CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 60 results for author: <span class="mathjax">Ren, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ren%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ren, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ren%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ren, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19938">arXiv:2411.19938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19938">pdf</a>, <a href="https://arxiv.org/format/2411.19938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing quantum critical phase from neural network wavefunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Haoxiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19938v1-abstract-short" style="display: inline;"> One-dimensional (1D) systems and models provide a versatile platform for emergent phenomena induced by strong electron correlation. In this work, we extend the newly developed real space neural network quantum Monte Carlo methods to study the quantum phase transition of electronic and magnetic properties. Hydrogen chains of different interatomic distances are explored systematically with both open&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19938v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19938v1-abstract-full" style="display: none;"> One-dimensional (1D) systems and models provide a versatile platform for emergent phenomena induced by strong electron correlation. In this work, we extend the newly developed real space neural network quantum Monte Carlo methods to study the quantum phase transition of electronic and magnetic properties. Hydrogen chains of different interatomic distances are explored systematically with both open and periodic boundary conditions, and fully correlated ground state many-body wavefunction is achieved via unsupervised training of neural networks. We demonstrate for the first time that neural networks are capable of capturing the quantum critical behavior of Tomonaga- Luttinger liquid (TLL), which is known to dominate 1D quantum systems. Moreover, we reveal the breakdown of TLL phase and the emergence of a Fermi liquid behavior, evidenced by abrupt changes in the spin structure and the momentum distribution. Such behavior is absent in commonly studied 1D lattice models and is likely due to the involvement of high-energy orbitals of hydrogen atoms. Our work highlights the powerfulness of neural networks for representing complex quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19938v1-abstract-full').style.display = 'none'; document.getElementById('2411.19938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00707">arXiv:2407.00707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00707">pdf</a>, <a href="https://arxiv.org/format/2407.00707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep learning quantum Monte Carlo for solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Y">Yubing Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00707v1-abstract-short" style="display: inline;"> Deep learning has deeply changed the paradigms of many research fields. At the heart of chemical and physical sciences is the accurate ab initio calculation of many-body wavefunction, which has become one of the most notable examples to demonstrate the power of deep learning in science. In particular, the introduction of deep learning into quantum Monte Carlo (QMC) has significantly advanced the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00707v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00707v1-abstract-full" style="display: none;"> Deep learning has deeply changed the paradigms of many research fields. At the heart of chemical and physical sciences is the accurate ab initio calculation of many-body wavefunction, which has become one of the most notable examples to demonstrate the power of deep learning in science. In particular, the introduction of deep learning into quantum Monte Carlo (QMC) has significantly advanced the frontier of ab initio calculation, offering a universal tool to solve the electronic structure of materials and molecules. Deep learning QMC architectures were initial designed and tested on small molecules, focusing on comparisons with other state-of-the-art ab initio methods. Methodological developments, including extensions to real solids and periodic models, have been rapidly progressing and reported applications are fast expanding. This review covers the theoretical foundation of deep learning QMC for solids, the neural network wavefunction ansatz, and various of other methodological developments. Applications on computing energy, electron density, electric polarization, force and stress of real solids are also reviewed. The methods have also been extended to other periodic systems and finite temperature calculations. The review highlights the potentials and existing challenges of deep learning QMC in materials chemistry and condensed matter physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00707v1-abstract-full').style.display = 'none'; document.getElementById('2407.00707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11134">arXiv:2406.11134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11134">pdf</a>, <a href="https://arxiv.org/format/2406.11134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent Wigner phases in moir茅 superlattice from deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Y">Yubing Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11134v1-abstract-short" style="display: inline;"> Moir茅 superlattice designed in stacked van der Waals material provides a dynamic platform for hosting exotic and emergent condensed matter phenomena. However, the relevance of strong correlation effects and the large size of moir茅 unit cells pose significant challenges for traditional computational techniques. To overcome these challenges, we develop an unsupervised deep learning approach to uncov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11134v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11134v1-abstract-full" style="display: none;"> Moir茅 superlattice designed in stacked van der Waals material provides a dynamic platform for hosting exotic and emergent condensed matter phenomena. However, the relevance of strong correlation effects and the large size of moir茅 unit cells pose significant challenges for traditional computational techniques. To overcome these challenges, we develop an unsupervised deep learning approach to uncover electronic phases emerging from moir茅 systems based on variational optimization of neural network many-body wavefunction. Our approach has identified diverse quantum states, including novel phases such as generalized Wigner crystals, Wigner molecular crystals, and previously unreported Wigner covalent crystals. These discoveries provide insights into recent experimental studies and suggest new phases for future exploration. They also highlight the crucial role of spin polarization in determining Wigner phases. More importantly, our proposed deep learning approach is proven general and efficient, offering a powerful framework for studying moir茅 physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11134v1-abstract-full').style.display = 'none'; document.getElementById('2406.11134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01222">arXiv:2406.01222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01222">pdf</a>, <a href="https://arxiv.org/format/2406.01222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Symmetry enforced solution of the many-body Schr枚dinger equation with deep neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zixiang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruichen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xuelan Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01222v1-abstract-short" style="display: inline;"> The integration of deep neural networks with the Variational Monte Carlo (VMC) method has marked a significant advancement in solving the Schr枚dinger equation. In this work, we enforce spin symmetry in the neural network-based VMC calculation with modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low comput&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01222v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01222v1-abstract-full" style="display: none;"> The integration of deep neural networks with the Variational Monte Carlo (VMC) method has marked a significant advancement in solving the Schr枚dinger equation. In this work, we enforce spin symmetry in the neural network-based VMC calculation with modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low computational cost. It predicts accurate energies while maintaining the correct symmetry in strongly correlated systems, even in cases where different spin states are nearly degenerate. Our approach also excels at spin-gap calculations, including the singlet-triplet gap in biradical systems, which is of high interest in photochemistry. Overall, this work establishes a robust framework for efficiently calculating various quantum states with specific spin symmetry in correlated systems, paving the way for novel discoveries in quantum science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01222v1-abstract-full').style.display = 'none'; document.getElementById('2406.01222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09452">arXiv:2404.09452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09452">pdf</a>, <a href="https://arxiv.org/format/2404.09452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing GPU-acceleration in the Python-based Simulations of Chemistry Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Q">Qiming Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Pu%2C+Z">Zhichen Pu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+T">Tianze Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wenzhi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wen Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xia Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhengxiao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Huo%2C+M">Mian Huo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Sheng Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yumin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">Weihao Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09452v2-abstract-short" style="display: inline;"> We describe our contribution as industrial stakeholders to the existing open-source GPU4PySCF project (https: //github.com/pyscf/gpu4pyscf), a GPU-accelerated Python quantum chemistry package. We have integrated GPU acceleration into other PySCF functionality including Density Functional Theory (DFT), geometry optimization, frequency analysis, solvent models, and density fitting technique. Through&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09452v2-abstract-full').style.display = 'inline'; document.getElementById('2404.09452v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09452v2-abstract-full" style="display: none;"> We describe our contribution as industrial stakeholders to the existing open-source GPU4PySCF project (https: //github.com/pyscf/gpu4pyscf), a GPU-accelerated Python quantum chemistry package. We have integrated GPU acceleration into other PySCF functionality including Density Functional Theory (DFT), geometry optimization, frequency analysis, solvent models, and density fitting technique. Through these contributions, GPU4PySCF v1.0 can now be regarded as a fully functional and industrially relevant platform which we demonstrate in this work through a range of tests. When performing DFT calculations on modern GPU platforms, GPU4PySCF delivers 30 times speedup over a 32-core CPU node, resulting in approximately 90% cost savings for most DFT tasks. The performance advantages and productivity improvements have been found in multiple industrial applications, such as generating potential energy surfaces, analyzing molecular properties, calculating solvation free energy, identifying chemical reactions in lithium-ion batteries, and accelerating neural-network methods. With the improved design that makes it easy to integrate with the Python and PySCF ecosystem, GPU4PySCF is natural choice that we can now recommend for many industrial quantum chemistry applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09452v2-abstract-full').style.display = 'none'; document.getElementById('2404.09452v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06206">arXiv:2404.06206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06206">pdf</a>, <a href="https://arxiv.org/format/2404.06206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Method for Computing Committor Functions with Adaptive Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+B">Bo Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiqing Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06206v1-abstract-short" style="display: inline;"> The committor function is a central object for quantifying the transitions between metastable states of dynamical systems. Recently, a number of computational methods based on deep neural networks have been developed for computing the high-dimensional committor function. The success of the methods relies on sampling adequate data for the transition, which still is a challenging task for complex sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06206v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06206v1-abstract-full" style="display: none;"> The committor function is a central object for quantifying the transitions between metastable states of dynamical systems. Recently, a number of computational methods based on deep neural networks have been developed for computing the high-dimensional committor function. The success of the methods relies on sampling adequate data for the transition, which still is a challenging task for complex systems at low temperatures. In this work, we propose a deep learning method with two novel adaptive sampling schemes (I and II). In the two schemes, the data are generated actively with a modified potential where the bias potential is constructed from the learned committor function. We theoretically demonstrate the advantages of the sampling schemes and show that the data in sampling scheme II are uniformly distributed along the transition tube. This makes a promising method for studying the transition of complex systems. The efficiency of the method is illustrated in high-dimensional systems including the alanine dipeptide and a solvated dimer system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06206v1-abstract-full').style.display = 'none'; document.getElementById('2404.06206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05905">arXiv:2404.05905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05905">pdf</a>, <a href="https://arxiv.org/format/2404.05905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Computing Transition Pathways for the Study of Rare Events Using Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+B">Bo Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yangzheng Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiqing Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05905v1-abstract-short" style="display: inline;"> Understanding the transition events between metastable states in complex systems is an important subject in the fields of computational physics, chemistry and biology. The transition pathway plays an important role in characterizing the mechanism underlying the transition, for example, in the study of conformational changes of bio-molecules. In fact, computing the transition pathway is a challengi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05905v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05905v1-abstract-full" style="display: none;"> Understanding the transition events between metastable states in complex systems is an important subject in the fields of computational physics, chemistry and biology. The transition pathway plays an important role in characterizing the mechanism underlying the transition, for example, in the study of conformational changes of bio-molecules. In fact, computing the transition pathway is a challenging task for complex and high-dimensional systems. In this work, we formulate the path-finding task as a cost minimization problem over a particular path space. The cost