CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–11 of 11 results for author: <span class="mathjax">Duncan, R A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Duncan%2C+R+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Duncan, R A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Duncan%2C+R+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Duncan, R A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17203">arXiv:2403.17203</a> <span> [<a href="https://arxiv.org/pdf/2403.17203">pdf</a>, <a href="https://arxiv.org/format/2403.17203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of polarization density waves in SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Krapivin%2C+V">Viktor Krapivin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+Z">Zhuquan Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Munoz%2C+G+d+l+P">Gilberto de la Pena Munoz</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q">Quynh Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Stanton%2C+J">Jade Stanton</a>, <a href="/search/cond-mat?searchtype=author&query=Teitelbaum%2C+S">Samuel Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Yavas%2C+H">Hasan Yavas</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Kramer%2C+P">Patrick Kramer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiahao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cavalleri%2C+A">Andrea Cavalleri</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+M+P+M">Mark P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&query=Disa%2C+A+S">Ankit S. Disa</a>, <a href="/search/cond-mat?searchtype=author&query=Forst%2C+M">Michael Forst</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+S+L">Steven L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Mitrano%2C+M">Matteo Mitrano</a>, <a href="/search/cond-mat?searchtype=author&query=Rappe%2C+A+M">Andrew M. Rappe</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D">David Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17203v1-abstract-short" style="display: inline;"> The nature of the "failed" ferroelectric transition in SrTiO3 has been a long-standing puzzle in condensed matter physics. A compelling explanation is the competition between ferroelectricity and an instability with a mesoscopic modulation of the polarization. These polarization density waves, which should become especially strong near the quantum critical point, break local inversion symmetry and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17203v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17203v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17203v1-abstract-full" style="display: none;"> The nature of the "failed" ferroelectric transition in SrTiO3 has been a long-standing puzzle in condensed matter physics. A compelling explanation is the competition between ferroelectricity and an instability with a mesoscopic modulation of the polarization. These polarization density waves, which should become especially strong near the quantum critical point, break local inversion symmetry and are difficult to probe with conventional x-ray scattering methods. Here we combine a femtosecond x-ray free electron laser (XFEL) with THz coherent control methods to probe inversion symmetry breaking at finite momenta and visualize the instability of the polarization on nanometer lengthscales in SrTiO3. We find polar-acoustic collective modes that are soft particularly at the tens of nanometer lengthscale. These precursor collective excitations provide evidence for the conjectured mesoscopic modulated phase in SrTiO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17203v1-abstract-full').style.display = 'none'; document.getElementById('2403.17203v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16453">arXiv:2312.16453</a> <span> [<a href="https://arxiv.org/pdf/2312.16453">pdf</a>, <a href="https://arxiv.org/format/2312.16453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hard X-ray Generation and Detection of Nanometer-Scale Localized Coherent Acoustic Wave Packets in SrTiO$_3$ and KTaO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+P">Peihao Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Teitelbaum%2C+S+W">Samuel W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Haoyuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yanwen Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Nan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&query=Osaka%2C+T">Taito Osaka</a>, <a href="/search/cond-mat?searchtype=author&query=Inoue%2C+I">Ichiro Inoue</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Shin%2C+H+D">Hyun D. Shin</a>, <a href="/search/cond-mat?searchtype=author&query=Haber%2C+J">Johann Haber</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jinjian Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Bernardi%2C+M">Marco Bernardi</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+M">Mingqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Rondinelli%2C+J+M">James M. Rondinelli</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">Mariano Trigo</a>, <a href="/search/cond-mat?searchtype=author&query=Yabashi%2C+M">Makina Yabashi</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">David A. Reis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16453v2-abstract-short" style="display: inline;"> We demonstrate that the absorption of femtosecond x-ray pulses can excite quasi-spherical high-wavevector coherent acoustic phonon wavepackets using an all x-ray pump and probe scattering experiment. The time- and momentum-resolved diffuse scattering signal is consistent with strain pulses induced by the rapid electron cascade dynamics following photoionization at uncorrelated excitation centers.