CINXE.COM

Search results for: energy absorber

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: energy absorber</title> <meta name="description" content="Search results for: energy absorber"> <meta name="keywords" content="energy absorber"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy absorber" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy absorber"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8609</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy absorber</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8609</span> Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/69781/exergy-based-performance-analysis-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8608</span> Vibration Analysis of Power Lines with Moving Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bukhari">Mohammad Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumar%20Barry"> Oumar Barry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20performance" title="absorber performance">absorber performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Aeolian%20vibration" title=" Aeolian vibration"> Aeolian vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton%E2%80%99s%20principle" title=" Hamilton’s principle"> Hamilton’s principle</a>, <a href="https://publications.waset.org/abstracts/search?q=stockbridge%20damper" title=" stockbridge damper"> stockbridge damper</a> </p> <a href="https://publications.waset.org/abstracts/66478/vibration-analysis-of-power-lines-with-moving-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8607</span> A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Christodoulaki">Rosa Christodoulaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Koronaki"> Irene Koronaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Tsekouras"> Panagiotis Tsekouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrating%20solar%20collector" title="concentrating solar collector">concentrating solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis "> energy analysis </a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20reflector" title=" stationary reflector"> stationary reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20absorber" title=" tracking absorber "> tracking absorber </a> </p> <a href="https://publications.waset.org/abstracts/80900/a-model-based-approach-for-energy-performance-assessment-of-a-spherical-stationary-reflectortracking-absorber-solar-concentrator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8606</span> Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/68855/analysis-of-the-effect-of-gsr-on-the-performance-of-double-flow-corrugated-absorber-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8605</span> Polarization Insensitive Absorber with Increased Bandwidth Using Multilayer Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srilaxmi%20Gangula">Srilaxmi Gangula</a>, <a href="https://publications.waset.org/abstracts/search?q=MahaLakshmi%20Vinukonda"> MahaLakshmi Vinukonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rao"> Neeraj Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide band polarization insensitive metamaterial absorber with bandwidth enhancement in X and C band is proposed. The structure proposed here consists of a periodic unit cell of resonator arrangements in double layer. The proposed structure shows near unity absorption at frequencies of 6.21 GHz and 10.372 GHz spreading over a bandwidth of 1 GHz and 6.21 GHz respectively in X and C bands. The proposed metamaterial absorber is designed so as to increase the bandwidth. The proposed structure is also independent for TE and TM polarization. Because of its simple implementation, near unity absorption and wide bandwidth this dual band polarization insensitive metamaterial absorber can be used for EMI/EMC applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber" title="absorber">absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=C-band" title=" C-band"> C-band</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=X-band" title=" X-band "> X-band </a> </p> <a href="https://publications.waset.org/abstracts/124968/polarization-insensitive-absorber-with-increased-bandwidth-using-multilayer-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8604</span> Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lincy%20Stephen">Lincy Stephen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yogesh"> N. Yogesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vasantharajan"> G. Vasantharajan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Subramanian"> V. Subramanian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20absorber" title="electromagnetic absorber">electromagnetic absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-%20band" title=" multi- band"> multi- band</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20insensitive" title=" polarization insensitive"> polarization insensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20angle%20receptive" title=" wide angle receptive"> wide angle receptive</a> </p> <a href="https://publications.waset.org/abstracts/65618/multi-band-polarization-insensitive-wide-angle-receptive-metamaterial-absorber-for-microwave-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8603</span> Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Kubo">Pablo Kubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassio%20Paiva"> Cassio Paiva</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelino%20Ferreira"> Adelino Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber" title=" shock absorber"> shock absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20dynamic%20load" title=" vertical dynamic load"> vertical dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=absorber" title=" absorber "> absorber </a> </p> <a href="https://publications.waset.org/abstracts/12320/influence-of-shock-absorber-condition-on-the-vertical-dynamic-load-applied-on-the-pavement-by-a-trucks-front-suspension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8602</span> Solar Still Absorber Plate Modification and Exergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dudul%20Das">Dudul Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kalita"> Pankaj Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Borah"> Sangeeta Borah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride" title="fluoride">fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=absorber%20plate" title=" absorber plate"> absorber plate</a>, <a href="https://publications.waset.org/abstracts/search?q=jute%20wick" title=" jute wick"> jute wick</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20exergy" title=" instantaneous exergy"> instantaneous exergy</a> </p> <a href="https://publications.waset.org/abstracts/25234/solar-still-absorber-plate-modification-and-exergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8601</span> Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diala%20Bitar">Diala Bitar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Gourdon"> Emmanuel Gourdon</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20H.