CINXE.COM

Search results for: parabolic trough collector

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: parabolic trough collector</title> <meta name="description" content="Search results for: parabolic trough collector"> <meta name="keywords" content="parabolic trough collector"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="parabolic trough collector" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="parabolic trough collector"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 317</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: parabolic trough collector</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Experimental Study and Analysis of Parabolic Trough Collector with Various Reflectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Balram%20Manoj%20Kumar"> Balram Manoj Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed for aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using aluminum sheet as reflector compared to aluminum foil as reflector is 18.98% more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title="parabolic trough collector">parabolic trough collector</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectors" title=" reflectors"> reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rates" title=" air flow rates"> air flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power"> solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sheet" title=" aluminum sheet"> aluminum sheet</a> </p> <a href="https://publications.waset.org/abstracts/2172/experimental-study-and-analysis-of-parabolic-trough-collector-with-various-reflectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alibakhsh%20Kasaeian">Alibakhsh Kasaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sameti"> Mohammad Sameti</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Noori"> Zahra Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Rastgoo%20Bahambari"> Mona Rastgoo Bahambari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=trough" title=" trough"> trough</a> </p> <a href="https://publications.waset.org/abstracts/44175/numerical-modeling-and-characteristic-analysis-of-a-parabolic-trough-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bidi">M. Bidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Akhbari"> H. Akhbari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eslami"> S. Eslami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bakhtiari"> A. Bakhtiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title=" parabolic trough collector"> parabolic trough collector</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20steam%20production" title=" direct steam production"> direct steam production</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heater" title=" solar water heater"> solar water heater</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20construction" title=" design and construction"> design and construction</a> </p> <a href="https://publications.waset.org/abstracts/39512/design-and-fabrication-of-a-parabolic-trough-collector-and-experimental-investigation-of-direct-steam-production-in-tehran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atwari%20Rawani">Atwari Rawani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Narayan%20Singh"> Hari Narayan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20P.%20Singh"> K. D. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape%20ratio" title=" twisted tape ratio"> twisted tape ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/70206/comparative-performance-analysis-of-parabolic-trough-collector-using-twisted-tape-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Design and Study of a Parabolic Trough Solar Collector for Generating Electricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20A.%20Aboalnour">A. A. A. Aboalnour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Amasaib"> Ahmed M. Amasaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed-Almujtaba%20A.%20Mohammed-Farah"> Mohammed-Almujtaba A. Mohammed-Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakam"> Abdelhakam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Noreldien"> A. Noreldien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title=" mathematical models"> mathematical models</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough" title=" parabolic trough"> parabolic trough</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/58403/design-and-study-of-a-parabolic-trough-solar-collector-for-generating-electricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Analysis on Heat Transfer in Solar Parabolic Trough Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20H.%20Yaseen">Zaid H. Yaseen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamel%20A.%20Orfi"> Jamel A. Orfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20A.%20Alsuhaibani"> Zeyad A. Alsuhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20tube" title="absorber tube">absorber tube</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20tube" title=" glass tube"> glass tube</a>, <a href="https://publications.waset.org/abstracts/search?q=incident%20radiation" title=" incident radiation"> incident radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title=" parabolic trough collector"> parabolic trough collector</a> </p> <a href="https://publications.waset.org/abstracts/194511/analysis-on-heat-transfer-in-solar-parabolic-trough-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar%20Sinha">Umesh Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Nayak"> Y. K. Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kumar"> N. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Saurav"> Swapnil Saurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Kashyap"> Monika Kashyap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20solar%20collector" title="parabolic trough solar collector">parabolic trough solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20and%20thermal%20loss%20parameters" title=" radiative and thermal loss parameters"> radiative and thermal loss parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=collector%20efficiency" title=" collector efficiency"> collector efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20removal%20factor" title=" heat removal factor"> heat removal factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20outlet%20and%20inlet%20temperatures" title=" fluid outlet and inlet temperatures"> fluid outlet and inlet temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=rise%20of%20temperature" title=" rise of temperature"> rise of temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion%20efficiency" title=" conversion efficiency"> conversion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrator%20irradiance" title=" concentrator irradiance"> concentrator irradiance</a> </p> <a href="https://publications.waset.org/abstracts/74875/an-investigation-of-system-and-operating-parameters-on-the-performance-of-parabolic-trough-solar-collector-for-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Abd-Rahman">R. Abd-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Isa"> M. