CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 187 results for author: <span class="mathjax">Chang, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Chang%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chang, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chang%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chang, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16463">arXiv:2502.16463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16463">pdf</a>, <a href="https://arxiv.org/ps/2502.16463">ps</a>, <a href="https://arxiv.org/format/2502.16463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtquan.2025.100027">10.1016/j.mtquan.2025.100027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric non-linear Hall effect in an antiferromagnetic topological insulator thin-film EuSn2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16463v1-abstract-short" style="display: inline;"> The quantum geometric structure of electrons introduces fundamental insights into understanding quantum effects in materials. One notable manifestation is the non-linear Hall effect (NLHE), which has drawn considerable interest for its potential to overcome the intrinsic limitations of semiconductor diodes at low input power and high frequency. In this study, we investigate NLHE stemming from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16463v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16463v1-abstract-full" style="display: none;"> The quantum geometric structure of electrons introduces fundamental insights into understanding quantum effects in materials. One notable manifestation is the non-linear Hall effect (NLHE), which has drawn considerable interest for its potential to overcome the intrinsic limitations of semiconductor diodes at low input power and high frequency. In this study, we investigate NLHE stemming from the real part of the quantum geometric tensor, specifically the quantum metric, in an antiferromagnetic topological material, EuSn2As2, using density functional theory. Our calculations predict a remarkable NLHE arising from a symmetry-protected, single Type-II surface Dirac cone in the even-numbered-layer two-dimensional slab thin-film, yielding a non-linear Hall conductivity exceeding 20 mA/V2-an order of magnitude larger than previously reported. This single Dirac band dispersion represents the simplest model for generating NLHE, positioning the EuSn2As2 thin-film as a hydrogen atom for NLHE systems. Additionally, we observe NLHE from band-edge states near the Fermi level. Our findings also reveal that 30% phosphorus (P) doping can double the non-linear Hall conductivity. With its substantial and tunable NLHE, EuSn2As2 thin-films present promising applications in antiferromagnetic spintronics and rectification devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16463v1-abstract-full').style.display = 'none'; document.getElementById('2502.16463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Quantum 5, 100027 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12772">arXiv:2502.12772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12772">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast annealing process of MTJ using hybrid microwave annealing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+M">Ming-Chun Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+F">Fan-Yun Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+W+A">Wei-Chi Aeneas Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chang-Shan Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kun-Ping Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tsun-Hsu Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12772v1-abstract-short" style="display: inline;"> This paper discovers that the magnetic tunnel junction (MTJ) structure is successfully magnetized with hybrid microwave annealing, confirmed by the tunneling magnetoresistance (TMR) and Coercivity (Hc) results. Hybrid microwave annealing can transform CoFeB into a single crystal and form the Fe-O bond at the interface between CoFeB and MgO without adding an extra magnet. The annealing time is sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12772v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12772v1-abstract-full" style="display: none;"> This paper discovers that the magnetic tunnel junction (MTJ) structure is successfully magnetized with hybrid microwave annealing, confirmed by the tunneling magnetoresistance (TMR) and Coercivity (Hc) results. Hybrid microwave annealing can transform CoFeB into a single crystal and form the Fe-O bond at the interface between CoFeB and MgO without adding an extra magnet. The annealing time is significantly reduced from the original 120 minutes to just 1 minute, allowing for rapid low-temperature annealing of the MTJ structure. The TEM results are used to determine the change in the lattice structure of CoFeB from amorphous to a single crystal, and the EELS result indicates the diffusion distribution of atoms in the MTJ structure. This hybrid annealing process can save a significant amount of fabrication time and is an energy-efficient alternative to the current fabrication process of MRAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12772v1-abstract-full').style.display = 'none'; document.getElementById('2502.12772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15350">arXiv:2501.15350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15350">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pyrochlore NaYbO2: A potential Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+L">Longlong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaoran Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shi-lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+C">Chengwang Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+X">Xutang Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15350v1-abstract-short" style="display: inline;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15350v1-abstract-full" style="display: none;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the first time. Synchrotron X-ray single crystal diffraction unambiguously determined that the newfound beta-NaYbO2 belongs to the three-dimensional pyrochlore structure characterized by the R-3m space group, corroborated by synchrotron X-ray and neutron powder diffraction and pair distribution function. Magnetic measurements revealed no long-range magnetic order or spin glass behavior down to 0.4 K with a low boundary spin frustration factor of 17.5, suggesting a potential QSL ground state. Under high magnetic fields, the potential QSL state was broken and spins order. Our findings reveal that NaYbO2 is a fertile playground for studying novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'none'; document.getElementById('2501.15350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited author&#39;s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05980">arXiv:2501.05980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05980">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable superconductivity coexisting with the anomalous Hall effect in 1T&#39;-WS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+T">Tobias M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+Z">Zhuangchai Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Siyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yao Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M">Mark Fischer</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05980v1-abstract-short" style="display: inline;"> Transition metal dichalcogenides are a family of quasi-two-dimensional materials that display a high technological potential due to their wide range of electronic ground states, e.g., from superconducting to semiconducting, depending on the chemical composition, crystal structure, or electrostatic doping. Here, we unveil that by tuning a single parameter, the hydrostatic pressure P, a cascade of e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05980v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05980v1-abstract-full" style="display: none;"> Transition metal dichalcogenides are a family of quasi-two-dimensional materials that display a high technological potential due to their wide range of electronic ground states, e.g., from superconducting to semiconducting, depending on the chemical composition, crystal structure, or electrostatic doping. Here, we unveil that by tuning a single parameter, the hydrostatic pressure P, a cascade of electronic phase transitions can be induced in the few-layer transition metal dichalcogenide 1T&#39;-WS2, including superconducting, topological, and anomalous Hall effect phases. Specifically, as P increases, we observe a dual phase transition: the suppression of superconductivity with the concomitant emergence of an anomalous Hall effect at P=1.15 GPa. Remarkably, upon further increasing the pressure above 1.6 GPa, we uncover a reentrant superconducting state that emerges out of a state still exhibiting an anomalous Hall effect. This superconducting state shows a marked increase in superconducting anisotropy with respect to the phase observed at ambient pressure, suggesting a different superconducting state with a distinct pairing symmetry. Via first-principles calculations, we demonstrate that the system concomitantly transitions into a strong topological phase with markedly different band orbital characters and Fermi surfaces contributing to the superconductivity. These findings position 1T&#39;-WS2 as a unique, tunable superconductor, wherein superconductivity, anomalous transport, and band features can be tuned through the application of moderate pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05980v1-abstract-full').style.display = 'none'; document.getElementById('2501.05980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06150">arXiv:2412.06150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06150">pdf</a>, <a href="https://arxiv.org/format/2412.06150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Moving Protocol of Majorana Corner Modes in a Superconducting 2D Weyl Semimetal Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Ching-Kai Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+G">Guang Bian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06150v2-abstract-short" style="display: inline;"> Second-order topological superconductors host Majorana corner modes (MCMs), which are confined to specific corners of the system. This spatial restriction presents challenges for manipulating and relocating MCMs. We propose a novel protocol for dynamically controlling the movement of time-reversal symmetric MCMs in a heterostructure consisting of a 2D Weyl semimetal and a $d$-wave superconductor.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06150v2-abstract-full').style.display = 'inline'; document.getElementById('2412.06150v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06150v2-abstract-full" style="display: none;"> Second-order topological superconductors host Majorana corner modes (MCMs), which are confined to specific corners of the system. This spatial restriction presents challenges for manipulating and relocating MCMs. We propose a novel protocol for dynamically controlling the movement of time-reversal symmetric MCMs in a heterostructure consisting of a 2D Weyl semimetal and a $d$-wave superconductor. By leveraging the energy asymmetry of topological edge states in the 2D Weyl semimetal, the position of MCMs can be effectively tuned via chemical potential adjustments. We further introduce a device architecture that integrates multiple heterostructure blocks, each controlled by independent gate voltages, to enable the adiabatic movement and exchange of MCMs. This approach demonstrates a robust mechanism for Majorana manipulation and provides a scalable framework for future experimental studies of topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06150v2-abstract-full').style.display = 'none'; document.getElementById('2412.06150v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08596">arXiv:2411.08596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08596">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.4c01195">10.1021/acs.cgd.4c01195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08596v1-abstract-short" style="display: inline;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08596v1-abstract-full" style="display: none;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order to (1) address the open question whether the room temperature crystal structure is P-3m1, P-3, P21/c or else, (2) to elucidate the nature of phase transitions, and (3) to study direction-dependent physical properties. Single-crystal-to-single-crystal structural transitions at ~305 K and ~127 K were observed in the averievite CsClCu5V2O10 single crystals. The nature of the transition at ~305 K, which was reported as P-3m1-P21/c transition, was found to be a structural transition from high temperature P-3m1 to low temperature P-3 by combining variable temperature synchrotron X-ray single crystal and high-resolution powder diffraction. In-plane and out-of-plane magnetic susceptibility and heat capacity measurements confirm a first-order transition at 305 K, a structural transition at 127 K and an antiferromagnetic transition at 24 K. These averievites are thus ideal model systems for a deeper understanding of structural transitions and magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'none'; document.getElementById('2411.08596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystal Growth &amp; Design (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02852">arXiv:2411.02852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02852">pdf</a>, <a href="https://arxiv.org/ps/2411.02852">ps</a>, <a href="https://arxiv.org/format/2411.02852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong coupling of a superconducting flux qubit to single bismuth donors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzman%2C+I">I. Holzman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+S+Q">S. Q. Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holmes%2C+D">D. Holmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+B+C">B. C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamieson%2C+D+N">D. N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+M">M. