CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 63 results for author: <span class="mathjax">Bacchio, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bacchio, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bacchio%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bacchio, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07583">arXiv:2502.07583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07583">pdf</a>, <a href="https://arxiv.org/format/2502.07583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Isovector axial and pseudoscalar form factors from twisted mass lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07583v1-abstract-short" style="display: inline;"> We present the isovector axial, induced pseudoscalar, and pseudoscalar form factors of the nucleon using three twisted-mass fermion ensembles with degenerate up- and down-, strange-, and charm-quarks with masses tuned to their physical values (physical point). The three ensembles have lattice spacing $a$=0.08, 0.068, and 0.057 fm and approximately equal physical volume allowing for the continuum l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07583v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07583v1-abstract-full" style="display: none;"> We present the isovector axial, induced pseudoscalar, and pseudoscalar form factors of the nucleon using three twisted-mass fermion ensembles with degenerate up- and down-, strange-, and charm-quarks with masses tuned to their physical values (physical point). The three ensembles have lattice spacing $a$=0.08, 0.068, and 0.057 fm and approximately equal physical volume allowing for the continuum limit to be taken at the physical point. Excited-state contributions to the matrix elements are evaluated using several sink-source separations from 0.5 fm to 1.5 fm and multistate fits. We check the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD) and show that in the continuum limit both relations are satisfied. We provide results at the continuum limit for the isovector nucleon axial charge, axial radius, pion-nucleon coupling constant, and for the induced pseudoscalar form factor at the muon capture point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07583v1-abstract-full').style.display = 'none'; document.getElementById('2502.07583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. Contributed talk to the 41st International Symposium on Lattice Field theory (LATTICE2024), July 28th - August 3rd, 2024, Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05274">arXiv:2502.05274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05274">pdf</a>, <a href="https://arxiv.org/format/2502.05274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.466.0316">10.22323/1.466.0316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial, tensor, and scalar charges and $蟽$-terms in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Iona%2C+C">Christos Iona</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05274v1-abstract-short" style="display: inline;"> We determine the nucleon axial, scalar and tensor charges at the continuum limit by analyzing three $N_f=2+1+1$ twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. We include all contributions from valence and sea quarks. We use the Akaike Information Criterion to evaluate systematic errors due to excited states and the continuum extrapolation. For th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05274v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05274v1-abstract-full" style="display: none;"> We determine the nucleon axial, scalar and tensor charges at the continuum limit by analyzing three $N_f=2+1+1$ twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. We include all contributions from valence and sea quarks. We use the Akaike Information Criterion to evaluate systematic errors due to excited states and the continuum extrapolation. For the nucleon isovector axial charge we find $g_A^{u-d}=1.250(24)$, in agreement with the experimental value. We compute the axial, tensor and scalar charges for each quark flavor. The axial charge provides crucial information on the intrinsic spin carried by quark in the nucleon and the the latter two provide input for experimental searches of physics beyond the standard model. Moreover, we extract the nucleon $蟽$-terms and find $蟽_{蟺N}=41.9(8.1)$ MeV, for the strange $蟽_{s}=30(17)$ MeV and for the charm $蟽_{c}=82(29)$ MeV. We also present preliminary results on the isovector quantities using a fourth ensemble at smaller lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05274v1-abstract-full').style.display = 'none'; document.getElementById('2502.05274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 41th International Symposium on Lattice Field Theory - Lattice2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2024 (2025) 316 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03187">arXiv:2502.03187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.03187">pdf</a>, <a href="https://arxiv.org/format/2502.03187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Smeared $R$-ratio in isospin symmetric QCD with Low Mode Averaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">Antonio Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Margari%2C+F">Francesca Margari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schneider%2C+C">Christian Schneider</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03187v1-abstract-short" style="display: inline;"> Low Mode Average (LMA) is a technique to improve the quality of the signal-to-noise ratio in the long time separation of Euclidean correlation functions. We report on its beneficial impact in computing the vector-vector light connected two-point correlation functions and derived physical quantities in the mixed action lattice setup adopted by ETM collaboration. We focus on preliminary results of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03187v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03187v1-abstract-full" style="display: none;"> Low Mode Average (LMA) is a technique to improve the quality of the signal-to-noise ratio in the long time separation of Euclidean correlation functions. We report on its beneficial impact in computing the vector-vector light connected two-point correlation functions and derived physical quantities in the mixed action lattice setup adopted by ETM collaboration. We focus on preliminary results of the computation within isospin symmetric QCD (isoQCD) of the $R$-ratio smeared with Gaussian kernels of widths down to $蟽\sim250$ MeV, which is enough to appreciate the $蟻$ resonance around 770 MeV, using the Hansen-Lupo-Tantatlo (HLT) spectral-density reconstruction method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03187v1-abstract-full').style.display = 'none'; document.getElementById('2502.03187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19350">arXiv:2501.19350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19350">pdf</a>, <a href="https://arxiv.org/format/2501.19350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Valence leading isospin breaking contributions to $a_渭^{\mathrm{HVP-LO}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">Antonio Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kalntis%2C+N">Nikolaos Kalntis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19350v1-abstract-short" style="display: inline;"> By employing the RM123 approach to QCD+QED, we computed the valence quark-connected isospin-breaking corrections to the light, strange and charm contributions at leading order in $伪_{\mathrm{em}}$ and $\left(渭_d-渭_u\right) / 螞_{\mathrm{QCD}}$. Here we report the preliminary results on two different volumes ($L \sim 3.8$ fm and $L \sim 5.1$ fm) and a fixed lattice spacing (corresponding to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19350v1-abstract-full" style="display: none;"> By employing the RM123 approach to QCD+QED, we computed the valence quark-connected isospin-breaking corrections to the light, strange and charm contributions at leading order in $伪_{\mathrm{em}}$ and $\left(渭_d-渭_u\right) / 螞_{\mathrm{QCD}}$. Here we report the preliminary results on two different volumes ($L \sim 3.8$ fm and $L \sim 5.1$ fm) and a fixed lattice spacing (corresponding to $a_{\text {isoQCD }} \sim 0.07951(4)$ fm), obtained in the framework of the ongoing computation by ETMC of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment $a_渭^{\mathrm{HVP}}$ in QCD+QED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19350v1-abstract-full').style.display = 'none'; document.getElementById('2501.19350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Contribution to Lattice 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01535">arXiv:2412.01535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01535">pdf</a>, <a href="https://arxiv.org/format/2412.01535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon charges and $蟽$-terms in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Iona%2C+C">C. Iona</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01535v1-abstract-short" style="display: inline;"> We determine the nucleon axial, scalar and tensor charges and the nucleon $蟽$-terms using twisted mass fermions. We employ three ensembles with approximately equal physical volume of about 5.5~fm, three values of the lattice spacing, approximately 0.06~fm, 0.07~fm and 0.08~fm, and with the mass of the degenerate up and down, strange and charm quarks tuned to approximately their physical values. