CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 97 results for author: <span class="mathjax">Gu, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Gu%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gu, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gu%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gu, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07317">arXiv:2502.07317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07317">pdf</a>, <a href="https://arxiv.org/format/2502.07317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Position reconstruction and surface background model for the PandaX-4T detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xunan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zichao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Houqi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Junting Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07317v1-abstract-short" style="display: inline;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07317v1-abstract-full" style="display: none;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light sensors. After a comprehensive evaluation of resolution, uniformity, and robustness, the PAF method was selected for position reconstruction, while the TM method was employed for verification. The PAF method achieves a bulk event resolution of 1.0 mm and a surface event resolution of 4.4 mm for a typical $S2$ signal with a bottom charge of 1500 PE (about 14 keV). The uniformity is around 20\%. Robustness studies reveal average deviations of 5.1 mm and 8.8 mm for the commissioning run (Run0) and the first science run (Run1), respectively, due to the deactivation of certain PMTs. A data-driven surface background model is developed based on the PAF method. The surface background is estimated to be $0.09 \pm 0.06$ events for Run0 (0.54 tonne$\cdot$year) and $0.17 \pm 0.11$ events for Run1 (1.00 tonne$\cdot$year). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'none'; document.getElementById('2502.07317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13719">arXiv:2411.13719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13719">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Persistent but weak magnetic field at Moon&#39;s midlife revealed by Chang&#39;e-5 basalt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cai%2C+S">Shuhui Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+H">Huafeng Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Huapei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+C">Chenglong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Saihong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Ya Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xu Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lixin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaoguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhongshan Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+K">Kuang He</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+K">Kaixian Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunchang Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+L">Liang Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y">Yifei Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+P">Pingyuan Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuangchi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+F">Fei Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiuli Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jinhua Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+R+N">Ross N. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Huaiyu He</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13719v1-abstract-short" style="display: inline;"> The evolution of the lunar magnetic field can reveal the Moon&#39;s interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang&#39;e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13719v1-abstract-full" style="display: none;"> The evolution of the lunar magnetic field can reveal the Moon&#39;s interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang&#39;e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at mid-latitude. We recovered weak paleointensities of 2-4 uT from the Chang&#39;e-5 basalt clasts at 2 billion years ago, attestting to the longevity of a lunar dynamo until at least the Moon&#39;s midlife. This paleomagnetic result implies the existence of thermal convection in the lunar deep interior at the lunar mid-stage which may have supplied mantle heat flux for the young volcanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'none'; document.getElementById('2411.13719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12905">arXiv:2411.12905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12905">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear optics in 2D materials: from classical to quantum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12905v2-abstract-short" style="display: inline;"> Nonlinear optics has long been a cornerstone of modern photonic technology, enabling a wide array of applications, from frequency conversion to the generation of ultrafast light pulses. Recent breakthroughs in two-dimensional (2D) materials have opened a frontier in this field, offering new opportunities for both classical and quantum nonlinear optics. These atomically thin materials exhibit stron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12905v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12905v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12905v2-abstract-full" style="display: none;"> Nonlinear optics has long been a cornerstone of modern photonic technology, enabling a wide array of applications, from frequency conversion to the generation of ultrafast light pulses. Recent breakthroughs in two-dimensional (2D) materials have opened a frontier in this field, offering new opportunities for both classical and quantum nonlinear optics. These atomically thin materials exhibit strong light-matter interactions and large nonlinear responses, thanks to their tunable lattice symmetries, strong resonance effects, and highly engineerable band structures. In this paper, we explore the potential that 2D materials bring to nonlinear optics, covering topics from classical nonlinear optics to nonlinearities at the few-photon level. We delve into how these materials enable possibilities, such as symmetry control, phase matching, and integration into photonic circuits. The fusion of 2D materials with nonlinear optics provides insights into the fundamental behaviors of elementary excitations such as electrons, excitons, and photons in low dimensional systems and has the potential to transform the landscape of next-generation photonic and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12905v2-abstract-full').style.display = 'none'; document.getElementById('2411.12905v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10123">arXiv:2406.10123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10123">pdf</a>, <a href="https://arxiv.org/format/2406.10123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+A">A. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bateman%2C+J">J. Bateman</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10123v1-abstract-short" style="display: inline;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10123v1-abstract-full" style="display: none;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'none'; document.getElementById('2406.10123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01464">arXiv:2406.01464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01464">pdf</a>, <a href="https://arxiv.org/format/2406.01464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Using Convolutional Neural Networks to detect Edge Localized Modes in DIII-D from Doppler Backscattering measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Teo%2C+N+Q+X">N. Q. X. Teo</a>, <a href="/search/physics?searchtype=author&amp;query=Hall-Chen%2C+V+H">V. H. Hall-Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Barada%2C+K">K. Barada</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+R+J+H">R. J. H. Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">L. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Yeoh%2C+A+K">A. K. Yeoh</a>, <a href="/search/physics?searchtype=author&amp;query=Pratt%2C+Q+T">Q. T. Pratt</a>, <a href="/search/physics?searchtype=author&amp;query=Garbet%2C+X">X. Garbet</a>, <a href="/search/physics?searchtype=author&amp;query=Rhodes%2C+T+L">T. L. Rhodes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01464v3-abstract-short" style="display: inline;"> In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls. Understanding the physics of ELMs and by extension, how to detect and mitigate them, is an important challenge. In this paper, we focus on two diagnostic methods $\unicode{x2013}$ D-alpha spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01464v3-abstract-full').style.display = 'inline'; document.getElementById('2406.01464v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01464v3-abstract-full" style="display: none;"> In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls. Understanding the physics of ELMs and by extension, how to detect and mitigate them, is an important challenge. In this paper, we focus on two diagnostic methods $\unicode{x2013}$ D-alpha spectroscopy and Doppler backscattering (DBS). The former detects ELMs by measuring Balmer alpha emission while the latter uses microwave radiation to probe the plasma. DBS has the advantage of having higher temporal resolution and robustness to damage. These advantages of DBS diagnostics may be beneficial for future operational tokamaks and thus data processing techniques for DBS should be developed in preparation. In sight of this, we explore the training of neural networks to detect ELMs from DBS data, using D-alpha data as the ground truth. With shots found in the DIII-D database, the model is trained to classify each time step based on the occurrence of an ELM event. The results are promising. When tested on shots similar to those used for training, the model is capable of consistently achieving a high f1-score of 0.93. This score is a performance metric for imbalanced datasets that ranges between 0 and 1. We evaluate the performance of our neural network on a variety of ELMs $\unicode{x2013}$ grasssy, suppressed, and wide pedestal $\unicode{x2013}$ finding broad applicability. Beyond ELMs, our work demonstrates the wider feasibility of applying neural networks to data from DBS diagnostics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01464v3-abstract-full').style.display = 'none'; document.getElementById('2406.01464v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00464">arXiv:2406.00464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00464">pdf</a>, <a href="https://arxiv.org/format/2406.00464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sub-wavelength optical lattice in 2D materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sarkar%2C+S">Supratik Sarkar</a>, <a href="/search/physics?searchtype=author&amp;query=Mehrabad%2C+M+J">Mahmoud Jalali Mehrabad</a>, <a href="/search/physics?searchtype=author&amp;query=Su%C3%A1rez-Forero%2C+D+G">Daniel G. Su谩rez-Forero</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Flower%2C+C+J">Christopher J. Flower</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L">Lida Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Suji Park</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Houk Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Hafezi%2C+M">Mohammad Hafezi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00464v1-abstract-short" style="display: inline;"> Recently, light-matter interaction has been vastly expanded as a control tool for inducing and enhancing many emergent non-equilibrium phenomena. However, conventional schemes for exploring such light-induced phenomena rely on uniform and diffraction-limited free-space optics, which limits the spatial resolution and the efficiency of light-matter interaction. Here, we overcome these challenges usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00464v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00464v1-abstract-full" style="display: none;"> Recently, light-matter interaction has been vastly expanded as a control tool for inducing and enhancing many emergent non-equilibrium phenomena. However, conventional schemes for exploring such light-induced phenomena rely on uniform and diffraction-limited free-space optics, which limits the spatial resolution and the efficiency of light-matter interaction. Here, we overcome these challenges using metasurface plasmon polaritons (MPPs) to form a sub-wavelength optical lattice. Specifically, we report a ``nonlocal&#34; pump-probe scheme where MPPs are excited to induce a spatially modulated AC Stark shift for excitons in a monolayer of MoSe$_2$, several microns away from the illumination spot. Remarkably, we identify nearly two orders of magnitude reduction for the required modulation power compared to the free-space optical illumination