function is adapted from the Freidlin-Wentzell action functional so that it is able to deal with rough potential landscapes. The path-finding problem is then solved using a actor-critic method based on the deep deterministic policy gradient algorithm (DDPG). The method incorporates the potential force of the system in the policy for generating episodes and combines physical properties of the system with the learning process for molecular systems. The exploitation and exploration nature of reinforcement learning enables the method to efficiently sample the transition events and compute the globally optimal transition pathway. We illustrate the effectiveness of the proposed method using three benchmark systems including an extended Mueller system and the Lennard-Jones system of seven particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05905v1-abstract-full').style.display = 'none'; document.getElementById('2404.05905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14983">arXiv:2312.14983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14983">pdf</a>, <a href="https://arxiv.org/format/2312.14983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Energy Justice and Equity: A Review of Definitions, Measures, and Practice in Policy, Planning, and Operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weihang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Y">Yongpei Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+F">Feng Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Levin%2C+T">Todd Levin</a>, <a href="/search/physics?searchtype=author&amp;query=Heleno%2C+M">Miguel Heleno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14983v2-abstract-short" style="display: inline;"> Energy justice, at the intersection of energy and societal ethics, studies the origins, quantification, and resolution of persistent and potential inequities within the energy sector, serving as a foundational pillar for societal harmony. In this review, we overview the historical and modern definitions of energy equity and frameworks of energy justice. We highlight the tools adopted to measure eq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14983v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14983v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14983v2-abstract-full" style="display: none;"> Energy justice, at the intersection of energy and societal ethics, studies the origins, quantification, and resolution of persistent and potential inequities within the energy sector, serving as a foundational pillar for societal harmony. In this review, we overview the historical and modern definitions of energy equity and frameworks of energy justice. We highlight the tools adopted to measure equity in the energy context, unveiling multifaceted inequities that permeate global energy landscapes. We discuss the limitations of prevalent metrics such as the Gini coefficient and Generalized Entropy Indices in the evaluation of energy justice concerns. Finally, we analyze publications that examined current practices and proposed improving methods towards a more equitable energy market for the society from policy, planning, and operation perspectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14983v2-abstract-full').style.display = 'none'; document.getElementById('2312.14983v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07564">arXiv:2308.07564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07564">pdf</a>, <a href="https://arxiv.org/format/2308.07564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> MSAT: Matrix stability analysis tool for shock-capturing schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weijie Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wenjia Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhengyu Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07564v1-abstract-short" style="display: inline;"> The simulation of supersonic or hypersonic flows often suffers from numerical shock instabilities if the flow field contains strong shocks, limiting the further application of shock-capturing schemes. In this paper, we develop the unified matrix stability analysis method for schemes with three-point stencils and present MSAT, an open-source tool to quantitatively analyze the shock instability prob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07564v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07564v1-abstract-full" style="display: none;"> The simulation of supersonic or hypersonic flows often suffers from numerical shock instabilities if the flow field contains strong shocks, limiting the further application of shock-capturing schemes. In this paper, we develop the unified matrix stability analysis method for schemes with three-point stencils and present MSAT, an open-source tool to quantitatively analyze the shock instability problem. Based on the finite-volume approach on the structured grid, MSAT can be employed to investigate the mechanism of the shock instability problem, evaluate the robustness of numerical schemes, and then help to develop robust schemes. Also, MSAT has the ability to analyze the practical simulation of supersonic or hypersonic flows, evaluate whether it will suffer from shock instabilities, and then assist in selecting appropriate numerical schemes accordingly. As a result, MSAT is a helpful tool that can investigate the shock instability problem and help to cure it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07564v1-abstract-full').style.display = 'none'; document.getElementById('2308.07564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03428">arXiv:2308.03428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03428">pdf</a>, <a href="https://arxiv.org/format/2308.03428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Numerical stability analysis of shock-capturing methods for strong shocks II: high-order finite-volume schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weijie Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wenjia Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhengyu Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03428v1-abstract-short" style="display: inline;"> The shock instability problem commonly arises in flow simulations involving strong shocks, particularly when employing high-order schemes, limiting their applications in hypersonic flow simulations. This study focuses on exploring the numerical characteristics and underlying mechanisms of shock instabilities in fifth-order finite-volume WENO schemes. To this end, for the first time, we have establ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03428v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03428v1-abstract-full" style="display: none;"> The shock instability problem commonly arises in flow simulations involving strong shocks, particularly when employing high-order schemes, limiting their applications in hypersonic flow simulations. This study focuses on exploring the numerical characteristics and underlying mechanisms of shock instabilities in fifth-order finite-volume WENO schemes. To this end, for the first time, we have established the matrix stability analysis method for the fifth-order scheme. By predicting the evolution of perturbation errors in the exponential growth stage, this method provides quantitative insights into the behavior of shock-capturing and helps elucidate the mechanisms that cause shock instabilities. Results reveal that even dissipative solvers also suffer from shock instabilities when the spatial accuracy is increased to fifth-order. Further investigation indicates that this is due to the excessively high spatial accuracy of the WENO scheme near the numerical shock structure. Moreover, the shock instability problem of fifth-order schemes is demonstrated to be a multidimensional coupling problem. To stably capture strong shocks, it is crucial to have sufficient dissipation on transverse faces and ensure at least two points within the numerical shock structure in the direction perpendicular to the shock. The source location of instability is also clarified by the matrix stability analysis method, revealing that the instability arises from the numerical shock structure. Additionally, stability analysis demonstrates that local characteristic decomposition helps mitigate shock instabilities in high-order schemes, although the instability still persists. These conclusions pave the way for a better understanding of the shock instability in fifth-order schemes and provide guidance for the development of more reliable high-order shock-capturing methods for compressible flows with high Mach numbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03428v1-abstract-full').style.display = 'none'; document.getElementById('2308.03428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02471">arXiv:2308.02471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02471">pdf</a>, <a href="https://arxiv.org/format/2308.02471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Variance extrapolation method for neural-network variational Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fu%2C+W">Weizhong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02471v1-abstract-short" style="display: inline;"> Constructing more expressive ansatz has been a primary focus for quantum Monte Carlo, aimed at more accurate \textit{ab initio} calculations. However, with more powerful ansatz, e.g. various recent developed models based on neural-network architectures, the training becomes more difficult and expensive, which may have a counterproductive effect on the accuracy of calculation. In this work, we prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02471v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02471v1-abstract-full" style="display: none;"> Constructing more expressive ansatz has been a primary focus for quantum Monte Carlo, aimed at more accurate \textit{ab initio} calculations. However, with more powerful ansatz, e.g. various recent developed models based on neural-network architectures, the training becomes more difficult and expensive, which may have a counterproductive effect on the accuracy of calculation. In this work, we propose to make use of the training data to perform variance extrapolation when using neural-network ansatz in variational Monte Carlo. We show that this approach can speed up the convergence and surpass the ansatz limitation to obtain an improved estimation of the energy. Moreover, variance extrapolation greatly enhances the error cancellation capability, resulting in significantly improved relative energy outcomes, which are the keys to chemistry and physics problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02471v1-abstract-full').style.display = 'none'; document.getElementById('2308.02471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08214">arXiv:2307.08214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08214">pdf</a>, <a href="https://arxiv.org/format/2307.08214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruichen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+H">Haotian Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+D">Du Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xuelan Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chuwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+D">Di He</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liwei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08214v1-abstract-short" style="display: inline;"> Neural network-based variational Monte Carlo (NN-VMC) has emerged as a promising cutting-edge technique of ab initio quantum chemistry. However, the high computational cost of existing approaches hinders their applications in realistic chemistry problems. Here, we report the development of a new NN-VMC method that achieves a remarkable speed-up by more than one order of magnitude, thereby greatly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08214v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08214v1-abstract-full" style="display: none;"> Neural network-based variational Monte Carlo (NN-VMC) has emerged as a promising cutting-edge technique of ab initio quantum chemistry. However, the high computational cost of existing approaches hinders their applications in realistic chemistry problems. Here, we report the development of a new NN-VMC method that achieves a remarkable speed-up by more than one order of magnitude, thereby greatly extending the applicability of NN-VMC to larger systems. Our key design is a novel computational framework named Forward Laplacian, which computes the Laplacian associated with neural networks, the bottleneck of NN-VMC, through an efficient forward propagation process. We then demonstrate that Forward Laplacian is not only versatile but also facilitates more developments of acceleration methods across various aspects, including optimization for sparse derivative matrix and efficient neural network design. Empirically, our approach enables NN-VMC to investigate a broader range of atoms, molecules and chemical reactions for the first time, providing valuable references to other ab initio methods. The results demonstrate a great potential in applying deep learning methods to solve general quantum mechanical problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08214v1-abstract-full').style.display = 'none'; document.getElementById('2307.08214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05084">arXiv:2307.05084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> The curvature-induced magnetization in CrI3 bilayer: flexomagnetic effect enhancement in van der Waals antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+L">Lei Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Sladek%2C+J">Jan Sladek</a>, <a href="/search/physics?searchtype=author&amp;query=Sladek%2C+V">Vladimir Sladek</a>, <a href="/search/physics?searchtype=author&amp;query=Kaminskiy%2C+A+S">Alexey S. Kaminskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Pyatakov%2C+A+P">Alexander P. Pyatakov</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05084v1-abstract-short" style="display: inline;"> The bilayer of CrI3 is a prototypical van der Waals 2D antiferromagnetic material with magnetoelectric effect. It is not generally known, however, that for symmetry reasons the flexomagnetic effect, i.e., the strain gradient-induced magnetization, is also possible in this material. In the present paper, based on the first principle calculations, we estimate the flexomagnetic effect to be 200 渭B脜 t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05084v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05084v1-abstract-full" style="display: none;"> The bilayer of CrI3 is a prototypical van der Waals 2D antiferromagnetic material with magnetoelectric effect. It is not generally known, however, that for symmetry reasons the flexomagnetic effect, i.e., the strain gradient-induced magnetization, is also possible in this material. In the present paper, based on the first principle calculations, we estimate the flexomagnetic effect to be 200 渭B脜 that is two orders of magnitude higher than it was predicted for the referent antiperovskite flexomagnetic material Mn3GaN. The two major factors of flexomagnetic effect enhancement related to the peculiarities of antiferromagnetic structure of van der Waals magnets is revealed: the strain-dependent ferromagnetic coupling in each layer and large interlayer distance separating antiferromagnetically coupled ions. Since 2D systems are naturally prone to mechanical deformation, the emerging field of flexomagnetism is of special interest for application in spintronics of van der Waals materials and straintronics in particular. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05084v1-abstract-full').style.display = 'none'; document.getElementById('2307.05084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04388">arXiv:2306.04388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04388">pdf</a>, <a href="https://arxiv.org/format/2306.04388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Single-pixel p-graded-n junction spectrometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+B">Beibei Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiakai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhiqi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+L">Lu Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yanan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wuwei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jianyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jingyi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Baile Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04388v1-abstract-short" style="display: inline;"> Ultra-compact spectrometers are becoming increasingly popular for their promising applications in biomedical analysis, environmental monitoring, and food safety. In this work, we report a novel single-pixel-photodetector spectrometer with a spectral range from 480 nm to 820 nm, based on the AlGaAs/GaAs p-graded-n junction with a voltage-tunable optical response. To reconstruct the optical spectrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04388v1-abstract-full').style.display = 'inline'; document.getElementById('2306.04388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04388v1-abstract-full" style="display: none;"> Ultra-compact spectrometers are becoming increasingly popular for their promising applications in biomedical analysis, environmental monitoring, and food safety. In this work, we report a novel single-pixel-photodetector spectrometer with a spectral range from 480 nm to 820 nm, based on the AlGaAs/GaAs p-graded-n junction with a voltage-tunable optical response. To reconstruct the optical spectrum, we propose a tailored method called Neural Spectral Fields (NSF) that leverages the unique wavelength and bias-dependent responsivity matrix. Our spectrometer achieves a high spectral wavelength accuracy of up to 0.30 nm and a spectral resolution of up to 10 nm. Additionally, we demonstrate the high spectral imaging performance of the device. The compatibility of our demonstration with the standard III-V process greatly accelerates the commercialization of miniaturized spectrometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04388v1-abstract-full').style.display = 'none'; document.getElementById('2306.04388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03408">arXiv:2305.03408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03408">pdf</a>, <a href="https://arxiv.org/format/2305.03408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2233-2">10.1007/s11433-023-2233-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black holes as the source of dark energy: a stringent test with high-redshift JWST AGNs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Lei Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Zu%2C+L">Lei Zu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+G">Guan-Wen Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhao-Qiang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi-Ying Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuan-Zhu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Z">Zhen-Bo Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wen-ke Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+S">Shao-Peng Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+Z">Zhi-Ping Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Lei Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yi-Zhong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">Da-Ming Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03408v3-abstract-short" style="display: inline;"> Studies have proposed that there is evidence for cosmological coupling of black holes (BHs) with an index of $k\approx 3$; hence, BHs serve as the astrophysical source of dark energy. However, the data sample is limited for the redshifts of $\leq 2.5$. In recent years, the James Webb Space Telescope (JWST) has detected many high-redshift active galactic nuclei (AGNs) and quasars. Among the JWST NI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03408v3-abstract-full').style.display = 'inline'; document.getElementById('2305.03408v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03408v3-abstract-full" style="display: none;"> Studies have proposed that there is evidence for cosmological coupling of black holes (BHs) with an index of $k\approx 3$; hence, BHs serve as the astrophysical source of dark energy. However, the data sample is limited for the redshifts of $\leq 2.5$. In recent years, the James Webb Space Telescope (JWST) has detected many high-redshift active galactic nuclei (AGNs) and quasars. Among the JWST NIRSpec-/NIRCam-resolved AGNs, three are determined to be in early-type host galaxies with a redshift of $z\sim 4.5--7$. However, their $M_{\star}$ and $M_{\rm BH}$ are in tension with the predicted cosmological coupling of black holes with $k = 3$ at a confidence level of $\sim 2蟽$, which challenges the hypothesis that BHs serve as the origin of dark energy. Future work on high-redshift AGNs using the JWST will further assess such a hypothesis by identifying more early-type host galaxies in the higher mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03408v3-abstract-full').style.display = 'none'; document.getElementById('2305.03408v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, 2 tables; Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 67, 229811 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03281">arXiv:2305.03281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03281">pdf</a>, <a href="https://arxiv.org/format/2305.03281">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Numerical stability analysis of shock-capturing methods for strong shocks I: second-order MUSCL schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weijie Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wenjia Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhengyu Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03281v1-abstract-short" style="display: inline;"> Modern shock-capturing schemes often suffer from numerical shock anomalies if the flow field contains strong shocks, which may limit their further application in hypersonic flow computations. In the current study, we devote our efforts to exploring the primary numerical characteristics and the underlying mechanism of shock instability for second-order finite-volume schemes. To this end, we, for th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03281v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03281v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03281v1-abstract-full" style="display: none;"> Modern shock-capturing schemes often suffer from numerical shock anomalies if the flow field contains strong shocks, which may limit their further application in hypersonic flow computations. In the current study, we devote our efforts to exploring the primary numerical characteristics and the underlying mechanism of shock instability for second-order finite-volume schemes. To this end, we, for the first time, develop the matrix stability analysis method for the finite-volume MUSCL approach. Such a linearized analysis method allows to investigate the shock instability problem of the finite-volume shock-capturing schemes in a quantitative and efficient manner. Results of the stability analysis demonstrate that the shock stability of second-order scheme is strongly related to the Riemann solver, Mach number, limiter function, numerical shock structure, and computational grid. Unique stability characteristics associated with these factors for second-order methods are revealed quantitatively with the established method. Source location of instability is also clarified by the matrix stability analysis method. Results show that the shock instability originates from the numerical shock structure. Such conclusions pave the way to better understand the shock instability problem and may shed new light on developing more reliable shock-capturing methods for compressible flows with high Mach number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03281v1-abstract-full').style.display = 'none'; document.getElementById('2305.03281v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages,23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01682">arXiv:2304.01682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01682">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> High-resolution tomographic reconstruction of optical absorbance through scattering media using neural fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wuwei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+S">Siyuan Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linlin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+S">Shengyu Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuehan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liangtao Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shiying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xingjun Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Jiahua Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jingyi Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01682v1-abstract-short" style="display: inline;"> Light scattering imposes a major obstacle for imaging objects seated deeply in turbid media, such as biological tissues and foggy air. Diffuse optical tomography (DOT) tackles scattering by volumetrically recovering the optical absorbance and has shown significance in medical imaging, remote sensing and autonomous driving. A conventional DOT reconstruction paradigm necessitates discretizing the ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01682v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01682v1-abstract-full" style="display: none;"> Light scattering imposes a major obstacle for imaging objects seated deeply in turbid media, such as biological tissues and foggy air. Diffuse optical tomography (DOT) tackles scattering by volumetrically recovering the optical absorbance and has shown significance in medical imaging, remote sensing and autonomous driving. A conventional DOT reconstruction paradigm necessitates discretizing the object volume into voxels at a pre-determined resolution for modelling diffuse light propagation and the resulting spatial resolution of the reconstruction is generally limited. We propose NeuDOT, a novel DOT scheme based on neural fields (NF) to continuously encode the optical absorbance within the volume and subsequently bridge the gap between model accuracy and high resolution. Comprehensive experiments demonstrate that NeuDOT achieves submillimetre lateral resolution and resolves complex 3D objects at 14 mm-depth, outperforming the state-of-the-art methods. NeuDOT is a non-invasive, high-resolution and computationally efficient tomographic method, and unlocks further applications of NF involving light scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01682v1-abstract-full').style.display = 'none'; document.getElementById('2304.01682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00753">arXiv:2303.00753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2023.140646">10.1016/j.cplett.2023.140646 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongle Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+L">Long Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+L">Luchao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haijun Su</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00753v1-abstract-short" style="display: inline;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00753v1-abstract-full" style="display: none;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles density functional theory (DFT) calculations for machine learning, and successfully obtained the force field of the binary Fe-Co alloy. Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force field predicted the correct phase transition range of Fe-Co alloy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'none'; document.getElementById('2303.00753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04027">arXiv:2301.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04027">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43017-023-00450-9">10.1038/s43017-023-00450-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Differentiable modeling to unify machine learning and physical models and advance Geosciences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chaopeng Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Appling%2C+A+P">Alison P. Appling</a>, <a href="/search/physics?searchtype=author&amp;query=Gentine%2C+P">Pierre Gentine</a>, <a href="/search/physics?searchtype=author&amp;query=Bandai%2C+T">Toshiyuki Bandai</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+H">Hoshin Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Tartakovsky%2C+A">Alexandre Tartakovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Baity-Jesi%2C+M">Marco Baity-Jesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fenicia%2C+F">Fabrizio Fenicia</a>, <a href="/search/physics?searchtype=author&amp;query=Kifer%2C+D">Daniel Kifer</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Harman%2C+C+J">Ciaran J. Harman</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+M">Martyn Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Farthing%2C+M">Matthew Farthing</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+D">Dapeng Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+P">Praveen Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Aboelyazeed%2C+D">Doaa Aboelyazeed</a>, <a href="/search/physics?searchtype=author&amp;query=Rahmani%2C+F">Farshid Rahmani</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+H+E">Hylke E. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Bindas%2C+T">Tadd Bindas</a>, <a href="/search/physics?searchtype=author&amp;query=Dwivedi%2C+D">Dipankar Dwivedi</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+K">Kuai Fang</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%B6ge%2C+M">Marvin H枚ge</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04027v2-abstract-short" style="display: inline;"> Process-Based Modeling (PBM) and Machine Learning (ML) are often perceived as distinct paradigms in the geosciences. Here we present differentiable geoscientific modeling as a powerful pathway toward dissolving the perceived barrier between them and ushering in a paradigm shift. For decades, PBM offered benefits in interpretability and physical consistency but struggled to efficiently leverage lar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04027v2-abstract-full').style.display = 'inline'; document.getElementById('2301.04027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04027v2-abstract-full" style="display: none;"> Process-Based Modeling (PBM) and Machine Learning (ML) are often perceived as distinct paradigms in the geosciences. Here we present differentiable geoscientific modeling as a powerful pathway toward dissolving the perceived barrier between them and ushering in a paradigm shift. For decades, PBM offered benefits in interpretability and physical consistency but struggled to efficiently leverage large datasets. ML methods, especially deep networks, presented strong predictive skills yet lacked the ability to answer specific scientific questions. While various methods have been proposed for ML-physics integration, an important underlying theme -- differentiable modeling -- is not sufficiently recognized. Here we outline the concepts, applicability, and significance of differentiable geoscientific modeling (DG). &#34;Differentiable&#34; refers to accurately and efficiently calculating gradients with respect to model variables, critically enabling the learning of high-dimensional unknown relationships. DG refers to a range of methods connecting varying amounts of prior knowledge to neural networks and training them together, capturing a different scope than physics-guided machine learning and emphasizing first principles. Preliminary evidence suggests DG offers better interpretability and causality than ML, improved generalizability and extrapolation capability, and strong potential for knowledge discovery, while approaching the performance of purely data-driven ML. DG models require less training data while scaling favorably in performance and efficiency with increasing amounts of data. With DG, geoscientists may be better able to frame and investigate questions, test hypotheses, and discover unrecognized linkages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04027v2-abstract-full').style.display = 'none'; document.getElementById('2301.04027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Rev