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh"> H. H. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20trough%20concentrator" title="compound parabolic trough concentrator">compound parabolic trough concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20modelling" title=" optical modelling"> optical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ray-tracing%20analysis" title=" ray-tracing analysis"> ray-tracing analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20performance" title=" improved performance"> improved performance</a> </p> <a href="https://publications.waset.org/abstracts/29904/design-optimisation-of-compound-parabolic-concentrator-cpc-for-improved-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Tripathi">Rohit Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Tiwari"> Sumit Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20concentrator" title="compound parabolic concentrator">compound parabolic concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20thermal" title=" photovoltaic thermal"> photovoltaic thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent%20electrical%20efficiency" title=" temperature dependent electrical efficiency"> temperature dependent electrical efficiency</a> </p> <a href="https://publications.waset.org/abstracts/36867/performance-of-partially-covered-n-number-of-photovoltaic-thermal-pvt-compound-parabolic-concentrator-cpc-series-connected-water-heating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atwari%20Rawani">Atwari Rawani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Prasad%20Sharma"> Suresh Prasad Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20P.%20Singh"> K. D. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title="exergy efficiency">exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape%20ratio" title=" twisted tape ratio"> twisted tape ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20heat%20gain" title=" useful heat gain"> useful heat gain</a> </p> <a href="https://publications.waset.org/abstracts/70215/exergy-based-analysis-of-parabolic-trough-collector-using-twisted-tape-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqiang%20Duan">Liqiang Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jingkai"> Ma Jingkai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lv%20Zhipeng"> Lv Zhipeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Haifan%20Cai"> Haifan Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO<sub>2</sub> emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HRSG" title="HRSG">HRSG</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20scheme" title=" integration scheme"> integration scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collectors%20with%20DSG%20technology" title=" parabolic trough collectors with DSG technology"> parabolic trough collectors with DSG technology</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power%20generation" title=" solar power generation"> solar power generation</a> </p> <a href="https://publications.waset.org/abstracts/77733/study-on-the-integration-schemes-and-performance-comparisons-of-different-integrated-solar-combined-cycle-direct-steam-generation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20Ghoneim">Adel A. Ghoneim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20integrated%20renewable%20systems" title="building integrated renewable systems">building integrated renewable systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Net-Zero%20energy%20building" title=" Net-Zero energy building"> Net-Zero energy building</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20fraction" title=" solar fraction"> solar fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=avoided%20CO2%20emission" title=" avoided CO2 emission"> avoided CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/26650/achieving-net-zero-energy-building-in-a-hot-climate-using-integrated-photovoltaic-and-parabolic-trough-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Development of a Test Plant for Parabolic Trough Solar Collectors Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Ponce%20Jr.">Nelson Ponce Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20R.%20Gazoli"> Jonas R. Gazoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Sete"> Alessandro Sete</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20M.%20G.%20Vel%C3%A1squez"> Roberto M. G. Velásquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Val%C3%A9rio%20L.%20Borges"> Valério L. Borges</a>, <a href="https://publications.waset.org/abstracts/search?q=Moacir%20A.%20S.%20de%20Andrade"> Moacir A. S. de Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough" title="parabolic trough">parabolic trough</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20power" title=" concentrated solar power"> concentrated solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=CSP" title=" CSP"> CSP</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power"> solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20plant" title=" test plant"> test plant</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20characterization" title=" performance characterization"> performance characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/155245/development-of-a-test-plant-for-parabolic-trough-solar-collectors-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Investigation of Solar Concentrator Prototypes under Tunisian Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Balghouthi">Moncef Balghouthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Ben%20Amara"> Mahmoud Ben Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Ben%20Hadj%20Ali"> Abdessalem Ben Hadj Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amenallah%20Guizani"> Amenallah Guizani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20concentrators" title="solar