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01535v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01535v1-abstract-full" style="display: none;"> We determine the nucleon axial, scalar and tensor charges and the nucleon $蟽$-terms using twisted mass fermions. We employ three ensembles with approximately equal physical volume of about 5.5~fm, three values of the lattice spacing, approximately 0.06~fm, 0.07~fm and 0.08~fm, and with the mass of the degenerate up and down, strange and charm quarks tuned to approximately their physical values. We compute both isovector and isoscalar charges and $蟽$-terms and their flavor decomposition including the disconnected contributions. We use the Akaike Information Criterion to evaluate systematic errors due to excited states and the continuum extrapolation. For the nucleon isovector axial charge we find $g_A^{u-d}=1.250(24)$, in agreement with the experimental value. Moreover, we extract the nucleon $蟽$-terms and find for the light quark content $蟽_{蟺N}=41.9(8.1)$~MeV and for the strange $蟽_{s}=30(17)$~MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01535v1-abstract-full').style.display = 'none'; document.getElementById('2412.01535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08852">arXiv:2411.08852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08852">pdf</a>, <a href="https://arxiv.org/format/2411.08852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Strange and charm quark contributions to the muon anomalous magnetic moment in lattice QCD with twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kalntis%2C+N">N. Kalntis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08852v1-abstract-short" style="display: inline;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08852v1-abstract-full" style="display: none;"> We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks at five lattice spacings and at values of the quark mass parameters that are close and/or include the isospin symmetric QCD point of interest. After computing the small corrections necessary to precisely match this point, and carrying out an extrapolation to the continuum limit based on the data at lattice spacings $a \simeq 0.049, 0.057, 0.068, 0.080$~fm and spatial lattice sizes up to $L \simeq 7.6$~fm, we obtain $a_渭^{\rm HVP}(s) = (53.57 \pm 0.63) \times 10^{-10}$ and $a_渭^{\rm HVP}(c) = (14.56 \pm 0.13) \times 10^{-10}$, for the quark-connected strange and charm contributions, respectively. Our findings agree well with the corresponding results by other lattice groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08852v1-abstract-full').style.display = 'none'; document.getElementById('2411.08852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 18 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08529">arXiv:2405.08529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08529">pdf</a>, <a href="https://arxiv.org/format/2405.08529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion and in the kaon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chacon%2C+L+A+R">Luis Alberto Rodriguez Chacon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=wenger%2C+U">Urs wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08529v1-abstract-short" style="display: inline;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08529v1-abstract-full" style="display: none;"> We present the full decomposition of the momentum fraction carried by quarks and gluons in the pion and the kaon. We employ three gauge ensembles generated with $N_f=2+1+1$ Wilson twisted-mass clover-improved fermions at the physical quark masses. For both mesons we perform a continuum extrapolation directly at the physical pion mass, which allows us to determine for the first time the momentum decomposition at the physical point. We find that the total momentum fraction carried by quarks is 0.532(56) and 0.618(32) and by gluons 0.388(49) and 0.408(61) in the pion and in the kaon, respectively, in the $\overline{\mathrm{MS}}$ scheme and at the renormalization scale of 2 GeV. Having computed both the quark and gluon contributions in the continuum limit, we find that the momentum sum is 0.926(68) for the pion and 1.046(90) for the kaon, verifying the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08529v1-abstract-full').style.display = 'none'; document.getElementById('2405.08529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10644">arXiv:2404.10644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10644">pdf</a>, <a href="https://arxiv.org/format/2404.10644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD determination of the normalization of the leading-twist photon distribution amplitude and susceptibility of the quark condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Be%C4%8Direvi%C4%87%2C+D">D. Be膷irevi膰</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10644v1-abstract-short" style="display: inline;"> The normalization of the leading-twist photon distribution amplitude (DA), $f_纬^{\perp}$, is an important ingredient in the study of exclusive processes involving the photon emission by means of QCD sum-rules. In this paper we determine the up- , down- and strange-quark contribution to $f_纬^{\perp}$ by exploiting its relation to the zero-momentum two-point correlation function of the electromagnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10644v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10644v1-abstract-full" style="display: none;"> The normalization of the leading-twist photon distribution amplitude (DA), $f_纬^{\perp}$, is an important ingredient in the study of exclusive processes involving the photon emission by means of QCD sum-rules. In this paper we determine the up- , down- and strange-quark contribution to $f_纬^{\perp}$ by exploiting its relation to the zero-momentum two-point correlation function of the electromagnetic current $J_{\rm em}^渭$ and the electric component of the tensor current $T^{渭谓}$. To that end we employ the gauge ensembles obtained by using $N_{f}=2+1+1$ Wilson-Clover twisted-mass quark flavors, generated by the Extended Twisted Mass (ETM) Collaboration, and after adding all sources of systematic uncertainties, we obtain a total error of $1.5\%$ and $3.5\%$, respectively, for the light- ($u$ and $d$) and strange-quark contribution to $f_纬^{\perp}(2~{\rm GeV})$ in the $\overline{\mathrm{MS}}$ scheme, thus improving their accuracy by a factor of $2.3$ and $2.8$, respectively. For the strange-quark contribution $f_{纬,s}^{\perp}(2~{\rm GeV})$, we observe a discrepancy with respect to previous lattice calculations. By combining our result with the world average lattice value of the chiral condensate, we obtain for the susceptibility of the quark condensate $蠂_d^{\overline{\mathrm{MS}}} (2\, {\rm GeV}) \simeq 蠂_u^{\overline{\mathrm{MS}}} (2\, {\rm GeV}) =2.17(12)~{\rm GeV^{-2}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10644v1-abstract-full').style.display = 'none'; document.getElementById('2404.10644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05404">arXiv:2403.05404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05404">pdf</a>, <a href="https://arxiv.org/format/2403.05404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Inclusive hadronic decay rate of the $蟿$ lepton from lattice QCD: the $\bar u s$ flavour channel and the Cabibbo angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">A. De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Evangelista%2C+A">A. Evangelista</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">S. Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">N. Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05404v2-abstract-short" style="display: inline;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05404v2-abstract-full" style="display: none;"> We present a lattice determination of the inclusive decay rate of the process $蟿\mapsto X_{us} 谓_蟿$ in which the $蟿$ lepton decays into a generic hadronic state $X_{us}$ with $\bar u s$ flavour quantum numbers. Our results have been obtained in $n_f=2+1+1$ iso-symmetric QCD with full non-perturbative accuracy, without any OPE approximation and, except for the presently missing long-distance isospin-breaking corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by using the Hansen-Lupo-Tantalo method [1] that we have already successfully applied in [2] to compute the inclusive decay rate of the process $蟿\mapsto X_{ud} 谓_蟿$ in the $\bar u d$ flavour channel. By combining our first-principles theoretical results with the presently-available experimental data we extract the CKM matrix element $\vert V_{us}\vert$, the Cabibbo angle, with a $0.9$\% accuracy, dominated by the experimental error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05404v2-abstract-full').style.display = 'none'; document.getElementById('2403.05404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table. Version accepted by PRL, expanded technical discussion moved to an appendix, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04080">arXiv:2401.04080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04080">pdf</a>, <a href="https://arxiv.org/format/2401.04080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Generalized form factors of the pion and kaon using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04080v1-abstract-short" style="display: inline;"> We present an update on our lattice calculations of the Mellin moments of PDFs and GPDs for the pion and kaon, using momentum-boosted meson states. In particular, we focus on the calculation of the scalar and tensor local operators, and the vector operator with up to three-covariant derivatives. The corresponding matrix elements allow us to extract the scalar and tensor charges, as well as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04080v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04080v1-abstract-full" style="display: none;"> We present an update on our lattice calculations of the Mellin moments of PDFs and GPDs for the pion and kaon, using momentum-boosted meson states. In particular, we focus on the calculation of the scalar and tensor local operators, and the vector operator with up to three-covariant derivatives. The corresponding matrix elements allow us to extract the scalar and tensor charges, as well as $\langle x^n \rangle$ with $n=1,2,3$. In addition, we introduce momentum transfer between the initial and final meson state that leads to the scalar, vector, and tensor form factors, and the generalized form factors up to three covariant derivatives. The above results are obtained using two ensembles of maximally twisted mass fermions with clover improvement with two degenerate light, a strange, and a charm quark $(N_f=2+1+1)$ at lattice spacings of 0.093 fm and 0.081 fm. The pion mass of the ensembles is about 260 MeV. We study excited-states effects by analyzing four values of the source-sink time separation (1.12 - 1.67 fm). We also examine discretization and volume effects. The lattice data are renormalized non-perturbatively, and the