counterpart. Moreover, we demonstrate a broadening of the excitons&#39; linewidth as a robust signature of MPP-induced periodic sub-diffraction modulation. Our results open new avenues for exploring power-efficient light-induced lattice phenomena below the diffraction limit in active chip-compatible MPP architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00464v1-abstract-full').style.display = 'none'; document.getElementById('2406.00464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13519">arXiv:2405.13519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Multi-fidelity topology optimization of flow boiling heat transfer in microchannels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Y">Yi Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qirui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lingran Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+W">Wen-Quan Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13519v1-abstract-short" style="display: inline;"> Topology optimization (TO) is a powerful method to design innovative structures with improved heat transfer performance. In the present study, a multi-fidelity TO method with a delicately defined objective function is developed for flow boiling heat transfer in microchannels. Low-fidelity TO is conducted for the reduced-order process of single-phase laminar convective heat transfer, which generate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13519v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13519v1-abstract-full" style="display: none;"> Topology optimization (TO) is a powerful method to design innovative structures with improved heat transfer performance. In the present study, a multi-fidelity TO method with a delicately defined objective function is developed for flow boiling heat transfer in microchannels. Low-fidelity TO is conducted for the reduced-order process of single-phase laminar convective heat transfer, which generates a set of structure candidates for subsequent high-fidelity evaluation of flow boiling heat transfer. To avoid the possible iteration between the low-fidelity TO and high-fidelity evaluation which leads to inefficient solution of the multi-fidelity TO, distributions of velocity, temperature and two-phase in microchannels with single-phase and/or flow boiling heat transfer are investigated and compared in detail, based on which a new objective function is delicately defined, which can be employed in the low-fidelity TO yet can stand for the performance of the high-fidelity problem. With the help of the new objective function, the efficiency of the multi-fidelity TO is significantly improved and TO structures are designed with hot spots eliminated, thermal resistance reduced and temperature uniformity improved. The present work provides a new method for TO of complicated heat and mass transfer problems. Keywords: topology optimization, flow boiling, multi-fidelity optimization, microchannels, convective heat transfer <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13519v1-abstract-full').style.display = 'none'; document.getElementById('2405.13519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09949">arXiv:2404.09949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09949">pdf</a>, <a href="https://arxiv.org/format/2404.09949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the differential cross section for neutral pion production in charged-current muon neutrino interactions on argon with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+M+B">M. B. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09949v3-abstract-short" style="display: inline;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab&#39;s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09949v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09949v3-abstract-full" style="display: none;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab&#39;s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to $6.86 \times 10^{20}$ protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, $200-400$ MeV for muons and $100-200$ MeV for pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'none'; document.getElementById('2404.09949v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0142-CSAID-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06220">arXiv:2403.06220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06220">pdf</a>, <a href="https://arxiv.org/format/2403.06220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Detecting Neutrinos from Supernova Bursts in PandaX-4T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pang%2C+B">Binyu Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Junting Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06220v1-abstract-short" style="display: inline;"> Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06220v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06220v1-abstract-full" style="display: none;"> Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict the neutrino fluxes and spectra, which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-second duration with negligible backgrounds at PandaX-4T. Two specialized triggering alarms for monitoring supernova burst neutrinos are built. The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated. These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future, providing the astronomical communities with supernova early warnings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06220v1-abstract-full').style.display = 'none'; document.getElementById('2403.06220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04239">arXiv:2403.04239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04239">pdf</a>, <a href="https://arxiv.org/format/2403.04239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.023029">10.1103/PhysRevD.110.023029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal Response Model in PandaX-4T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yunyang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shibo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a> , et al. (66 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04239v3-abstract-short" style="display: inline;"> PandaX-4T experiment is a deep-underground dark matter direct search experiment that employs a dual-phase time projection chamber with a sensitive volume containing 3.7 tonne of liquid xenon. The detector of PandaX-4T is capable of simultaneously collecting the primary scintillation and ionization signals, utilizing their ratio to discriminate dark matter signals from background sources such as ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04239v3-abstract-full').style.display = 'inline'; document.getElementById('2403.04239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04239v3-abstract-full" style="display: none;"> PandaX-4T experiment is a deep-underground dark matter direct search experiment that employs a dual-phase time projection chamber with a sensitive volume containing 3.7 tonne of liquid xenon. The detector of PandaX-4T is capable of simultaneously collecting the primary scintillation and ionization signals, utilizing their ratio to discriminate dark matter signals from background sources such as gamma rays and beta particles. The signal response model plays a crucial role in interpreting the data obtained by PandaX-4T. It describes the conversion from the deposited energy by dark matter interactions to the detectable signals within the detector. The signal response model is utilized in various PandaX-4T results. This work provides a comprehensive description of the procedures involved in constructing and parameter-fitting the signal response model for the energy range of approximately 1 keV to 25 keV for electronic recoils and 6 keV to 90 keV for nuclear recoils. It also covers the signal reconstruction, selection, and correction methods, which are crucial components integrated into the signal response model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04239v3-abstract-full').style.display = 'none'; document.getElementById('2403.04239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16272">arXiv:2402.16272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16272">pdf</a>, <a href="https://arxiv.org/format/2402.16272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Mass production and performance study on the 20-inch PMT acrylic protection covers in JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhonghua Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Diru Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Meihang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+X">Xiaoping Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+G">Genhua Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+S">Shengjiong Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhua Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+X">Xiaofeng Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qinchang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16272v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory is a neutrino experiment that incorporates 20,012 20-inch photomultiplier tubes (PMTs) and 25,600 3-inch PMTs. A dedicated system was designed to protect the PMTs from an implosion chain reaction underwater. As a crucial element of the protection system, over 20,000 acrylic covers were manufactured through injection molding, ensuring high dimensional p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16272v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16272v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory is a neutrino experiment that incorporates 20,012 20-inch photomultiplier tubes (PMTs) and 25,600 3-inch PMTs. A dedicated system was designed to protect the PMTs from an implosion chain reaction underwater. As a crucial element of the protection system, over 20,000 acrylic covers were manufactured through injection molding, ensuring high dimensional precision, mechanical strength, and transparency. This paper presents the manufacturing technology, mass production process, and performance characteristics of the acrylic covers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16272v1-abstract-full').style.display = 'none'; document.getElementById('2402.16272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15196">arXiv:2402.15196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Compact on-chip power splitter based on topological photonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Puhui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiacheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linpeng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Liang Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanyan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=ZHao%2C+J">Jianlin ZHao</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15196v1-abstract-short" style="display: inline;"> We propose and demonstrate an on-chip 1*N power splitter based on topological photonic crystal (TPC) on a monolithic silicon photonic platform. Benefiting from the valley-locked propagation mode at the interface of TPCs with different topological phases, the proposed power splitter has negligible backscattering around the sharp bendings and good robustness to fabrication defects, which therefore e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15196v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15196v1-abstract-full" style="display: none;"> We propose and demonstrate an on-chip 1*N power splitter based on topological photonic crystal (TPC) on a monolithic silicon photonic platform. Benefiting from the valley-locked propagation mode at the interface of TPCs with different topological phases, the proposed power splitter has negligible backscattering around the sharp bendings and good robustness to fabrication defects, which therefore enable lower insertion loss, better uniformity, and more compact footprint than the conventional designs. For the fabricated 1*2 (8) power splitter, the uniformity among the output ports is below 0.35 (0.65) dB and the maximum insertion loss is 0.38 (0.58) dB with compact footprint of 5*5 um2 (10*12 um2) within a bandwidth of 70 nm. In addition, the topological power splitter only requires simple configurations of TPCs with different topological phases, which is more reliable in design and fabrication compared with the conventional designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15196v1-abstract-full').style.display = 'none'; document.getElementById('2402.15196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11072">arXiv:2312.11072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11072">pdf</a>, <a href="https://arxiv.org/format/2312.11072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad380f">10.1088/1674-1137/ad380f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Waveform Simulation in PandaX-4T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiafu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a> , et al. (66 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11072v3-abstract-short" style="display: inline;"> Signal reconstruction through