concentrators">solar concentrators</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20and%20thermal%20evaluations" title=" optical and thermal evaluations"> optical and thermal evaluations</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20and%20process%20heat" title=" cooling and process heat"> cooling and process heat</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20thermal%20and%20electric%20generation" title=" hybrid thermal and electric generation"> hybrid thermal and electric generation</a> </p> <a href="https://publications.waset.org/abstracts/79246/investigation-of-solar-concentrator-prototypes-under-tunisian-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Sallam">Sara Sallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Taqi"> Mohamed Taqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoual%20Belouaggadia"> Naoual Belouaggadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters&rsquo; effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20steam%20generation" title="direct steam generation">direct steam generation</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collectors" title=" parabolic trough collectors"> parabolic trough collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=Ppressure%20drop" title=" Ppressure drop"> Ppressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title=" empirical models "> empirical models </a> </p> <a href="https://publications.waset.org/abstracts/109566/analysis-of-pressure-drop-in-a-concentrated-solar-collector-with-direct-steam-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Heat Transfer Performance for Turbulent Flow through a Tube Using Baffles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Benabderrahmane">Amina Benabderrahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelylah%20Benazza"> Abdelylah Benazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Laouedj"> Samir Laouedj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three dimensional numerical investigation of heat transfer enhancement inside a non-uniformly heated parabolic trough solar collector fitted with baffles under turbulent flow was studied in the current paper. Molten salt is used as heat transfer fluid and simulations are carried out in ANSYS computational fluid dynamics (CFD). The present data was validating by the empirical correlations available in the literatures and good agreement was obtained. The Nusselt number and friction factor values for using baffles are considerably higher than that for smooth pipe. The emplacement and the distance between two consecutive baffles have an effect non-negligible on heat transfer characteristics; the results demonstrate that the temperature gradient reduces with the inclusion of inserts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baffles" title="Baffles">Baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20ray%20trace%20technique" title=" Monte Carlo ray trace technique"> Monte Carlo ray trace technique</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation "> numerical investigation </a> </p> <a href="https://publications.waset.org/abstracts/56049/heat-transfer-performance-for-turbulent-flow-through-a-tube-using-baffles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mosallat">Faezeh Mosallat</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20L.%20Bibeau"> Eric L. Bibeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20El%20Mekkawy"> Tarek El Mekkawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Availability of a wide variety of renewable resources, such as large reserves of hydro, biomass, solar and wind in Canada provides significant potential to improve the sustainability of energy uses. As buildings represent a considerable portion of energy use in Canada, application of distributed solar energy systems for heating and cooling may increase the amount of renewable energy use. Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. Heat production by concentrating solar rays using parabolic troughs can overcome the poor efficiencies of flat panels and evacuated tubes in cold climates. A numerical dynamic model is developed to simulate an installed parabolic solar trough facility in Winnipeg. The results of the numerical model are validated using the experimental data obtained from this system. The model is developed in Simulink and will be utilized to simulate a tri-generation system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates as this is lacking in the literature. In this paper, the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using organic Rankine cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modeling provides dynamic performance results using real time minutely meteorological data which are collected at the same location the solar system is installed. This is a big step ahead of the current models by accurately calculating the available solar energy at each time step considering the solar radiation fluctuations due to passing clouds. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. A natural gas water heater provides the required excess heat for the absorption cooling at low or no solar radiation periods. The results of the simulation are presented for a summer month in Winnipeg which includes the amount of generated electric power from ORC and contribution of solar energy in the cooling load provision <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20cooling" title="absorption cooling">absorption cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20solar%20trough" title=" parabolic solar trough"> parabolic solar trough</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20community" title=" remote community"> remote community</a>, <a href="https://publications.waset.org/abstracts/search?q=validated%20model" title=" validated model"> validated model</a> </p> <a href="https://publications.waset.org/abstracts/27155/simulation-of-solar-assisted-absorption-cooling-and-electricity-generation-along-with-thermal-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gwi%20Hyun%20Lee">Gwi Hyun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Soo%20Na"> Mun Soo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conical%20solar%20concentrator" title="conical solar concentrator">conical solar concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20system" title=" solar energy system"> solar energy system</a> </p> <a href="https://publications.waset.org/abstracts/68766/performance-evaluation-of-conical-solar-concentrator-system-with-different-flow-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20C.