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02852v1-abstract-short" style="display: inline;"> The realization of a quantum computer represents a tremendous scientific and technological challenge due to the extreme fragility of quantum information. The physical support of information, namely the quantum bit or qubit, must at the same time be strongly coupled to other qubits by gates to compute information, and well decoupled from its environment to keep its quantum behavior. An interesting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02852v1-abstract-full" style="display: none;"> The realization of a quantum computer represents a tremendous scientific and technological challenge due to the extreme fragility of quantum information. The physical support of information, namely the quantum bit or qubit, must at the same time be strongly coupled to other qubits by gates to compute information, and well decoupled from its environment to keep its quantum behavior. An interesting physical system for realizing such qubits are magnetic impurities in semiconductors, such as bismuth donors in silicon. Indeed, spins associated to bismuth donors can reach an extremely long coherence time -- of the order of seconds. Yet it is extremely difficult to establish and control efficient gates between these spins. Here we demonstrate a protocol where single bismuth donors can coherently transfer their quantum information to a superconducting flux qubit, which acts as a mediator or quantum bus. This superconducting device allows to connect distant spins on-demand with little impact on their coherent behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02852v1-abstract-full').style.display = 'none'; document.getElementById('2411.02852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures and 5 extended data figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04321">arXiv:2410.04321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c01342">10.1021/acs.chemmater.4c01342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascade of phase transitions and large magnetic anisotropy in a triangle-kagome-triangle trilayer antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shilei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04321v1-abstract-short" style="display: inline;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04321v1-abstract-full" style="display: none;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K from high temperature centrosymmetric P-3m1 to low temperature noncentrosymmetric P321, followed by an AFM transition at 13.6 K, another structural transition centering at ~3 K, and another AFM transition at ~2.18 K. Based upon magnetic susceptibility and magnetization data with magnetic fields perpendicular to the ab plane, a phase diagram, consisting of a paramagnetic state, two AFM states and four field-induced states including two magnetization plateaus, has been constructed. Our findings demonstrate that the quasi-2D CsClCu5P2O10 exhibits rich structural and metamagnetic transitions and the averievite family is a fertile platform for exploring novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'none'; document.getElementById('2410.04321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials 36, 9516-9525 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08394">arXiv:2408.08394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51255-3">10.1038/s41467-024-51255-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A topological Hund nodal line antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Che-Min Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaohu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Tong Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shengwei Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08394v1-abstract-short" style="display: inline;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08394v1-abstract-full" style="display: none;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'none'; document.getElementById('2408.08394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 7052 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02569">arXiv:2408.02569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02569">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Keldysh theory for non-resonant strong-field ionization of monolayer 2D materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Her%2C+T">Tsing-Hua Her</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Che-Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Darden%2C+K">Kenan Darden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tsun-Hsu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">Hsin-Yu Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02569v1-abstract-short" style="display: inline;"> The Keldysh theory of photoionization for solids is generalized to atomically thin two-dimensional semiconductors. We derive a closed-form formula and its asymptotic forms for a two-band model with a Kane dispersion. These formulas exhibit characteristically different behaviors from their bulk counterparts which are attributed to the scaling of the 2D density of states. We validate our formulas by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02569v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02569v1-abstract-full" style="display: none;"> The Keldysh theory of photoionization for solids is generalized to atomically thin two-dimensional semiconductors. We derive a closed-form formula and its asymptotic forms for a two-band model with a Kane dispersion. These formulas exhibit characteristically different behaviors from their bulk counterparts which are attributed to the scaling of the 2D density of states. We validate our formulas by comparing them to recent strong-field ionization experiments in monolayer MoS2 with good agreement. Our work is expected to find a wide range of applications in intense light - 2D material interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02569v1-abstract-full').style.display = 'none'; document.getElementById('2408.02569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16771">arXiv:2406.16771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16771">pdf</a>, <a href="https://arxiv.org/format/2406.16771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01219-8">10.1038/s41928-024-01219-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An antiferromagnetic diode effect in even-layered MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yacoby%2C+A">Amir Yacoby</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16771v2-abstract-short" style="display: inline;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16771v2-abstract-full" style="display: none;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric superconductors, realizing the superconducting diode effect. Here, we show that, even in a centrosymmetric crystal without directional charge separation, the spins of an antiferromagnet (AFM) can generate a spatial directionality, leading to an AFM diode effect. We observe large second-harmonic transport in a nonlinear electronic device enabled by the compensated AFM state of even-layered MnBi2Te4. We also report a novel electrical sum-frequency generation (SFG), which has been rarely explored in contrast to the well-known optical SFG in wide-gap insulators. We demonstrate that the AFM enables an in-plane field-effect transistor and harvesting of wireless electromagnetic energy. The electrical SFG establishes a powerful method to study nonlinear electronics built by quantum materials. The AFM diode effect paves the way for potential device concepts including AFM logic circuits, self-powered AFM spintronics, and other applications that potentially bridge nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'none'; document.getElementById('2406.16771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33+8 pages, 14+2 figures. arXiv admin note: text overlap with arXiv:2306.09575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 7, 751-759 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15297">arXiv:2405.15297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184112">10.1103/PhysRevB.109.184112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field magnetoelectric coupling and successive magnetic transitions in Mn-doped polar antiferromagnet Ni3TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">C. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P+Z">P. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+W+J">W. J. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15297v2-abstract-short" style="display: inline;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'inline'; document.getElementById('2405.15297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15297v2-abstract-full" style="display: none;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 single crystals in high magnetic field (H) up to 52 T. We present a previously unreported weak ferromagnetic behavior appeared in the ab plane below 9.5 K in addition to the incommensurate helical and commensurate collinear antiferromagnetic states. In the low-field region, a spin-flop type metamagnetic transition without any hysteresis occurs at Hc1 for H // c, while another metamagnetic transition accompanied with a change in electric polarization is observed at Hc2 in the high-field region both for H // c and H // ab above 30 K, which can be attributed to the sudden rotation of magnetic moments at Ni2 sites. The ME measurements reveal that a first-order ME effect is observed in the low-T and low-H regions, while a second-order ME coupling term appears above 30 K in the magnetic field range of Hc1 &lt; H &lt; Hc2 for H // c and H &lt; Hc2 for H // ab, both becoming significant with increasing temperature. Eventually, they are dominated by the second-order ME effect near the antiferromagnetic transition temperature. The present work demonstrates that Ni3-xMnxTeO6 is an exotic magnetoelectric material compared with Ni3TeO6 and its derivatives, thereby providing insights to better understand the magnetism and ME coupling in Ni3TeO6 and its derivatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'none'; document.getElementById('2405.15297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184112 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13419">arXiv:2405.13419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13419">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Percolation Effect Induced Significant Change of Complex Permittivity and Permeability for Silver-Epoxy Nano-Composites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+B">Bo-Wei Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tsun-Hsu Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13419v3-abstract-short" style="display: inline;"> The intricate interplay between complex permittivity and permeability constitutes the cornerstone of electromagnetic (EM) applications, enabling precise customization for various uses. This study employed silver-epoxy nano-composites to exemplify a conductor-insulator composite, leveraging silver&#39;s exceptional attributes, such as high conductivity and low reactivity. The determination of complex p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13419v3-abstract-full').style.display = 'inline'; document.getElementById('2405.13419v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13419v3-abstract-full" style="display: none;"> The intricate interplay between complex permittivity and permeability constitutes the cornerstone of electromagnetic (EM) applications, enabling precise customization for various uses. This study employed silver-epoxy nano-composites to exemplify a conductor-insulator composite, leveraging silver&#39;s exceptional attributes, such as high conductivity and low reactivity. The determination of complex permittivity and permeability was conducted via the transmission/reflection method. At lower concentrations of dispersed silver particles, these nano-particles within the epoxy resin act as modest dipoles, augmenting permittivity. This regime aligns closely with the effective medium theory (EMT) and comprises the focus of much research. However, nearing the percolation threshold, a percolation effect emerges, drastically accelerating enhancement rates beyond the predictions of EMT. Simultaneously, long-wavelength electromagnetic waves induce diamagnetic currents within loops formed by metal grains. This diamagnetic effect intensifies with increasing volume fraction, leading to a reduction in permeability. This study observed percolation power law behavior near the threshold with calculated critical exponents. Consequently, the dielectric constant of the silver-epoxy nano-composite reached a maximum of 515. Regarding permeability, the lowest recorded value was 0.31. These findings were obtained within the X-band (8.2 GHz~12.4 GHz) region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13419v3-abstract-full').style.display = 'none'; document.getElementById('2405.13419v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18893">arXiv:2402.18893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18893">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct Visualization of a Disorder Driven Electronic Smectic Phase in Dirac Nodal Line Semimetal GdSbTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Venkatesan%2C+B">Balaji Venkatesan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Syu-You Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Jen-Te Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+S">Shiang-Bin Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Po-Yuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+C">Chih-Chuan Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raju%2C+K">Kalaivanan Raju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sankar%2C+R">Raman Sankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fongchaiya%2C+S">Somboon Fongchaiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+M">Ming-Wen Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chia-Seng Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Del+Maestro%2C+A">Adrian Del Maestro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+T">Tien-Ming Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18893v3-abstract-short" style="display: inline;"> Electronic liquid crystal (ELC) phases are spontaneous symmetry breaking states believed to arise from strong electron correlation in quantum materials such as cuprates and iron pnictides. Here, we report a direct observation of a smectic phase in a weakly correlated Dirac nodal line (DNL) semimetal GdSbxTe2-x. Incommensurate smectic charge modulation and intense local unidirectional nanostructure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18893v3-abstract-full').style.display = 'inline'; document.getElementById('2402.18893v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18893v3-abstract-full" style="display: none;"> Electronic liquid crystal (ELC) phases are spontaneous symmetry breaking states believed to arise from strong electron correlation in quantum materials such as cuprates and iron pnictides. Here, we report a direct observation of a smectic phase in a weakly correlated Dirac nodal line (DNL) semimetal GdSbxTe2-x. Incommensurate smectic charge modulation and intense local unidirectional nanostructure are visualized by using spectroscopic imaging - scanning tunneling microscopy. As topological materials with symmetry protected Dirac or Weyl fermions are mostly weakly correlated, the discovery of such an ELC phase are anomalous and raise questions on the origin of their emergence. Specifically, we demonstrate how chemical substitution generates these symmetry breaking phases before the system undergoes a charge density wave (CDW) - orthorhombic structural transition. Our results highlight the importance of impurities in realizing ELC phases and present a new material platform for exploring the interplay among quenched disorder, topology and electron correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18893v3-abstract-full').style.display = 'none'; document.getElementById('2402.18893v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02323">arXiv:2402.02323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02323">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Infrared Optical Anisotropy in Quasi-1D Hexagonal Chalcogenide