software processing is a crucial component of the background and signal models in the PandaX-4T experiment, which is a multi-tonne dark matter direct search experiment. The accuracy of signal reconstruction is influenced by various detector artifacts, including noise, dark count of photomultiplier, impurity photoionization in the detector, and other relevant considera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11072v3-abstract-full').style.display = 'inline'; document.getElementById('2312.11072v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11072v3-abstract-full" style="display: none;"> Signal reconstruction through software processing is a crucial component of the background and signal models in the PandaX-4T experiment, which is a multi-tonne dark matter direct search experiment. The accuracy of signal reconstruction is influenced by various detector artifacts, including noise, dark count of photomultiplier, impurity photoionization in the detector, and other relevant considerations. In this study, we present a detailed description of a semi-data-driven approach designed to simulate the signal waveform. This work provides a reliable model for the efficiency and bias of the signal reconstruction in the data analysis of PandaX-4T. By comparing critical variables which relate to the temporal shape and hit pattern of the signals, we demonstrate a good agreement between the simulation and data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11072v3-abstract-full').style.display = 'none'; document.getElementById('2312.11072v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 48, no.7,073001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02446">arXiv:2312.02446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electrical control and transport of tightly bound interlayer excitons in a MoSe2/hBN/MoSe2 heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+R">Ruihao Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Suji Park</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Houk Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02446v2-abstract-short" style="display: inline;"> Controlling interlayer excitons in van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02446v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02446v2-abstract-full" style="display: none;"> Controlling interlayer excitons in van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe2/hBN/MoSe2 heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ~180 meV through the Stark effect, and exhibit a sizable binding energy of ~81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding ten micrometers, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02446v2-abstract-full').style.display = 'none'; document.getElementById('2312.02446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07660">arXiv:2310.07660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07660">pdf</a>, <a href="https://arxiv.org/format/2310.07660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+M+B">M. B. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07660v2-abstract-short" style="display: inline;"> We present the first search for heavy neutral leptons (HNL) decaying into $谓e^+e^-$ or $谓蟺^0$ final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab&#39;s Main Injector corresponding to a total exposure of $7.01 \times 10^{20}$ protons on target. We set upper limits at the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07660v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07660v2-abstract-full" style="display: none;"> We present the first search for heavy neutral leptons (HNL) decaying into $谓e^+e^-$ or $谓蟺^0$ final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab&#39;s Main Injector corresponding to a total exposure of $7.01 \times 10^{20}$ protons on target. We set upper limits at the $90\%$ confidence level on the mixing parameter $\lvert U_{渭4}\rvert^2$ in the mass ranges $10\le m_{\rm HNL}\le 150$ MeV for the $谓e^+e^-$ channel and $150\le m_{\rm HNL}\le 245$ MeV for the $谓蟺^0$ channel, assuming $\lvert U_{e 4}\rvert^2 = \lvert U_{蟿4}\rvert^2 = 0$. These limits represent the most stringent constraints in the mass range $35&lt;m_{\rm HNL}&lt;175$ MeV and the first constraints from a direct search for $谓蟺^0$ decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07660v2-abstract-full').style.display = 'none'; document.getElementById('2310.07660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version as accepted by Physical Review Letters, some presentational changes and updated references, no changes to results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-574-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14614">arXiv:2309.14614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14614">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiferroic Magnon Spin-Torque Based Reconfigurable Logic-In-Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+C">Cancheng Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Pal%2C+P">Pratap Pal</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yongjian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hetian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuejie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuan-Hua Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Ralph%2C+D+C">Daniel C. Ralph</a>, <a href="/search/physics?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14614v1-abstract-short" style="display: inline;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multife&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14614v1-abstract-full" style="display: none;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multiferroic magnon modes can be electrically excited and controlled. In this device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. We show that the ferroelectric polarization can electrically modulate the magnon spin-torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. By manipulating the two coupled non-volatile state variables (ferroelectric polarization and magnetization), we further demonstrate reconfigurable logic-in-memory operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'none'; document.getElementById('2309.14614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12783">arXiv:2307.12783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12783">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Ni-O-Ag catalyst enables 103-m$^2$ artificial photosynthesis with &gt;16% solar-to-chemical energy conversion efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qixuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Dachao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haixiao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=San%2C+X">Xingyuan San</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shufang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12783v1-abstract-short" style="display: inline;"> Herein, NiO nanosheets supported with Ag single atoms are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g$^{-1}$ h$^{-1}$ of CO production rate under 1 sun irradiation, revealing the unparalleled weak sunlight driven reverse water-gas shift reaction (RWGS) activity. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO$_2$ a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12783v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12783v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12783v1-abstract-full" style="display: none;"> Herein, NiO nanosheets supported with Ag single atoms are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g$^{-1}$ h$^{-1}$ of CO production rate under 1 sun irradiation, revealing the unparalleled weak sunlight driven reverse water-gas shift reaction (RWGS) activity. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO$_2$ and weaken the CO adsorption, resulting in 1434 mmol g$^{-1}$ h$^{-1}$ of CO yield at 300$^\circ$ C, surpassing any low-temperature RWGS performances ever reported. Building on this, we integrated the 2D Ni$_1$Ag$_{0.02}$O$_1$ supported photothermal RWGS with commercial photovoltaic electrolytic water splitting, leading to the realization of 103 m$^2$ scale artificial photosynthesis system (CO$_2$+H$_2$$\to$CO+H$_2$O) with a daily CO yield of 18.70 m$^3$, a photochemical energy conversion efficiency of &gt;16%, over 90% H$_2$ ultilization efficiency, outperforming other types of artificial photosynthesis. The results of this research chart a promising course for designing practical, natural sunlight-driven artificial photosynthesis systems and highly efficient platinum-free CO$_2$ hydrogenation catalysts. This work is a significant step towards harnessing solar energy more efficiently and sustainably, opening exciting possibilities for future research and development in this area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12783v1-abstract-full').style.display = 'none'; document.getElementById('2307.12783v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11199">arXiv:2306.11199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+R">Ruihao Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Suji Park</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Houk Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Hafezi%2C+M">Mohammad Hafezi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11199v1-abstract-short" style="display: inline;"> Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently significant efforts have focused on exploring excitons in solids as a pathway to achieving nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light-matter interactions require large oscillator strength and short radiative lifetime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11199v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11199v1-abstract-full" style="display: none;"> Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently significant efforts have focused on exploring excitons in solids as a pathway to achieving nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light-matter interactions require large oscillator strength and short radiative lifetime of the excitons, which limits their interaction strength and nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses by exploiting the coupling between excitons and carriers in an atomically thin semiconductor of trilayer tungsten diselenide. By controlling the electric field and electrostatic doping of the trilayer, we observe the hybridization between intralayer and interlayer excitons along with the formation of Fermi polarons due to the interactions between excitons and free carriers. We find substantial optical nonlinearity can be achieved under both continuous wave and pulsed laser excitation, where the resonance of the hole-doped Fermi polaron blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the strong interactions between excitons and free charges with optically induced valley polarization. Our results establish that atomically thin heterostructures are a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics, and open avenues for exploring many-body physics in hybrid Fermionic-Bosonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11199v1-abstract-full').style.display = 'none'; document.getElementById('2306.11199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures with SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13387">arXiv:2304.13387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00512">10.1021/acs.nanolett.3c00512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flexible but Refractory Single-Crystalline Hyperbolic Metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Ruyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+T">Ting Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+S">Shaoqin Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shunda Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+G">Guanhua Su</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jie Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Junhua Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+H">Hongtao Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Yanwei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13387v1-abstract-short" style="display: inline;"> The fabrication of flexible single-crystalline plasmonic or photonic components in a scalable way is fundamentally important to flexible electronic and photonic devices with high speed, high energy efficiency, and high reliability. However, it remains to be a big challenge so far. Here, we have successfully synthesized flexible single-crystalline optical hyperbolic metamaterials by directly deposi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13387v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13387v1-abstract-full" style="display: none;"> The fabrication of flexible single-crystalline plasmonic or photonic components in a scalable way is fundamentally important to flexible electronic and photonic devices with high speed, high energy efficiency, and high reliability. However, it remains to be a big challenge so far. Here, we have successfully synthesized flexible single-crystalline optical hyperbolic