results are presented in the MS scheme at a scale of 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04080v1-abstract-full').style.display = 'none'; document.getElementById('2401.04080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, Contribution to The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02365">arXiv:2401.02365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02365">pdf</a>, <a href="https://arxiv.org/format/2401.02365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Towards the determination of the 3-dimensional structure of the proton using lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02365v2-abstract-short" style="display: inline;"> State-of-the-art lattice QCD simulations enable the evaluation of nucleon form factors and Mellin moments with controlled systematics, yielding results with unprecedented accuracy. At the same time, new theoretical approaches are allowing the direct computation of nucleon generalized parton distributions. We review recent lattice QCD results on these quantities that are paving the way for extracti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02365v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02365v2-abstract-full" style="display: none;"> State-of-the-art lattice QCD simulations enable the evaluation of nucleon form factors and Mellin moments with controlled systematics, yielding results with unprecedented accuracy. At the same time, new theoretical approaches are allowing the direct computation of nucleon generalized parton distributions. We review recent lattice QCD results on these quantities that are paving the way for extracting a wealth of information on the 3-dimensional structure of the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02365v2-abstract-full').style.display = 'none'; document.getElementById('2401.02365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Two figures updated and typos corrected. 8 pages and 7 figures. Invited talk at the 16th edition of the &#34;International Conference on Meson-Nucleon Physics and the Structure of the Nucleon&#34; (MENU 2023), October 16-20, 2023, Institute for Nuclear Physics of the Johannes Gutenberg University of Mainz, Germany. arXiv admin note: text overlap with arXiv:2309.05774</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05774">arXiv:2309.05774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05774">pdf</a>, <a href="https://arxiv.org/format/2309.05774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05774v2-abstract-short" style="display: inline;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the gro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05774v2-abstract-full" style="display: none;"> We compute the nucleon axial and pseudoscalar form factors using three $N_f=$2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately their physical values. The values of the lattice spacings of these three physical point ensembles are 0.080 fm, 0.068 fm, and 0.057 fm, and spatial sizes 5.1 fm, 5.44 fm, and 5.47 fm, respectively, yielding $m_蟺L$&gt;3.6. Convergence to the ground state matrix elements is assessed using multi-state fits. We study the momentum dependence of the three form factors and check the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD). We show that in the continuum limit, the PCAC and PPD relations are satisfied. We also show that the Goldberger-Treimann relation is approximately fulfilled and determine the Goldberger-Treiman discrepancy. We find for the nucleon axial charge $g_A$=1.245(28)(14), for the axial radius $\langle r^2_A \rangle$=0.339(48)(06) fm$^2$, for the pion-nucleon coupling constant $g_{蟺NN} \equiv \lim_{Q^2 \rightarrow -m_蟺^2} G_{蟺NN}(Q^2)$=13.25(67)(69) and for $G_P(0.88m_渭^2)\equiv g_P^*$=8.99(39)(49). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05774v2-abstract-full').style.display = 'none'; document.getElementById('2309.05774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 32 pages, 39 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04401">arXiv:2309.04401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04401">pdf</a>, <a href="https://arxiv.org/format/2309.04401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Low-lying baryon masses using twisted mass fermions ensembles at the physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christou%2C+G">Georgios Christou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04401v2-abstract-short" style="display: inline;"> We investigate the low-lying baryon spectrum using three $N_f$=2+1+1 ensembles simulated with physical values of the quark masses and lattice spacings of 0.080, 0.069, and 0.057 fm. The ensembles are generated using twisted mass clover-improved fermions and the Iwasaki gauge action. The spatial length is kept approximately the same at about 5.1 fm to 5.5 fm fulfilling the condition $m_蟺L$&gt; 3.6. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04401v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04401v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04401v2-abstract-full" style="display: none;"> We investigate the low-lying baryon spectrum using three $N_f$=2+1+1 ensembles simulated with physical values of the quark masses and lattice spacings of 0.080, 0.069, and 0.057 fm. The ensembles are generated using twisted mass clover-improved fermions and the Iwasaki gauge action. The spatial length is kept approximately the same at about 5.1 fm to 5.5 fm fulfilling the condition $m_蟺L$&gt; 3.6. We investigate isospin splitting within isospin multiples and verify that for most cases the isospin splitting for these lattice spacing is consistent with zero. In the couple of cases, for which there is a non-zero value, in the continuum limit, the mass splitting goes to zero. The baryon masses are extrapolated to the continuum limit using the three $N_f$=2+1+1 ensembles and are compared to other recent lattice QCD results. For the strange and charm quark masses, we find, respectively, $m_s$(2 GeV)=99.2(2.7) MeV and $m_c$(3 GeV)=1.015(39) GeV. The values predicted for the masses of the doubly charmed $螢_{cc}^\star$, $惟_{cc}$ and $惟_{cc}^\star$ baryons are 3.676(55) GeV, 3.703(51) GeV and 3.803(50) GeV, respectively, and for the triply charmed $惟_{ccc}$ baryon is 4.785(71) GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04401v2-abstract-full').style.display = 'none'; document.getElementById('2309.04401v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version, 15 pages, 18 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12458">arXiv:2308.12458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12458">pdf</a>, <a href="https://arxiv.org/format/2308.12458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094514">10.1103/PhysRevD.108.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Transition Form Factor from Twisted-Mass Lattice QCD and the Hadronic Light-by-Light $蟺^0$-pole Contribution to the Muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">S. Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">G. Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">F. Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12458v2-abstract-short" style="display: inline;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor para&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12458v2-abstract-full" style="display: none;"> The neutral pion generates the leading pole contribution to the hadronic light-by-light tensor, which is given in terms of the nonperturbative transition form factor $\mathcal{F}_{蟺^0纬纬}(q_1^2,q_2^2)$. Here we present an ab-initio lattice calculation of this quantity in the continuum and at the physical point using twisted-mass lattice QCD. We report our results for the transition form factor parameterized using a model-independent conformal expansion valid for arbitrary space-like kinematics and compare it with experimental measurements of the single-virtual form factor, the two-photon decay width, and the slope parameter. We then use the transition form factors to compute the pion-pole contribution to the hadronic light-by-light scattering in the muon $g-2$, finding $a_渭^{蟺^0\text{-pole}} = 56.7(3.2) \times 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12458v2-abstract-full').style.display = 'none'; document.getElementById('2308.12458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, 4 tables, updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, 094514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12846">arXiv:2307.12846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12846">pdf</a>, <a href="https://arxiv.org/format/2307.12846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.034509">10.1103/PhysRevD.109.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic Nucleon-Pion scattering amplitudes in the $螖$ channel at physical pion mass from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">Theodoros Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12846v2-abstract-short" style="display: inline;"> We present an investigation of pion-nucleon elastic scattering in the $I\,(J^P) = \frac{3}{2}\,(\frac{3}{2}^+)$ channel using lattice QCD with degenerate up and down, strange and charm quarks with masses tuned to their physical values. We use an ensemble of twisted mass fermions with box size $L = 5.1\,\mathrm{fm}$ and lattice spacing $a = 0.08\,\mathrm{fm}$ and we consider the $蟺N$ system in rest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12846v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12846v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12846v2-abstract-full" style="display: none;"> We present an investigation of pion-nucleon elastic scattering in the $I\,(J^P) = \frac{3}{2}\,(\frac{3}{2}^+)$ channel using lattice QCD with degenerate up and down, strange and charm quarks with masses tuned to their physical values. We use an ensemble of twisted mass fermions with box size $L = 5.1\,\mathrm{fm}$ and lattice spacing $a = 0.08\,\mathrm{fm}$ and we consider the $蟺N$ system in rest and moving frames up to total momentum $\vec{P}^2 = 3\,(2蟺/L)^2$ = 0.17 GeV$^2$. We take into account the finite volume symmetries and $S$- and $P$-wave mixing, and use the L眉scher formalism to simultaneously constrain the $J = 1/2,\,\ell = 0$ and $J = 3/2,\,\ell = 1$ scattering amplitudes. We estimate the $螖$ resonance pole in the $P$-wave channel as well as the $S$-wave isospin-3/2 scattering length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12846v2-abstract-full').style.display = 'none'; document.getElementById('2307.12846v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures, 10 tables; v2 matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D109 (2024) 3, 034509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11824">arXiv:2305.11824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11824">pdf</a>, <a href="https://arxiv.org/format/2305.11824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.114503">10.1103/PhysRevD.108.