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16453v2-abstract-full').style.display = 'inline'; document.getElementById('2312.16453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16453v2-abstract-full" style="display: none;"> We demonstrate that the absorption of femtosecond x-ray pulses can excite quasi-spherical high-wavevector coherent acoustic phonon wavepackets using an all x-ray pump and probe scattering experiment. The time- and momentum-resolved diffuse scattering signal is consistent with strain pulses induced by the rapid electron cascade dynamics following photoionization at uncorrelated excitation centers. We quantify key parameters of this process, including the localization size of the strain wavepacket and the energy absorption efficiency, which are determined by the photoelectron and Auger electron cascade dynamics, as well as the electron-phonon interaction. In particular, we obtain the localization size of the observed strain wave packet to be 1.5 and 2.5 nm for bulk SrTiO$_3$ and KTaO$_3$ single crystals, even though there are no nanoscale structures or light-intensity patterns that would ordinarily be required to generate acoustic waves of wavelengths much shorter than the penetration depth. Whereas in GaAs and GaP we do not observe a signal above background. The results provide crucial information on x-ray matter interactions, which sheds light on the mechanism of x-ray energy deposition, and the study of high wavevector acoustic phonons and thermal transport at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16453v2-abstract-full').style.display = 'none'; document.getElementById('2312.16453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00168">arXiv:2304.00168</a> <span> [<a href="https://arxiv.org/pdf/2304.00168">pdf</a>, <a href="https://arxiv.org/format/2304.00168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Scaling Reveals Topological Defects and Anomalous Evolution of a Photoinduced Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Munoz%2C+G+A+d+l+P">Gilberto A. de la Pena Munoz</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Krapivin%2C+V">Viktor Krapivin</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Quynh Le Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Teitelbaum%2C+S">Samuel Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+G">Anisha G. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&query=Lemke%2C+H">Henrik Lemke</a>, <a href="/search/cond-mat?searchtype=author&query=Sander%2C+M">Mathias Sander</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yunpei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Arrell%2C+C">Christopher Arrell</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">David A. Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">Mariano Trigo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00168v2-abstract-short" style="display: inline;"> Nonequilibrium states of quantum materials can exhibit exotic properties and enable unprecedented functionality and applications. These transient states are inherently inhomogeneous, characterized by the formation of topologically protected structures, requiring nanometer spatial resolution on femtosecond timescales to resolve their evolution. Using ultrafast total x-ray scattering at a free elect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00168v2-abstract-full').style.display = 'inline'; document.getElementById('2304.00168v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00168v2-abstract-full" style="display: none;"> Nonequilibrium states of quantum materials can exhibit exotic properties and enable unprecedented functionality and applications. These transient states are inherently inhomogeneous, characterized by the formation of topologically protected structures, requiring nanometer spatial resolution on femtosecond timescales to resolve their evolution. Using ultrafast total x-ray scattering at a free electron laser and a sophisticated scaling analysis, we gain unique access to the dynamics on the relevant mesoscopic lengthscales. Our results provide direct evidence that ultrafast excitation of LaTe$_3$ leads to formation of topological vortex strings of the charge density wave. These dislocations of the charge density wave exhibit anomalous, subdiffusive dynamics, slowing the equilibration process, providing rare insight into the nonequilibrium mesoscopic response in a quantum material. Our findings establish a general framework to investigate properties of topological defects, which are expected to be ubiquitous in nonequilibrium phase transitions and may arrest equilibration and enhance competing orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00168v2-abstract-full').style.display = 'none'; document.getElementById('2304.00168v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01116">arXiv:2212.01116</a> <span> [<a href="https://arxiv.org/pdf/2212.01116">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Extreme ultraviolet transient gratings: A tool for nanoscale photoacoustics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Foglia%2C+L">L. Foglia</a>, <a href="/search/cond-mat?searchtype=author&query=Mincigrucci%2C+R">R. Mincigrucci</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">A. A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Baldi%2C+G">G. Baldi</a>, <a href="/search/cond-mat?searchtype=author&query=Capotondi%2C+F">F. Capotondi</a>, <a href="/search/cond-mat?searchtype=author&query=Caporaletti%2C+F">F. Caporaletti</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&query=De+Angelis%2C+D">D. De Angelis</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">R. A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Fainozzi%2C+D">D. Fainozzi</a>, <a href="/search/cond-mat?searchtype=author&query=Kurdi%2C+G">G. Kurdi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Martinelli%2C+A">A. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&query=Masciovecchio%2C+C">C. Masciovecchio</a>, <a href="/search/cond-mat?searchtype=author&query=Monaco%2C+G">G. Monaco</a>, <a href="/search/cond-mat?searchtype=author&query=Milloch%2C+A">A. Milloch</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">K. A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Occhialini%2C+C+A">C. A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&query=Pancaldi%2C+M">M. Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&query=Pedersoli%2C+E">E. Pedersoli</a>, <a href="/search/cond-mat?searchtype=author&query=Pelli-Cresi%2C+J+S">J. S. Pelli-Cresi</a>, <a href="/search/cond-mat?searchtype=author&query=Simoncig%2C+A">A. Simoncig</a>, <a href="/search/cond-mat?searchtype=author&query=Travasso%2C+F">F. Travasso</a>, <a href="/search/cond-mat?searchtype=author&query=Wehinger%2C+B">B. Wehinger</a>, <a href="/search/cond-mat?searchtype=author&query=Zanatta%2C+M">M. Zanatta</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01116v1-abstract-short" style="display: inline;"> Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01116v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01116v1-abstract-full" style="display: none;"> Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods. In this manuscript we report on the capabilities of this technique in the context of probing thermoelastic properties of matter, both in the bulk and at the surface, as well as discussing future developments and practical considerations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01116v1-abstract-full').style.display = 'none'; document.getElementById('2212.01116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17483">arXiv:2210.17483</a> <span> [<a href="https://arxiv.org/pdf/2210.17483">pdf</a>, <a href="https://arxiv.org/format/2210.17483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast x-ray scattering reveals composite amplitude collective mode in the Weyl charge density wave material (TaSe$_4$)$_2$I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Quynh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Orenstein%2C+G">Gal Orenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Krapivin%2C+V">Viktor Krapivin</a>, <a href="/search/cond-mat?searchtype=author&query=de+la+Pena%2C+G">Gilberto de la Pena</a>, <a href="/search/cond-mat?searchtype=author&query=Ornelas-Skarin%2C+C">Chance Ornelas-Skarin</a>, <a href="/search/cond-mat?searchtype=author&query=Reis%2C+D+A">David A. Reis</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&query=Bettler%2C+S">Simon Bettler</a>, <a href="/search/cond-mat?searchtype=author&query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Hurley%2C+M">Matthew Hurley</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Soyeun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kirchmann%2C+P+S">Patrick S. Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&query=Kubota%2C+Y">Yuya Kubota</a>, <a href="/search/cond-mat?searchtype=author&query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&query=Miller%2C+A">Alexander Miller</a>, <a href="/search/cond-mat?searchtype=author&query=Osaka%2C+T">Taito Osaka</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+K">Kejian Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a>, <a href="/search/cond-mat?searchtype=author&query=Sirica%2C+N">Nicholas Sirica</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&query=Stanton%2C+J">Jade Stanton</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17483v2-abstract-short" style="display: inline;"> We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe$_4$)$_2$I following photoexcitation with femtosecond infrared laser pulses. From the time-dependent diffraction signal at the CDW sidebands we identify an amplitude mode derived primarily from the transverse acoustic component of the CDW static distortion. The dynamics of this acoustic amplitu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17483v2-abstract-full').style.display = 'inline'; document.getElementById('2210.17483v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17483v2-abstract-full" style="display: none;"> We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe$_4$)$_2$I following photoexcitation with femtosecond infrared laser pulses. From the time-dependent diffraction signal at the CDW sidebands we identify an amplitude mode derived primarily from the transverse acoustic component of the CDW static distortion. The dynamics of this acoustic amplitude mode are described well by a model of a displacive excitation, which we interpret as mediated through a coupling to the optical phonon component associated with the tetramerization of the Ta chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17483v2-abstract-full').style.display = 'none'; document.getElementById('2210.17483v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14207">arXiv:2210.14207</a> <span> [<a href="https://arxiv.org/pdf/2210.14207">pdf</a>, <a href="https://arxiv.org/format/2210.14207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01504-5">10.1038/s41563-023-01504-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the massive Lee-Fukuyama phason in a charge density wave insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Soyeun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+Y">Yinchuan Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiao-Qi Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+C">Chengxi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Bielinski%2C+N">Nina Bielinski</a>, <a href="/search/cond-mat?searchtype=author&query=Murzabekova%2C+A">Azel Murzabekova</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+K">Kejian Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L+D">Quynh L. D. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">Mariano Trigo</a>, <a href="/search/cond-mat?searchtype=author&query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a>, <a href="/search/cond-mat?searchtype=author&query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&query=Mahmood%2C+F">Fahad Mahmood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14207v1-abstract-short" style="display: inline;"> The lowest-lying fundamental excitation of an incommensurate charge density wave (CDW) material is widely believed to be a massless phason -- a collective modulation of the phase of the CDW order parameter. However, as first pointed out by Lee and Fukuyama, long-range Coulomb interactions should push the phason energy up to the plasma energy of the CDW condensate, resulting in a massive phason and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14207v1-abstract-full').style.display = 'inline'; document.getElementById('2210.14207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14207v1-abstract-full" style="display: none;"> The lowest-lying fundamental excitation of an incommensurate charge density wave (CDW) material is widely believed to be a massless phason -- a collective modulation of the phase of the CDW order parameter. However, as first pointed out by Lee and Fukuyama, long-range Coulomb interactions should push the phason energy up to the plasma energy of the CDW condensate, resulting in a massive phason and a fully gapped spectrum. Whether such behavior occurs in a CDW system has been unresolved for more than four decades. Using time-domain THz emission spectroscopy, we investigate this issue in the material (TaSe$_4$)$_2$I, a classical example of a quasi-one-dimensional CDW insulator. Upon transient photoexcitation at low temperatures, we find the material strikingly emits coherent, narrow-band THz radiation. The frequency, polarization and temperature-dependence of the emitted radiation imply the existence of a phason that acquires mass by coupling to long-range Coulomb interaction. Our observations constitute the first direct evidence of the massive "Lee-Fukuyama" phason and highlight the potential applicability of fundamental collective modes of correlated materials as compact and robust sources of THz radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14207v1-abstract-full').style.display = 'none'; document.getElementById('2210.14207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. SI available on request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06211">arXiv:1912.06211</a> <span> [<a href="https://arxiv.org/pdf/1912.06211">pdf</a>, <a href="https://arxiv.org/format/1912.06211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5141804">10.1063/1.5141804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal transport in nanoporous holey silicon membranes investigated with optically-induced transient thermal gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Romano%2C+G">Giuseppe Romano</a>, <a href="/search/cond-mat?searchtype=author&query=Sledzinska%2C+M">Marianna Sledzinska</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Peraud%2C+J+M">Jean-Philippe M. Peraud</a>, <a href="/search/cond-mat?searchtype=author&query=Hellman%2C+O">Olle Hellman</a>, <a href="/search/cond-mat?searchtype=author&query=Torres%2C+C+M+S">Clivia M. Sotomayor Torres</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06211v2-abstract-short" style="display: inline;"> In this study, we use the transient thermal grating optical technique \textemdash a non-contact, laser-based thermal metrology technique with intrinsically high accuracy \textemdash to investigate room-temperature phonon-mediated thermal transport in two nanoporous holey silicon membranes with limiting dimensions of 100 nm and 250 nm respectively. We compare the experimental results to ab initio c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06211v2-abstract-full').style.display = 'inline'; document.getElementById('1912.06211v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06211v2-abstract-full" style="display: none;"> In this study, we use the transient thermal grating optical technique \textemdash a non-contact, laser-based thermal metrology technique with intrinsically high accuracy \textemdash to investigate room-temperature phonon-mediated thermal transport in two nanoporous holey silicon membranes with limiting dimensions of 