Earth Environ 4, 552-567 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15012">arXiv:2209.15012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15012">pdf</a>, <a href="https://arxiv.org/format/2209.15012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.478695">10.1364/OE.478695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ghost translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenhan Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+X">Xiaoyu Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+T">Tao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Scully%2C+M+O">Marlan O. Scully</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15012v1-abstract-short" style="display: inline;"> Artificial intelligence has recently been widely used in computational imaging. The deep neural network (DNN) improves the signal-to-noise ratio of the retrieved images, whose quality is otherwise corrupted due to the low sampling ratio or noisy environments. This work proposes a new computational imaging scheme based on the sequence transduction mechanism with the transformer network. The simulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15012v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15012v1-abstract-full" style="display: none;"> Artificial intelligence has recently been widely used in computational imaging. The deep neural network (DNN) improves the signal-to-noise ratio of the retrieved images, whose quality is otherwise corrupted due to the low sampling ratio or noisy environments. This work proposes a new computational imaging scheme based on the sequence transduction mechanism with the transformer network. The simulation database assists the network in achieving signal translation ability. The experimental single-pixel detector&#39;s signal will be `translated&#39; into a 2D image in an end-to-end manner. High-quality images with no background noise can be retrieved at a sampling ratio as low as 2%. The illumination patterns can be either well-designed speckle patterns for sub-Nyquist imaging or random speckle patterns. Moreover, our method is robust to noise interference. This translation mechanism opens a new direction for DNN-assisted ghost imaging and can be used in various computational imaging scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15012v1-abstract-full').style.display = 'none'; document.getElementById('2209.15012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10030">arXiv:2208.10030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10030">pdf</a>, <a href="https://arxiv.org/format/2208.10030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Magnetically Tuned Continuous Transition from Weak to Strong Coupling in Terahertz Magnon Polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+K">Kenji Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Makihara%2C+T">Takuma Makihara</a>, <a href="/search/physics?searchtype=author&amp;query=Tay%2C+F">Fuyang Tay</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiaoxuan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+G">Guohong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Noe%2C+G+T">G. Timothy Noe II</a>, <a href="/search/physics?searchtype=author&amp;query=Katayama%2C+I">Ikufumi Katayama</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+J">Jun Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nojiri%2C+H">Hiroyuki Nojiri</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Bamba%2C+M">Motoaki Bamba</a>, <a href="/search/physics?searchtype=author&amp;query=Kono%2C+J">Junichiro Kono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10030v1-abstract-short" style="display: inline;"> Depending on the relative rates of coupling and dissipation, a light-matter coupled system is either in the weak- or strong-coupling regime. Here, we present a unique system where the coupling rate continuously increases with an externally applied magnetic field while the dissipation rate remains constant, allowing us to monitor a weak-to-strong coupling transition as a function of magnetic field.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10030v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10030v1-abstract-full" style="display: none;"> Depending on the relative rates of coupling and dissipation, a light-matter coupled system is either in the weak- or strong-coupling regime. Here, we present a unique system where the coupling rate continuously increases with an externally applied magnetic field while the dissipation rate remains constant, allowing us to monitor a weak-to-strong coupling transition as a function of magnetic field. We observed a Rabi splitting of a terahertz magnon mode in yttrium orthoferrite above a threshold magnetic field of ~14 T. Based on a microscopic theoretical model, we show that with increasing magnetic field the magnons transition into magnon polaritons through an exceptional point, which will open up new opportunities for in situ control of non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10030v1-abstract-full').style.display = 'none'; document.getElementById('2208.10030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00370">arXiv:2208.00370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00370">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Effects of dilute coal char particle suspensions on propagating methane detonation wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jingtai Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Pikai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wanxing Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00370v1-abstract-short" style="display: inline;"> Methane/coal dust hybrid explosion is one of the common hazards in process and mining industries. In this study, methane detonation propagation in dilute coal char particle suspensions is studied based on Eulerian-Lagrangian method. The effects of char combustion on methane detonation dynamics are focused on. The results show that propagation of the methane detonation wave in coal particle suspens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00370v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00370v1-abstract-full" style="display: none;"> Methane/coal dust hybrid explosion is one of the common hazards in process and mining industries. In this study, methane detonation propagation in dilute coal char particle suspensions is studied based on Eulerian-Lagrangian method. The effects of char combustion on methane detonation dynamics are focused on. The results show that propagation of the methane detonation wave in coal particle suspensions are considerably affected by particle concentration and size. Detonation extinction occurs when the coal particle size is small and concentration is high. The averaged lead shock speed generally decreases with increased particle concentration and decreased particle size. Mean structure and interphase coupling of hybrid detonation are analysed, based on the gas and particle quantities. It is found that char combustion proceeds in the subsonic region behind the detonation wave and heat release is relatively distributed compared to that from gas phase reaction. The mass and energy transfer rates increase rapidly to the maximum near the reaction front in the induction zone. Moreover, for 1 渭m particles, if the particle concentration is beyond a threshold value, detonation re-initiation occurs after it is quenched at the beginning of the coal dust suspensions. This is caused by hot spots from the shock focusing along the reaction front in a decoupled detonation and these shocks are generated from char combustion behind the lead shock. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00370v1-abstract-full').style.display = 'none'; document.getElementById('2208.00370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2202.02735</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07810">arXiv:2207.07810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07810">pdf</a>, <a href="https://arxiv.org/format/2207.07810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0112344">10.1063/5.0112344 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interatomic force from neural network based variational quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Y">Yubing Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+W">Weizhong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07810v2-abstract-short" style="display: inline;"> Accurate ab initio calculations are of fundamental importance in physics, chemistry, biology, and materials science, which have witnessed rapid development in the last couple of years with the help of machine learning computational techniques such as neural networks. Most of the recent efforts applying neural networks to ab initio calculation have been focusing on the energy of the system. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07810v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07810v2-abstract-full" style="display: none;"> Accurate ab initio calculations are of fundamental importance in physics, chemistry, biology, and materials science, which have witnessed rapid development in the last couple of years with the help of machine learning computational techniques such as neural networks. Most of the recent efforts applying neural networks to ab initio calculation have been focusing on the energy of the system. In this study, we take a step forward and look at the interatomic force obtained with neural network wavefunction methods by implementing and testing several commonly used force estimators in variational quantum Monte Carlo (VMC). Our results show that neural network ansatz can improve the calculation of interatomic force upon traditional VMC. The relation between the force error and the quality of neural network, the contribution of different force terms, and the computational cost of each term are also discussed to provide guidelines for future applications. Our work demonstrates that it is promising to apply neural network wavefunction methods in simulating structures/dynamics of molecules/materials and provide training data for developing accurate force fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07810v2-abstract-full').style.display = 'none'; document.getElementById('2207.07810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 157, 164104 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14398">arXiv:2206.14398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14398">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Active Coding Piezoelectric Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhaoxi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fei%2C+C">Chunlong Fei</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shenghui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+C">Chenxue Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianxin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chenxi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Heping Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Quan%2C+Y">Yi Quan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+T">Tianlong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dongdong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+G">Gang Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+M">Meng Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yintang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14398v1-abstract-short" style="display: inline;"> The manipulation of acoustic waves plays an important role in a wide range of applications. Currently, acoustic wave manipulation typically relies on either acoustic metasurfaces or phased array transducers. The elements of metasurfaces are designed and optimized for a target frequency, which thus limits their bandwidth. Phased array transducers, suffering from high-cost and complex control circui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14398v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14398v1-abstract-full" style="display: none;"> The manipulation of acoustic waves plays an important role in a wide range of applications. Currently, acoustic wave manipulation typically relies on either acoustic metasurfaces or phased array transducers. The elements of metasurfaces are designed and optimized for a target frequency, which thus limits their bandwidth. Phased array transducers, suffering from high-cost and complex control circuits, are usually limited by the array size and the filling ratio of the control units. In this work, we introduce active coding piezoelectric metasurfaces; demonstrate commonly implemented acoustic wave manipulation functionalities such as beam steering, beam focusing and vortex beam focusing, acoustic tweezers; and eventually realize ultrasound imaging. The information coded on the piezoelectric metasurfaces herein is frequency independent and originates from the polarization directions, pointing either up or down, of the piezoelectric materials. Such a piezoelectric metasurface is driven by a single electrode and acts as a controllable active sound source, which combines the advantages of acoustic metasurfaces and phased array transducers while keeping the devices structurally simple and compact. Our coding piezoelectric metasurfaces can lead to potential technological innovations in underwater acoustic wave modulation, acoustic tweezers, biomedical imaging, industrial non-destructive testing and neural regulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14398v1-abstract-full').style.display = 'none'; document.getElementById('2206.14398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13903">arXiv:2204.13903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13903">pdf</a>, <a href="https://arxiv.org/format/2204.13903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-37609-3">10.1038/s41467-023-37609-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the ground state of molecules via diffusion Monte Carlo on neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+W">Weizhong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13903v2-abstract-short" style="display: inline;"> Diffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. The remaining bottleneck is the limitations of the inaccurate nodal structure, prohibiting more challenging electron correlation problems to be tackled with DMC. In this wor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13903v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13903v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13903v2-abstract-full" style="display: none;"> Diffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. The remaining bottleneck is the limitations of the inaccurate nodal structure, prohibiting more challenging electron correlation problems to be tackled with DMC. In this work, we apply the neural-network based trial wavefunction in fixed-node DMC, which allows accurate calculation of a broad range of atomic and molecular systems of different electronic characteristics. Our method is superior in both accuracy and efficiency compared to state-of-the-art neural network methods using variational Monte Carlo. Overall, this computational framework provides a new benchmark for accurate solution of correlated electronic wavefunction and also shed light on the chemical understanding of molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13903v2-abstract-full').style.display = 'none'; document.getElementById('2204.13903v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 1860 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08004">arXiv:2204.08004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.08004">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.pacs.2022.100387">10.1016/j.pacs.2022.100387 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubly resonant photoacoustic spectroscopy: ultra-high sensitivity meets ultra-wide dynamic range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Borri%2C+S">Simone Borri</a>, <a href="/search/physics?searchtype=author&amp;query=Galli%2C+I">Iacopo Galli</a>, <a href="/search/physics?searchtype=author&amp;query=Sampaolo%2C+A">Angelo Sampaolo</a>, <a href="/search/physics?searchtype=author&amp;query=Patimisco%2C+P">Pietro Patimisco</a>, <a href="/search/physics?searchtype=author&amp;query=Spagnolo%2C+V+L">Vincenzo Luigi Spagnolo</a>, <a href="/search/physics?searchtype=author&amp;query=De+Natale%2C+P">Paolo