BaTiSe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+B">Boyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+H">Hongyan Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zhengyu Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Shantanu Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Settineri%2C+N+S">Nicholas S. Settineri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cronin%2C+S+B">Stephen B. Cronin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kats%2C+M+A">Mikhail A. Kats</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravichandran%2C+J">Jayakanth Ravichandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02323v1-abstract-short" style="display: inline;"> Polarimetric infrared detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy was discovered in quasi-1D narrow-bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3[1,2] and Sr9/8TiS3[3,4]. In these materials, the critical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02323v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02323v1-abstract-full" style="display: none;"> Polarimetric infrared detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy was discovered in quasi-1D narrow-bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3[1,2] and Sr9/8TiS3[3,4]. In these materials, the critical role of atomic-scale structure modulations[4,5] in the unconventional electrical[5,6], optical[7,8], and thermal[7,9] properties raises the broader question of other materials that belong to this family. To address this issue, for the first time, we synthesized high-quality single crystals of a largely unexplored member of the A1+xTiX3 (X = S, Se) family, BaTiSe3. Single-crystal X-ray diffraction determined the room-temperature structure with the P31c space group, which is a superstructure of the earlier reported[10] P63/mmc structure. The crystal structure of BaTiSe3 features antiparallel c-axis displacements similar to BaTiS3,[2] but is of lower symmetry. Polarization-resolved Raman and Fourier transform infrared (FTIR) spectroscopy were used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (perpendicular to c) and extraordinary (parallel to c) optical axes was quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence 螖n~0.9, BaTiSe3 emerges as a new candidate for miniaturized birefringent optics for mid-wave infrared to long-wave infrared imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02323v1-abstract-full').style.display = 'none'; document.getElementById('2402.02323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05691">arXiv:2401.05691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05691">pdf</a>, <a href="https://arxiv.org/ps/2401.05691">ps</a>, <a href="https://arxiv.org/format/2401.05691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MH00165F">10.1039/D4MH00165F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic Scale Quantum Anomalous Hall Effect in Monolayer Graphene/$\rm MnBi_{2}Te_{4}$ Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Suyang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05691v1-abstract-short" style="display: inline;"> The two-dimensional quantum anomalous Hall (QAH) effect is direct evidence of non-trivial Berry curvature topology in condensed matter physics. Searching for QAH in 2D materials, particularly with simplified fabrication methods, poses a significant challenge in future applications. Despite numerous theoretical works proposed for the QAH effect with $C=2$ in graphene, neglecting magnetism sources s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05691v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05691v1-abstract-full" style="display: none;"> The two-dimensional quantum anomalous Hall (QAH) effect is direct evidence of non-trivial Berry curvature topology in condensed matter physics. Searching for QAH in 2D materials, particularly with simplified fabrication methods, poses a significant challenge in future applications. Despite numerous theoretical works proposed for the QAH effect with $C=2$ in graphene, neglecting magnetism sources such as proper substrate effects remain experimental evidence absent. In this work, we propose the QAH effect in graphene/$\rm MnBi_{2}Te_{4}$ (MBT) heterostructure based on density-functional theory (DFT). The monolayer MBT introduces spin-orbital coupling, Zeeman exchange field, and Kekul$\rm \acute{e}$ distortion as a substrate effect into graphene, resulting in QAH with $C=1$ in the heterostructure. Our effective Hamiltonian further presents a rich phase diagram that has not been studied previously. Our work provides a new and practical way to explore the QAH effect in monolayer graphene and the magnetic topological phases by the flexibility of MBT family materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05691v1-abstract-full').style.display = 'none'; document.getElementById('2401.05691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04671">arXiv:2401.04671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04671">pdf</a>, <a href="https://arxiv.org/format/2401.04671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.144101">10.1103/PhysRevB.109.144101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Jahn-Teller driven quadrupolar ordering and spin-orbital dimer formation in GaNb$_{4}$Se$_{8}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tsung-Han Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+K+W">K. W. Plumb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04671v1-abstract-short" style="display: inline;"> The lacunar spinel GaNb$_4$Se$_8$ is a tetrahedral cluster Mott insulator where spin-orbit coupling on molecular orbitals and Jahn-Teller energy scales are competitive. GaNb$_4$Se$_8$ undergoes a structural and anti-polar ordering transition at T$_Q$ = 50 K that corresponds to a quadrupolar ordering of molecular orbitals on Nb$_4$ clusters. A second transition occurs at T$_M$ = 29 K, where local d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04671v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04671v1-abstract-full" style="display: none;"> The lacunar spinel GaNb$_4$Se$_8$ is a tetrahedral cluster Mott insulator where spin-orbit coupling on molecular orbitals and Jahn-Teller energy scales are competitive. GaNb$_4$Se$_8$ undergoes a structural and anti-polar ordering transition at T$_Q$ = 50 K that corresponds to a quadrupolar ordering of molecular orbitals on Nb$_4$ clusters. A second transition occurs at T$_M$ = 29 K, where local distortions on the Nb$_4$ clusters rearrange. We present a single crystal x-ray diffraction investigation these phase transitions and solve the crystal structure in the intermediate T$_M$ &lt; T &lt; T$_Q$ and low T &lt; T$_M$ temperature phases. The intermediate phase is a primitive cubic P2$_1$3 structure with a staggered arrangement of Nb4 cluster distortions. A symmetry mode analysis reveals that the transition at TQ is continuous and described by a single Jahn-Teller active amplitude mode. In the low temperature phase, the symmetry of Nb$_4$ clusters is further reduced and the unit cell doubles into an orthorhombic P2$_1$2$_1$2$_1$ space group. Nb$_4$ clusters rearrange through this transition to form a staggered arrangement of intercluster dimers, suggesting a valence bond solid magnetic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04671v1-abstract-full').style.display = 'none'; document.getElementById('2401.04671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 144101 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11794">arXiv:2312.11794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11794">pdf</a>, <a href="https://arxiv.org/ps/2312.11794">ps</a>, <a href="https://arxiv.org/format/2312.11794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.155143">10.1103/PhysRevB.109.155143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feature-energy duality of topological boundary states in multilayer quantum spin Hall insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+Y">Yi-Chun Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11794v1-abstract-short" style="display: inline;"> Gapless topological boundary states characterize nontrivial topological phases arising from the bulk-boundary correspondence in symmetry-protected topological materials, such as the emergence of helical edge states in a two-dimensional $\mathbb{Z}_2$ topological insulator. However, the incorporation of symmetry-breaking perturbation terms in the Hamiltonian leads to the gapping of these edge bands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11794v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11794v1-abstract-full" style="display: none;"> Gapless topological boundary states characterize nontrivial topological phases arising from the bulk-boundary correspondence in symmetry-protected topological materials, such as the emergence of helical edge states in a two-dimensional $\mathbb{Z}_2$ topological insulator. However, the incorporation of symmetry-breaking perturbation terms in the Hamiltonian leads to the gapping of these edge bands, resulting in missing these crucial topological boundary states. In this work, we systematically investigate the robustness of bulk-boundary correspondence in the quantum spin Hall insulator via recently introduced feature spectrum topology. Our findings present a comprehensive understanding of feature-energy duality, illustrating that the aggregate number of gapless edge states in the energy-momentum ($\it{E-k}$) map and the non-trivial edge states in the $\hat{S}_z$ feature spectrum equals the spin Chern number of multilayer quantum spin Hall insulator. We identify a van der Waals material bismuth bromide $\rm(Bi_4Br_4)$ as a promising candidate through first-principles calculations. Our work not only unravels the intricacies of bulk-boundary correspondence but also charts a course for exploring quantum spin Hall insulators with high spin-Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11794v1-abstract-full').style.display = 'none'; document.getElementById('2312.11794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02316">arXiv:2312.02316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02316">pdf</a>, <a href="https://arxiv.org/format/2312.02316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable High Spin Chern-Number Insulator Phases in Strained Sb Monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cook%2C+J">Jacob Cook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Po-Yuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volz%2C+T">Theo Volz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conner%2C+C">Clayton Conner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Satterfield%2C+R">Riley Satterfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berglund%2C+J">Joseph Berglund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Q">Qiangsheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Rob G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+G">Guang Bian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02316v2-abstract-short" style="display: inline;"> High spin Chern-number insulators (HSCI) have emerged as a novel 2D topological phase of condensed matter that is beyond the classification of topological quantum chemistry. In this work, we report the observation of a semimetallic Sb monolayer carrying the same band topology as HSCI with a spin Chern number equal to 2. Our calculations further indicate a moderate lattice strain can make Sb monola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02316v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02316v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02316v2-abstract-full" style="display: none;"> High spin Chern-number insulators (HSCI) have emerged as a novel 2D topological phase of condensed matter that is beyond the classification of topological quantum chemistry. In this work, we report the observation of a semimetallic Sb monolayer carrying the same band topology as HSCI with a spin Chern number equal to 2. Our calculations further indicate a moderate lattice strain can make Sb monolayer an insulator or a semimetal with a tunable spin Chern number from 0 to 3. The results suggest strained Sb monolayers as a promising platform for exploring exotic properties of the HSCI topological matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02316v2-abstract-full').style.display = 'none'; document.getElementById('2312.02316v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08983">arXiv:2309.08983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08983">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.104412">10.1103/PhysRevMaterials.5.104412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural origin of the Jeff=1/2 antiferromagnetic phase in Ga-doped Sr2IrO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+W">H. W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L+Y">L. Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+N">N. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+B">B. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S+L">S. L. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+M">J. M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08983v1-abstract-short" style="display: inline;"> Sr2IrO4 hosts a novel Jeff =1/2 Mott state and quasi-two-dimensional antiferromagnetic order, providing a unique avenue of exploring emergent states of matter and functions that are extraordinarily sensitive to any structural variations. While the correlation between the physical property and lattice structure in Sr2IrO4 has been a focused issue in the past decade, a common perception assumes that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08983v1-abstract-full').style.display = 'inline'; document.getElementById('2309.08983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08983v1-abstract-full" style="display: none;"> Sr2IrO4 hosts a novel Jeff =1/2 Mott state and quasi-two-dimensional antiferromagnetic order, providing a unique avenue of exploring emergent states of matter and functions that are extraordinarily sensitive to any structural variations. While the correlation between the physical property and lattice structure in Sr2IrO4 has been a focused issue in the past decade, a common perception assumes that the magnetic ordering is essentially determined by the Ir-O-Ir bond angle. Therefore, a delicate modulation of this angle and consequently a major modulation of the magnetic ordering, by chemical doping such as Ga at Ir site, has been extensively investigated and well believed. In this work, however, we present a whole package of structure and magnetism data on a series of single crystal and polycrystalline Sr2Ir1-xGaxO4 samples, revealing the substantial difference in the N茅el temperature TN between the two types of samples, and the TN value for the polycrystalline sample x = 0.09 is even 64 K higher than that of the single crystal sample x = 0.09 (deltaTN ~ 64 K at x = 0.09). Our systematic investigations demonstrate the crucial role of the c/a ratio in tuning the interlayer coupling and thereby the Neel point TN, i.e. a higher TN can be achieved as c/a is reduced. The notable differences in structural parameters between the two groups of samples are probably caused by additional strain due to the massive grain boundaries in polycrystalline samples. The present work suggests an additional ingredient of physics that is essential in modulating the emergent properties in Sr2IrO4 and probably other iridates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08983v1-abstract-full').style.display = 'none'; document.getElementById('2309.08983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 5, 104412 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08981">arXiv:2309.08981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08981">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2022.100809">10.1016/j.mtphys.2022.100809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain tuned magnetotransport of Jeff=1/2 antiferromagnetic Sr2IrO4 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+N">N. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+Y+K">Y. K. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+B">B. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+R">R. Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">S. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08981v1-abstract-short" style="display: inline;"> In this work, we report observation of strain effect on physical properties of Sr2IrO4 thin films grown on SrTiO3 (001) and LaAlO3 (001) substrates. It is found that the film on LaAlO3 with compressive strain has a lower antiferromagnetic transition temperature (TN~210 K) than the film on SrTiO3 (TN~230 K) with tensile strain, which is probably caused by modified interlayer coupling. Interestingly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08981v1-abstract-full').style.display = 'inline'; document.getElementById('2309.08981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08981v1-abstract-full" style="display: none;"> In this work, we report observation of strain effect on physical properties of Sr2IrO4 thin films grown on SrTiO3 (001) and LaAlO3 (001) substrates. It is found that the film on LaAlO3 with compressive strain has a lower antiferromagnetic transition temperature (TN~210 K) than the film on SrTiO3 (TN~230 K) with tensile strain, which is probably caused by modified interlayer coupling. Interestingly, magnetoresistance due to pseudospin-flip of the film on LaAlO3 is much larger than that of tensile-strained film on SrTiO3, and robust anisotropic magnetoresistance is observed in the former, but H-driven reversal behavior is seen in the latter. By performing first principles calculations, it is revealed that epitaxial strain plays an efficient role in tuning the canting angle of Jeff=1/2 moments and thus net moment at every IrO2 layer, responsible for the difference in magnetoresistance between the films. The reversal of anisotropic magnetoresistance in the thin film on SrTiO3 can be ascribed to stabilization of a metastable stable with smaller bandgap as the Jeff=1/2 moments are aligned along the diagonal of basal plane by H. However, theoretical calculations reveal much higher magnetocrystalline anisotropy energy in the film on LaAlO3. This causes difficulties to drive the Jeff=1/2 moments to reach the diagonal and thereby the metastable state, explaining the distinct anisotropic magnetoresistance between two samples in a qualitative sense. Our findings indicate that strain can be a highly efficient mean to engineer the functionalities of Jeff=1/2 antiferromagnet Sr2IrO4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08981v1-abstract-full').style.display = 'none'; document.getElementById('2309.08981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 27, 100809 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05880">arXiv:2309.05880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05880">pdf</a>, <a href="https://arxiv.org/format/2309.05880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unconventional superconducting pairing in a B20 Kramers Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verma%2C+R">Rahul Verma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+A">Amit Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05880v3-abstract-short" style="display: inline;"> Topological superconductors present an ideal platform for exploring nontrivial superconductivity and realizing Majorana boundary modes in materials. However, finding a single-phase topological material with nontrivial superconducting states is a challenge. Here, we predict nontrivial superconductivity in the pristine chiral metal RhGe with a transition temperature of 5.8 K. Chiral symmetries in Rh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05880v3-abstract-full').style.display = 'inline'; document.getElementById('2309.05880v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05880v3-abstract-full" style="display: none;"> Topological superconductors present an ideal platform for exploring nontrivial superconductivity and realizing Majorana boundary modes in materials. However, finding a single-phase topological material with nontrivial superconducting states is a challenge. Here, we predict nontrivial superconductivity in the pristine chiral metal RhGe with a transition temperature of 5.8 K. Chiral symmetries in RhGe enforce multifold Weyl fermions at high-symmetry momentum points and spin-polarized Fermi arc states that span the whole surface Brillouin zone. These bulk and surface chiral states support multiple type-II van Hove singularities that enhance superconductivity in RhGe. Our detailed analysis of superconducting pairing symmetries involving Chiral Fermi pockets in RhGe, indicates the presence of nontrivial superconducting pairing. Our study establishes RhGe as a promising candidate material for hosting mixed-parity pairing and topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05880v3-abstract-full').style.display = 'none'; document.getElementById('2309.05880v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02213">arXiv:2307.02213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02213">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multi-level recording in dual-layer FePt-C granular film for heat-assisted magnetic recording </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tozman%2C+P">P. Tozman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isogami%2C+S">S. Isogami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+I">I. Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolyachkin%2C+A">A. Bolyachkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sepehri-Amin%2C+H">H. Sepehri-Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greaves%2C+S+J">S. J. Greaves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suto%2C+H">H. Suto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+Y">Y. Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H+T+Y">H. T. Y. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubota%2C+Y">Y Kubota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steiner%2C+P">P. Steiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P+-">P. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hono%2C+K">K. Hono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y+K">Y. K. Takahashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02213v1-abstract-short" style="display: inline;"> Multi-level magnetic recording is a new concept for increasing the data storage capacity of hard disk drives. However, its implementation has been limited by a lack of suitable media capable of storing information at multiple levels. Herein, we overcome this problem by developing dual FePt-C nanogranular films separated by a Ru-C breaking layer with a cubic crystal structure. The FePt grains in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02213v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02213v1-abstract-full" style="display: none;"> Multi-level magnetic recording is a new concept for increasing the data storage capacity of hard disk drives. However, its implementation has been limited by a lack of suitable media capable of storing information at multiple levels. Herein, we overcome this problem by developing dual FePt-C nanogranular films separated by a Ru-C breaking layer with a cubic crystal structure. The FePt grains in the bottom and top layers of the developed media exhibited different effective magnetocrystalline anisotropies and Curie temperatures. The former is realized by different degrees of ordering in the L10-FePt grains, whereas the latter was attributed to the diffusion of Ru, thereby enabling separate magnetic recordings at each layer under different magnetic fields and temperatures. Furthermore, the magnetic measurements and heat-assisted magnetic recording simulations showed that these media enabled 3-level recording and could potentially be extended to 4-level recording, as the up-down and down-up states exhibited non-zero magnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02213v1-abstract-full').style.display = 'none'; document.getElementById('2307.02213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09575">arXiv:2306.09575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09575">pdf</a>, <a href="https://arxiv.org/format/2306.09575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf1506">10.1126/science.adf1506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09575v2-abstract-short" style="display: inline;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferroma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09575v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09575v2-abstract-full" style="display: none;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'none'; document.getElementById('2306.09575v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 381, 181-186 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06084">arXiv:2305.06084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.114801">10.1103/PhysRevMaterials.7.114801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubling of the superconducting transition temperature in ultra-clean wafer-scale aluminum nanofilms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yeh%2C+C">Ching-Chen Yeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+T">Thi-Hien Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+P">Pin-Chi Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chia-Hung Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T+-">T. -R. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Siang-Chi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu-Yao Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Hsun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chu-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+I">Ivar Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Sheng-Di Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+C">Chi-Te Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06084v1-abstract-short" style="display: inline;"> Superconducting properties of thin films can be vastly different from those of bulk materials. Seminal work has shown the critical temperature Tc of elemental superconductors decreases with decreasing film thickness when the normal-state sheet resistance is lower than the quantum resistance h/(4e2). Sporadic examples on disordered films, however, hinted an enhancement in Tc although, structural an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06084v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06084v1-abstract-full" style="display: none;"> Superconducting properties of thin films can be vastly different from those of bulk materials. Seminal work has shown the critical temperature Tc of elemental superconductors decreases with decreasing film thickness when the normal-state sheet resistance is lower than the quantum resistance h/(4e2). Sporadic examples on disordered films, however, hinted an enhancement in Tc although, structural and strain characterization was not possible since samples were prepared on a cold substrate in situ. To clarify the role of reduced dimensionality and disorder on the superconducting properties of thin films we employed molecular beam epitaxy to grow wafer-scale high-quality aluminum (Al) nanofilms with normal-state sheet resistance at least 20 times lower than h/(4e2) and investigated their electronic and structural properties ex situ. Defying general expectations, Tc increases with decreasing Al film thickness, reaching 2.4 K for 3.5-nm-thick Al film grown on GaAs: twice that of bulk Al (1.2 K). DFT calculations indicate surface phonon softening impacts superconductivity in pure ultra-thin films, offering a new route for materials engineering in two dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06084v1-abstract-full').style.display = 'none'; document.getElementById('2305.06084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater.7, 114801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14453">arXiv:2304.14453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14453">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-33237-5">10.1038/s41598-023-33237-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Unconventional Superconductivity and Nontrivial Topology in PdTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chapai%2C+R">Ramakanta Chapai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+P+V+S">P. V. Sreenivasa Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D+E">David E. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karki%2C+A+B">Amar B. Karki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14453v1-abstract-short" style="display: inline;"> PdTe is a superconductor with Tc ~4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe [Yang et al., Phys. Rev. Lett. 130, 046402 (2023)]. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. Below Tc, the electronic sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14453v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14453v1-abstract-full" style="display: none;"> PdTe is a superconductor with Tc ~4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe [Yang et al., Phys. Rev. Lett. 130, 046402 (2023)]. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. Below Tc, the electronic specific heat initially decreases in T3 behavior (1.5 K &lt; T &lt; Tc) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (伪 and \b{eta}) and two hole bands (纬 and 畏) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (F伪 = 65 T, F\b{eta} = 658 T, F纬 = 1154 T, and F畏 = 1867 T for H // a), consistent with theoretical predictions. Nontrivial 伪 and \b{eta} bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14453v1-abstract-full').style.display = 'none'; document.getElementById('2304.14453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures (including supplementary material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 13, 6824 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10463">arXiv:2304.10463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10463">pdf</a>, <a href="https://arxiv.org/format/2304.10463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantized Hall current in topological nodal-line semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+P">Po-Hsin Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+T">Thi-Nga Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gumbs%2C+G">Godfrey Gumbs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Danhong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10463v1-abstract-short" style="display: inline;"> Photocurrent acts as one of measurable responses of material to light, which has proved itself to be crucial for sensing and energy harvesting. Topological semimetals with gapless energy dispersion and abundant topological surface and bulk states exhibit exotic photocurrent responses, such as novel quantized circular photogalvanic effect observed in Weyl semimetals. Here we find that for a topolog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10463v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10463v1-abstract-full" style="display: none;"> Photocurrent acts as one of measurable responses of material to light, which has proved itself to be crucial for sensing and energy harvesting. Topological semimetals with gapless energy dispersion and abundant topological surface and bulk states exhibit exotic photocurrent responses, such as novel quantized circular photogalvanic effect observed in Weyl semimetals. Here we find that for a topological nodal-line semimetal (NLSM) with nodal ring bulk states and drumhead surface states (DSS), a significant photocurrent can be produced by an electromagnetic (EM) wave by means of the quantum Hall effect. The Hall current is enabled by electron transfer between Landau levels (LLs) and triggered by both the electric field and magnetic field components of an EM wave. This Hall current is physically connected to an unusually large quantum-Hall conductivity of the zeroth LLs resulting from quantized DSS. These LLs are found to be highly degenerate due to the unique band-folding effect associated with magnetic-field-induced expansion of a unit cell. Furthermore, we observe that the Hall current induced solely by an in-plane linearly-polarized EM wave becomes a quantized entity which allows for possible direct measurement of the DSS density in a topological NLSM. This work paves a way toward designing high-magnetic-field-sensitivity detection devices for industrial and space applications, such as the development of self-detection of current-surge-induced overheating in electronic devices and accurate Earth&#39;s magnetic-anomaly maps for guiding a self-navigating drone or an aircraft. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10463v1-abstract-full').style.display = 'none'; document.getElementById('2304.10463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05451">arXiv:2303.05451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05451">pdf</a>, <a href="https://arxiv.org/format/2303.05451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01493-5">10.1038/s41563-023-01493-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion optical induction of antiferromagnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zhenhao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B+B">Brian B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05451v1-abstract-short" style="display: inline;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05451v1-abstract-full" style="display: none;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics. In this paper, we report the surprising observation of helicity-dependent optical control of fully-compensated antiferromagnetic (AFM) order in 2D even-layered MnBi$_2$Te$_4$, a topological Axion insulator with neither chirality nor $M$. We further demonstrate helicity-dependent optical creation of AFM domain walls by double induction beams and the direct reversal of AFM domains by ultrafast pulses. The control and reversal of AFM domains and domain walls by light helicity have never been achieved in any fully-compensated AFM. To understand this optical control, we study a novel type of circular dichroism (CD) proportional to the AFM order, which only appears in reflection but is absent in transmission. We show that the optical control and CD both arise from the optical Axion electrodynamics, which can be visualized as a Berry curvature real space dipole. Our Axion induction provides the possibility to optically control a family of $\mathcal{PT}$-symmetric AFMs such as Cr$_2$O$_3$, CrI$_3$ and possibly novel states in cuprates. In MnBi$_2$Te$_4$, this further opens the door for optical writing of dissipationless circuit formed by topological edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'none'; document.getElementById('2303.05451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 583-590 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02971">arXiv:2303.02971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02971">pdf</a>, <a href="https://arxiv.org/format/2303.02971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of 2D Weyl Fermion States in Epitaxial Bismuthene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Q">Qiangsheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+P+V+S">P. V. Sreenivasa Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+H">Hoyeon Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+A+R">Alessandro R. Mazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brahlek%2C+M">Matthew Brahlek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Weikang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cook%2C+J">Jacob Cook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conner%2C+C">Clayton Conner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+A">Amarnath Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+C">Chun-Han Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Po-Yuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T">Tai-Chang Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignale%2C+G">Giovanni Vignale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">An-Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Rob G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+G">Guang Bian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02971v1-abstract-short" style="display: inline;"> A two-dimensional (2D) Weyl semimetal featuring a spin-polarized linear band dispersion and a nodal Fermi surface is a new topological phase of matter. It is a solid-state realization of Weyl fermions in an intrinsic 2D system. The nontrivial topology of 2D Weyl cones guarantees the existence of a new form of topologically protected boundary states, Fermi string edge states. In this work, we repor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02971v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02971v1-abstract-full" style="display: none;"> A two-dimensional (2D) Weyl semimetal featuring a spin-polarized linear band dispersion and a nodal Fermi surface is a new topological phase of matter. It is a solid-state realization of Weyl fermions in an intrinsic 2D system. The nontrivial topology of 2D Weyl cones guarantees the existence of a new form of topologically protected boundary states, Fermi string edge states. In this work, we report the realization of a 2D Weyl semimetal in monolayer-thick epitaxial bismuthene grown on SnS(Se) substrate. The intrinsic band gap of bismuthene is eliminated by the space-inversion-symmetry-breaking substrate perturbations, resulting in a gapless spin-polarized Weyl band dispersion. The linear dispersion and spin polarization of the Weyl fermion states are observed in our spin and angle-resolved photoemission measurements. In addition, the scanning tunneling microscopy/spectroscopy reveals a pronounced local density of states at the edge, suggesting the existence of Fermi string edge states. These results open the door for the experimental exploration of the exotic properties of Weyl fermion states in reduced dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02971v1-abstract-full').style.display = 'none'; document.getElementById('2303.02971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11425">arXiv:2301.11425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11425">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalously high supercurrent density in a two-dimensional topological material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wenkai Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+Z">Zhuangchai Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yao Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Siyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yuan-Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11425v1-abstract-short" style="display: inline;"> Ongoing advances in superconductors continue to revolutionize technology thanks to the increasingly versatile and robust availability of lossless supercurrent. In particular high supercurrent density can lead to more efficient and compact power transmission lines, high-field magnets, as well as high-performance nanoscale radiation detectors and superconducting spintronics. Here, we report the disc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11425v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11425v1-abstract-full" style="display: none;"> Ongoing advances in superconductors continue to revolutionize technology thanks to the increasingly versatile and robust availability of lossless supercurrent. In particular high supercurrent density can lead to more efficient and compact power transmission lines, high-field magnets, as well as high-performance nanoscale radiation detectors and superconducting spintronics. Here, we report the discovery of an unprecedentedly high superconducting critical current density (17 MA/cm2 at 0 T and 7 MA/cm2 at 8 T) in 1T&#39;-WS2, exceeding those of all reported two-dimensional superconductors to date. 1T&#39;-WS2 features a strongly anisotropic (both in- and out-of-plane) superconducting state that violates the Pauli paramagnetic limit signaling the presence of unconventional superconductivity. Spectroscopic imaging of the vortices further substantiates the anisotropic nature of the superconducting state. More intriguingly, the normal state of 1T&#39;-WS2 carries topological properties. The band structure obtained via angle-resolved photoemission spectroscopy and first-principles calculations points to a Z2 topological invariant. The concomitance of topology and superconductivity in 1T&#39;-WS2 establishes it as a topological superconductor candidate, which is promising for the development of quantum computing technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11425v1-abstract-full').style.display = 'none'; document.getElementById('2301.11425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01402">arXiv:2301.01402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01402">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.046402">10.1103/PhysRevLett.130.046402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of bulk-nodal and surface-nodeless Cooper pairings in a superconducting Dirac semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yigui Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapai%2C+R">Ramakanta Chapai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mine%2C+A">Akifumi Mine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">Jaime S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+X">Jia- Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blawat%2C+J">Joanna Blawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagashima%2C+T">Tsubaki Nagashima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahand%2C+N">Najafzadeh Sahand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Shiyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">Shik Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okazaki%2C+K">Kozo Okazaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01402v1-abstract-short" style="display: inline;"> The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01402v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01402v1-abstract-full" style="display: none;"> The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below Tc~4.5K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc.These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01402v1-abstract-full').style.display = 'none'; document.getElementById('2301.01402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00958">arXiv:2301.00958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00958">pdf</a>, <a href="https://arxiv.org/format/2301.00958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Transverse circular photogalvanic effect associated with Lorentz-violating Weyl fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+Y">Yi-Chun Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00958v1-abstract-short" style="display: inline;"> Nonlinear optical responses of quantum materials have recently undergone dramatic developments to unveil nontrivial geometry and topology. A remarkable example is the quantized longitudinal circular photogalvanic effect (CPGE) associated with the Chern number of Weyl fermions, while the physics of transverse CPGE in Weyl semimetals remains exclusive. Here, we show that the transverse CPGE of Loren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00958v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00958v1-abstract-full" style="display: none;"> Nonlinear optical responses of quantum materials have recently undergone dramatic developments to unveil nontrivial geometry and topology. A remarkable example is the quantized longitudinal circular photogalvanic effect (CPGE) associated with the Chern number of Weyl fermions, while the physics of transverse CPGE in Weyl semimetals remains exclusive. Here, we show that the transverse CPGE of Lorentz invariant Weyl fermions is forced to be zero. We find that the transverse photocurrents of Weyl fermions are associated not only with the Chern numbers but also with the degree of Lorentz-symmetry breaking in condensed matter systems. Based on the generic two-band model analysis, we provide a new powerful equation to calculate the transverse CPGE based on the tilting and warping terms of Weyl fermions. Our results are more capable in designing large transverse CPGE of Weyl semimetals in experiments and are applied to more than tens of Weyl materials to estimate their photocurrents. Our method paves the way to study the CPGE of massless or massive quasiparticles to design next-generation quantum optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00958v1-abstract-full').style.display = 'none'; document.getElementById('2301.00958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10426">arXiv:2211.10426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10426">pdf</a>, <a href="https://arxiv.org/format/2211.10426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-024-01263-0">10.1038/s41524-024-01263-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface-dominated conductance scaling in Weyl semimetal NbAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Sushant Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+L">Luo Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzillo%2C+N+A">Nicholas A. Lanzillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Gengchiau Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sundararaman%2C+R">Ravishankar Sundararaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Ching-Tzu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10426v2-abstract-short" style="display: inline;"> Protected surface states arising from non-trivial bandstructure topology in semimetals can potentially enable new device functionalities in compute, memory, interconnect, sensing, and communication. This necessitates a fundamental understanding of surface-state transport in nanoscale topological semimetals. Here, we investigate quantum transport in a prototypical topological semimetal NbAs to eval&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10426v2-abstract-full').style.display = 