100 nm and 250 nm respectively. We compare the experimental results to ab initio calculations of phonon-mediated thermal transport according to the phonon Boltzmann transport equation (BTE) using two different computational techniques. We find that the calculations conducted within the Casimir framework, i.e. based on the BTE with the bulk phonon dispersion and diffuse scattering from surfaces, are in quantitative agreement with the experimental data, and thus conclude that this framework is adequate for describing phonon-mediated thermal transport through holey silicon membranes with feature sizes on the order of 100 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06211v2-abstract-full').style.display = 'none'; document.getElementById('1912.06211v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.09160">arXiv:1901.09160</a> <span> [<a href="https://arxiv.org/pdf/1901.09160">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aav3548">10.1126/science.aav3548 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of second sound in graphite at temperatures above 100 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huberman%2C+S">Samuel Huberman</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+K">Ke Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+B">Bai Song</a>, <a href="/search/cond-mat?searchtype=author&query=Chiloyan%2C+V">Vazrik Chiloyan</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhiwei Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.09160v1-abstract-short" style="display: inline;"> Wavelike thermal transport in solids, referred to as second sound, has until now been an exotic phenomenon limited to a handful of materials at low temperatures. This has restricted interest in its occurrence and in its potential applications. Through time-resolved optical measurements of thermal transport on 5-20 渭m length scales in graphite, we have made direct observations of second sound at te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09160v1-abstract-full').style.display = 'inline'; document.getElementById('1901.09160v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.09160v1-abstract-full" style="display: none;"> Wavelike thermal transport in solids, referred to as second sound, has until now been an exotic phenomenon limited to a handful of materials at low temperatures. This has restricted interest in its occurrence and in its potential applications. Through time-resolved optical measurements of thermal transport on 5-20 渭m length scales in graphite, we have made direct observations of second sound at temperatures above 100 K. The results are in qualitative agreement with ab initio calculations that predict wavelike phonon hydrodynamics on ~ 1-渭m length scale up to almost room temperature. The results suggest an important role of second sound in microscale transient heat transport in two-dimensional and layered materials in a wide temperature range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09160v1-abstract-full').style.display = 'none'; document.getElementById('1901.09160v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01386">arXiv:1704.01386</a> <span> [<a href="https://arxiv.org/pdf/1704.01386">pdf</a>, <a href="https://arxiv.org/format/1704.01386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.1.054601">10.1103/PhysRevMaterials.1.054601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unifying first principle theoretical predictions and experimental measurements of size effects on thermal transport in SiGe alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huberman%2C+S">Samuel Huberman</a>, <a href="/search/cond-mat?searchtype=author&query=Chiloyan%2C+V">Vazrik Chiloyan</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+L">Lingping Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+R">Roger Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Fitzgerald%2C+E+A">Eugene A. Fitzgerald</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Gang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01386v2-abstract-short" style="display: inline;"> In this work, we demonstrate the correspondence between first principle calculations and experimental measurements of size effects on thermal transport in SiGe alloys. Transient thermal grating (TTG) is used to measure the effective thermal conductivity. The virtual crystal approximation under the density functional theory (DFT) framework combined with impurity scattering is used to determine the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01386v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01386v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01386v2-abstract-full" style="display: none;"> In this work, we demonstrate the correspondence between first principle calculations and experimental measurements of size effects on thermal transport in SiGe alloys. Transient thermal grating (TTG) is used to measure the effective thermal conductivity. The virtual crystal approximation under the density functional theory (DFT) framework combined with impurity scattering is used to determine the phonon properties for the exact alloy composition of the measured samples. With these properties, classical size effects are calculated for the experimental geometry of reflection mode TTG using the recently-developed variational solution to the phonon Boltzmann transport equation (BTE), which is verified against established Monte Carlo simulations. We find