De Natale</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08004v1-abstract-short" style="display: inline;"> Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, low cost, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, most works have focused on either acoustic resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we develop a gas sensor based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08004v1-abstract-full').style.display = 'inline'; document.getElementById('2204.08004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08004v1-abstract-full" style="display: none;"> Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, low cost, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, most works have focused on either acoustic resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we develop a gas sensor based on doubly resonant PAS in which the acoustic and optical waves are simultaneously enhanced using combined optical and acoustic resonators in a centimeter-long configuration. Not only the lower detection limit is enhanced by the double standing waves, but also the upper detection limit is expanded due to the short resonators. As an example, we developed a sensor by detecting acetylene (C2H2), achieving a noise equivalent absorption of 5.7*10-13 cm-1 and a dynamic range of eight orders. Compared to the state-of-the-art PAS gas sensors, the developed sensor increases the sensitivity by two orders of magnitude and extends the dynamic range by three orders of magnitude. Besides, a laser-cavity-molecule locking strategy is proposed to provide additional flexibility of fast gas detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08004v1-abstract-full').style.display = 'none'; document.getElementById('2204.08004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PACS-D-22-00098 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photoacoustics 27, 100387 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02853">arXiv:2203.02853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.144426">10.1103/PhysRevB.109.144426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Dependent Graph Neural Network Potential for Magnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+L">Liangliang Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Changsong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xingao Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02853v2-abstract-short" style="display: inline;"> The development of machine learning interatomic potentials has immensely contributed to the accuracy of simulations of molecules and crystals. However, creating interatomic potentials for magnetic systems that account for both magnetic moments and structural degrees of freedom remains a challenge. This work introduces SpinGNN, a spin-dependent interatomic potential approach that employs the graph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02853v2-abstract-full').style.display = 'inline'; document.getElementById('2203.02853v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02853v2-abstract-full" style="display: none;"> The development of machine learning interatomic potentials has immensely contributed to the accuracy of simulations of molecules and crystals. However, creating interatomic potentials for magnetic systems that account for both magnetic moments and structural degrees of freedom remains a challenge. This work introduces SpinGNN, a spin-dependent interatomic potential approach that employs the graph neural network (GNN) to describe magnetic systems. SpinGNN consists of two types of edge GNNs: Heisenberg edge GNN (HEGNN) and spin-distance edge GNN (SEGNN). HEGNN is tailored to capture Heisenberg-type spin-lattice interactions, while SEGNN accurately models multi-body and high-order spin-lattice coupling. The effectiveness of SpinGNN is demonstrated by its exceptional precision in fitting a high-order spin Hamiltonian and two complex spin-lattice Hamiltonians with great precision. Furthermore, it successfully models the subtle spin-lattice coupling in BiFeO3 and performs large-scale spin-lattice dynamics simulations, predicting its antiferromagnetic ground state, magnetic phase transition, and domain wall energy landscape with high accuracy. Our study broadens the scope of graph neural network potentials to magnetic systems, serving as a foundation for carrying out large-scale spin-lattice dynamic simulations of such systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02853v2-abstract-full').style.display = 'none'; document.getElementById('2203.02853v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 109, 144426 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07339">arXiv:2202.07339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A Ta-TaS2 monolithic catalyst with robust and metallic interface for superior hydrogen evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Q">Qiangmin Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+S">Siyao Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yuting Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhibo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fengning Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Heming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+S">Shiyu Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xiaolong Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+B">Baofu Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wencai Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+H">Hui-Ming Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chenghua Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07339v1-abstract-short" style="display: inline;"> The use of highly active and robust catalysts is crucial for producing green hydrogen by water electrolysis as we strive to achieve global carbon neutrality. Noble metals like platinum are currently used in industry for the hydrogen evolution reaction (HER), but suffer from scarcity, high price and unsatisfied performance and stability at large current density, restricting their large scale implem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07339v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07339v1-abstract-full" style="display: none;"> The use of highly active and robust catalysts is crucial for producing green hydrogen by water electrolysis as we strive to achieve global carbon neutrality. Noble metals like platinum are currently used in industry for the hydrogen evolution reaction (HER), but suffer from scarcity, high price and unsatisfied performance and stability at large current density, restricting their large scale implementations. Here we report the synthesis of a new type of monolithic catalyst (MC) consisting of a metal disulfide (e.g., TaS2) catalyst vertically bonded to a conductive substrate of the same metal by strong covalent bonds. These features give the MC a mechanically robust and electrically near zero resistance interface, leading to an outstanding HER performance including rapid charge transfer and excellent durability, together with a low overpotential of 398 mV to achieve a current density of 2,000 mA cm-2 as required by industry. The Ta TaS2 MC has a negligible performance decay after 200 h operation at large current densities. In light of its unique interface and the various choice of metal elements giving the same structure, such monolithic materials may have broad uses besides catalysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07339v1-abstract-full').style.display = 'none'; document.getElementById('2202.07339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02735">arXiv:2202.02735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02735">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Extinction and re-initiation of methane detonation in dilute coal particle suspensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jingtai Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wanxing Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02735v1-abstract-short" style="display: inline;"> In this study, methane detonation propagation in dilute coal particle suspensions is studied based on Eulerian-Lagrangian method. Two-dimensional configuration is considered, and a skeletal chemical mechanism (24 species and 104 reactions) is applied for methane combustion. The gas and particulate phase equations are solved using an OpenFOAM code for two-phase compressible reacting flow, RYrhoCent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02735v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02735v1-abstract-full" style="display: none;"> In this study, methane detonation propagation in dilute coal particle suspensions is studied based on Eulerian-Lagrangian method. Two-dimensional configuration is considered, and a skeletal chemical mechanism (24 species and 104 reactions) is applied for methane combustion. The gas and particulate phase equations are solved using an OpenFOAM code for two-phase compressible reacting flow, RYrhoCentralFOAM. The effects of char combustion on methane detonation dynamics are investigated and devolatized coal particles are modelled. The results show that propagation of the methane detonation wave in coal particle suspensions are considerably affected by coal particle concentration and size. Detonation extinction occurs when the coal particle size is small and concentration is high. The averaged lead shock speed generally decreases with increased particle concentration and decreased particle size. Mean structure of methane and coal particle hybrid detonation is analysed, based on the gas and particle quantities. It is found that char combustion proceeds in the subsonic region behind the detonation wave and heat release is relatively distributed compared to that from gas phase reaction. Moreover, for 1 渭m particle, if the particle concentration is beyond a threshold value, detonation re-initiation occurs after it is quenched at the beginning of the coal dust suspensions. This is caused by hot spots from the shock focusing along the reaction front in a decoupled detonation and these shocks are generated from char combustion behind the lead shock. A regime map of detonation propagation and extinction is predicted. It is found that the re-initiation location decreases with the particle concentration and approaches a constant value when the concentration exceeds 1000 g/m3. The results from this study are useful for prevention and suppression of methane/coal dust hybrid explosion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02735v1-abstract-full').style.display = 'none'; document.getElementById('2202.02735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12137">arXiv:2201.12137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12137">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/09/C09015">10.1088/1748-0221/17/09/C09015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMOS pixel sensors optimized for large ionizing dynamic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">W. Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Baudot%2C+J">J. Baudot</a>, <a href="/search/physics?searchtype=author&amp;query=Federici%2C+L">L. Federici</a>, <a href="/search/physics?searchtype=author&amp;query=Finck%2C+C">C. Finck</a>, <a href="/search/physics?searchtype=author&amp;query=Hu-Guo%2C+C">C. Hu-Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Kachel%2C+M">M. Kachel</a>, <a href="/search/physics?searchtype=author&amp;query=Reidel%2C+C+-">C. -A. Reidel</a>, <a href="/search/physics?searchtype=author&amp;query=Schui%2C+C">C. Schui</a>, <a href="/search/physics?searchtype=author&amp;query=Sefri%2C+R">R. Sefri</a>, <a href="/search/physics?searchtype=author&amp;query=Spiriti%2C+E">E. Spiriti</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+U">U. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Y. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12137v1-abstract-short" style="display: inline;"> Monolithic active pixel sensors (MAPS) are now well established as a technology for tracking charged particles, especially when low material budget is desirable. For such applications, sensors focus on spatial resolution and pixels with digital output or modest charge measurement ability are well suited. Within the European Union STRONG-2020 project, which focuses on experiments using hadrons, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12137v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12137v1-abstract-full" style="display: none;"> Monolithic active pixel sensors (MAPS) are now well established as a technology for tracking charged particles, especially when low material budget is desirable. For such applications, sensors focus on spatial resolution and pixels with digital output or modest charge measurement ability are well suited. Within the European Union STRONG-2020 project, which focuses on experiments using hadrons, the TIIMM (Tracking and Ions Identifications with Minimal Material budget) joint research activity intends to expand granular MAPS capacity to energy-loss (螖E) measurement for ion species identification. The TIIMM prototypes are developed in the Tower Jazz 180 nm CMOS image sensor (CIS) process. The Time-Over-Threshold (ToT) method is applied to the sensor for the energy-loss measurement. The main design details and the preliminary test results from laboratory measurements of the initial TIIMM prototype are presented in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12137v1-abstract-full').style.display = 'none'; document.getElementById('2201.12137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10952">arXiv:2201.10952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10952">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164557">10.1016/j.nima.2020.164557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topmetal-M: a novel pixel sensor for compact tracking applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiping Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wei Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+B">Bihui You</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+N">Ni Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Haibo Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Honglin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xianqin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Ping Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+L">Le Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=YuezhaoZhang"> YuezhaoZhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+X">Xiangru Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+S">Shuguang Zou</a>, <a href="/search/physics?searchtype=author&amp;query=GuangmingHuang"> GuangmingHuang</a>, <a href="/search/physics?searchtype=author&amp;query=Pei%2C+H">Hua Pei</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+F">Fan Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+X">Xiaoyang Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Mei%2C+Y">Yuan Mei</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Yubo Han</a>, <a href="/search/physics?searchtype=author&amp;query=ChaosongGao"> ChaosongGao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiangming Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+C">Chengxin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10952v1-abstract-short" style="display: inline;"> The Topmetal-M is a large area pixel sensor (18 mm * 23 mm) prototype fabricated in a new 130 nm high-resistivity CMOS process in 2019. It contains 400 rows * 512 columns square pixels with the pitch of 40 渭m. In Topmetal-M, a novel charge collection method combing the Monolithic Active Pixel Sensor (MAPS) and the Topmetal sensor has been proposed for the first time. Both the ionized charge deposi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10952v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10952v1-abstract-full" style="display: none;"> The Topmetal-M is a large area pixel sensor (18 mm * 23 mm) prototype fabricated in a new 130 nm high-resistivity CMOS process in 2019. It contains 400 rows * 512 columns square pixels with the pitch of 40 渭m. In Topmetal-M, a novel charge collection method combing the Monolithic Active Pixel Sensor (MAPS) and the Topmetal sensor has been proposed for the first time. Both the ionized charge deposited by the particle in the sensor and along the track over the sensor can be collected. The in-pixel