%20Olawole">Olukunle C. Olawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20De"> Dilip K. De</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere"> Moses Emetere</a>, <a href="https://publications.waset.org/abstracts/search?q=Omoje%20Maxwell"> Omoje Maxwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Richardson-Dushman%20equation" title=" modified Richardson-Dushman equation"> modified Richardson-Dushman equation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermionic%20energy%20converter" title=" solar thermionic energy converter"> solar thermionic energy converter</a> </p> <a href="https://publications.waset.org/abstracts/42564/energy-dynamics-of-solar-thermionic-power-conversion-with-emitter-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hamlehdar">Maryam Hamlehdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20A.%20Narsilio"> Guillermo A. Narsilio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20hydrogen%20production" title="clean hydrogen production">clean hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solar-geothermal" title=" integrated solar-geothermal"> integrated solar-geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20geothermal%20energy" title=" low-temperature geothermal energy"> low-temperature geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/182662/assessment-of-a-coupled-geothermal-solar-thermal-based-hydrogen-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Thermal Performance Investigation on Cross V-Shape Solar Air Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Luo">Xi Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Ji"> Xu Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunfeng%20Wang"> Yunfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoliang%20Li"> Guoliang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongqiang%20Yan"> Chongqiang Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Li"> Ming Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20v-shape" title="cross v-shape">cross v-shape</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20collector" title=" solar air collector"> solar air collector</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/87584/thermal-performance-investigation-on-cross-v-shape-solar-air-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anunaya%20Saraswat"> Anunaya Saraswat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m<sup>2</sup> and 19<sup>o</sup>C respectively on this day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evacuated%20tube" title="evacuated tube">evacuated tube</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water" title=" hot water"> hot water</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generation" title=" steam generation"> steam generation</a> </p> <a href="https://publications.waset.org/abstracts/46207/an-experimental-study-on-evacuated-tube-solar-collector-for-steam-generation-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi">Mustafa Dagbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Bamisile"> Olusola Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Adii%20Chinedum"> Adii Chinedum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title="solar power">solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20plant" title=" photovoltaic plant"> photovoltaic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20plant" title=" parabolic trough plant"> parabolic trough plant</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economic%20analysis" title=" techno-economic analysis"> techno-economic analysis</a> </p> <a href="https://publications.waset.org/abstracts/47894/the-techno-economic-comparison-of-solar-power-generation-methods-for-turkish-republic-of-north-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> An Approach to Solving Some Inverse Problems for Parabolic Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bolatbek%20Rysbaiuly">Bolatbek Rysbaiuly</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliya%20S.%20Azhibekova"> Aliya S. Azhibekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems concerning the interpretation of the well testing results belong to the class of inverse problems of subsurface hydromechanics. The distinctive feature of such problems is that additional information is depending on the capabilities of oilfield experiments. Another factor that should not be overlooked is the existence of errors in the test data. To determine reservoir properties, some inverse problems for parabolic equations were investigated. An approach to solving the inverse problems based on the method of regularization is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iterative%20approach" title="iterative approach">iterative approach</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20equation" title=" parabolic equation"> parabolic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20properties" title=" reservoir properties"> reservoir properties</a> </p> <a href="https://publications.waset.org/abstracts/35084/an-approach-to-solving-some-inverse-problems-for-parabolic-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Effects of Concentrator and Encapsulated Phase Change Material for Desalination: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunkumar%20Thirugnanasambantham">Arunkumar Thirugnanasambantham</a>, <a href="https://publications.waset.org/abstracts/search?q=Velraj%20Ramalingam"> Velraj Ramalingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental attempt has been made to study the effect of system integration by two different concentrator assisted desalting systems. The compound parabolic concentrator (CPC) and compound conical concentrator (CCC) are used in this research work. Two solar desalination systems, the single slope solar still (SSSS) and pyramid solar still (PSS), have been integrated with a CCC and compound parabolic concentrator-concentric circular tubular solar still (CPC-CCTSS). To study the effect of system integration, a thick cloth prevents the entry of sunlight into the solar still top. Additionally, the concentrator assisted desalting systems are equipped with phase change material (PCM) for enhancement. In CCC-SSSS, PCM has been filled inside copper balls and placed on the SSSS basin. The PCM is loaded in the specially designed circular trough of the tubular solar still. Here, the used concentrators and distillers are not the same. Two methodologies are followed here to produce the fresh water even while the distillers are blocked from the sunlight. They are (1) thermosyphon effect in CCC-SSSS and (2) waste heat recovery from CPC-CCTSS. The results showed that the productivity of CCC-SSSS, CCC-SSSS with PCM and CCC-SSSS (PCM) top cover shaded were found as 2680 ml / m² / day, 3240 ml / m² / day, and 1646 ml / m² / day. Similarly, the productivity of the CPC-CCTSS-PSS, CPC-CCTSS (PCM)-PSS and CPC-CCTSS (PCM)-PSS top cover shaded were found as 7160 ml / m² / day, 7346 ml / m² / day, and ml / m² / day. The productivity of the CCC-SSSS and CPC-CCTSS-PSS is examined, and conclusions are drawn such as the solar radiation blocked distillers productivity did not drop to zero. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20conical%20concentrator" title="compound conical concentrator">compound conical concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20concentrator" title=" compound parabolic concentrator"> compound parabolic concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20integration" title=" system integration"> system integration</a> </p> <a href="https://publications.waset.org/abstracts/71000/effects-of-concentrator-and-encapsulated-phase-change-material-for-desalination-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Priyam">Abhishek Priyam</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabha%20Chand"> Prabha Chand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent higher than those of plane solar air heater. The obtained results for wavy fin solar air heaters are compared with the available experimental data of most common type solar air heaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wavy%20fin" title="wavy fin">wavy fin</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=collector%20efficiency%20factor" title=" collector efficiency factor"> collector efficiency factor</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20rise" title=" temperature rise"> temperature rise</a> </p> <a href="https://publications.waset.org/abstracts/42300/effect-of-collector-aspect-ratio-on-the-thermal-performance-of-wavy-finned-absorber-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuanzhi%20Chen">Chuanzhi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Yu"> Wenjing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multibody%20dynamics" title="multibody dynamics">multibody dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=expandable%20parabolic%20cylindrical%20antenna" title=" expandable parabolic cylindrical antenna"> expandable parabolic cylindrical antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20deformation" title=" flexible deformation"> flexible deformation</a> </p> <a href="https://publications.waset.org/abstracts/112968/study-on-the-stability-of-large-space-expandable-parabolic-cylindrical-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall">Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Eames"> Philip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya"> Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum" title="vacuum">vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-plate%20solar%20collector" title=" flat-plate solar collector"> flat-plate solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a> </p> <a href="https://publications.waset.org/abstracts/48208/experimental-measurements-of-evacuated-enclosure-thermal-insulation-effectiveness-for-vacuum-flat-plate-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Solar Collectors for Northern Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Pelece">Ilze Pelece</a>, <a href="https://publications.waset.org/abstracts/search?q=Imants%20Ziemelis"> Imants Ziemelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Henriks%20Putans"> Henriks Putans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally the solar energy has been used in southern countries, but it has been used also in northern ones. Most popular kind of use of solar energy in Latvia is solar collector for water heating. Traditionally flat-plate solar collectors are used because of simplicity of manufacturing. However, some peculiarities in use of solar energy in northern countries must be taken into account. In northern countries, there is lower irradiance, but longer day and longer path of the sun during summer. Therefore traditional flat-plate solar collectors are not appropriate enough in northern countries, but new forms must be developed. There are two forms of solar collectors - cylindrical and semi-spherical – proposed in this work. Such collectors can be made both for water or air heating. Theoretical calculations and measurements of energy gain from those two collectors have been done. Results show that daily energy sum received by the semi-spherical collector from the sun at the middle of summer is 1.43 times more than that of the flat one, but for the cylindrical collector, it is 1.74 times more than that of the flat one or equal to that of the tracking to sun flat-plate collector. The resulting difference in energy gain from collector will be not so large because of the difference in heat loses. Heat can be decreased by switching off the water circulation pump when the sun is covered by clouds. For this purpose solar batteries, powered pump can be used instead of complicated and expensive automatics. Even more important than overall energy gain is the fact that semi-spherical and cylindrical collectors work all day (17 hours in the middle of summer at 57 northern latitudes), while flat-plate collector only about 11 hours. Yearly energy sum received by the collector from the sun is 1.5 and 1.9 times larger for the semi-spherical and cylindrical collector respectively as for the flat one. The cylindrical solar collector is easier to manufacture, but semi-spherical one is more aesthetical and durable against the impact of the wind. Although solar collectors for water and air heating are studied in this article, main ideas are applicable also for solar batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindric" title="cylindric">cylindric</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-spherical" title=" semi-spherical"> semi-spherical</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title=" water heating"> water heating</a> </p> <a href="https://publications.waset.org/abstracts/67348/solar-collectors-for-northern-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10