agreement between theoretical predictions and experimental measurements in the reduction of thermal conductivity (as much as $\sim$ 25\% of the bulk value) across grating periods spanning one order of magnitude. This work provides a framework for the tabletop study of size effects on thermal transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01386v2-abstract-full').style.display = 'none'; document.getElementById('1704.01386v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 1, 054601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04784">arXiv:1703.04784</a> <span> [<a href="https://arxiv.org/pdf/1703.04784">pdf</a>, <a href="https://arxiv.org/ps/1703.04784">ps</a>, <a href="https://arxiv.org/format/1703.04784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Contact-based and spheroidal vibrational modes of a hexagonal monolayer of microspheres on a substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vega-Flick%2C+A">A. Vega-Flick</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">R. A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Wallen%2C+S+P">S. P. Wallen</a>, <a href="/search/cond-mat?searchtype=author&query=Boechler%2C+N">N. Boechler</a>, <a href="/search/cond-mat?searchtype=author&query=Stelling%2C+C">C. Stelling</a>, <a href="/search/cond-mat?searchtype=author&query=Retsch%2C+M">M. Retsch</a>, <a href="/search/cond-mat?searchtype=author&query=Alvarado-Gil%2C+J+J">J. J. Alvarado-Gil</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">K. A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">A. A. Maznev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04784v1-abstract-short" style="display: inline;"> We study acoustic modes of a close-packed hexagonal lattice of spheres adhered to a substrate, propagating along a high-symmetry direction. The model, accounting for both normal and shear coupling between the spheres and between the spheres and the substrate, yields three contact-based vibrational modes involving both translational and rotational motion of the spheres. Furthermore, we study the ef… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04784v1-abstract-full').style.display = 'inline'; document.getElementById('1703.04784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04784v1-abstract-full" style="display: none;"> We study acoustic modes of a close-packed hexagonal lattice of spheres adhered to a substrate, propagating along a high-symmetry direction. The model, accounting for both normal and shear coupling between the spheres and between the spheres and the substrate, yields three contact-based vibrational modes involving both translational and rotational motion of the spheres. Furthermore, we study the effect of sphere-substrate and sphere-sphere contacts on spheroidal vibrational modes of the spheres within a perturbative approach. The sphere-substrate interaction results in a frequency upshift for the modes having a non-zero displacement at the contact point with the substrate. Sphere-sphere interactions result in dispersion of spheroidal modes turning them into propagating waves, albeit with a small group velocity. Analytical dispersion relations for both contact-based and spheroidal modes are presented and compared with results obtained for a square lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04784v1-abstract-full').style.display = 'none'; document.getElementById('1703.04784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.01530">arXiv:1610.01530</a> <span> [<a href="https://arxiv.org/pdf/1610.01530">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thermal transport in suspended silicon membranes measured by laser-induced transient gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vega-Flick%2C+A">Alejandro Vega-Flick</a>, <a href="/search/cond-mat?searchtype=author&query=Duncan%2C+R+A">Ryan A. Duncan</a>, <a href="/search/cond-mat?searchtype=author&query=Eliason%2C+J+K">Jeffrey K. Eliason</a>, <a href="/search/cond-mat?searchtype=author&query=Cuffe%2C+J">John Cuffe</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+J+A">Jeremy A. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Peraud%2C+J+M">Jean-Philippe M. Peraud</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+L">Lingping Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhengmao Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+E+N">Evelyn N. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Alvarado-Gil%2C+J+J">Juan Jose Alvarado-Gil</a>, <a href="/search/cond-mat?searchtype=author&query=Sledzinska%2C+M">Marianna Sledzinska</a>, <a href="/search/cond-mat?searchtype=author&query=Sotomayor-Torres%2C+C">Clivia Sotomayor-Torres</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+K+A">Keith A. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.01530v2-abstract-short" style="display: inline;"> Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01530v2-abstract-full').style.display = 'inline'; document.getElementById('1610.01530v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.01530v2-abstract-full" style="display: none;"> Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both solid and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membranebased silicon nanostructures is now reasonably well understood. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01530v2-abstract-full').style.display = 'none'; document.getElementById('1610.01530v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>