circuit mainly consists of a low-noise charge sensitive amplifier to establish the signal for the energy reconstruction, and a discriminator with a Time-to-Amplitude Converter (TAC) for the Time of Arrival (TOA) measurement. With this mechanism, the trajectory, particle hit position, energy and arrival time of the particle can be measured. The analog signal from each pixel is accessible through time-shared multiplexing over the entire pixel array. This paper will discuss the design and preliminary test results of the Topmetal-M sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10952v1-abstract-full').style.display = 'none'; document.getElementById('2201.10952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05449">arXiv:2201.05449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05449">pdf</a>, <a href="https://arxiv.org/format/2201.05449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional electron gas at LaInO$_3$/BaSnO$_3$ interfaces controlled by a ferroelectric layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fang%2C+L">Le Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Aggoune%2C+W">Wahib Aggoune</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Draxl%2C+C">Claudia Draxl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05449v1-abstract-short" style="display: inline;"> With the example of LaInO$_{3}$/BaSnO$_3$, we demonstrate how both density and distribution of a two-dimensional electron gas (2DEG) formed at the interface between these perovskite oxides, can be efficiently controlled by a ferroelectric functional material. A polarization induced in a BaTiO$_3$ layer pointing toward the interface enhances the polar discontinuity which, in turn, significantly inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05449v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05449v1-abstract-full" style="display: none;"> With the example of LaInO$_{3}$/BaSnO$_3$, we demonstrate how both density and distribution of a two-dimensional electron gas (2DEG) formed at the interface between these perovskite oxides, can be efficiently controlled by a ferroelectric functional material. A polarization induced in a BaTiO$_3$ layer pointing toward the interface enhances the polar discontinuity which, in turn, significantly increases the 2DEG density and confinement, while, the opposite polarization depletes the 2DEG. Our predictions and analysis, based on first-principles calculations, can serve as a guide for designing such material combinations to be used in electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05449v1-abstract-full').style.display = 'none'; document.getElementById('2201.05449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.15307">arXiv:2112.15307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.15307">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Enhancement in LaMnO3 Films with Release and Flexure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+H">Hongbao Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenning Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+M">Mingwei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiulai Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dongxiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">Guozhen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.15307v1-abstract-short" style="display: inline;"> A variety of novel phenomena and functionalities emerge from lowering the dimensionality of materials and enriching the degrees of freedom in modulation. In this work, it is found that the saturation magnetization of LaMnO3 (LMO) films is largely enhanced by 56% after releasing from a brand-new phase of tetragonal strontium aluminate buffer layer, and is significantly increased by 92% with bending&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15307v1-abstract-full').style.display = 'inline'; document.getElementById('2112.15307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.15307v1-abstract-full" style="display: none;"> A variety of novel phenomena and functionalities emerge from lowering the dimensionality of materials and enriching the degrees of freedom in modulation. In this work, it is found that the saturation magnetization of LaMnO3 (LMO) films is largely enhanced by 56% after releasing from a brand-new phase of tetragonal strontium aluminate buffer layer, and is significantly increased by 92% with bending films to a curvature of 1 mm-1 using a water-assisted direct-transferring method. Meanwhile, the Curie temperature of LMO films has been improved by 13 K. High-resolution spherical aberration-corrected scanning transmission electron microscopy and first-principles calculations unambiguously demonstrate that the enhanced ferromagnetism is attributed to the strengthened Mn-O-Mn super-exchange interactions from the augmented characteristics of the unconventional P21/n structure caused by the out-of-plane lattice shrinking after strain releasing and increased flexure degree of freestanding LMO films. This work paves a way to achieve large-scale and crack-and-wrinkle-free freestanding films of oxides with largely improved functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15307v1-abstract-full').style.display = 'none'; document.getElementById('2112.15307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13293">arXiv:2112.13293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.13293">pdf</a>, <a href="https://arxiv.org/format/2112.13293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Deep-learned speckle pattern and its application to ghost imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+X">Xiaoyu Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+H">Haotian Song</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenhan Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xingchen Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhedong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+T">Tao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Scully%2C+M+O">Marlan O. Scully</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13293v2-abstract-short" style="display: inline;"> In this paper, we present a method for speckle pattern design using deep learning. The speckle patterns possess unique features after experiencing convolutions in Speckle-Net, our well-designed framework for speckle pattern generation. We then apply our method to the computational ghost imaging system. The standard deep learning-assisted ghost imaging methods use the network to recognize the recon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13293v2-abstract-full').style.display = 'inline'; document.getElementById('2112.13293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13293v2-abstract-full" style="display: none;"> In this paper, we present a method for speckle pattern design using deep learning. The speckle patterns possess unique features after experiencing convolutions in Speckle-Net, our well-designed framework for speckle pattern generation. We then apply our method to the computational ghost imaging system. The standard deep learning-assisted ghost imaging methods use the network to recognize the reconstructed objects or imaging algorithms. In contrast, this innovative application optimizes the illuminating speckle patterns via Speckle-Net with specific sampling ratios. Our method, therefore, outperforms the other techniques for ghost imaging, particularly its ability to retrieve high-quality images with extremely low sampling ratios. It opens a new route towards nontrivial speckle generation by referring to a standard loss function on specified objectives with the modified deep neural network. It also has great potential for applications in the fields of dynamic speckle illumination microscopy, structured illumination microscopy, x-ray imaging, photo-acoustic imaging, and optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13293v2-abstract-full').style.display = 'none'; document.getElementById('2112.13293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13567">arXiv:2111.13567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13567">pdf</a>, <a href="https://arxiv.org/ps/2111.13567">ps</a>, <a href="https://arxiv.org/format/2111.13567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4208/cicp.OA-2022-0021">10.4208/cicp.OA-2022-0021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Level Set Method for the Simulation of Moving Contact Lines in Three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Q">Quan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shixin Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiqing Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13567v1-abstract-short" style="display: inline;"> We propose an efficient numerical method for the simulation of multi-phase flows with moving contact lines in three dimensions. The mathematical model consists of the incompressible Navier-Stokes equations for the two immiscible fluids with the standard interface conditions, the Navier slip condition along the solid wall, and a contact angle condition which relates the dynamic contact angle to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13567v1-abstract-full').style.display = 'inline'; document.getElementById('2111.13567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13567v1-abstract-full" style="display: none;"> We propose an efficient numerical method for the simulation of multi-phase flows with moving contact lines in three dimensions. The mathematical model consists of the incompressible Navier-Stokes equations for the two immiscible fluids with the standard interface conditions, the Navier slip condition along the solid wall, and a contact angle condition which relates the dynamic contact angle to the normal velocity of the contact line (Ren et al. (2010) \cite{Ren10}). In the numerical method, the governing equations for the fluid dynamics are coupled with an advection equation for a level-set function. The latter models the dynamics of the fluid interface. Following the standard practice, the interface conditions are taken into account by introducing a singular force on the interface in the momentum equation. This results in a single set of governing equations in the whole fluid domain. Similar to the treatment of the interface conditions, the contact angle condition is imposed by introducing a singular force, which acts in the normal direction of the contact line, into the Navier slip condition. The new boundary condition, which unifies the Navier slip condition and the contact angle condition, is imposed along the solid wall. The model is solved using the finite difference method. Numerical results, including a convergence study, are presented for the spreading of a droplet on both homogeneous and inhomogeneous solid walls, as well as the dynamics of a droplet on an inclined plate under gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13567v1-abstract-full').style.display = 'none'; document.getElementById('2111.13567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11538">arXiv:2110.11538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11538">pdf</a>, <a href="https://arxiv.org/format/2110.11538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Computing the Invariant Distribution of Randomly Perturbed Dynamical Systems Using Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+B">Bo Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qianxiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiqing Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11538v1-abstract-short" style="display: inline;"> The invariant distribution, which is characterized by the stationary Fokker-Planck equation, is an important object in the study of randomly perturbed dynamical systems. Traditional numerical methods for computing the invariant distribution based on the Fokker-Planck equation, such as finite difference or finite element methods, are limited to low-dimensional systems due to the curse of dimensiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11538v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11538v1-abstract-full" style="display: none;"> The invariant distribution, which is characterized by the stationary Fokker-Planck equation, is an important object in the study of randomly perturbed dynamical systems. Traditional numerical methods for computing the invariant distribution based on the Fokker-Planck equation, such as finite difference or finite element methods, are limited to low-dimensional systems due to the curse of dimensionality. In this work, we propose a deep learning based method to compute the generalized potential, i.e. the negative logarithm of the invariant distribution multiplied by the noise. The idea of the method is to learn a decomposition of the force field, as specified by the Fokker-Planck equation, from the trajectory data. The potential component of the decomposition gives the generalized potential. The method can deal with high-dimensional systems, possibly with partially known dynamics. Using the generalized potential also allows us to deal with systems at low temperatures, where the invariant distribution becomes singular around the metastable states. These advantages make it an efficient method to analyze invariant distributions for practical dynamical systems. The effectiveness of the proposed method is demonstrated by numerical examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11538v1-abstract-full').style.display = 'none'; document.getElementById('2110.11538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05834">arXiv:2110.05834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.05834">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Critical condition and transient evolution of methane detonation extinction by fine water droplet curtains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shia%2C+J">Jingtai Shia</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wanxing Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05834v1-abstract-short" style="display: inline;"> Two-dimensional numerical simulations with Eulerian-Lagrangian method and detailed chemical mechanism are conducted to study the methane detonation propagation across a water curtain with finite thickness. The critical length of the water curtain with sprayed droplets is determined through parametric simulations with different water mass loadings and droplet sizes. The influence of water curtain l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05834v1-abstract-full').style.display = 'inline'; document.getElementById('2110.05834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05834v1-abstract-full" style="display: none;"> Two-dimensional numerical simulations with Eulerian-Lagrangian method and detailed chemical mechanism are conducted to study the methane detonation propagation across a water curtain with finite thickness. The critical length of the water curtain with sprayed droplets is determined through parametric simulations with different water mass loadings and droplet sizes. The influence of water curtain length on the methane detonation is examined by the trajectories of peak pressure and time history of average heat release rate. The results indicate that the water curtain not only inhibit the incident detonation wave, but also prevent the detonation re-ignition after the incident wave is quenched. Moreover, unsteady response of gaseous methane detonation to water curtain are analyzed. The detonation re-initiation process behind the water curtain near the critical loading is also captured. In addition, mechanism of detonation inhibition with fine water droplets are discussed. It is found that energy and momentum exchanges start immediately when the detonation wave enters the water curtain area, but the mass transfer starts well behind the detonation wave due to the finitely long droplet heating duration. It is shown that the convective heat transfer by water droplets plays a significant role in quenching a detonation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05834v1-abstract-full').style.display = 'none'; document.getElementById('2110.05834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04949">arXiv:2110.04949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04949">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Highly sensitive strain sensor from topological-structure modulated dielectric elastic