%20%20Lamarque"> Claude H. Lamarque</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Collet"> Manuel Collet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroacoustic%20absorber" title="electroacoustic absorber">electroacoustic absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-time-scale%20with%20small%20finite%20parameter" title=" multiple-time-scale with small finite parameter"> multiple-time-scale with small finite parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20energy%20sink" title=" nonlinear energy sink"> nonlinear energy sink</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20passive%20shunt" title=" nonlinear passive shunt"> nonlinear passive shunt</a> </p> <a href="https://publications.waset.org/abstracts/82596/nonlinear-passive-shunt-for-electroacoustic-absorbers-using-nonlinear-energy-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8600</span> Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gwi%20Hyun%20Lee">Gwi Hyun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Soo%20Na"> Mun Soo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conical%20solar%20concentrator" title="conical solar concentrator">conical solar concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20system" title=" solar energy system"> solar energy system</a> </p> <a href="https://publications.waset.org/abstracts/68766/performance-evaluation-of-conical-solar-concentrator-system-with-different-flow-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8599</span> Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Verma">Pooja Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumana%20Ghosh"> Sumana Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title="OpenFOAM">OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wave%20tank" title=" numerical wave tank"> numerical wave tank</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20object" title=" floating object"> floating object</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20absorber" title=" point absorber"> point absorber</a> </p> <a href="https://publications.waset.org/abstracts/80469/numerical-simulation-of-a-point-absorber-wave-energy-converter-using-openfoam-in-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8598</span> The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Prasad%20Sharma">Suresh Prasad Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/75539/the-effect-of-global-solar-radiation-on-the-thermal-and-thermohydraulic-performance-of-double-flow-corrugated-absorber-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8597</span> Thermal Performance of Hybrid PVT Collector with Natural Circulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Touafek">K. Touafek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tabet"> I. Tabet</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haloui"> H. Haloui</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bencheikh%20El%20Houcine"> H. Bencheikh El Houcine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Adouane"> M. Adouane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid photovoltaic thermal (PVT) collectors allow simultaneous production of electrical energy thus heat energy. There are several configurations of hybrid collectors (to produce water or air). For hybrids water collectors, there are several configurations that differ by the nature of the absorber (serpentine, tubes...). In this paper, an absorber tank is studied. The circulation of the coolant is natural (we do not use the pump). We present the obtained results in our experimental study and we analyzed the data, and then we compare the results with the theory practices. The electrical performances of the hybrid collector are compared with those of conventional photovoltaic module mounted on the same structure and measured under the same conditions. We conducted experiments with natural circulation of the coolant (Thermosyphon), for a flow rate of 0.025kg/m². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=tank" title=" tank"> tank</a> </p> <a href="https://publications.waset.org/abstracts/8884/thermal-performance-of-hybrid-pvt-collector-with-natural-circulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8596</span> Dual-Band Microwave Metamaterial Absorber Using Modified Circular Ring Resonator for Sensor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Amugothu">Ramesh Amugothu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakula%20Damera"> Vakula Damera</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Sarma%20N.%20V.%20S."> Narasimha Sarma N. V. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a dual-band metamaterial microwave absorber that functions at frequencies of 3.5 GHz and 5.7 GHz. The design comprises modified ring and rectangular patch resonators fabricated on an FR4 dielectric substrate with a ground layer beneath it, emphasizing simplicity. Each absorption frequency is independent and can be individually adjusted by altering the dimensions of the respective resonator structures. The unit cell of the absorber is simulated and optimized parametrically using high-frequency structure simulator (HFSS) software. The mechanism behind the absorption is examined through surface current analysis as well as the symmetric model method. The absorber demonstrates over 97% absorption at both resonant frequencies and is shown to be suitable for sensing applications related to dielectric constant measurement. With its straightforward design, wide-angle acceptance, and polarization-insensitive characteristics, the proposed absorber is likely to be beneficial for both absorption and sensing purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=metasurfaces" title=" metasurfaces"> metasurfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20structures" title=" resonant structures"> resonant structures</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20devices" title=" sensor devices"> sensor devices</a> </p> <a href="https://publications.waset.org/abstracts/195602/dual-band-microwave-metamaterial-absorber-using-modified-circular-ring-resonator-for-sensor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8595</span> Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tabari-Saadi">Yasaman