metamaterials by directly depositing refractory nitride superlattices on flexible fluoro phlogopite-mica substrates with magnetron sputtering. Interestingly, these flexible hyperbolic metamaterials show dual-band hyperbolic dispersion of dielectric constants with low dielectric losses and high figure-of-merit in the visible to near-infrared ranges. More importantly, the optical properties of these nitride-based flexible hyperbolic metamaterials show remarkable stability under either heating or bending. Therefore, the strategy developed in this work offers an easy and scalable route to fabricate flexible, high-performance, and refractory plasmonic or photonic components, which can significantly expand the applications of current electronic and photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13387v1-abstract-full').style.display = 'none'; document.getElementById('2304.13387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01682">arXiv:2304.01682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01682">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> High-resolution tomographic reconstruction of optical absorbance through scattering media using neural fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wuwei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+S">Siyuan Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linlin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+S">Shengyu Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuehan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liangtao Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shiying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xingjun Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Jiahua Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jingyi Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01682v1-abstract-short" style="display: inline;"> Light scattering imposes a major obstacle for imaging objects seated deeply in turbid media, such as biological tissues and foggy air. Diffuse optical tomography (DOT) tackles scattering by volumetrically recovering the optical absorbance and has shown significance in medical imaging, remote sensing and autonomous driving. A conventional DOT reconstruction paradigm necessitates discretizing the ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01682v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01682v1-abstract-full" style="display: none;"> Light scattering imposes a major obstacle for imaging objects seated deeply in turbid media, such as biological tissues and foggy air. Diffuse optical tomography (DOT) tackles scattering by volumetrically recovering the optical absorbance and has shown significance in medical imaging, remote sensing and autonomous driving. A conventional DOT reconstruction paradigm necessitates discretizing the object volume into voxels at a pre-determined resolution for modelling diffuse light propagation and the resulting spatial resolution of the reconstruction is generally limited. We propose NeuDOT, a novel DOT scheme based on neural fields (NF) to continuously encode the optical absorbance within the volume and subsequently bridge the gap between model accuracy and high resolution. Comprehensive experiments demonstrate that NeuDOT achieves submillimetre lateral resolution and resolves complex 3D objects at 14 mm-depth, outperforming the state-of-the-art methods. NeuDOT is a non-invasive, high-resolution and computationally efficient tomographic method, and unlocks further applications of NF involving light scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01682v1-abstract-full').style.display = 'none'; document.getElementById('2304.01682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics &amp; Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&amp;D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&amp;D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11335">arXiv:2301.11335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11335">pdf</a>, <a href="https://arxiv.org/ps/2301.11335">ps</a>, <a href="https://arxiv.org/format/2301.11335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Charge exchange in X-ray astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Shah%2C+C">Chintan Shah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11335v2-abstract-short" style="display: inline;"> Charge exchange is an atomic process that primarily occurs at interfaces between the neutral and ionized gas. The study of the process has been carried out on three levels: the theoretical calculation of the cross sections, the laboratory measurements of reaction rates and line strengths, and the observational constraints using celestial objects. For a long time in the past, the status of astrophy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11335v2-abstract-full').style.display = 'inline'; document.getElementById('2301.11335v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11335v2-abstract-full" style="display: none;"> Charge exchange is an atomic process that primarily occurs at interfaces between the neutral and ionized gas. The study of the process has been carried out on three levels: the theoretical calculation of the cross sections, the laboratory measurements of reaction rates and line strengths, and the observational constraints using celestial objects. For a long time in the past, the status of astrophysical observations in the X-ray band lagged behind the other two aspects until the discovery of X-ray from a comet was made in 1996, which changed the research landscape. Recent observational evidence suggests that charge exchange has been seen or can be expected from a surprisingly broad range of locations, from the Earth&#39;s exosphere to the large-scale structures of the Universe. The rapid development of high-resolution X-ray spectroscopy, in particular the non-dispersive micro-calorimeters, is paving the way to revolutionary new science possibilities both in the laboratory and astrophysics. This chapter summarizes the current knowledge of charge exchange and its relevance on astrophysics, especially X-ray spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11335v2-abstract-full').style.display = 'none'; document.getElementById('2301.11335v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review contribution to book &#34;High-Resolution X-ray Spectroscopy&#34; (edited by Cosimo Bambi and Jiachen Jiang)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13427">arXiv:2210.13427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13427">pdf</a>, <a href="https://arxiv.org/format/2210.13427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac9c57">10.3847/1538-4365/ac9c57 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> R-matrix electron-impact excitation data for the H- and He-like ions with Z=6-30 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+J">Junjie Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Del+Zanna%2C+G">G. Del Zanna</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chunyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Badnell%2C+N+R">N. R. Badnell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13427v1-abstract-short" style="display: inline;"> Plasma models built on extensive atomic data are essential to interpreting the observed cosmic spectra. H-like Lyman series and He-like triplets observable in the X-ray band are powerful diagnostic lines to measure the physical properties of various types of astrophysical plasmas. Electron-impact excitation is a fundamental atomic process for the formation of H-like and He-like key diagnostic line&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13427v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13427v1-abstract-full" style="display: none;"> Plasma models built on extensive atomic data are essential to interpreting the observed cosmic spectra. H-like Lyman series and He-like triplets observable in the X-ray band are powerful diagnostic lines to measure the physical properties of various types of astrophysical plasmas. Electron-impact excitation is a fundamental atomic process for the formation of H-like and He-like key diagnostic lines. Electron-impact excitation data adopted by the widely used plasma codes (AtomDB, CHIANTI, and SPEX) do not necessarily agree with each other. Here we present a systematic calculation of electron-impact excitation data of H-like and He-like ions with the atomic number Z=6-30 (i.e., C to Zn). Radiation damped R-matrix intermediate coupling frame transformation calculation was performed for each ion with configurations up to $n=6$. We compare the present work with the above three plasma codes and literature to assess the quality of the new data, which are relevant for current and future high-resolution X-ray spectrometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13427v1-abstract-full').style.display = 'none'; document.getElementById('2210.13427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01082">arXiv:2209.01082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01082">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Transport dynamics study of laser-accelerated proton beams and design of double achromatic beam translation system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J+G">J. G. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H+Y">H. Y. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Y. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+M+F">M. F. Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y+L">Y. L. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S+X">S. X. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C+T">C. T. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01082v1-abstract-short" style="display: inline;"> Proton beams generated from laser acceleration show merit for their unique spatial (micron-size) and temporal (picosecond) properties, which make them desirable for many potential applications. However, the large energy spread and divergence angle make it difficult to maintain these beam properties after delivery. This hinders the wide application of laser acceleration. In this paper, we design a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01082v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01082v1-abstract-full" style="display: none;"> Proton beams generated from laser acceleration show merit for their unique spatial (micron-size) and temporal (picosecond) properties, which make them desirable for many potential applications. However, the large energy spread and divergence angle make it difficult to maintain these beam properties after delivery. This hinders the wide application of laser acceleration. In this paper, we design a double achromatic beam translation system (DABTS), based on weak-focusing magnets, to realize achromatic transmission in both the horizontal and vertical directions, and compress the bunch length of the delivered proton beam at the same time. We make use of fringe angles and special steering magnets to effectively reduce the influence of chromatic aberrations and high-order nonlinear terms and realize close to ideal point-to-point optics. We believe this work contributes to the ongoing effort to apply laser accelerators to a variety of fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01082v1-abstract-full').style.display = 'none'; document.getElementById('2209.01082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09114">arXiv:2207.09114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.09114">pdf</a>, <a href="https://arxiv.org/ps/2207.09114">ps</a>, <a href="https://arxiv.org/format/2207.09114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244075">10.1051/0004-6361/202244075 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of an Unidentified Soft X-ray Emission Feature in NGC 5548 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+J">Junjie Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Kaastra%2C+J+S">Jelle S. Kaastra</a>, <a href="/search/physics?searchtype=author&amp;query=Mehdipour%2C+M">Missagh Mehdipour</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+C">Ciro Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Grafton-Waters%2C+S">Sam Grafton-Waters</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+S">Stefano Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Landt%2C+H">Hermine Landt</a>, <a href="/search/physics?searchtype=author&amp;query=Branduardi-Raymont%2C+G">Graziella Branduardi-Raymont</a>, <a href="/search/physics?searchtype=author&amp;query=Costantini%2C+E">Elisa Costantini</a>, <a href="/search/physics?searchtype=author&amp;query=Ebrero%2C+J">Jacobo Ebrero</a>, <a href="/search/physics?searchtype=author&amp;query=Petrucci%2C+P">Pierre-Olivier Petrucci</a>, <a href="/search/physics?searchtype=author&amp;query=Behar%2C+E">Ehud Behar</a>, <a href="/search/physics?searchtype=author&amp;query=di+Gesu%2C+L">Laura di Gesu</a>, <a href="/search/physics?searchtype=author&amp;query=De+Marco%2C+B">Barbara De Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Matt%2C+G">Giorgio Matt</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+J+A+J">Jake A. J. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Peretz%2C+U">Uria Peretz</a>, <a href="/search/physics?searchtype=author&amp;query=Ursini%2C+F">Francesco Ursini</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+M">Martin Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09114v1-abstract-short" style="display: inline;"> NGC~5548 is an X-ray bright Seyfert 1 active galaxy. It exhibits a variety of spectroscopic features in the soft X-ray band, including in particular the absorption by the AGN outflows of a broad range of ionization states, with column densities up to 1E27 /m^2, and having speeds up to several thousand kilometers per second. The known emission features are in broad agreement with photoionized X-ray&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09114v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09114v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09114v1-abstract-full" style="display: none;"> NGC~5548 is an X-ray bright Seyfert 1 active galaxy. It exhibits a variety of spectroscopic features in the soft X-ray band, including in particular the absorption by the AGN outflows of a broad range of ionization states, with column densities up to 1E27 /m^2, and having speeds up to several thousand kilometers per second. The known emission features are in broad agreement with photoionized X-ray narrow and broad emission line models. We report on an X-ray spectroscopic study using 1.1 Ms XMM-Newton and 0.9 Ms Chandra grating observations of NGC 5548 spanning two decades. The aim is to search and characterize any potential spectroscopic features in addition to the known primary spectral components that are already modeled in high precision. We detect a weak unidentified excess emission feature at 18.4 Angstrom (18.1 Angstrom in the restframe). The feature is seen at &gt;5 sigma statistical significance taking into account the look elsewhere effect. No known instrumental issues, atomic transitions, and astrophysical effects can explain this excess. The observed intensity of the possible feature seems to anti-correlate in time with the hardness ratio of the source. However, the variability might not be intrinsic, it might be caused by the time-variable obscuration by the outflows. An intriguing possibility is the line emission from charge exchange between a partially ionized outflow and a neutral layer in the same outflow, or in the close environment. Other possibilities, such as emission from a highly-ionized component with high outflowing speed, cannot be fully ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09114v1-abstract-full').style.display = 'none'; document.getElementById('2207.09114v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 665, A93 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05556">arXiv:2207.05556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of the Trajectory Propagation in the MM-SQC Dynamics by Using Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kunni Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+J">Jiawei Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Chao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F+L">Feng Long Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Z">Zhenggang Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05556v1-abstract-short" style="display: inline;"> The supervised machine learning (ML) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After the construction of the long short-term memory recurrent neural network (LSTM-RNN) model, it is used to perform the entire trajectory evolutions from initi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05556v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05556v1-abstract-full" style="display: none;"> The supervised machine learning (ML) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After the construction of the long short-term memory recurrent neural network (LSTM-RNN) model, it is used to perform the entire trajectory evolutions from initial sampling conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models, which cover two-site and three-site systems with biased and unbiased energy levels, as well as include a few or many phonon modes. The LSTM-RNN approach also shows the powerful ability to obtain the accurate and stable results for the long-time evolutions. It indicates that the LSTM-RNN model perfectly captures of dynamical correction information in the trajectory evolution in the MM-SQC dynamics. Our work provides the possibility to employ the ML methods in the simulation of the trajectory-based nonadiabatic dynamic of complex systems with a large number of degrees of freedoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05556v1-abstract-full').style.display = 'none'; document.getElementById('2207.05556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00723">arXiv:2207.00723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00723">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0093147">10.1063/5.0093147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-responsivity MoS$_2$ hot-electron telecom-band photodetector integrated with microring resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qiao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Y">Yingke Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Siqi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhiwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linpeng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+R">Ruijuan Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiachen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Liang Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bijun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianlin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00723v1-abstract-short" style="display: inline;"> We report a high-responsive hot-electron photodetector based on the integration of an Au-MoS$_2$ junction with a silicon nitride microring resonator (MRR) for detecting telecom-band light. The coupling of the evanescent field of the silicon nitride MRR with the Au-MoS$_2$ Schottky junction region enhances the hot-electron injection efficiency. The device exhibits a high responsivity of 154.6 mA W-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00723v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00723v1-abstract-full" style="display: none;"> We report a high-responsive hot-electron photodetector based on the integration of an Au-MoS$_2$ junction with a silicon nitride microring resonator (MRR) for detecting telecom-band light. The coupling of the evanescent field of the silicon nitride MRR with the Au-MoS$_2$ Schottky junction region enhances the hot-electron injection efficiency. The device exhibits a high responsivity of 154.6 mA W-1 at the wavelength of 1516 nm, and the moderately uniform responsivities are obtained over the wavelength range of 1500 nm-1630 nm. This MRR-enhanced MoS2 hot-electron photodetector offers possibilities for integrated optoelectronic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00723v1-abstract-full').style.display = 'none'; document.getElementById('2207.00723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07971">arXiv:2206.07971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202100498">10.1002/lpor.202100498 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Second Harmonic Generation from Silicon Slotted Nanocubes with Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C">C. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Q. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Q">Q. Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">L. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">X. Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Y">Y. Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+G">G. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Y. Hao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07971v1-abstract-short" style="display: inline;"> Optical materials with centrosymmetry, such as silicon and germanium, are unfortunately absent of second-order nonlinear optical responses, hindering their developments in efficient nonlinear optical devices. Here, a design with an array of slotted nanocubes is proposed to realize remarkable second harmonic generation (SHG) from the centrosymmetric silicon, which takes advantage of enlarged surfac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07971v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07971v1-abstract-full" style="display: none;"> Optical materials with centrosymmetry, such as silicon and germanium, are unfortunately absent of second-order nonlinear optical responses, hindering their developments in efficient nonlinear optical devices. Here, a design with an array of slotted nanocubes is proposed to realize remarkable second harmonic generation (SHG) from the centrosymmetric silicon, which takes advantage of enlarged surface second-order nonlinearity, strengthened electric field over the surface of the air-slot, as well as the resonance enhancement by the bound states in the continuum. Compared with that from the array of silicon nanocubes without air-slots, SHG from the slotted nanocube array is improved by more than two orders of magnitude. The experimentally measured SHG efficiency of the silicon slotted nanocube array is high as 1.8*10^-4 W^-1, which is expected to be further engineered by modifying the air-slot geometries. Our result could provide a new strategy to expand nonlinear optical effects and devices of centrosymmetric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07971v1-abstract-full').style.display = 'none'; document.getElementById('2206.07971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures, 1 Table, 1 TOC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser Photonics Reviews 16(5) 2022, 2100498 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07134">arXiv:2206.07134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07134">pdf</a>, <a href="https://arxiv.org/format/2206.07134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039943">10.1051/0004-6361/202039943 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray spectra of the Fe-L complex III: systematic uncertainties in the atomic data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Shah%2C+C">Chintan Shah</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+J">Junjie Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Raassen%2C+A+J+J">A. J. J. Raassen</a>, <a href="/search/physics?searchtype=author&amp;query=de+Plaa%2C+J">Jelle de Plaa</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+C">Ciro Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Akamatsu%2C+H">Hiroki Akamatsu</a>, <a href="/search/physics?searchtype=author&amp;query=Werner%2C+N">Norbert Werner</a>, <a href="/search/physics?searchtype=author&amp;query=Simionescu%2C+A">Aurora Simionescu</a>, <a href="/search/physics?searchtype=author&amp;query=Mernier%2C+F">Francois Mernier</a>, <a href="/search/physics?searchtype=author&amp;query=Sawada%2C+M">Makoto Sawada</a>, <a href="/search/physics?searchtype=author&amp;query=Mohanty%2C+P">Pranav Mohanty</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+P">Pedro Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+M+F">Ming Feng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Porter%2C+F+S">F. Scott Porter</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez-Urrutia%2C+J+R+C">Jose R. Crespo Lopez-Urrutia</a>, <a href="/search/physics?searchtype=author&amp;query=Kaastra%2C+J+S">Jelle S. Kaastra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07134v1-abstract-short" style="display: inline;"> There has been a growing request from the X-ray astronomy community for a quantitative estimate of systematic uncertainties originating from the atomic data used in plasma codes. Though there have been several studies looking into atomic data uncertainties using theoretical calculations, in general, there is no commonly accepted solution for this task. We present a new approach for estimating unce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07134v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07134v1-abstract-full" style="display: none;"> There has been a growing request from the X-ray astronomy community for a quantitative estimate of systematic uncertainties originating from the atomic data used in plasma codes. Though there have been several studies looking into atomic data uncertainties using theoretical calculations, in general, there is no commonly accepted solution for this task. We present a new approach for estimating uncertainties in the line emissivities for the current models of collisional plasma, mainly based upon dedicated analysis of observed high resolution spectra of stellar coronae and galaxy clusters. We find that the systematic uncertainties of the observed lines consistently show anti-correlation with the model line fluxes, after properly accounting for the additional uncertainties from the ion concentration calculation. The strong lines in the spectra are in general better reproduced, indicating that the atomic data and modeling of the main transitions are more accurate than those for the minor ones. This underlying anti-correlation is found to be roughly independent on source properties, line positions, ion species, and the line formation processes. We further apply our method to the simulated XRISM and Athena observations of collisional plasma sources and discuss the impact of uncertainties on the interpretation of these spectra. The typical uncertainties are 1-2% on temperature and 3-20% on abundances of O, Ne, Fe, Mg, and Ni. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07134v1-abstract-full').style.display = 'none'; document.getElementById('2206.07134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 664, A62 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06087">arXiv:2206.06087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06087">pdf</a>, <a href="https://arxiv.org/format/2206.06087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac8539">10.1088/1674-1137/ac8539 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron-induced nuclear recoil background in the PandaX-4T experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+G">Guofang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qiuhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yunshan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06087v2-abstract-short" style="display: inline;"> Neutron-induced nuclear recoil background is critical to the dark matter searches in the PandaX-4T liquid xenon experiment. This paper studies the feature of neutron background in liquid xenon and evaluates their contribution in the single scattering nuclear recoil events through three methods. The first method is fully Monte Carlo simulation based. The last two are data-driven methods that also u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06087v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06087v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06087v2-abstract-full" style="display: none;"> Neutron-induced nuclear recoil background is critical to the dark matter searches in the PandaX-4T liquid xenon experiment. This paper studies the feature of neutron background in liquid xenon and evaluates their contribution in the single scattering nuclear recoil events through three methods. The first method is fully Monte Carlo simulation based. The last two are data-driven methods that also use the multiple scattering signals and high energy signals in the data, respectively. In the PandaX-4T commissioning data with an exposure of 0.63 tonne-year, all these methods give a consistent result that there are $1.15\pm0.57$ neutron-induced background in dark matter signal region within an approximated nuclear recoil energy window between 5 and 100 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06087v2-abstract-full').style.display = 'none'; document.getElementById('2206.06087v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03308">arXiv:2206.03308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03308">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+R">Ruijuan Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiaoqing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Siqi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linpeng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Thourhout%2C+D">Dries Van Thourhout</a>, <a href="/search/physics?searchtype=author&amp;query=Castellanos-Gomez%2C+A">Andres Castellanos-Gomez</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Z">Zhipei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianlin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03308v1-abstract-short" style="display: inline;"> Two-dimensional materials are attractive for constructing high-performance photonic chip-integrated photodetectors because of their remarkable electronic and optical properties and dangling-bond-free surfaces. However, the reported chip-integrated two-dimensional material photodetectors were mainly implemented with the configuration of metal-semiconductor-metal, suffering from high dark currents a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03308v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03308v1-abstract-full" style="display: none;"> Two-dimensional materials are attractive for constructing high-performance photonic chip-integrated photodetectors because of their remarkable electronic and optical properties and dangling-bond-free surfaces. However, the reported chip-integrated two-dimensional material photodetectors were mainly implemented with the configuration of metal-semiconductor-metal, suffering from high dark currents and low responsivities at high operation speed. Here, we report a van der Waals PN heterojunction photodetector, composed of p-type black phosphorous and n-type molybdenum telluride, integrated on a silicon nitride waveguide. The built-in electric field of the PN heterojunction significantly suppresses the dark current and improves the responsivity. Under a bias of 1 V pointing from n-type molybdenum telluride to p-type black phosphorous, the dark current is lower than 7 nA, which is more than two orders of magnitude lower than those reported in other waveguide-integrated black phosphorus photodetectors. An intrinsic responsivity up to 577 mA/W is obtained. Remarkably, the van der Waals PN heterojunction is tunable by the electrostatic doping to further engineer its rectification and improve the photodetection, enabling an increased responsivity of 709 mA/W. Besides, the heterojunction photodetector exhibits a response bandwidth of ~1.0 GHz and a uniform photodetection over a wide spectral range, as experimentally measured from 1500 to 1630 nm. The demonstrated chip-integrated van der Waals PN heterojunction photodetector with low dark current, high responsivity and fast response has great potentials to develop high-performance on-chip photodetectors for various photonic integrated circuits based on silicon, lithium niobate, polymer, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03308v1-abstract-full').style.display = 'none'; document.getElementById('2206.03308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03143">arXiv:2206.03143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03143">pdf</a>, <a href="https://arxiv.org/format/2206.03143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.2c00038">10.1021/acsphotonics.2c00038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-efficiency second-harmonic and sum-frequency generation in a silicon nitride microring integrated with few-layer GaSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Y">Yafei Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linpeng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Liang Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianlin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03143v1-abstract-short" style="display: inline;"> Silicon nitride (SiN) photonics platform has attributes of ultra-low linear and nonlinear propagation losses and CMOS-compatible fabrication process, promising large-scale multifunctional photonic circuits. However, the centrosymmetric nature of SiN inhibits second-order nonlinear optical responses in its photonics platform, which is desirable for developing efficient nonlinear active devices. Her&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03143v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03143v1-abstract-full" style="display: none;"> Silicon nitride (SiN) photonics platform has attributes of ultra-low linear and nonlinear propagation losses and CMOS-compatible fabrication process, promising large-scale multifunctional photonic circuits. However, the centrosymmetric nature of SiN inhibits second-order nonlinear optical responses in its photonics platform, which is desirable for developing efficient nonlinear active devices. Here, we demonstrate high-efficiency second-order nonlinear processes in SiN photonics platform by integrating a few-layer GaSe flake on a SiN microring resonator. With the pump of microwatts continuous-wave lasers, second-harmonic generation and sum-frequency generation with the conversion efficiencies of 849%/W and 123%/W, respectively, are achieved, which benefit from the ultrahigh second-order nonlinear susceptibility of GaSe, resonance enhanced GaSe-light interaction, and phase-matching condition satisfied by the mode engineering. Combining with the easy integration, the GaSe-assisted high-efficiency second-order nonlinear processes offer a new route to enriching already strong functionality of SiN photonics platform in nonlinear optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03143v1-abstract-full').style.display = 'none'; document.getElementById('2206.03143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 2022, 9, 1671-1678 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11175">arXiv:2204.11175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11175">pdf</a>, <a href="https://arxiv.org/format/2204.11175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac7cd8">10.1088/1674-1137/ac7cd8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of background from accidental coincidence signals in the PandaX-II experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+P">PandaX-II Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Ju%2C+Y">Yonglin Ju</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuaijie Li</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11175v2-abstract-short" style="display: inline;"> The PandaX-II experiment employed a 580kg liquid xenon detector to search for the interactions between dark matter particles and the target xenon atoms. The accidental coincidences of isolated signals result in a dangerous background which mimic the signature of the dark matter. We performed a detailed study on the accidental coincidence background in PandaX-II, including the possible origin of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11175v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11175v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11175v2-abstract-full" style="display: none;"> The PandaX-II experiment employed a 580kg liquid xenon detector to search for the interactions between dark matter particles and the target xenon atoms. The accidental coincidences of isolated signals result in a dangerous background which mimic the signature of the dark matter. We performed a detailed study on the accidental coincidence background in PandaX-II, including the possible origin of the isolated signals, the background level and corresponding background suppression method. With a boosted-decision-tree algorithm, the accidental coincidence background is reduced by 70% in the dark matter signal region, thus the sensitivity of dark matter search at PandaX-II is improved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11175v2-abstract-full').style.display = 'none'; document.getElementById('2204.11175v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures in main text and 5 figures in the appendix. Accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04971">arXiv:2204.04971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A new artificial photosynthetic system coupling photovoltaic electrocatalysis with photothermal catalysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">Xianhua Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Dachao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=San%2C+X">Xingyuan San</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baolai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+G">Guangsheng Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shufang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04971v1-abstract-short" style="display: inline;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized art&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04971v1-abstract-full" style="display: none;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized artificial photosynthetic systems) with a low cost (equivalent to 1/7 of reported artificial photosynthetic systems). Furthermore, the outdoor artificial photosynthetic demonstration with 1.268 m2 of scale exhibits the CO generation amount of 258.4 L per day, the STC of ~15.5% for CO production in winter, which could recover the cost within 833 suuny days of operation by selling CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'none'; document.getElementById('2204.04971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09720">arXiv:2203.09720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09720">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwac077">10.1093/nsr/nwac077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-by-Layer Epitaxy of Multilayer MoS2 Wafers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qinqin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaomei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+D">Depeng Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yutuo Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Z">Zheng Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yanchong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+H+Y+X">Hua Yu Xuedong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Rong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09720v1-abstract-short" style="display: inline;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09720v1-abstract-full" style="display: none;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer5,16-18. However, achieving high-quality multilayer MoS2 wafers remains a challenge. Here we report the growth of high quality multilayer MoS2 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to 6. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements on device performances were found in thicker-layer field effect transistors (FETs), as expected. For example, the average field-effect mobility (渭FE) at room temperature (RT) can increase from ~80 cm2V-1s-1 for monolayer to ~110/145 cm2V-1s-1 for bilayer/trilayer devices. The highest RT 渭FE=234.7 cm2V-1s-1 and a record-high on-current densities of 1.704 mA渭m-1 at Vds=2 V were also achieved in trilayer MoS2 FETs with a high on/off ratio exceeding 107. Our work hence moves a step closer to practical applications of 2D MoS2 in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'none'; document.getElementById('2203.09720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Natl. Sci. Rev. 9, nwac077 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03699">arXiv:2202.03699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03699">pdf</a>, <a href="https://arxiv.org/ps/2202.03699">ps</a>, <a href="https://arxiv.org/format/2202.03699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Assessing Planetary Complexity and Potential Agnostic Biosignatures using Epsilon Machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+S">Stuart Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiazheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lixiang Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Sinapayen%2C+L">Lana Sinapayen</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+S">Siteng Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Natraj%2C+V">Vijay Natraj</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Jonathan Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Crisp%2C+D">David Crisp</a>, <a href="/search/physics?searchtype=author&amp;query=Yung%2C+Y">Yuk Yung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03699v1-abstract-short" style="display: inline;"> We present a new approach to exoplanet characterisation using techniques from complexity science, with potential applications to biosignature detection. This agnostic method makes use of the temporal variability of light reflected or emitted from a planet. We use a technique known as epsilon machine reconstruction to compute the statistical complexity, a measure of the minimal model size for time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03699v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03699v1-abstract-full" style="display: none;"> We present a new approach to exoplanet characterisation using techniques from complexity science, with potential applications to biosignature detection. This agnostic method makes use of the temporal variability of light reflected or emitted from a planet. We use a technique known as epsilon machine reconstruction to compute the statistical complexity, a measure of the minimal model size for time series data. We demonstrate that statistical complexity is an effective measure of the complexity of planetary features. Increasing levels of qualitative planetary complexity correlate with increases in statistical complexity and Shannon entropy, demonstrating that our approach can identify planets with the richest dynamics. We also compare Earth time series with Jupiter data, and find that for the three wavelengths considered, Earth&#39;s average complexity and entropy rate are approximately 50% and 43% higher than Jupiter&#39;s, respectively. The majority of schemes for the detection of extraterrestrial life rely upon biochemical signatures and planetary context. However, it is increasingly recognised that extraterrestrial life could be very different to life on Earth. Under the hypothesis that there is a correlation between the presence of a biosphere and observable planetary complexity, our technique offers an agnostic and quantitative method for the measurement thereof. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03699v1-abstract-full').style.display = 'none'; document.getElementById('2202.03699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06146">arXiv:2201.06146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06146">pdf</a>, <a href="https://arxiv.org/format/2201.06146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Shah%2C+C">Chintan Shah</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Ruitian Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06146v1-abstract-short" style="display: inline;"> Relevant uncertainties on theoretical atomic data are vital to determine the accuracy of plasma diagnostics in a number of areas including in particular the astrophysical study. We present a new calculation of the uncertainties on the present theoretical ion-impact charge exchange atomic data and X-ray spectra based on a set of comparisons with the existing laboratory data obtained in historical m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06146v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06146v1-abstract-full" style="display: none;"> Relevant uncertainties on theoretical atomic data are vital to determine the accuracy of plasma diagnostics in a number of areas including in particular the astrophysical study. We present a new calculation of the uncertainties on the present theoretical ion-impact charge exchange atomic data and X-ray spectra based on a set of comparisons with the existing laboratory data obtained in historical merged-beam, cold-target recoil-ion momentum spectroscopy, and electron beam ion traps experiments. The average systematic uncertainties are found to be 35-88% on the total cross sections, and 57-75% on the characteristic line ratios. The model deviation increases as the collision energy decreases. The errors on total cross sections further induce a significant uncertainty to the calculation of ionization balance for low temperature collisional plasmas. Substantial improvements of the atomic database and dedicated laboratory measurements are needed to get the current models ready for the X-ray spectra from the next X-ray spectroscopic mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06146v1-abstract-full').style.display = 'none'; document.getElementById('2201.06146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Sensors, plasma diagnostics special issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.15307">arXiv:2112.15307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.15307">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Enhancement in LaMnO3 Films with Release and Flexure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+H">Hongbao Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenning Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+M">Mingwei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiulai Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dongxiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">Guozhen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.15307v1-abstract-short" style="display: inline;"> A variety of novel phenomena and functionalities emerge from lowering the dimensionality of materials and enriching the degrees of freedom in modulation. In this work, it is found that the saturation magnetization of LaMnO3 (LMO) films is largely enhanced by 56% after releasing from a brand-new phase of tetragonal strontium aluminate buffer layer, and is significantly increased by 92% with bending&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15307v1-abstract-full').style.display = 'inline'; document.getElementById('2112.15307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.15307v1-abstract-full" style="display: none;"> A variety of novel phenomena and functionalities emerge from lowering the dimensionality of materials and enriching the degrees of freedom in modulation. In this work, it is found that the saturation magnetization of LaMnO3 (LMO) films is largely enhanced by 56% after releasing from a brand-new phase of tetragonal strontium aluminate buffer layer, and is significantly increased by 92% with bending films to a curvature of 1 mm-1 using a water-assisted direct-transferring method. Meanwhile, the Curie temperature of LMO films has been improved by 13 K. High-resolution spherical aberration-corrected scanning transmission electron microscopy and first-principles calculations unambiguously demonstrate that the enhanced ferromagnetism is attributed to the strengthened Mn-O-Mn super-exchange interactions from the augmented characteristics of the unconventional P21/n structure caused by the out-of-plane lattice shrinking after strain releasing and increased flexure degree of freestanding LMO films. This work paves a way to achieve large-scale and crack-and-wrinkle-free freestanding films of oxides with largely improved functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15307v1-abstract-full').style.display = 'none'; document.getElementById('2112.15307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.08957">arXiv:2112.08957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.08957">pdf</a>, <a href="https://arxiv.org/format/2112.08957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.171801">10.1103/PhysRevLett.128.171801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Search for the Cosmic Ray Boosted Sub-GeV Dark Matter at the PandaX-II Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yunshan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Ju%2C+Y">Yonglin Ju</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.08957v3-abstract-short" style="display: inline;"> We report a novel search for the cosmic ray boosted dark matter using the 100~tonne$\cdot$day full data set of the PandaX-II detector located at the China Jinping Underground Laboratory. With the extra energy gained from the cosmic rays, sub-GeV dark matter particles can produce visible recoil signals in the detector. The diurnal modulations in rate and energy spectrum are utilized to further enha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08957v3-abstract-full').style.display = 'inline'; document.getElementById('2112.08957v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.08957v3-abstract-full" style="display: none;"> We report a novel search for the cosmic ray boosted dark matter using the 100~tonne$\cdot$day full data set of the PandaX-II detector located at the China Jinping Underground Laboratory. With the extra energy gained from the cosmic rays, sub-GeV dark matter particles can produce visible recoil signals in the detector. The diurnal modulations in rate and energy spectrum are utilized to further enhance the signal sensitivity. Our result excludes the dark matter-nucleon elastic scattering cross section between 10$^{-31}$cm$^{2}$ and 10$^{-28}$cm$^{2}$ for a dark matter masses from 0.1 MeV/$c^2$ to 0.1 GeV/$c^2$, with a large parameter space previously unexplored by experimental collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08957v3-abstract-full').style.display = 'none'; document.getElementById('2112.08957v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 1 table. New constraints adopted a CRDM energy cutoff at 0.2 GeV, and some uncertainties from the cosmic ray propagation model and dark matter density are studied</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02892">arXiv:2112.02892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02892">pdf</a>, <a href="https://arxiv.org/format/2112.02892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2022)147">10.1007/JHEP06(2022)147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low Radioactive Material Screening and Background Control for the PandaX-4T Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+L">Lin Si</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yunshan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02892v2-abstract-short" style="display: inline;"> PandaX-4T is a ton-scale dark matter direct detection experiment using a dual-phase TPC technique at the China Jinping Underground Laboratory. Various ultra-low background technologies have been developed and applied to material screening for PandaX-4T, including HPGe gamma spectroscopy, ICP-MS, NAA, radon emanation measurement system, krypton assay station, and alpha detection system. Low backgro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02892v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02892v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02892v2-abstract-full" style="display: none;"> PandaX-4T is a ton-scale dark matter direct detection experiment using a dual-phase TPC technique at the China Jinping Underground Laboratory. Various ultra-low background technologies have been developed and applied to material screening for PandaX-4T, including HPGe gamma spectroscopy, ICP-MS, NAA, radon emanation measurement system, krypton assay