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative renormalization of asymmetric staple-shaped operators in twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarello%2C+J">Jacopo Tarello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11824v2-abstract-short" style="display: inline;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11824v2-abstract-full" style="display: none;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restricted within groups of four operators. We then present numerical results using the regularization independent momentum subtraction (RI/MOM) scheme to study the importance of mixing using one operator in particular, the $纬_0$ operator. Based on these results, we consider the short distance ratio (SDR) scheme, which is desirable in the absence of mixing. Finally, we investigate a variant of the RI/MOM scheme, where the renormalization factors are computed at short distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'none'; document.getElementById('2305.11824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07932">arXiv:2305.07932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07932">pdf</a>, <a href="https://arxiv.org/format/2305.07932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Novel approach for computing gradients of physical observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07932v2-abstract-short" style="display: inline;"> We show that an infinitesimal step of gradient flow can be used for defining a novel approach for computing gradients of physical observables with respect to action parameters. Compared to the commonly used perturbative expansion, this approach does not require calculating any disconnected contribution or vacuum expectation value and can provide results up to three orders of magnitudes more precis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07932v2-abstract-full').style.display = 'inline'; document.getElementById('2305.07932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07932v2-abstract-full" style="display: none;"> We show that an infinitesimal step of gradient flow can be used for defining a novel approach for computing gradients of physical observables with respect to action parameters. Compared to the commonly used perturbative expansion, this approach does not require calculating any disconnected contribution or vacuum expectation value and can provide results up to three orders of magnitudes more precise. On the other hand, it requires a non-trivial condition to be satisfied by the flow action, the calculation of its force and its Laplacian, and the force of the observable, whose gradient needs to be measured. As a proof of concept, we measure gradients in $尾$ of Wilson loops in a four-dimensional SU(3) Yang-Mills theory simulated on a $16^4$ lattice using the Wilson action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07932v2-abstract-full').style.display = 'none'; document.getElementById('2305.07932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 1 table, accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12493">arXiv:2212.12493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12493">pdf</a>, <a href="https://arxiv.org/format/2212.12493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the R-ratio smeared with Gaussian kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12493v1-abstract-short" style="display: inline;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice cal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12493v1-abstract-full" style="display: none;"> The ratio $R(E)$ of the cross-sections for $e^+e^-\to$ hadrons and $e^+e^-\to 渭^+渭^-$ is a valuable energy-dependent probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of $R(E)$ are the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon $g-2$ and these are in significant tension with direct lattice calculations and with the muon $g-2$ experiment. In this talk we discuss the results of our first-principles lattice study of $R(E)$. By using a recently proposed method for extracting smeared spectral densities from Euclidean lattice correlators, we have calculated $R(E)$ convoluted with Gaussian kernels of different widths $蟽$ and central energies up to $2.5$ GeV. Our theoretical results have been compared with the KNT19 [1] compilation of experimental results smeared with the same Gaussian kernels and a tension (about three standard deviations) has been observed for $蟽\sim 600$ MeV and central energies around the $蟻$-resonance peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12493v1-abstract-full').style.display = 'none'; document.getElementById('2212.12493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8th-13th August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10490">arXiv:2212.10490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10490">pdf</a>, <a href="https://arxiv.org/format/2212.10490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Short \&amp; intermediate distance HVP contributions to muon g-2: SM (lattice) prediction versus $e^+e^-$ annihilation data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10490v1-abstract-short" style="display: inline;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10490v1-abstract-full" style="display: none;"> We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LO-HVP) term of the muon anomalous magnetic moment, $a_渭$. Results for $a_渭^{\rm LO-HVP,W}$ and $a_渭^{\rm LO-HVP,SD}$, besides representing a step forward to a complete lattice computation of $a_渭^{\rm LO-HVP}$ and a useful benchmark among lattice groups, are compared here with their dispersive counterparts based on experimental data for $e^+e^-$ into hadrons. The comparison confirms the tension in $a_渭^{\rm LO-HVP,W}$, already noted in 2020 by the BMW Collaboration, while showing no tension in $a_渭^{\rm LO-HVP,SD}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10490v1-abstract-full').style.display = 'none'; document.getElementById('2212.10490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at ICHEP 2022 (6-13 July 2022, Bologna - Italy) - Results here are almost final - Contribution accepted for publication on PoS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10300">arXiv:2212.10300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10300">pdf</a>, <a href="https://arxiv.org/format/2212.10300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pseudoscalar-pole contributions to the muon $g-2$ at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10300v1-abstract-short" style="display: inline;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10300v1-abstract-full" style="display: none;"> Pseudoscalar-pole diagrams are an important component of estimates of the hadronic light-by-light (HLbL) contribution to the muon $g-2$. We report on our computation of the transition form factors $\mathcal{F}_{P \rightarrow 纬^* 纬^*}$ for the neutral pseudoscalar mesons $P=蟺^0$ and $畏$. The calculation is performed using twisted-mass lattice QCD with physical quark masses. On the lattice, we have access to a broad range of (space-like) photon four-momenta and therefore produce form factor data complementary to the experimentally accessible single-virtual direction, which directly leads to an estimate of the pion- and $畏$-pole components of the muon $g-2$. For the pion, our result for the $g-2$ contribution in the continuum is comparable with previous lattice and data-driven determinations, with combined relative uncertainties below $10\%$. For the $畏$ meson, we report on a preliminary determination from a single lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10300v1-abstract-full').style.display = 'none'; document.getElementById('2212.10300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09340">arXiv:2212.09340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09340">pdf</a>, <a href="https://arxiv.org/format/2212.09340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Time windows of the muon HVP from twisted-mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09340v1-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09340v1-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavours tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD} = 69.27\,(34) \cdot 10^{-10}$, in agreement with the dispersive determination based on experimental $e^+ e^-$ data. For the intermediate window we get instead $a_渭^{\rm W} = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with recent determinations by other lattice collaborations, but disagrees with the dispersive determination at the level of $3.6\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09340v1-abstract-full').style.display = 'none'; document.getElementById('2212.09340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08469">arXiv:2212.08469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08469">pdf</a>, <a href="https://arxiv.org/format/2212.08469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L051504">10.1103/PhysRevD.107.L051504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning Trivializing Gradient Flows for Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kessel%2C+P">Pan Kessel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaefer%2C+S">Stefan Schaefer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaitl%2C+L">Lorenz Vaitl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08469v2-abstract-short" style="display: inline;"> We propose a unifying approach that starts from the perturbative construction of trivializing maps by L眉scher and then improves on it by learning. The resulting continuous normalizing flow