nanocomposites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Youjun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhonghui Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xinchen Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Dan%2C+Z">Zhenkang Dan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Le Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weibin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+T">Tongxiang Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+S">Shanyong Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Nan%2C+C">Cewen Nan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04949v1-abstract-short" style="display: inline;"> Flexible strain sensors are critical to several potential intelligent applications, such as human-machine interfaces, soft robotics, human motion detection, and safety monitoring of components. Stretchable functional materials are important components of strain sensors, and they are still major challenges for high performance strain sensors. Herein, we demonstrate a novel strategy of designing and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04949v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04949v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04949v1-abstract-full" style="display: none;"> Flexible strain sensors are critical to several potential intelligent applications, such as human-machine interfaces, soft robotics, human motion detection, and safety monitoring of components. Stretchable functional materials are important components of strain sensors, and they are still major challenges for high performance strain sensors. Herein, we demonstrate a novel strategy of designing and optimizing flexible strain sensor by developing topological structure modulated high permittivity elastic nanocomposite. The topological structure with three-phase percolative nano-nanonetworks produces synergistic effects of space charge enhancement and local electric field modulation, and it gives rise to an ultrahigh dielectric permittivity (113.4, at 1 kHz, over 1500% enhancement than that of commercial elastic polyurethane matrix) and excellent comprehensive electromechanical performance, and the optimal comprehensive electromechanical performance reaches to 542.91 MPa-1, which is over 9-fold than that of commercial polyurethane elastic film. An interdigital capacitive strain sensor is designed using the topological structured elastic dielectric nanocomposite. It possesses high initial capacitance density and positive capacitance response with stain, achieving high signal-to-noise ratio, high capacitance response sensitivity, and wide linear range, and it breaks through disadvantages of negative sensitivity and narrow linear range for conventional interdigital strain sensors. The prepared integrated strain sensor arrays are able to measure local strain of convoluted surfaces and monitor the motion of soft actuators in real time, and they would make conditions for intelligent control systems and the study of morphological intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04949v1-abstract-full').style.display = 'none'; document.getElementById('2110.04949v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00964">arXiv:2109.00964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00964">pdf</a>, <a href="https://arxiv.org/format/2109.00964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.190502">10.1103/PhysRevLett.128.190502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesizing five-body interaction in a superconducting quantum circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+J">Jiale Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jinyan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shiyao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+G+S">Girish S. Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Scully%2C+M+O">Marlan O. Scully</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00964v1-abstract-short" style="display: inline;"> Synthesizing many-body interaction Hamiltonian is a central task in quantum simulation. However, it is challenging to synthesize interactions including more than two spins. Borrowing tools from quantum optics, we synthesize five-body spin-exchange interaction in a superconducting quantum circuit by simultaneously exciting four independent qubits with time-energy correlated photon quadruples genera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00964v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00964v1-abstract-full" style="display: none;"> Synthesizing many-body interaction Hamiltonian is a central task in quantum simulation. However, it is challenging to synthesize interactions including more than two spins. Borrowing tools from quantum optics, we synthesize five-body spin-exchange interaction in a superconducting quantum circuit by simultaneously exciting four independent qubits with time-energy correlated photon quadruples generated from a qudit. During the dynamic evolution of the five-body interaction, a Greenberger-Horne-Zeilinger state is generated in a single step with fidelity estimated to be $0.685$. We compare the influence of noise on the three-, four- and five-body interaction as a step toward answering the question on the quantum origin of chiral molecules. We also demonstrate a many-body Mach-Zehnder interferometer which potentially has a Heisenberg-limit sensitivity. This study paves a way for quantum simulation involving many-body interactions and high excited states of quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00964v1-abstract-full').style.display = 'none'; document.getElementById('2109.00964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 190502 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13273">arXiv:2108.13273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13273">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stabilized Hydroxide Mediated Nickel-Based Electrocatalysts for High Current Density Hydrogen Evolution in Alkaline Media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yuting Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fengning Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhibo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wencai Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13273v1-abstract-short" style="display: inline;"> Large scale production of hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at low current densities, they need large overpotentials at high current densities that hinders their potential applications in practical industry. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13273v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13273v1-abstract-full" style="display: none;"> Large scale production of hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at low current densities, they need large overpotentials at high current densities that hinders their potential applications in practical industry. Here we report a hydroxide-mediated nickel based electrocatalyst for high current density hydrogen evolution, which delivers a current density of 1000 mA cm-2 at an overpotential of 98 mV. Combined X-ray absorption spectroscopy and high resolution X-ray photoelectron spectroscopy results show charge redistribution of nickel sites caused by Mo and surface FeOx clusters, which can stabilize the surface nickel hydroxide at high current densities for promoting water dissociation step. Such catalyst is synthesized at the metre scale and shows a current density of 500 mA cm-2 at 1.56 V in the overall water splitting, which demonstrate its potential for practical use. This work highlights a charge-engineering strategy for rational design of catalysts that work well at high current densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13273v1-abstract-full').style.display = 'none'; document.getElementById('2108.13273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13269">arXiv:2108.13269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13269">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA cm -2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fengning Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yuting Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Q">Qiangmin Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhibo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wencai Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+H">Hui-Ming Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13269v1-abstract-short" style="display: inline;"> Water electrolysis is promising for industrial hydrogen production to achieve a sustainable and green hydrogen economy, but the high cost of the technology limits its market share. Developing efficient yet economic electrocatalysts is crucial to decrease the cost of electricity and electrolytic cell. Meanwhile, electrolysis in seawater electrolyte can further reduce feedstock cost. Here we synthes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13269v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13269v1-abstract-full" style="display: none;"> Water electrolysis is promising for industrial hydrogen production to achieve a sustainable and green hydrogen economy, but the high cost of the technology limits its market share. Developing efficient yet economic electrocatalysts is crucial to decrease the cost of electricity and electrolytic cell. Meanwhile, electrolysis in seawater electrolyte can further reduce feedstock cost. Here we synthesize a type of electrocatalyst where trace precious metals are strongly anchored on corrosion-resistive matrix. As an example, the produced Pt/Ni-Mo electrocatalyst only needs an overpotential of 113 mV to reach an ultrahigh current density of 2000 mA cm-2 in saline-alkaline electrolyte, standing as the best performance so far. It shows high activity and long durability in various electrolytes and under harsh conditions, including strong alkaline and simulated seawater electrolytes, and under elevated temperatures up to 80 degree Celsius). This electrocatalyst is produced on a large scale at low cost and shows good performance in a commercial membrane electrode assembly stack, demonstrating its feasibility for practical water electrolysis <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13269v1-abstract-full').style.display = 'none'; document.getElementById('2108.13269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11661">arXiv:2108.11661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.11661">pdf</a>, <a href="https://arxiv.org/format/2108.11661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermionic Neural Network with Effective Core Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+C">Cunwei Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11661v2-abstract-short" style="display: inline;"> Deep learning techniques have opened a new venue for electronic structure theory in recent years. In contrast to traditional methods, deep neural networks provide much more expressive and flexible wave function ansatz, resulting in better accuracy and time scaling behavior. In order to study larger systems while retaining sufficient accuracy, we integrate a powerful neural-network based model (Fer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11661v2-abstract-full').style.display = 'inline'; document.getElementById('2108.11661v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11661v2-abstract-full" style="display: none;"> Deep learning techniques have opened a new venue for electronic structure theory in recent years. In contrast to traditional methods, deep neural networks provide much more expressive and flexible wave function ansatz, resulting in better accuracy and time scaling behavior. In order to study larger systems while retaining sufficient accuracy, we integrate a powerful neural-network based model (FermiNet) with the effective core potential method, which helps to reduce the complexity of the problem by replacing inner core electrons with additional semi-local potential terms in Hamiltonian. In this work, we calculate the ground state energy of 3d transition metal atoms and their monoxide which are quite challenging for original FermiNet work, and the results are in good consistency with both experimental data and other state-of-the-art computational methods. Our development is an important step for a broader application of deep learning in the electronic structure calculation of molecules and materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11661v2-abstract-full').style.display = 'none'; document.getElementById('2108.11661v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14868">arXiv:2106.14868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14868">pdf</a>, <a href="https://arxiv.org/format/2106.14868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yueyue Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Houping Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Junjun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shunbo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14868v1-abstract-short" style="display: inline;"> Using density functional theory combined with nonequilibrium Green&#39;s function method, the transport properties of borophene-based nano gas sensors with gold electrodes are calculated, and comprehensive understandings regarding the effects of gas molecules, MoS$_2$ substrate and gold electrodes to the transport properties of borophene are made. Results show that borophene-based sensors can be used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14868v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14868v1-abstract-full" style="display: none;"> Using density functional theory combined with nonequilibrium Green&#39;s function method, the transport properties of borophene-based nano gas sensors with gold electrodes are calculated, and comprehensive understandings regarding the effects of gas molecules, MoS$_2$ substrate and gold electrodes to the transport properties of borophene are made. Results show that borophene-based sensors can be used to detect and distinguish CO, NO, NO$_2$ and NH$_3$ gas molecules, MoS$_2$ substrate leads to a non-linear behavior on the current-voltage characteristic, and gold electrodes provide charges to borophene and form a potential barrier, which reduced the current values compared to the current of the systems without gold electrodes. Our studies not only provide useful information on the computationally design of borophene-based gas sensors, but also help understand the transport behaviors and underlying physics of 2D metallic materials with metal electrodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14868v1-abstract-full').style.display = 'none'; document.getElementById('2106.14868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02917">arXiv:2104.02917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02917">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.1c03291">10.1021/acs.jpcc.1c03291 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanisms of Molecular Ferroelectrics Made Simple </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xiaoqing Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+W">Wenbin Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongle Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02917v3-abstract-short" style="display: inline;"> Molecular ferroelectrics have captured immense attention due to their superiority over inorganic oxide ferroelectrics, such as environmentally friendly, low-cost, flexible, foldable. However, the mechanisms of ferroelectric switching and phase transition for the molecular ferroelectrics are still missing, leaving the development of novel molecular ferroelectrics less efficient. In this work, we ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02917v3-abstract-full').style.display = 'inline'; document.getElementById('2104.02917v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02917v3-abstract-full" style="display: none;"> Molecular ferroelectrics have captured immense attention due to their superiority over inorganic oxide ferroelectrics, such as environmentally friendly, low-cost, flexible, foldable. However, the mechanisms of ferroelectric switching and phase transition for the molecular ferroelectrics are still missing, leaving the development of novel molecular ferroelectrics less efficient. In this work, we have provided a