station, and alpha detection system. Low background materials were selected to assemble the detector. Surface treatment procedures were investigated to further suppress radioactive background. Combining measured results and Monte Carlo simulation, the total material background rates of PandaX-4T in the energy region of 1-25 keV$\rm{}_{ee}$ are estimated to be (9.9 $\pm$ 1.9) $\times \ 10^{-3}$ mDRU for electron recoil and (2.8 $\pm$ 0.6) $\times \ 10^{-4}$ mDRU for nuclear recoil. In addition, $^{nat}$Kr in the detector is estimated to be &lt;8 ppt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02892v2-abstract-full').style.display = 'none'; document.getElementById('2112.02892v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05494">arXiv:2111.05494</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Type-printable photodetector arrays for multichannel meta-infrared imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Junxiong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+S">Shuyi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Ji Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hongyi Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yu Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yafei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaosheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+W">Wen Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jinxing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05494v7-abstract-short" style="display: inline;"> Multichannel meta-imaging, inspired by the parallel-processing capability of neuromorphic computing, offers significant advancements in resolution enhancement and edge discrimination in imaging systems, extending even into the mid- to far-infrared spectrum. Currently typical multichannel infrared imaging systems consist of separating optical gratings or merging multi-cameras, which require complex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05494v7-abstract-full').style.display = 'inline'; document.getElementById('2111.05494v7-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05494v7-abstract-full" style="display: none;"> Multichannel meta-imaging, inspired by the parallel-processing capability of neuromorphic computing, offers significant advancements in resolution enhancement and edge discrimination in imaging systems, extending even into the mid- to far-infrared spectrum. Currently typical multichannel infrared imaging systems consist of separating optical gratings or merging multi-cameras, which require complex circuit design and heavy power consumption, hindering the implementation of advanced human-eye-like imagers. Here, we present a novel approach for printable graphene plasmonic photodetector arrays driven by a ferroelectric superdomain for multichannel meta-infrared imaging with enhanced edge discrimination. The fabricated photodetectors exhibited multiple spectral responses with zero-bias operation by directly rescaling the ferroelectric superdomain instead of reconstructing the separated gratings. We also demonstrated enhanced and faster shape classification (98.1%) and edge detection (98.2%) using our multichannel infrared images compared with single-channel detectors. Our proof-of-concept photodetector arrays simplify multichannel infrared imaging systems and hold great potential for applications in efficient edge detection in human-brain-type machine vision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05494v7-abstract-full').style.display = 'none'; document.getElementById('2111.05494v7-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Some specific concerns should be addressed or updated. e.g. Fig. 3d</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01492">arXiv:2111.01492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01492">pdf</a>, <a href="https://arxiv.org/format/2111.01492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01008">10.1088/1748-0221/17/01/P01008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light yield and field dependence measurement in PandaX-II dual-phase xenon detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yunshan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Ju%2C+Y">Yonglin Ju</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01492v2-abstract-short" style="display: inline;"> The dual-phase xenon time projection chamber (TPC) is one of the most sensitive detector technology for dark matter direct search, where the energy deposition of incoming particle can be converted into photons and electrons through xenon excitation and ionization. The detector response to signal energy deposition varies significantly with the electric field in liquid xenon. We study the detector&#39;s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01492v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01492v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01492v2-abstract-full" style="display: none;"> The dual-phase xenon time projection chamber (TPC) is one of the most sensitive detector technology for dark matter direct search, where the energy deposition of incoming particle can be converted into photons and electrons through xenon excitation and ionization. The detector response to signal energy deposition varies significantly with the electric field in liquid xenon. We study the detector&#39;s light yield and its dependence on the electric field in the PandaX-II dual-phase detector containing 580~kg liquid xenon in the sensitive volume. From our measurements, the light yield at electric fields from 0~V/cm to 317~V/cm is obtained for energy depositions up to 236~keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01492v2-abstract-full').style.display = 'none'; document.getElementById('2111.01492v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 JINST 17 P01008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14901">arXiv:2110.14901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14901">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Internal Conversion Dynamics Through the on-the-fly Simulation of Transient Absorption Pump-Probe Spectra with Different Electronic Structure Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Chao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kunni Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+D">Deping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F+L">Feng Long Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Gelin%2C+M+F">Maxim F. Gelin</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Z">Zhenggang Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14901v1-abstract-short" style="display: inline;"> The ultrafast nonadiabatic internal conversion in azomethane is explored by the on-the-fly trajectory surface-hopping simulations of photoinduced dynamics and femtosecond transient absorption (TA) pump-probe (PP) spectra at three electronic-structure theory levels, OM2/MRCI, SA-CASSCF, and XMS-CASPT2. All these dynamics simulations predict ultrafast internal conversion. On the one hand, the OM2/MR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14901v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14901v1-abstract-full" style="display: none;"> The ultrafast nonadiabatic internal conversion in azomethane is explored by the on-the-fly trajectory surface-hopping simulations of photoinduced dynamics and femtosecond transient absorption (TA) pump-probe (PP) spectra at three electronic-structure theory levels, OM2/MRCI, SA-CASSCF, and XMS-CASPT2. All these dynamics simulations predict ultrafast internal conversion. On the one hand, the OM2/MRCI and SA-CASSCF methods yield similar excited-state dynamics, while the XMS-CASPT2 method predicts a much slower population decay. On the other hand, the TA PP signals simulated at the SA-CASSCF and XMS-CASPT2 levels show the similar spectral features, particularly for the similar stimulated emission contributions, while the OM2/MRCI signals are quite different. This demonstrates that the nonadiabatic population dynamics and time-resolved stimulated emission signals may reflect different aspects of photoinduced processes. The combination of the dynamical and spectral simulations definitely provides more accurate and detailed information which sheds light on the microscopic mechanisms of photophysical and photochemical processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14901v1-abstract-full').style.display = 'none'; document.getElementById('2110.14901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01310">arXiv:2108.01310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01310">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.1c02672">10.1021/acs.jpclett.1c02672 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term Memory Recurrent Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kunni Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+J">Jiawei Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F+L">Feng Long Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Z">Zhenggang Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01310v2-abstract-short" style="display: inline;"> The recurrent neural network with the long short-term memory cell (LSTM-NN) is employed to simulate the long-time dynamics of open quantum system. The bootstrap method is applied in the LSTM-NN construction and prediction, which provides a Monte-Carlo estimation of forecasting confidence interval. Within this approach, a large number of LSTM-NNs are constructed by resampling time-series sequences&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01310v2-abstract-full').style.display = 'inline'; document.getElementById('2108.01310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01310v2-abstract-full" style="display: none;"> The recurrent neural network with the long short-term memory cell (LSTM-NN) is employed to simulate the long-time dynamics of open quantum system. The bootstrap method is applied in the LSTM-NN construction and prediction, which provides a Monte-Carlo estimation of forecasting confidence interval. Within this approach, a large number of LSTM-NNs are constructed by resampling time-series sequences that were obtained from the early-stage quantum evolution given by numerically-exact multilayer multiconfigurational time-dependent Hartree method. The built LSTM-NN ensemble is used for the reliable propagation of the long-time quantum dynamics and the simulated result is highly consistent with the exact evolution. The forecasting uncertainty that partially reflects the reliability of the LSTM-NN prediction is also given. This demonstrates the bootstrap-based LSTM-NN approach is a practical and powerful tool to propagate the long-time quantum dynamics of open systems with high accuracy and low computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01310v2-abstract-full').style.display = 'none'; document.getElementById('2108.01310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Physical Chemistry Letters,2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.00181">arXiv:2108.00181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.00181">pdf</a>, <a href="https://arxiv.org/format/2108.00181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0060007">10.1063/5.0060007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fano resonance from a one-dimensional topological photonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linpeng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Q">Qingchen Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Liang Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Q">Qiang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianlin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.00181v1-abstract-short" style="display: inline;"> An ultra-compact one-dimensional topological photonic crystal (1D-TPC) is designed in a single mode silicon bus-waveguide to generate Fano resonance lineshape. The Fano resonance comes from the interference between the discrete topological boundary state of the 1D-TPC and the continuum high-order leaky mode of the bus-waveguide. Standalone asymmetric Fano resonance lineshapes are obtained experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00181v1-abstract-full').style.display = 'inline'; document.getElementById('2108.00181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.00181v1-abstract-full" style="display: none;"> An ultra-compact one-dimensional topological photonic crystal (1D-TPC) is designed in a single mode silicon bus-waveguide to generate Fano resonance lineshape. The Fano resonance comes from the interference between the discrete topological boundary state of the 1D-TPC and the continuum high-order leaky mode of the bus-waveguide. Standalone asymmetric Fano resonance lineshapes are obtained experimentally in the waveguide transmission spectrum with a maximum extinction ratio of 33 dB and a slope ratio of 10 dB/nm over a broadband flat background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00181v1-abstract-full').style.display = 'none'; document.getElementById('2108.00181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gu%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10