model can be implemented using common tools of lattice field theory and requires several orders of magnitude fewer parameters than any existing machine learning approach. Specifically, our model can achieve comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08469v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08469v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08469v2-abstract-full" style="display: none;"> We propose a unifying approach that starts from the perturbative construction of trivializing maps by L眉scher and then improves on it by learning. The resulting continuous normalizing flow model can be implemented using common tools of lattice field theory and requires several orders of magnitude fewer parameters than any existing machine learning approach. Specifically, our model can achieve competitive performance with as few as 14 parameters while existing deep-learning models have around 1 million parameters for $SU(3)$ Yang--Mills theory on a $16^2$ lattice. This has obvious consequences for training speed and interpretability. It also provides a plausible path for scaling machine-learning approaches toward realistic theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08469v2-abstract-full').style.display = 'none'; document.getElementById('2212.08469v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08467">arXiv:2212.08467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08467">pdf</a>, <a href="https://arxiv.org/format/2212.08467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241901">10.1103/PhysRevLett.130.241901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the energy-smeared R-ratio on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Santis%2C+A">Alessandro De Santis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08467v2-abstract-short" style="display: inline;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08467v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08467v2-abstract-full" style="display: none;"> We present a first-principles lattice QCD investigation of the $R$-ratio between the $e^+e^-$ cross-section into hadrons and that into muons. By using the method of Ref.[1], that allows to extract smeared spectral densities from Euclidean correlators, we compute the $R$-ratio convoluted with Gaussian smearing kernels of widths of about $600$ MeV and central energies from $220$ MeV up to $2.5$ GeV. Our theoretical results are compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of $R$-ratio experimental measurements with the same kernels and, by centring the Gaussians in the region around the $蟻$-resonance peak, a tension of about three standard deviations is observed. From the phenomenological perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections and this might affect the observed tension. From the methodological perspective, our calculation demonstrates that it is possible to study the $R$-ratio in Gaussian energy bins on the lattice at the level of accuracy required in order to perform precision tests of the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08467v2-abstract-full').style.display = 'none'; document.getElementById('2212.08467v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication on PRL. Results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07057">arXiv:2212.07057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07057">pdf</a>, <a href="https://arxiv.org/format/2212.07057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Disconnected contribution to the LO HVP term of muon g-2 from ETMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">Giuseppe Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07057v1-abstract-short" style="display: inline;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07057v1-abstract-full" style="display: none;"> We present a lattice determination of the disconnected contributions to the leading-order hadronic vacuum polarization (HVP) to the muon anomalous magnetic moment in the so-called short and intermediate time-distance windows. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavours of Wilson twisted-mass clover-improved quarks with masses approximately tuned to their physical value. We take the continuum limit employing three lattice spacings at about 0.08, 0.07 and 0.06 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07057v1-abstract-full').style.display = 'none'; document.getElementById('2212.07057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 7 tables, LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06704">arXiv:2212.06704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06704">pdf</a>, <a href="https://arxiv.org/format/2212.06704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054509">10.1103/PhysRevD.108.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $畏\rightarrow 纬^* 纬^*$ transition form factor and the hadronic light-by-light $畏$-pole contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06704v2-abstract-short" style="display: inline;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06704v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06704v2-abstract-full" style="display: none;"> We calculate the double-virtual $畏\rightarrow 纬^* 纬^*$ transition form factor $\mathcal{F}_{畏\to 纬^* 纬^*}(q_1^2,q_2^2)$ from first principles using a lattice QCD simulation with $N_f=2+1+1$ quark flavors at the physical pion mass and at one lattice spacing and volume. The kinematic range covered by our calculation is complementary to the one accessible from experiment and is relevant for the $畏$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment $a_渭= (g-2)/2$ of the muon. From the form factor calculation we extract the partial decay width $螕(畏\rightarrow 纬纬) = 323(85)_\text{stat}(22)_\text{syst}$ eV and the slope parameter $b_畏=1.19(36)_\text{stat}(16)_\text{syst}$ GeV${}^{-2}$. For the $畏$-pole contribution to $a_渭$ we obtain $a_渭^{畏-\text{pole}} = 13.2(5.2)_\text{stat}(1.3)_\text{syst} \cdot 10^{-11}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06704v2-abstract-full').style.display = 'none'; document.getElementById('2212.06704v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; updated to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108 (2023) 054509 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06657">arXiv:2212.06657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06657">pdf</a>, <a href="https://arxiv.org/format/2212.06657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Running HMC Simulation with Python via QUDA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yamamoto%2C+S">Shuhei Yamamoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finenrath%2C+J">Jacob Finenrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06657v1-abstract-short" style="display: inline;"> Lyncs-API is a Python API for Lattice QCD applications. It is designed as a Python toolkit that allows the user to use and run various lattice QCD libraries while programming in Python. The goal is to provide the user an easy programming experience without scarifying performance across multiple platforms, by preparing a common framework for various softwares for lattice QCD calculations. As such,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06657v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06657v1-abstract-full" style="display: none;"> Lyncs-API is a Python API for Lattice QCD applications. It is designed as a Python toolkit that allows the user to use and run various lattice QCD libraries while programming in Python. The goal is to provide the user an easy programming experience without scarifying performance across multiple platforms, by preparing a common framework for various softwares for lattice QCD calculations. As such, it contains interfaces to, e.g., c-lime, DDalphaAMG, tmLQCD, and QUDA. In this proceeding, we focus on a Lyncs interface to QUDA, named Lyncs-QUDA, and present a small tutorial on how to use this Python interface to perform a HMC simulation using QUDA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06657v1-abstract-full').style.display = 'none'; document.getElementById('2212.06657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06635">arXiv:2212.06635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06635">pdf</a>, <a href="https://arxiv.org/format/2212.06635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass ensemble generation on GPU machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romiti%2C+S">Simone Romiti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06635v1-abstract-short" style="display: inline;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QU&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06635v1-abstract-full" style="display: none;"> We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss our motivations and some of the technical challenges that we encountered as we added the required functionality to both tmLQCD and QUDA. We further present some performance details, focussing in particular on the usage of QUDA&#39;s multigrid solver for poorly conditioned light quark monomials as well as the multi-shift solver for the non-degenerate strange and charm sector in $N_f=2+1+1$ simulations using twisted mass clover fermions, comparing the efficiency of state-of-the-art simulations on CPU and GPU machines. We also take a look at the performance-portability question through preliminary tests of our HMC on a machine based on AMD&#39;s MI250 GPU, finding good performance after a very minor additional porting effort. Finally, we conclude that we should be able to achieve GPU utilisation factors acceptable for the current generation of (pre-)exascale supercomputers with subtantial efficiency improvements and real time speedups compared to just running on CPUs. At the same time, we find that future challenges will require different approaches and, most importantly, a very significant investment of personnel for software development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06635v1-abstract-full').style.display = 'none'; document.getElementById('2212.06635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Contribution to the 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05743">arXiv:2210.05743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05743">pdf</a>, <a href="https://arxiv.org/format/2210.05743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon transverse quark spin densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05743v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05743v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the nucleon transverse quark spin densities extracted from the unpolarized and transversity generalized form factors. We use three $N_F=2+1+1$ ensembles of twisted mass fermions with quark masses tuned to their physical values and lattice spacings $a\sim 0.08$~fm, $a\sim 0.07$~fm and $a\sim 0.06$~fm and extrapolate the form factors to the continuum limit. Besides isovector densities we also include results for the tensor charge for each quark flavor using the ensemble with $a\sim 0.08$~fm for which we include the disconnected contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05743v1-abstract-full').style.display = 'none'; document.getElementById('2210.05743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, talk presented at the 39th International Symposium on Lattice Field Theory, LATTICE2022 8th-13th August, 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15084">arXiv:2206.15084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15084">pdf</a>, <a href="https://arxiv.org/format/2206.15084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.074506">10.1103/PhysRevD.107.