methodology combining molecular dynamics (MD) simulation on a polarized force field named polarized crystal charge (PCC) and enhanced sampling technique, replica-exchange molecular dynamics (REMD) to simulate such mechanisms. With this procedure, we have investigated a promising molecular ferroelectric material, (R)/(S)-3-quinuclidinol crystal. We have simulated the ferroelectric hysteresis loops of both enantiomers and obtained spontaneous polarization of 7/8 渭C cm-2 and a corresponding coercive electric field of 15 kV cm-1. We also find the Curie temperature as 380/385 K for ferro-/para-electric phase transition of both enantiomers. All of the simulated results are highly compatible with experimental values. Besides of that, we predict a novel Curie temperature of about 600 K. This finding is further validated by principal component analysis (PCA). Our work would significantly promote the future exploration of multifunctional molecular ferroelectrics for the next generation of intelligent devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02917v3-abstract-full').style.display = 'none'; document.getElementById('2104.02917v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02626">arXiv:2104.02626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02626">pdf</a>, <a href="https://arxiv.org/ps/2104.02626">ps</a>, <a href="https://arxiv.org/format/2104.02626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cma.2021.114033">10.1016/j.cma.2021.114033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Thermodynamically Consistent Model and Its Conservative Numerical Approximation for Moving Contact Lines with Soluble Surfactants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Q">Quan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Weiqing Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02626v1-abstract-short" style="display: inline;"> We derive a continuum sharp-interface model for moving contact lines with soluble surfactants in a thermodynamically consistent framework. The model consists of the isothermal two-phase incompressible Navier-Stokes equations for the fluid dynamic and the bulk\slash surface convection-diffusion equations for the surfactant transportation. The interface condition, the slip boundary condition, the dy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02626v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02626v1-abstract-full" style="display: none;"> We derive a continuum sharp-interface model for moving contact lines with soluble surfactants in a thermodynamically consistent framework. The model consists of the isothermal two-phase incompressible Navier-Stokes equations for the fluid dynamic and the bulk\slash surface convection-diffusion equations for the surfactant transportation. The interface condition, the slip boundary condition, the dynamic contact angle condition, and the adsorption\slash desorption condition are derived based on the principle of the total free energy dissipation. In particular, we recover classical adsorption isotherms from different forms of the surface free energy. The model is then numerically solved in two spatial dimensions. We present an Eulerian weak formulation for the Navier-Stokes equations together with an arbitrary Lagrangian-Eulerian weak formulation for the surfactant transport equations. Finite element approximations are proposed to discretize the two weak formulations on the moving mesh. The resulting numerical method is shown to conserve the total mass of the surfactants exactly. By using the proposed model and its numerical method, we investigate the droplet spreading and migration in the presence of surfactants and study their dependencies on various dimensionless adsorption parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02626v1-abstract-full').style.display = 'none'; document.getElementById('2104.02626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02499">arXiv:2012.02499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.02499">pdf</a>, <a href="https://arxiv.org/format/2012.02499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Two-photon MINFLUX with doubled localization precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+K">Kun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xinzhu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xi%2C+P">Peng Xi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02499v1-abstract-short" style="display: inline;"> Achieving localization with molecular precision has been of great interest for extending fluorescence microscopy to nanoscopy. MINFLUX pioneers this transition through point spread function (PSF) engineering, yet its performance is primarily limited by the signal-to-background ratio. Here we demonstrate that applying two-photon excitation to MINFLUX would double its localization precision through&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02499v1-abstract-full').style.display = 'inline'; document.getElementById('2012.02499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02499v1-abstract-full" style="display: none;"> Achieving localization with molecular precision has been of great interest for extending fluorescence microscopy to nanoscopy. MINFLUX pioneers this transition through point spread function (PSF) engineering, yet its performance is primarily limited by the signal-to-background ratio. Here we demonstrate that applying two-photon excitation to MINFLUX would double its localization precision through PSF engineering by nonlinear effect. Cram茅r-Rao Bound (CRB) is studied as the maximum localization precision, and CRB of two-photon MINFLUX is halved compared to single-photon MINFLUX in all three dimensions. Meanwhile, in order to achieve same localization precision with single-photon MINFLUX, two-photon MINFLUX requires only 1/4 of fluorescence photons, contributing to a possible 4-fold temporal resolution. Benefitted from two-photon excitation, registration-free multicolor nanoscopy and ultrafast color tracking can be achieved. Localization precision of MINFLUX can also be doubled using excitation with second-order Laguerre-Gaussian beams but would suffer from high fluorescence background compared to single-photon and two-photon first-order MINFLUX. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02499v1-abstract-full').style.display = 'none'; document.getElementById('2012.02499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14308">arXiv:2011.14308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14308">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2021.126946">10.1016/j.optcom.2021.126946 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compressive Circular Polarization Snapshot Spectral Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ning%2C+J">Jianglan Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zhilong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Dan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanyuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yingge Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xu Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenyi Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14308v2-abstract-short" style="display: inline;"> A compressive sensing based circular polarization snapshot spectral imaging system is proposed in this paper to acquire two-dimensional spatial, one-dimensional circular polarization (the right and left circular polarization), and one-dimensional spectral information, simultaneously. Using snapshot can collect the entire four-dimensional datacube in a single integration period. The dispersion pris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14308v2-abstract-full').style.display = 'inline'; document.getElementById('2011.14308v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14308v2-abstract-full" style="display: none;"> A compressive sensing based circular polarization snapshot spectral imaging system is proposed in this paper to acquire two-dimensional spatial, one-dimensional circular polarization (the right and left circular polarization), and one-dimensional spectral information, simultaneously. Using snapshot can collect the entire four-dimensional datacube in a single integration period. The dispersion prism in the coded aperture snapshot spectral imager is replaced by the combination of an Amici prism and a Wollaston prism to implement the spectral shifting along two orthogonal directions, which greatly improves the spectral resolution of the image. The right and left circular polarization components of objects are extracted by the assemble with an achromatic quarter wave-plate and a Wollaston prism. The encoding and reconstruction are illustrated comprehensively. The feasibility is verified by the simulation. It provides us an alternative approach for circular polarization spectral imaging such as defogging, underwater imaging, and so on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14308v2-abstract-full').style.display = 'none'; document.getElementById('2011.14308v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78A10 (Primary) <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.4.2; I.4.4; I.4.5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.13977">arXiv:2010.13977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.13977">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0CP06671K">10.1039/D0CP06671K <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Predicting the Structural, Electronic and Magnetic Properties of Few Atomic-layer Polar Perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shaowen Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+F">Fanhao Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shunbo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Sundaresan%2C+A">A. Sundaresan</a>, <a href="/search/physics?searchtype=author&amp;query=Ter-Oganessian%2C+N">Nikita Ter-Oganessian</a>, <a href="/search/physics?searchtype=author&amp;query=Pyatakov%2C+A+P">A. P. Pyatakov</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jinrong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jincang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.13977v1-abstract-short" style="display: inline;"> Density functional theory (DFT) calculations are performed to predict the structural, electronic and magnetic properties of electrically neutral or charged few-atomic-layer (AL) oxides whose parent systems are based on polar perovskite $KTaO_{3}$. Their properties vary greatly with the number of ALs ($n_{AL}$) and the stoichiometric ratio. In the few-AL limit ($n_{AL}\leqslant 14$), the even AL (E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13977v1-abstract-full').style.display = 'inline'; document.getElementById('2010.13977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.13977v1-abstract-full" style="display: none;"> Density functional theory (DFT) calculations are performed to predict the structural, electronic and magnetic properties of electrically neutral or charged few-atomic-layer (AL) oxides whose parent systems are based on polar perovskite $KTaO_{3}$. Their properties vary greatly with the number of ALs ($n_{AL}$) and the stoichiometric ratio. In the few-AL limit ($n_{AL}\leqslant 14$), the even AL (EL) systems with chemical formula $(KTaO_{3})_{n}$ are semiconductors, while the odd AL (OL) systems with formula ($K_{n+1}Ta_{n}O_{3n+1}$ or $K_{n}Ta_{n+1}O_{3n+2}$) are half-metal except for the unique $KTa_{2}O_{5}$ case which is a semiconductor due to the large Peierls distortions. After reaching certain critical thickness ($n_{AL}&gt;14$), the EL systems show ferromagnetic surface states, while ferromagnetism disappears in the OL systems. These predictions from fundamental complexity of polar perovskite when approaching the two-dimensional (2D) limit may be helpful for interpreting experimental observations later. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13977v1-abstract-full').style.display = 'none'; document.getElementById('2010.13977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Chem. Chem. Phys., 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04766">arXiv:2010.04766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04766">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.0c08989">10.1021/acs.jpcc.0c08989 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Magnetism and Insulator-Metal Transition in Bilayer Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shaowen Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+F">Fanhao Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+G">Guodong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shunbo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04766v1-abstract-short" style="display: inline;"> Two-dimensional (2D) transition-metal oxide perovskites greatly expand the field of available 2D multifunctional material systems. Here, based on density functional theory calculations, we predicted the presence of ferromagnetism orders accompanying with an insulator-metal phase transition in bilayer $KNbO_{3}$ and $KTaO_{3}$ by applying strain engineering and/or external electric field. Our resul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04766v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04766v1-abstract-full" style="display: none;"> Two-dimensional (2D) transition-metal oxide perovskites greatly expand the field of available 2D multifunctional material systems. Here, based on density functional theory calculations, we predicted the presence of ferromagnetism orders accompanying with an insulator-metal phase transition in bilayer $KNbO_{3}$ and $KTaO_{3}$ by applying strain engineering and/or external electric field. Our results will contribute to the applications of few-layer transition metal oxide perovskites in the emerging spintronics and straintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04766v1-abstract-full').style.display = 'none'; document.getElementById('2010.04766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">J. Phys. Chem. C 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14093">arXiv:2007.14093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14093">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Terahertz Strong-Field Physics in Light-Emitting Diodes for Terahertz Detection and Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+C">Chen Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shangqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jinglong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Baolong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojun Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wenning Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenzhe Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tianze Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+T">Tianshu Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Peidi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yutong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14093v1-abstract-short" style="display: inline;"> Intense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresponses have not yet been discovered in light-emitting diodes (LEDs), letting alone employing them as fast, cost effective,compact, and room-temperature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14093v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14093v1-abstract-full" style="display: none;"> Intense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresponses have not yet been discovered in light-emitting diodes (LEDs), letting alone employing them as fast, cost effective,compact, and room-temperature-operating THz detectors and cameras. Here we report ubiquitously available LEDs exhibited gigantic and fast photovoltaic signals with excellent signal-to-noise ratios when being illuminated by THz field strengths &gt;50 kV/cm. We also successfully demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (&gt;1 kV/W) with response time shorter than those of pyroelectric detectors by four orders of magnitude. The detection mechanism was attributed to THz-field-induced nonlinear impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also greatly contribute to the applications of strong-field THz diagnosis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14093v1-abstract-full').style.display = 'none'; document.getElementById('2007.14093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10