Tabari-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiwen%20Sun"> Kaiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialiang%20Huang"> Jialiang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Green"> Martin Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Hao"> Xiaojing Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20doped" title="copper doped">copper doped</a>, <a href="https://publications.waset.org/abstracts/search?q=AgBiS%E2%82%82" title=" AgBiS₂"> AgBiS₂</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20solar%20cell" title=" thin-film solar cell"> thin-film solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20concentration" title=" carrier concentration"> carrier concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20semiconductor" title=" p-type semiconductor"> p-type semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/125554/enhanced-optical-and-electrical-properties-of-p-type-agbis2-energy-harvesting-materials-as-an-absorber-of-solar-cell-by-copper-doping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8594</span> Performance Evaluation of Lithium Bromide Absorption Chiller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Neffah">Z. Neffah</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Merabti"> L. Merabti</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hatraf"> N. Hatraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absorption refrigeration technology has been used for cooling purposes over a hundred years. Today, the technology developments have made of the absorption refrigeration an economic and effective alternative to the vapour compression cooling cycle. A parametric study was conducted over the entire admissible ranges of the generator and absorber temperatures. On the other hand, simultaneously raising absorber temperatures was seen to result in deterioration of coefficient of performance. The influence of generator, absorber temperatures, as well as solution concentration on the different performance indicators was also calculated and examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20system" title="absorption system">absorption system</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqueous%20solution" title=" Aqueous solution"> Aqueous solution</a>, <a href="https://publications.waset.org/abstracts/search?q=chiller" title=" chiller"> chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=water-lithium%20bromide" title=" water-lithium bromide"> water-lithium bromide</a> </p> <a href="https://publications.waset.org/abstracts/15199/performance-evaluation-of-lithium-bromide-absorption-chiller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8593</span> Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Boulemtafes-Boukadoum">Amel Boulemtafes-Boukadoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Benzaoui"> Ahmed Benzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title="solar air heater">solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title=" artificial roughness"> artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/29694/heat-and-flow-analysis-of-solar-air-heaters-with-artificial-roughness-on-the-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8592</span> Heating System for Water Pool by Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20swimming%20pool" title=" solar swimming pool"> solar swimming pool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title=" water heating"> water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC%20tubes" title=" PVC tubes"> PVC tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20system" title=" alternative system"> alternative system</a> </p> <a href="https://publications.waset.org/abstracts/18363/heating-system-for-water-pool-by-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8591</span> Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chadel%20Meriem">Chadel Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensmaine%20Souhila"> Bensmaine Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Chadel%20Asma"> Chadel Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchikhi%20Chaima"> Bouchikhi Chaima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methylammonium%20lead%20Iodide" title="methylammonium lead Iodide">methylammonium lead Iodide</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=caracteristic%20J-V" title=" caracteristic J-V"> caracteristic J-V</a>, <a href="https://publications.waset.org/abstracts/search?q=effeciency" title=" effeciency"> effeciency</a> </p> <a href="https://publications.waset.org/abstracts/176389/effect-of-methylammonium-lead-iodide-layer-thickness-on-performance-of-perovskite-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8590</span> Vibration Absorption Strategy for Multi-Frequency Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der%20Chyan%20Lin">Der Chyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessel%20function" title="Bessel function">Bessel function</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20excitation" title=" frequency modulated excitation"> frequency modulated excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorber" title=" vibration absorber"> vibration absorber</a> </p> <a href="https://publications.waset.org/abstracts/132303/vibration-absorption-strategy-for-multi-frequency-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8589</span> Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Jer%20Lin">Chih-Jer Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee"> Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-rheological%20fluid" title="electro-rheological fluid">electro-rheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20vibration%20control" title=" semi-active vibration control"> semi-active vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber" title=" shock absorber"> shock absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20fuzzy%20control" title=" type 2 fuzzy control "> type 2 fuzzy control </a> </p> <a href="https://publications.waset.org/abstracts/7630/interval-type-2-fuzzy-vibration-control-of-an-erf-embedded-smart-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8588</span> Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liyana%20Zahid">Liyana Zahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fareq%20Abd%20Malek"> Mohd Fareq Abd Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Meng%20Cheng"> Ee Meng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wen%20Liu"> Wei Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Seng%20Lee"> Yeng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem%20Iqbal"> Muhammad Nadeem Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fwen%20Hoon%20Wee"> Fwen