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20pier" title=" bridge pier"> bridge pier</a> </p> <a href="https://publications.waset.org/abstracts/116289/structural-performance-of-a-bridge-pier-on-dubious-deep-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6970</span> Evaluation of Structural Integrity for Composite Lattice Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Moon%20Im">Jae Moon Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Bok%20Shin"> Kwang Bok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Woo%20Lee"> Sang Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, evaluation of structural integrity for composite lattice structure was conducted by compressive test. Composite lattice structure was manufactured by carbon fiber using filament winding method. In order to evaluate the structural integrity of composite lattice structure, compressive test was done using anti-buckling fixture. The delamination occurred 84 Tons of compressive load. It was found that composite lattice structure satisfied the design requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/73662/evaluation-of-structural-integrity-for-composite-lattice-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6969</span> The Features of Formation of Russian Agriculture’s Sectoral Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalya%20G.%20Filimonova">Natalya G. Filimonova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariya%20G.%20Ozerova"> Mariya G. Ozerova</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20N.%20Ermakova"> Irina N. Ermakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Russian%20agricultural%20sectors" title="Russian agricultural sectors">Russian agricultural sectors</a>, <a href="https://publications.waset.org/abstracts/search?q=sectoral%20structure" title=" sectoral structure"> sectoral structure</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20and%20economic%20structure" title=" organizational and economic structure"> organizational and economic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20changes" title=" structural changes"> structural changes</a> </p> <a href="https://publications.waset.org/abstracts/98353/the-features-of-formation-of-russian-agricultures-sectoral-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6968</span> Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Bracken">W. C. Bracken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title="concrete masonry">concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall%20cracking" title=" masonry wall cracking"> masonry wall cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20defect" title=" structural defect"> structural defect</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage" title=" structural damage"> structural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20defect" title=" construction defect"> construction defect</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20investigation" title=" forensic investigation"> forensic investigation</a> </p> <a href="https://publications.waset.org/abstracts/56999/structural-engineering-forensic-evaluation-of-misdiagnosed-concrete-masonry-wall-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6967</span> Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Borja%20de%20Lara">Francisco Borja de Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ravanbakhsh"> Ali Ravanbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Wimmer-Schweingruber"> Robert F. Wimmer-Schweingruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Seimetz"> Lars Seimetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferm%C3%ADn%20Navarro"> Fermín Navarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%E2%80%99E4" title="Chang’E4">Chang’E4</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20national%20space%20administration" title=" Chinese national space administration"> Chinese national space administration</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander%20neutron%20dosimetry" title=" lunar lander neutron dosimetry"> lunar lander neutron dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=nastran-patran" title=" nastran-patran"> nastran-patran</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/71329/study-case-of-spacecraft-instruments-in-structural-modelling-with-nastran-patran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6966</span> Structuralism of Architectural Details in the Design of Modern High-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Pietrzak">Joanna Pietrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Stefanska"> Anna Stefanska</a>, <a href="https://publications.waset.org/abstracts/search?q=Wieslaw%20Rokicki"> Wieslaw Rokicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary high-rise buildings constructed in recent years are often tremendous examples of original and unique architectural forms, being at the same time the affirmation of technical and technological progress accomplishments. The search for more efficient, sophisticated generations of structures also concerns the shaping of high-quality details. The concept of structural detail designing is connected with the rationalization of engineering solutions as well as through the optimisation and reduction of used material. Contemporary structural detail perceived through the development of building technologies is often a very aesthetic technical and material solution, which significantly influences the visual perception of architecture. Structural details are more often seen in shaping the forms of high-rise buildings, which are erected in many culturally different countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aesthetic%20expression" title="aesthetic expression">aesthetic expression</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title=" high-rise buildings"> high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20detail" title=" structural detail"> structural detail</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/107107/structuralism-of-architectural-details-in-the-design-of-modern-high-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6965</span> Developing Pavement Structural Deterioration Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gregory%20Kelly">Gregory Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Chai"> Gary Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittampalam%20Manoharan"> Sittampalam Manoharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Delaney"> Deborah Delaney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual" title="conceptual">conceptual</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20number" title=" pavement structural number"> pavement structural number</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20deterioration%20curve" title=" pavement structural deterioration curve"> pavement structural deterioration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title=" pavement management system"> pavement management system</a> </p> <a href="https://publications.waset.org/abstracts/83307/developing-pavement-structural-deterioration-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6964</span> Identifying the Structural Components of Old Buildings from Floor Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi-Yu%20Xu">Shi-Yu Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20vulnerability%20detection" title="structural vulnerability detection">structural vulnerability detection</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20recognition" title=" object recognition"> object recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20capacity%20assessment" title=" seismic capacity assessment"> seismic capacity assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20buildings" title=" old buildings"> old buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/169289/identifying-the-structural-components-of-old-buildings-from-floor-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6963</span> Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentrically%20braced%20frame" title="eccentrically braced frame">eccentrically braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster" title=" natural disaster"> natural disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricable%20structural%20system" title=" prefabricable structural system"> prefabricable structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=removable%20link" title=" removable link"> removable link</a>, <a href="https://publications.waset.org/abstracts/search?q=SGSS" title=" SGSS"> SGSS</a> </p> <a href="https://publications.waset.org/abstracts/24787/passive-seismic-energy-dissipation-mechanisms-for-smart-green-structural-system-sgss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6962</span> Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holly%20Sandberg">Holly Sandberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20McCoy"> Christina McCoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mansy"> Khaled Mansy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eucalyptus" title="eucalyptus">eucalyptus</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/142348/carbon-sequestering-and-structural-capabilities-of-eucalyptus-cloeziana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6961</span> Applied Methods for Lightweighting Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20load" title="gravity load">gravity load</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweighting%20structural%20system" title=" lightweighting structural system"> lightweighting structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20bearing%20geometry" title=" load bearing geometry"> load bearing geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title=" seismic behavior"> seismic behavior</a> </p> <a href="https://publications.waset.org/abstracts/18158/applied-methods-for-lightweighting-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6960</span> Multifunctional Composite Structural Elements for Sensing and Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Alavi">Amir H. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20%20Barri"> Kaveh Barri</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianyun%20Zhang"> Qianyun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multifunctional%20structures" title="multifunctional structures">multifunctional structures</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=triboelectric%20nanogenerator" title=" triboelectric nanogenerator"> triboelectric nanogenerator</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/139372/multifunctional-composite-structural-elements-for-sensing-and-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6959</span> A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Al-Sehail">Osama Al-Sehail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans&rsquo; problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be &ldquo;better&rdquo;, more &quot;fit&quot;, to &ldquo;survive&rdquo;, and to be efficient. Through geometry and function&mdash;the two aspects of knowledge extracted from nature&mdash;the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form. &nbsp;&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20in%20nature" title=" design in nature"> design in nature</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title=" high-rise buildings"> high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20form" title=" structural form"> structural form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20architecture" title=" tall architecture"> tall architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20sustainability" title=" vital sustainability"> vital sustainability</a> </p> <a href="https://publications.waset.org/abstracts/64968/a-biomimetic-structural-form-developing-a-paradigm-to-attain-vital-sustainability-in-tall-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6958</span> Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikzad">H. Nikzad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yoshitomi"> S. Yoshitomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title="structural optimization">structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=etabs" title=" etabs"> etabs</a>, <a href="https://publications.waset.org/abstracts/search?q=matlab" title=" matlab"> matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=rc%20shear%20wall-frame%20structures" title=" rc shear wall-frame structures"> rc shear wall-frame structures</a> </p> <a href="https://publications.waset.org/abstracts/104127/optimal-seismic-design-of-reinforced-concrete-shear-wall-frame-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=232">232</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=233">233</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=structural%20engineering&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10