'inline'; document.getElementById('2211.10426v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10426v2-abstract-full" style="display: none;"> Protected surface states arising from non-trivial bandstructure topology in semimetals can potentially enable new device functionalities in compute, memory, interconnect, sensing, and communication. This necessitates a fundamental understanding of surface-state transport in nanoscale topological semimetals. Here, we investigate quantum transport in a prototypical topological semimetal NbAs to evaluate the potential of this class of materials for beyond-Cu interconnects in highly-scaled integrated circuits. Using density functional theory (DFT) coupled with non-equilibrium Green&#39;s function (NEGF) calculations, we show that the resistance-area RA product in NbAs films decreases with decreasing thickness at the nanometer scale, in contrast to a nearly constant RA product in ideal Cu films. This anomalous scaling originates from the disproportionately large number of surface conduction states which dominate the ballistic conductance by up to 70% in NbAs thin films. We also show that this favorable RA scaling persists even in the presence of surface defects, in contrast to RA sharply increasing with reducing thickness for films of conventional metals, such as Cu, in the presence of surface defects. These results underscore the promise of topological semimetals like NbAs as future back-end-of-line (BEOL) interconnect metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10426v2-abstract-full').style.display = 'none'; document.getElementById('2211.10426v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Comput Mater 10, 84 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05152">arXiv:2211.05152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05152">pdf</a>, <a href="https://arxiv.org/format/2211.05152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.125102">10.1103/PhysRevB.107.125102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering axion insulator phase in superlattices with inversion symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+A">Alexander Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuono%2C+G">Giuseppe Cuono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canali%2C+C+M">Carlo M. Canali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dietl%2C+T">Tomasz Dietl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Autieri%2C+C">Carmine Autieri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05152v2-abstract-short" style="display: inline;"> We study theoretically the interplay between magnetism and topology in three-dimensional HgTe/MnTe superlattices stacked along the (001) axis. Our results show the evolution of the magnetic topological phases with respect to the magnetic configurations. An axion insulator phase is observed for the antiferromagnetic order with the out-of-plane N茅el vector direction below a critical thickness of MnT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05152v2-abstract-full').style.display = 'inline'; document.getElementById('2211.05152v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05152v2-abstract-full" style="display: none;"> We study theoretically the interplay between magnetism and topology in three-dimensional HgTe/MnTe superlattices stacked along the (001) axis. Our results show the evolution of the magnetic topological phases with respect to the magnetic configurations. An axion insulator phase is observed for the antiferromagnetic order with the out-of-plane N茅el vector direction below a critical thickness of MnTe, which is the ground state amongst all magnetic configurations. Defining $T$ as the time-reversal symmetry, this axion insulator phase is protected by a magnetic two-fold rotational symmetry $C_2{\cdot}T$. The axion insulator phase evolves into a trivial insulator as we increase the thickness of the magnetic layers. By switching the N茅el vector direction into the $ab$ plane, the system realizes different antiferromagnetic topological insulators depending on the thickness of MnTe. These phases feature gapless surface Dirac cones shifted away from high-symmetry points on surfaces perpendicular to the N茅el vector direction of the magnetic layers. In the presence of ferromagnetism, the system realizes a magnetic Weyl semimetal and a ferromagnetic semimetal for out-of-plane and in-plane magnetization directions, respectively. We observe large anomalous Hall conductivity in the presence of ferromagnetism in the three-dimensional superlattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05152v2-abstract-full').style.display = 'none'; document.getElementById('2211.05152v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 125102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14098">arXiv:2210.14098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14098">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Van der Waals heterostructure mid-infrared emitters with electrically controllable polarization states and spectral characteristics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Po-Liang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tian-Yun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Pei-Sin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+A+H">Alvin Hsien-Yi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosyadi%2C+A+S">Adzilah Shahna Rosyadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yen-Ju Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Pei-Yu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jia-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei-Qing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chia-Jui Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+N">Neil Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yao-Chang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C">Ching-Hwa Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang-Hua Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14098v1-abstract-short" style="display: inline;"> Modern infrared (IR) microscopy, communication, and sensing systems demand control of the spectral characteristics and polarization states of light. Typically, these systems require the cascading of multiple filters, polarization optics and rotating components to manipulate light, inevitably increasing their sizes and complexities. Here, we report two-terminal mid-infrared (mid-IR) emitters with e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14098v1-abstract-full').style.display = 'inline'; document.getElementById('2210.14098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14098v1-abstract-full" style="display: none;"> Modern infrared (IR) microscopy, communication, and sensing systems demand control of the spectral characteristics and polarization states of light. Typically, these systems require the cascading of multiple filters, polarization optics and rotating components to manipulate light, inevitably increasing their sizes and complexities. Here, we report two-terminal mid-infrared (mid-IR) emitters with electrically controllable spectral and polarization properties. Our devices are composed of two back-to-back p-n junctions formed by stacking anisotropic light-emitting materials, black phosphorus and black arsenic-phosphorus with MoS2. By controlling the crystallographic orientations and engineering the band profile of heterostructures, the emissions of two junctions exhibit distinct spectral ranges and polarization directions; more importantly, these two electroluminescence (EL) units can be independently activated, depending on the polarity of the applied bias. Furthermore, we show that when operating our emitter under the polarity-switched pulse mode, its EL exhibits the characteristics of broad spectral coverage, encompassing the entire first mid-IR atmospheric window, and electrically tunable spectral shapes. Our results provide the basis for developing groundbreaking technology in the field of light emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14098v1-abstract-full').style.display = 'none'; document.getElementById('2210.14098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14296">arXiv:2209.14296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14296">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04511">10.1021/acs.nanolett.2c04511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gapped Topological Surface States and Isolated Surface Resonances in PdTe$_2$ Ultrathin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cook%2C+J">Jacob Cook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Q">Qiangsheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conner%2C+C">Clayton Conner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMillen%2C+J">James McMillen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Snyder%2C+M">Mathew Snyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+G">Guang Bian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14296v1-abstract-short" style="display: inline;"> The superconductor PdTe$_2$ is known to host bulk Dirac bands and topological surface states. The coexistence of superconductivity and topological surface states makes PdTe$_2$ a promising platform for exploring topological superconductivity and Majorana bound states. In this work, we report the layer-by-layer molecular beam epitaxy growth and spectroscopic characterization of high quality PdTe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14296v1-abstract-full').style.display = 'inline'; document.getElementById('2209.14296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14296v1-abstract-full" style="display: none;"> The superconductor PdTe$_2$ is known to host bulk Dirac bands and topological surface states. The coexistence of superconductivity and topological surface states makes PdTe$_2$ a promising platform for exploring topological superconductivity and Majorana bound states. In this work, we report the layer-by-layer molecular beam epitaxy growth and spectroscopic characterization of high quality PdTe$_2$ films with thickness down to 3 monolayers (ML). In the 3 ML PdTe$_2$ film, we observed spin-polarized surface resonance states, which are isolated from the bulk bands due to the quantum size effects. In addition, the hybridization of surface states on opposite faces leads to a thickness-dependent gap in the topological surface Dirac bands. Our photoemission results show clearly that the size of the hybridization gap increases as the film thickness is reduced. The success in growing high quality PdTe$_2$ films by state-of-art molecular beam epitaxy technique and the observation of surface resonances and gaped topological surface states sheds light on the applications of PdTe$_2$ quantum films in spintronics and topological computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14296v1-abstract-full').style.display = 'none'; document.getElementById('2209.14296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06135">arXiv:2209.06135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06135">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00535-6">10.1038/s41535-022-00535-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Resistivity Scaling in Topological Semimetal CoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garate%2C+I">Ion Garate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bajpai%2C+U">Utkarsh Bajpai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Cheng-Yi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chuang-Han Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzillo%2C+N+A">Nicholas A. Lanzillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Gengchiau Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Ching-Tzu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06135v1-abstract-short" style="display: inline;"> Nontrivial band topologies in semimetals lead to robust surface states that can contribute dominantly to the total conduction. This may result in reduced resistivity with decreasing feature size contrary to conventional metals, which may highly impact the semiconductor industry. Here we study the resistivity scaling of a representative topological semimetal CoSi using realistic band structures and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06135v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06135v1-abstract-full" style="display: none;"> Nontrivial band topologies in semimetals lead to robust surface states that can contribute dominantly to the total conduction. This may result in reduced resistivity with decreasing feature size contrary to conventional metals, which may highly impact the semiconductor industry. Here we study the resistivity scaling of a representative topological semimetal CoSi using realistic band structures and Green&#39;s function methods. We show that there exists a critical thickness d_c dividing different scaling trends. Above d_c, when the defect density is low such that surface conduction dominates, resistivity reduces with decreasing thickness; when the defect density is high such that bulk conduction dominates, resistivity increases in as conventional metals. Below d_c, the persistent remnants of the surface states give rise to decreasing resistivity down to the ultrathin limit, unlike in topological insulators. The observed CoSi scaling can apply to broad classes of topological semimetals, providing guidelines for materials screening and engineering. Our study shows that topological semimetals bear the potential of overcoming the resistivity scaling challenges in back-end-of-line interconnect applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06135v1-abstract-full').style.display = 'none'; document.getElementById('2209.06135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 8, 3 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10291">arXiv:2207.10291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10291">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.035151">10.1103/PhysRevB.106.035151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for electronic signature of magnetic transition in topological magnet HoSbTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10291v1-abstract-short" style="display: inline;"> Topological insulators with intrinsic magnetic order are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. To study these systems and their physics, people have proposed a variety of magnetic topological insulator systems, including HoSbTe, an antiferromagnetic weak topological insulator candidate. In this work, we use scanning tun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10291v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10291v1-abstract-full" style="display: none;"> Topological insulators with intrinsic magnetic order are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. To study these systems and their physics, people have proposed a variety of magnetic topological insulator systems, including HoSbTe, an antiferromagnetic weak topological insulator candidate. In this work, we use scanning tunneling microscopy to probe the electronic structure of HoSbTe with antiferromagnetic and ferromagnetic orders that are tuned by applying an external magnetic field. Although around the Fermi energy, we find minor differences between the quasi-particle interferences under the ferromagnetic and antiferromagnetic orders, deep inside the valance region, a new quasi-particle interference signal emerges with ferromagnetism. This observation is consistent with our first-principles calculations indicating the magnetism-driven transition of the electronic states in this spin-orbit coupled topological magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10291v1-abstract-full').style.display = 'none'; document.getElementById('2207.10291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01460">arXiv:2207.01460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01460">pdf</a>, <a href="https://arxiv.org/ps/2207.01460">ps</a>, <a href="https://arxiv.org/format/2207.01460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.024066">10.1103/PhysRevApplied.19.024066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable superconducting flux qubits with long coherence times </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cohen%2C+T">T. Cohen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzman%2C+I">I. Holzman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catelani%2C+G">G. Catelani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+M">M. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01460v1-abstract-short" style="display: inline;"> In this work, we study a series of tunable flux qubits inductively coupled to a coplanar waveguide resonator fabricated on a sapphire substrate. Each qubit includes an asymmetric superconducting quantum interference device which is controlled by the application of an external magnetic field and acts as a tunable Josephson junction. The tunability of the qubits is typically $\pm 3.5$ GHz around the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01460v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01460v1-abstract-full" style="display: none;"> In this work, we study a series of tunable flux qubits inductively coupled to a coplanar waveguide resonator fabricated on a sapphire substrate. Each qubit includes an asymmetric superconducting quantum interference device which is controlled by the application of an external magnetic field and acts as a tunable Josephson junction. The tunability of the qubits is typically $\pm 3.5$ GHz around their central gap frequency. The measured relaxation times are limited by dielectric losses in the substrate and can attain $T_{1}\sim 8 渭s$. The echo dephasing times are limited by flux noise even at optimal points and reach $T_{2E}\sim 4 渭s$, almost an order of magnitude longer than state of the art for tunable flux qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01460v1-abstract-full').style.display = 'none'; document.getElementById('2207.01460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Materials is at the end of the file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 024066 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01427">arXiv:2207.01427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01427">pdf</a>, <a href="https://arxiv.org/ps/2207.01427">ps</a>, <a href="https://arxiv.org/format/2207.01427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Reproducibility and control of superconducting flux qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzman%2C+I">I. Holzman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cohen%2C+T">T. Cohen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+B+C">B. C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamieson%2C+D+N">D. N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+M">M. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01427v1-abstract-short" style="display: inline;"> Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate and a large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits&#39; design consists of c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01427v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01427v1-abstract-full" style="display: none;"> Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate and a large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits&#39; design consists of controlling precisely their transition energy - the so-called qubit gap - while keeping long and reproducible relaxation times. Solving this problem is challenging and requires extremely good control of e-beam lithography, oxidation parameters of the junctions and sample surface. Here we present measurements of a large batch of flux qubits and demonstrate a high level of reproducibility and control of qubit gaps, relaxation times and pure echo dephasing times. These results open the way for potential applications in the fields of quantum hybrid circuits and quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01427v1-abstract-full').style.display = 'none'; document.getElementById('2207.01427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Materials at the end of the file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.01324">arXiv:2206.01324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.01324">pdf</a>, <a href="https://arxiv.org/format/2206.01324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045121">10.1103/PhysRevB.106.045121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic dilution effect and topological phase transitions in (Mn$_{1-x}$Pb$_x$)Bi$_2$Te$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+E">Erxi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazin%2C+I+I">Igor I. Mazin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.01324v1-abstract-short" style="display: inline;"> As the first intrinsic antiferromagnetic (AFM) topological insulator (TI), MnBi$_2$Te$_4$ has provided a material platform to realize various emergent phenomena arising from the interplay of magnetism and band topology. Here by investigating (Mn$_{1-x}$Pb$_x$)Bi$_2$Te$_4$ $(0\leq x \leq 0.82)$ single crystals via the x-ray, electrical transport, magnetometry and neutron measurements, chemical anal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01324v1-abstract-full').style.display = 'inline'; document.getElementById('2206.01324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.01324v1-abstract-full" style="display: none;"> As the first intrinsic antiferromagnetic (AFM) topological insulator (TI), MnBi$_2$Te$_4$ has provided a material platform to realize various emergent phenomena arising from the interplay of magnetism and band topology. Here by investigating (Mn$_{1-x}$Pb$_x$)Bi$_2$Te$_4$ $(0\leq x \leq 0.82)$ single crystals via the x-ray, electrical transport, magnetometry and neutron measurements, chemical analysis, external pressure, and first-principles calculations, we reveal the magnetic dilution effect on the magnetism and band topology in MnBi$_2$Te$_4$. With increasing $x$, both lattice parameters $a$ and $c$ expand linearly by around 2\%. All samples undergo the paramagnetic to A-type antiferromagnetic transition with the N$\acute{e}$el temperature decreasing lineally from 24 K at $x=0$ to 2 K at $x=0.82$. Our neutron data refinement of the $x=0.37$ sample indicates that the ordered moment is 4.3(1)$渭_B$/Mn at 4.85 K and the amount of the Mn$_{\rm{Bi}}$ antisites is negligible within the error bars. Isothermal magnetization data reveal a slight decrease of the interlayer plane-plane antiferromagnetic exchange interaction and a monotonic decrease of the magnetic anisotropy, due to diluting magnetic ions and enlarging the unit cell. For $x=0.37$, the application of external pressures enhances the interlayer antiferromagnetic coupling, boosting the N$\acute{e}$el temperature at a rate of 1.4 K/GPa and the saturation field at a rate of 1.8 T/GPa. Furthermore, our first-principles calculations reveal that the band inversion in the two end materials, MnBi$_2$Te$_4$ and PbBi$_2$Te$_4$, occurs at the $螕$ and $Z$ point, respectively, while two gapless points appear at $x = $ 0.44 and $x = $ 0.66, suggesting possible topological phase transitions with doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01324v1-abstract-full').style.display = 'none'; document.getElementById('2206.01324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106 (2022), 045121 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00180">arXiv:2206.00180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.00180">pdf</a>, <a href="https://arxiv.org/format/2206.00180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Self-similarity with universal property for soap film and bubble in roll-off stage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei-Chih Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+C">Chih-Yao Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tzu-Liang Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tzay-Ming Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00180v2-abstract-short" style="display: inline;"> All children enjoy blowing soap bubbles that also show up in our bath and when we wash dishes. We analyze the thinning and breaking of soap bubble neck when it is stretched. To contrast with the more widely studied film whose boundaries are open, we concentrate on the bubble with a conserved air volume V. Like film (F), non-equilibrium state can be divided into four regimes for bubble (B): (1) rol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00180v2-abstract-full').style.display = 'inline'; document.getElementById('2206.00180v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00180v2-abstract-full" style="display: none;"> All children enjoy blowing soap bubbles that also show up in our bath and when we wash dishes. We analyze the thinning and breaking of soap bubble neck when it is stretched. To contrast with the more widely studied film whose boundaries are open, we concentrate on the bubble with a conserved air volume V. Like film (F), non-equilibrium state can be divided into four regimes for bubble (B): (1) roll-off, (2) cusp approach, (3) pinch-off and (4) breakup. We establish the existence of self-similarity in F-1, B-1 and B-3, and universal property in F-1 and B-1 for the profile of soap membrane. The former means that the profile at successive times can be mapped to a master curve after being rescaled by the countdown time 蟿. Whiles, the latter further requires this master curve to be identical for different ring sizes R for film and different V and R for bubble while keeping V/R^3 fixed. The exhibition of universal property indicates that the process of memory erasing starts earlier than regime 3. We also found that the minimum radius scales as h_{min}~蟿^{1/2}, independent of V and pulling speed. Note that the validity of our discussion is limited by the duration of roll-off regime from 10^{-2}~10^{-3} s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00180v2-abstract-full').style.display = 'none'; document.getElementById('2206.00180v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13929">arXiv:2205.13929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13929">pdf</a>, <a href="https://arxiv.org/format/2205.13929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.17.024057">10.1103/PhysRevApplied.17.024057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Protection of quantum information in a chain of Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+P">Paul Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tikai Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szymanska%2C+M">Marzena Szymanska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosfeld%2C+E">Eytan Grosfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ginossar%2C+E">Eran Ginossar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+M">Michael Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13929v1-abstract-short" style="display: inline;"> Symmetry considerations are key towards our understanding of the fundamental laws of Nature. The presence of a symmetry implies that a physical system is invariant under specific transformations and this invariance may have deep consequences. For instance, symmetry arguments state that a system will remain in its initial state if incentives to actions are equally balanced. Here, we apply this prin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13929v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13929v1-abstract-full" style="display: none;"> Symmetry considerations are key towards our understanding of the fundamental laws of Nature. The presence of a symmetry implies that a physical system is invariant under specific transformations and this invariance may have deep consequences. For instance, symmetry arguments state that a system will remain in its initial state if incentives to actions are equally balanced. Here, we apply this principle to a chain of qubits and show that it is possible to engineer the symmetries of its Hamiltonian in order to keep quantum information intrinsically protected from both relaxation and decoherence. We show that the coherence properties of this system are strongly enhanced relative to those of its individual components. Such a qubit chain can be realized using a simple architecture consisting of a relatively small number of superconducting Josephson junctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13929v1-abstract-full').style.display = 'none'; document.getElementById('2205.13929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied 17.2 (2022): 024057 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10648">arXiv:2203.10648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetization-direction-tunable kagome Weyl line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+W">Wenlong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10648v1-abstract-short" style="display: inline;"> Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena. Here, utilizing angle-resolved photoemission spectroscopy, we demonstrate Weyl lines with strong out-of-plane dispersion in an A-A stacked kagome magnet TbxGd1-xMn6Sn6. On the Gd rich side, the Weyl line remains nearly spin-orbit-gapless due to a remarkable cooperative interplay between Kane-Mele spin-or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10648v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10648v1-abstract-full" style="display: none;"> Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena. Here, utilizing angle-resolved photoemission spectroscopy, we demonstrate Weyl lines with strong out-of-plane dispersion in an A-A stacked kagome magnet TbxGd1-xMn6Sn6. On the Gd rich side, the Weyl line remains nearly spin-orbit-gapless due to a remarkable cooperative interplay between Kane-Mele spin-orbit-coupling, low site symmetry and in-plane magnetic order. Under Tb substitution, the kagome Weyl line gaps due to a magnetic reorientation to out-of-plane order. Our results illustrate the magnetic moment direction as an efficient tuning knob for realizing distinct three-dimensional topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10648v1-abstract-full').style.display = 'none'; document.getElementById('2203.10648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09084">arXiv:2203.09084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09084">pdf</a>, <a href="https://arxiv.org/format/2203.09084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.044204">10.1103/PhysRevMaterials.6.044204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically tunable Dirac and Weyl fermions in the Zintl materials family </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+A+B">Anan Bari Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Cheng-Yi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+A">Amit Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09084v1-abstract-short" style="display: inline;"> Recent classification efforts encompassing crystalline symmetries have revealed rich possibilities for solid-state systems to support a tapestry of exotic topological states. However, finding materials that realize such states remains a daunting challenge. Here we show how the interplay of topology, symmetry, and magnetism combined with doping and external electric and magnetic field controls can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09084v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09084v1-abstract-full" style="display: none;"> Recent classification efforts encompassing crystalline symmetries have revealed rich possibilities for solid-state systems to support a tapestry of exotic topological states. However, finding materials that realize such states remains a daunting challenge. Here we show how the interplay of topology, symmetry, and magnetism combined with doping and external electric and magnetic field controls can be used to drive the previously unreported SrIn$_2$As$_2$ materials family into a variety of topological phases. Our first-principles calculations and symmetry analysis reveal that SrIn$_2$As$_2$ is a dual topological insulator with $Z_2=(1;000)$ and mirror Chern number $C_M= -1$. Its isostructural and isovalent antiferromagnetic cousin EuIn$_2$As$_2$ is found to be an axion insulator with $Z_4= 2$. The broken time-reversal symmetry via Eu doping in Sr$_{1-x}$Eu$_x$In$_2$As$_2$ results in a higher-order or topological crystalline insulator state depending on the orientation of the magnetic easy axis. We also find that antiferromagnetic EuIn$_2$P$_2$ is a trivial insulator with $Z_4= 0$, and that it undergoes a magnetic field-driven transition to an ideal Weyl fermion or nodal fermion state with $Z_4= 1$ with applied magnetic field. Our study identifies Sr$_{1-x}$Eu$_x$In$_2$(As, P)$_2$ as a new tunable materials platform for investigating the physics and applications of Weyl and nodal fermions in the scaffolding of crystalline and axion insulator states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09084v1-abstract-full').style.display = 'none'; document.getElementById('2203.09084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 4 Figures, SM not included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review MATERIALS 6, 044204 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01888">arXiv:2203.01888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01888">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.166401">10.1103/PhysRevLett.129.166401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of charge order and corresponding edge state in kagome magnet FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+X">Xiaokun Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Zijin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lienhard%2C+B">Benjamin Lienhard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Han-Bin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01888v3-abstract-short" style="display: inline;"> Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge order, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to non-kagome surface layers. Here we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifes a 2x2 charge order in the magnetic kagome&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01888v3-abstract-full').style.display = 'inline'; document.getElementById('2203.01888v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01888v3-abstract-full" style="display: none;"> Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge order, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to non-kagome surface layers. Here we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifes a 2x2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin-mapping across steps of unit-cell-height demonstrates that this charge order emerges from spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including orbital magnetism and bulk-boundary correspondence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01888v3-abstract-full').style.display = 'none'; document.getElementById('2203.01888v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 166401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07143">arXiv:2202.07143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07143">pdf</a>, <a href="https://arxiv.org/format/2202.07143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear Hall effect with non-centrosymmetric topological phase in ZrTe$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+S">Shen Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yuan-Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Wei-bo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07143v1-abstract-short" style="display: inline;"> The non-centrosymmetric topological material has attracted intense attention due to its superior characters as compared to the centrosymmetric one. On one side, the topological phase coming from global geometric properties of the quantum wave function remains unchanged, on the other side, abundant exotic phenomena are predicted to be merely emerged in non-centrosymmetric ones, due to the redistrib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07143v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07143v1-abstract-full" style="display: none;"> The non-centrosymmetric topological material has attracted intense attention due to its superior characters as compared to the centrosymmetric one. On one side, the topological phase coming from global geometric properties of the quantum wave function remains unchanged, on the other side, abundant exotic phenomena are predicted to be merely emerged in non-centrosymmetric ones, due to the redistribution of local quantum geometry. Whereas, probing the local quantum geometry in non-centrosymmetric topological material remains challenging. Here, we report a non-centrosymmetric topological phase in ZrTe$_5$, probed by the nonlinear Hall (NLH) effect. The angle-resolved and temperature-dependent NLH measurement reveals the inversion and ab-plane mirror symmetries breaking under 30 K, consistent with our theoretical calculation. Our findings identify a new non-centrosymmetric phase of ZrTe$_5$ and provide a platform to probe and control local quantum geometry via crystal symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07143v1-abstract-full').style.display = 'none'; document.getElementById('2202.07143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04757">arXiv:2201.04757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04757">pdf</a>, <a href="https://arxiv.org/format/2201.04757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-37931-w">10.1038/s41467-023-37931-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistic horizon of interacting Weyl fermions in condensed matter systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+W">Wei-Chi Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macam%2C+G">Gennevieve Macam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R">Robert Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chi-Cheng Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+F">Feng-Chuan Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04757v1-abstract-short" style="display: inline;"> The intersections of topology, geometry and strong correlations offer many opportunities for exotic quantum phases to emerge in condensed matter systems. Weyl fermions, in particular, provide an ideal platform for exploring the dynamical instabilities of single-particle physics under interactions. Despite its fundamental role in relativistic field theory, the concept of causality and the associate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04757v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04757v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04757v1-abstract-full" style="display: none;"> The intersections of topology, geometry and strong correlations offer many opportunities for exotic quantum phases to emerge in condensed matter systems. Weyl fermions, in particular, provide an ideal platform for exploring the dynamical instabilities of single-particle physics under interactions. Despite its fundamental role in relativistic field theory, the concept of causality and the associated spacetime light cone and event horizon has not been considered in connection with interacting Weyl fermionic excitations in quantum matter. Here, by using charge-density wave (CDW) as an example, we unveil the behavior of interacting Weyl fermions and show that a Weyl fermion in a system can open a band gap by interacting only with other Weyl fermions that lie within its energy-momentum dispersion cone. In this sense, causal connections or interactions are only possible within overlapping dispersion cones and each dispersion cone thus constitutes a solid-state analogue of the more conventional `event horizon&#39; of high-energy physics. Our study provides a universal framework for considering interacting relativistic quasiparticles in condensed matter by separating them into energy-like and momentum-like relationships in analogy with the time-like and space-like events in high-energy physics. Finally, we consider two different candidate materials for hosting the Weyl CDW phase: (TaSe$_4$)$_2$I and Mo$_3$Al$_2$C. Our study greatly enriches the phenomenology and unveils new connections between condensed matter and high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04757v1-abstract-full').style.display = 'none'; document.getElementById('2201.04757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14,2228 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10399">arXiv:2112.10399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10399">pdf</a>, <a href="https://arxiv.org/format/2112.10399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.235418">10.1103/PhysRevB.105.235418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized Peierls substitution for the tight-binding model of twisted multilayer graphene in a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+T">Thi-Nga Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+P">Po-Hsin Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Danhong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gumbs%2C+G">Godfrey Gumbs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10399v2-abstract-short" style="display: inline;"> We propose a generalized Peierls substitution method in conjunction with the tight-binding model to explore the magnetic quantization and quantum Hall effect in twisted multilayer graphene under a magnetic field. The Bloch-basis tight-binding Hamiltonian is constructed for large twist angle while a simplified tight-binding model is employed for the magic angle. We investigate extensively the band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10399v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10399v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10399v2-abstract-full" style="display: none;"> We propose a generalized Peierls substitution method in conjunction with the tight-binding model to explore the magnetic quantization and quantum Hall effect in twisted multilayer graphene under a magnetic field. The Bloch-basis tight-binding Hamiltonian is constructed for large twist angle while a simplified tight-binding model is employed for the magic angle. We investigate extensively the band structures, Landau levels (LLs), and quantum Hall conductivity (QHC) of twisted bilayer graphene and twisted double bilayer graphene, as well as their dependence on the twist angle. Comparison between these crucial properties of monolayer graphene, Bernal bilayer graphene, and the twisted systems is carefully made to highlight the roles played by twisting. The unique selection rules of inter-LL transition, which is crucial for achieving a deep understanding of the step structures of QHC, are identified through the properties of LL wave functions. Our theoretical model opens up an opportunity for comprehension of the interplay between an applied magnetic field and the twisting effect associated with multilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10399v2-abstract-full').style.display = 'none'; document.getElementById('2112.10399v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12825">arXiv:2110.12825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12825">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.014412">10.1103/PhysRevB.107.014412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic multi-level memristor using linear magnetoelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C+B">C. B. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+B">B. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M+Y">M. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12825v1-abstract-short" style="display: inline;"> The explosive growth of artificial intelligence and data-intensive computing has brought crucial challenge to modern information science and technology, i.e. conceptually new devices with superior properties are urgently desired. Memristor is recognized as a very promising circuit element to tackle the barriers, because of its fascinating advantages in imitating neural network of human brain, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12825v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12825v1-abstract-full" style="display: none;"> The explosive growth of artificial intelligence and data-intensive computing has brought crucial challenge to modern information science and technology, i.e. conceptually new devices with superior properties are urgently desired. Memristor is recognized as a very promising circuit element to tackle the barriers, because of its fascinating advantages in imitating neural network of human brain, and thus realizing in-memory computing. However, there exist two core and fundamental issues: energy efficiency and accuracy, owing to the electric current operation of traditional memristors. In the present work, we demonstrate a new type of memristor, i.e. charge q and magnetic flux 蠁 space memristor, enabled by linear magnetoelectricity of Co4Nb2O9. The memory states show distinctly linear magnetoelectric coefficients with a large ratio of about 10, ensuing exceptional accuracy of related devices. The present q-蠁 type memristor can be manipulated by magnetic and electric fields without involving electric current, paving the way to develop ultralow-energy-consuming devices. In the meanwhile, it is worth to mention that Co4Nb2O9 hosts an intrinsic compensated antiferromagnetic structure, which suggests interesting possibility of further integrating the unique merits of antiferromagnetic spintronics such as ultrahigh density and ultrafast switching. Linear magnetoelectricity is proposed to essential to the q-蠁 type memristor, which would be accessible in a broad class of multiferroics and other magnetoelectric materials such as topological insulators. Our findings could therefore advance memristors towards new levels of functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12825v1-abstract-full').style.display = 'none'; document.getElementById('2110.12825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Rev B 107, 014412 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chang%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10