Hoon Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorber" title="microwave absorber">microwave absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20loss" title=" reflection loss"> reflection loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20%28SCB%29" title=" sugarcane bagasse (SCB)"> sugarcane bagasse (SCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Band" title=" X-Band"> X-Band</a> </p> <a href="https://publications.waset.org/abstracts/1457/reflection-performance-of-truncated-pyramidal-and-truncated-wedge-microwave-absorber-using-sugarcane-bagasse-scb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8587</span> Optimizing Detection Methods for THz Bio-imaging Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Bolakis">C. Bolakis</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Karanasiou"> I. S. Karanasiou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Grbovic"> D. Grbovic</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Karunasiri"> G. Karunasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Uzunoglu"> N. Uzunoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-imaging" title="bio-imaging">bio-imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-tuned%20absorber" title=" fine-tuned absorber"> fine-tuned absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=microbolometer" title=" microbolometer"> microbolometer</a> </p> <a href="https://publications.waset.org/abstracts/43851/optimizing-detection-methods-for-thz-bio-imaging-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8586</span> Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C<sup>++</sup> language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=thermos-hydraulic%20efficiency" title=" thermos-hydraulic efficiency"> thermos-hydraulic efficiency</a> </p> <a href="https://publications.waset.org/abstracts/69780/thermohydraulic-performance-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8585</span> Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venegas">M. Venegas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Vega"> M. De Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20absorption" title="adiabatic absorption">adiabatic absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=air-cooled" title=" air-cooled"> air-cooled</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20energy" title=" solar thermal energy"> solar thermal energy</a> </p> <a href="https://publications.waset.org/abstracts/67714/modelling-of-air-cooled-adiabatic-membrane-based-absorber-for-absorption-chillers-using-low-temperature-solar-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8584</span> Thermal Performance of an Air Heating Storing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Elhaj">Mohammed A. Elhaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20S.%20Yassin"> Jamal S. Yassin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20process" title=" thermal process"> thermal process</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=collector" title=" collector"> collector</a>, <a href="https://publications.waset.org/abstracts/search?q=packed%20bed" title=" packed bed"> packed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/10545/thermal-performance-of-an-air-heating-storing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8583</span> Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Moghadasi">Meisam Moghadasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ali%20Ozgoli"> Hassan Ali Ozgoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20Farhani"> Foad Farhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sweetening%20unit" title="gas sweetening unit">gas sweetening unit</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=MDEA" title=" MDEA"> MDEA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20recovery%20turbine" title=" power recovery turbine"> power recovery turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a> </p> <a href="https://publications.waset.org/abstracts/96730/gas-sweetening-process-simulation-investigation-on-recovering-waste-hydraulic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8582</span> Analysis on Heat Transfer in Solar Parabolic Trough Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20H.%20Yaseen">Zaid H. Yaseen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamel%20A.%20Orfi"> Jamel A. Orfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20A.%20Alsuhaibani"> Zeyad A. Alsuhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20tube" title="absorber tube">absorber tube</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20tube" title=" glass tube"> glass tube</a>, <a href="https://publications.waset.org/abstracts/search?q=incident%20radiation" title=" incident radiation"> incident radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title=" parabolic trough collector"> parabolic trough collector</a> </p> <a href="https://publications.waset.org/abstracts/194511/analysis-on-heat-transfer-in-solar-parabolic-trough-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8581</span> Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wigwe">M. Wigwe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G%20Akpa"> J. G Akpa</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20N%20Wami"> E. N Wami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=separations" title="separations">separations</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration" title=" dehydration"> dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=triethylene%20glycol" title=" triethylene glycol"> triethylene glycol</a> </p> <a href="https://publications.waset.org/abstracts/13626/modelling-and-simulation-of-diffusion-effect-on-the-glycol-dehydration-unit-of-a-natural-gas-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8580</span> Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kianifar">A. Kianifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Afzali"> M. Afzali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pishbin"> I. Pishbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrator%20thermoelectric%20generator" title="concentrator thermoelectric generator">concentrator thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=CTEG" title=" CTEG"> CTEG</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cells" title=" thermoelectric cells"> thermoelectric cells</a> </p> <a href="https://publications.waset.org/abstracts/5606/electric-power-generation-by-thermoelectric-cells-and-parabolic-solar-concentrators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=286">286</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20absorber&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10