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gagliardi%2C+G">G. Gagliardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">M. Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15084v3-abstract-short" style="display: inline;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15084v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15084v3-abstract-full" style="display: none;"> We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_渭^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_渭^{\rm SD}$ and $a_渭^{\rm W}$, defined by the RBC/UKQCD Collaboration [1]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks with masses of all the dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values of the lattice spacing equal to $\simeq 0.057, 0.068$ and $0.080$ fm with spatial lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_渭^{\rm SD}({\rm ETMC}) = 69.27\,(34) \cdot 10^{-10}$, which is consistent with the recent dispersive value of $a_渭^{\rm SD}(e^+ e^-) = 68.4\,(5) \cdot 10^{-10}$ [2]. In the case of the intermediate window we get the value $a_渭^{\rm W}({\rm ETMC}) = 236.3\,(1.3) \cdot 10^{-10}$, which is consistent with the result $a_渭^{\rm W}({\rm BMW}) = 236.7\,(1.4) \cdot 10^{-10}$ [3] by the BMW collaboration as well as with the recent determination by the CLS/Mainz group of $a_渭^{\rm W}({\rm CLS}) = 237.30\,(1.46) \cdot 10^{-10}$ [4]. However, it is larger than the dispersive result of $a_渭^{\rm W}(e^+ e^-) = 229.4\,(1.4) \cdot 10^{-10}$ [2] by approximately $3.6$ standard deviations. The tension increases to approximately $4.5$ standard deviations if we average our ETMC result with those by BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a possible deviation of the $e^+ e^-$ cross section data with respect to Standard Model predictions in the low and intermediate energy regions, but not in the high energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15084v3-abstract-full').style.display = 'none'; document.getElementById('2206.15084v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">78 pages, 22 figures, 14 tables. Analysis improved with more data and fits, presentation reorganized, more material in appendices, fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09871">arXiv:2202.09871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09871">pdf</a>, <a href="https://arxiv.org/format/2202.09871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054504">10.1103/PhysRevD.107.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First moments of the nucleon transverse quark spin densities using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09871v1-abstract-short" style="display: inline;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09871v1-abstract-full" style="display: none;"> We present a calculation of the Mellin moments of the transverse quark spin densities in the nucleon using lattice QCD. The densities are extracted from the unpolarized and transversity generalized form factors extrapolated to the continuum limit using three $N_f=2+1+1$ twisted mass fermion gauge ensembles simulated with physical quark masses and spanning three lattice spacings. The first moment of transversely polarized quarks in an unpolarized nucleon shows an interesting distortion, which can be traced back to the sharp falloff of the transversity generalized form factor $\bar{B}_{Tn0}(t)$. The isovector tensor anomalous magnetic moment is determined to be $魏_T=1.051(94)$, which confirms a negative and large Boer-Mulders function, $h_1^{\perp}$, in the nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09871v1-abstract-full').style.display = 'none'; document.getElementById('2202.09871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03873">arXiv:2201.03873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03873">pdf</a>, <a href="https://arxiv.org/ps/2201.03873">ps</a>, <a href="https://arxiv.org/format/2201.03873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lyncs-API: a Python API for Lattice QCD applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stylianou%2C+C">Christodoulos Stylianou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03873v1-abstract-short" style="display: inline;"> We present Lyncs-API, a Python API for Lattice QCD applications currently under development. Lyncs aims to bring several widely used libraries for Lattice QCD under a common framework. Lyncs flexibly links to libraries for CPUs and GPUs in a way that can accommodate additional computing architectures as these arise, achieving performance-portability for the calculations while maintaining the same&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03873v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03873v1-abstract-full" style="display: none;"> We present Lyncs-API, a Python API for Lattice QCD applications currently under development. Lyncs aims to bring several widely used libraries for Lattice QCD under a common framework. Lyncs flexibly links to libraries for CPUs and GPUs in a way that can accommodate additional computing architectures as these arise, achieving performance-portability for the calculations while maintaining the same high-level workflow. Lyncs distributes calculations using Dask and mpi4py, with bindings to the libraries automatically generated by cppyy. While Lyncs is designed to allow linking to multiple libraries, we focus on a set of targeted packages that include DDalphaAMG, tmLQCD, QUDA and c-lime. More libraries will be added in the future. We also develop generic-purpose tools for facilitating the usage of Python in Lattice QCD and HPC in general. The project is open-source, community-oriented and available on Github. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03873v1-abstract-full').style.display = 'none'; document.getElementById('2201.03873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, Lattice2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03872">arXiv:2201.03872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03872">pdf</a>, <a href="https://arxiv.org/format/2201.03872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Implementation of Simultaneous Inversion of a Multi-shifted Dirac Matrix for Twisted-Mass Fermions within DD-伪AMG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yamamoto%2C+S">Shuhei Yamamoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03872v1-abstract-short" style="display: inline;"> At physical light quark masses, efficient linear solvers are crucial for carrying out the millions of inversions of the Dirac matrix required for obtaining high statistics in quark correlation functions. Adaptive algebraic multi-grid methods have proven to be very efficient in such cases, exhibiting mild critical slowing down towards very light quark masses and outperforming traditional solver met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03872v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03872v1-abstract-full" style="display: none;"> At physical light quark masses, efficient linear solvers are crucial for carrying out the millions of inversions of the Dirac matrix required for obtaining high statistics in quark correlation functions. Adaptive algebraic multi-grid methods have proven to be very efficient in such cases, exhibiting mild critical slowing down towards very light quark masses and outperforming traditional solver methods, such as the conjugate gradient method, at the physical point. We will discuss our implementations of simultaneous inversion of a (degenerate) Dirac matrix for twisted-mass fermions for multiple right-hand-sides (rhs) with multi-shifts and block-Krylov solvers. The implementation is carried out within the community library DD$伪$AMG, which implements aggregation-based Domain Decomposition adaptive algebraic multi-grid methods. The block-Krylov solvers are provided via the Fast Accurate Block Linear krylOv Solver (Fabulous) library and can be used at coarser levels. Our code inverts Dirac matrices with different twisted-mass terms and for multiple rhs simultaneously and is thus also suitable for components within a typical lattice QCD simulation workflow, such as the rational approximation. We show preliminary results on scalability and compare the performance of our implementation when using different Block-Krylov solver techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03872v1-abstract-full').style.display = 'none'; document.getElementById('2201.03872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Lattice2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02551">arXiv:2201.02551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02551">pdf</a>, <a href="https://arxiv.org/format/2201.02551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Twisted mass gauge ensembles at physical values of the light, strange and charm quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G">Giancarlo Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02551v1-abstract-short" style="display: inline;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02551v1-abstract-full" style="display: none;"> Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks are highly desirable especially to remove systematic errors due to chiral extrapolations. However such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation effort that aims to enabling studies of finite size and discretization effects. We work within the twisted mass discretization which is free of odd-discretization effects at maximal twist and present our tuning procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02551v1-abstract-full').style.display = 'none'; document.getElementById('2201.02551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, The 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06750">arXiv:2112.06750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06750">pdf</a>, <a href="https://arxiv.org/format/2112.06750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors from $N_f$=2+1+1 twisted mass QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06750v1-abstract-short" style="display: inline;"> We present the nucleon axial and electromagnetic form factors using \Nf{2}{1}{1} ensembles of twisted mass fermions with clover improvement and with masses tuned to their physical values. Excited state effects are studied using several sink-source time separations in the range 0.8 fm - 1.6 fm, exponentially increasing statistics with the separation such that statistical errors remain approximately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06750v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06750v1-abstract-full" style="display: none;"> We present the nucleon axial and electromagnetic form factors using \Nf{2}{1}{1} ensembles of twisted mass fermions with clover improvement and with masses tuned to their physical values. Excited state effects are studied using several sink-source time separations in the range 0.8 fm - 1.6 fm, exponentially increasing statistics with the separation such that statistical errors remain approximately constant. In addition, quark loop disconnected diagrams are included in order to extract the isoscalar axial form factors and the proton and neutron electromagnetic form factors, as well as their strange-quark contributions. The radii and moments are extracted by modelling the $Q^2$ dependence, including using the so-called $z$-expansion. A preliminary assessment of lattice cut-off effects is presented using two lattice spacings directly at the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06750v1-abstract-full').style.display = 'none'; document.getElementById('2112.06750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 2 tables; proceedings of the 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03953">arXiv:2112.03953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03953">pdf</a>, <a href="https://arxiv.org/format/2112.03953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Pion and kaon form factors using twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03953v1-abstract-short" style="display: inline;"> We present a calculation of the scalar, vector and tensor pion and kaon form factors using one ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they produce a pion mass of about 265 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03953v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03953v1-abstract-full" style="display: none;"> We present a calculation of the scalar, vector and tensor pion and kaon form factors using one ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they produce a pion mass of about 265 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattice has a spatial extent of 3 fm. We use a rest frame, as well as a boosted frame to obtain the form factors for a wider and denser set of four-vector momentum transfer squared, $Q^2$. To assess and eliminate excited-states contamination, we analyze several values of the source-sink time separation within the range of 1.12 - 2.23 fm (1.12 - 1.67 fm) for the rest (boosted) frame. The $Q^2$ dependence of the form factors is parametrized using a monopole fit, which leads to the extraction of the corresponding radius, and the tensor anomalous magnetic moment for the tensor form factor. The results for these parametrizations are compared for the pion and kaon to assess the level of the SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03953v1-abstract-full').style.display = 'none'; document.getElementById('2112.03953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Proceedings of the 38th Annual International Symposium on Lattice Field Theory - LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03952">arXiv:2112.03952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03952">pdf</a>, <a href="https://arxiv.org/format/2112.03952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> $x$-dependence reconstruction of pion and kaon PDFs from Mellin moments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03952v1-abstract-short" style="display: inline;"> We present a calculation of the connected-diagram contributions to the first three non-trivial Mellin moments for the pion and kaon, extracted using local operators with up to 3 covariant derivatives. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f$=2+1+1) of maximally twisted mass fermions with clover improvement. The ensemble has a pion ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03952v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03952v1-abstract-full" style="display: none;"> We present a calculation of the connected-diagram contributions to the first three non-trivial Mellin moments for the pion and kaon, extracted using local operators with up to 3 covariant derivatives. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f$=2+1+1) of maximally twisted mass fermions with clover improvement. The ensemble has a pion mass $\sim$260 MeV, and a kaon mass $\sim$530 MeV. We reconstruct the $x$-dependence of the PDFs via fits to our results, and find that our lattice data favor a $(1-x)^2$-behavior in the large-$x$ region for both the pion and kaon PDFs. We integrate the reconstructed PDFs to extract the higher moments, $\langle x^n \rangle$, with $4 \leq n \leq 6$. Finally, we compare the pion and kaon PDFs, as well as the ratios of their Mellin moments, to address the effect of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03952v1-abstract-full').style.display = 'none'; document.getElementById('2112.03952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, Proceedings of the 38th Annual International Symposium on Lattice Field Theory - LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03586">arXiv:2112.03586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03586">pdf</a>, <a href="https://arxiv.org/format/2112.03586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0519">10.22323/1.396.0519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion-pole contribution to HLbL from twisted mass lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burri%2C+S">Sebastian Burri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03586v3-abstract-short" style="display: inline;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'inline'; document.getElementById('2112.03586v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03586v3-abstract-full" style="display: none;"> We report on our computation of the pion transition form factor ${\cal F}_{P\rightarrow 纬^*纬^*}$ from twisted mass lattice QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon $a_渭=(g-2)_渭$. The pion transition form factor is computed directly at the physical point. We present first results for our estimate of the pion-pole contribution with kinematic setup for the pion at rest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03586v3-abstract-full').style.display = 'none'; document.getElementById('2112.03586v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory - Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14710">arXiv:2111.14710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14710">pdf</a>, <a href="https://arxiv.org/format/2111.14710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Gradient flow scale-setting with $N_f=2+1+1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">Petros Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">Roberto Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">Marco Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Labus%2C+P">Peter Labus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">Francesco Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14710v1-abstract-short" style="display: inline;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14710v1-abstract-full" style="display: none;"> We present a determination of the gradient flow scales $w_0$, $\sqrt{t_0}$ and $t_0/w_0$ in isosymmetric QCD, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ flavours of Wilson-clover twisted-mass quarks including configurations close to the physical point for all dynamical flavours. The simulations are carried out at three values of the lattice spacing and the scale is set through the PDG value of the pion decay constant, yielding $w_0=0.17383(63)$ fm, $\sqrt{t_0}=0.14436(61)$ fm and $t_0/w_0=0.11969(62)$ fm. Finally, fixing the kaon mass to its isosymmetric value, we determine the ratio of the kaon and pion leptonic decay constants to be $f_K/f_蟺=1.1995(44)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14710v1-abstract-full').style.display = 'none'; document.getElementById('2111.14710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2104.06747</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08135">arXiv:2111.08135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08135">pdf</a>, <a href="https://arxiv.org/format/2111.08135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.054502">10.1103/PhysRevD.105.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The scalar, vector and tensor form factors for the pion and kaon from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delmar%2C+J">Joseph Delmar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08135v1-abstract-short" style="display: inline;"> We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice QCD. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The corresponding pion and kaon masses are about 265 MeV and 530 MeV, respectively. The calculation is done in both rest and boosted frames obta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08135v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08135v1-abstract-full" style="display: none;"> We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice QCD. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The corresponding pion and kaon masses are about 265 MeV and 530 MeV, respectively. The calculation is done in both rest and boosted frames obtaining data for four-vector momentum transfer squared up to $-q^2=2.5$ GeV$^2$ for the pion and 3 GeV$^2$ for the kaon. The excited-states effects are studied by analyzing six values of the source-sink time separation for the rest frame ($1.12-2.23$ fm) and for four values for the boosted frame ($1.12-1.67$ fm). The lattice data are renormalized non-perturbatively and the results for the scheme- and scale-dependent scalar and tensor form factors are presented in the $\overline{\rm MS}$ scheme at a scale of 2 GeV. We apply different parametrizations to describe $q^2$-dependence of the form factors to extract the scalar, vector, and tensor radii, as well as the tensor anomalous magnetic moment. We compare the pion and kaon form factors to study SU(3) flavor symmetry breaking effects. By combining the data for the vector and tensor form factors we also obtain the lowest moment of the densities of transversely polarized quarks in the impact parameter space. Finally, we give an estimate for the average transverse shift in the $y$ direction for polarized quarks in the $x$ direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08135v1-abstract-full').style.display = 'none'; document.getElementById('2111.08135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 23 pages, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04588">arXiv:2110.04588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04588">pdf</a>, <a href="https://arxiv.org/format/2110.04588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Determination of the light, strange and charm quark masses using twisted mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">A. Todaro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04588v1-abstract-short" style="display: inline;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04588v1-abstract-full" style="display: none;"> We present results for the light, strange and charm quark masses using $N_f=2+1+1$ twisted mass fermion ensembles at three values of the lattice spacing, including two ensembles simulated with the physical value of the pion mass. The analysis is done both in the meson and baryon sectors. The difference in the mean values found in the two sectors is included as part of the systematic error. The presentation is based on the work of Ref. [1], where more details can be found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04588v1-abstract-full').style.display = 'none'; document.getElementById('2110.04588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 38th International Symposium on Lattice Field Theory, Lattice 2021, Zoom/Gather@Massachusetts Institute of Technology, 26-30 Jul. 2021; 8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10692">arXiv:2109.10692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10692">pdf</a>, <a href="https://arxiv.org/format/2109.10692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.252001">10.1103/PhysRevLett.127.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark and gluon momentum fractions in the pion from $N_f=2+1+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">Jacob Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">Carsten Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10692v1-abstract-short" style="display: inline;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10692v1-abstract-full" style="display: none;"> We perform the first full decomposition of the pion momentum into its gluon and quark contributions. We employ an ensemble generated by the Extended Twisted Mass Collaboration with $N_f=2 + 1 +1$ Wilson twisted mass clover fermions at maximal twist tuned to reproduce the physical pion mass. We present our results in the $\overline{\mathrm{MS}}$ scheme at $2\gev$. We find $\avgx_{u+d}=0.601(28)$, $\avgx_s=0.059(13)$, $\avgx_c=0.019(05)$, and $\avgx_g=0.52(11)$ for the separate contributions, respectively, whose sum saturates the momentum sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10692v1-abstract-full').style.display = 'none'; document.getElementById('2109.10692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13468">arXiv:2106.13468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13468">pdf</a>, <a href="https://arxiv.org/format/2106.13468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074503">10.1103/PhysRevD.104.074503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark flavor decomposition of the nucleon axial form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13468v1-abstract-short" style="display: inline;"> We present results on the isoscalar form factors including the disconnected contributions, as well as on the strange and charm quark form factors. Using previous results on the isovector form factors, we determine the flavor decomposition of the nucleon axial form factors. These are computed using an ensemble of $N_f=2+1+1$ twisted mass fermions simulated with physical values of quark masses. We i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13468v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13468v1-abstract-full" style="display: none;"> We present results on the isoscalar form factors including the disconnected contributions, as well as on the strange and charm quark form factors. Using previous results on the isovector form factors, we determine the flavor decomposition of the nucleon axial form factors. These are computed using an ensemble of $N_f=2+1+1$ twisted mass fermions simulated with physical values of quark masses. We investigate the SU(3) flavor symmetry and show that there is up to 10\% breaking for the axial and up to 50\% for the induced pseudoscalar form factors. By fitting the $Q^2$-dependence, we determined the corresponding root mean square radii. The pseudoscalar coupling of the $畏$ meson and the nucleon is found to be $g_{畏NN}=3.7(1.0)(0.7)$, and the Goldberger-Treiman discrepancy for the octet combination about 50\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13468v1-abstract-full').style.display = 'none'; document.getElementById('2106.13468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 074503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13408">arXiv:2104.13408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13408">pdf</a>, <a href="https://arxiv.org/format/2104.13408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074515">10.1103/PhysRevD.104.074515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark masses using twisted mass fermion gauge ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Di+Carlo%2C+M">M. Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fiorenza%2C+E">E. Fiorenza</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mangin-Brinet%2C+M">M. Mangin-Brinet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manigrasso%2C+F">F. Manigrasso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martinelli%2C+G">G. Martinelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Papadiofantous%2C+E">E. Papadiofantous</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rossi%2C+G+C">G. C. Rossi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tarantino%2C+C">C. Tarantino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Todaro%2C+A">A. Todaro</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13408v3-abstract-short" style="display: inline;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that corr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'inline'; document.getElementById('2104.13408v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13408v3-abstract-full" style="display: none;"> We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that correspond to pion masses in the range from 350 MeV to the physical value, while the strange and charm quark masses are tuned approximately to their physical values. We use several quantities to set the scale in order to check for finite lattice spacing effects and in the continuum limit we get compatible results. The quark mass renormalization is carried out non-perturbatively using the RI&#39;-MOM method converted into the $\overline{\rm MS}$ scheme. For the determination of the quark masses we use physical observables from both the meson and the baryon sectors, obtaining $m_{ud} = 3.636(66)(^{+60}_{-57})$~MeV and $m_s = 98.7(2.4)(^{+4.0}_{-3.2})$~MeV in the $\overline{\rm MS}(2\,{\rm GeV})$ scheme and $m_c = 1036(17)(^{+15}_{-8})$~MeV in the $\overline{\rm MS}(3\,{\rm GeV})$ scheme, where the first errors are statistical and the second ones are combinations of systematic errors. For the quark mass ratios we get $m_s / m_{ud} = 27.17(32)(^{+56}_{-38})$ and $m_c / m_s = 11.48(12)(^{+25}_{-19})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13408v3-abstract-full').style.display = 'none'; document.getElementById('2104.13408v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 23 figures, 24 tables. One reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06747">arXiv:2104.06747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06747">pdf</a>, <a href="https://arxiv.org/format/2104.06747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074520">10.1103/PhysRevD.104.074520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ratio of kaon and pion leptonic decay constants with $N_f = 2 + 1 + 1$ Wilson-clover twisted-mass fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bergner%2C+G">G. Bergner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frezzotti%2C+R">R. Frezzotti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garofalo%2C+M">M. Garofalo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Labus%2C+P">P. Labus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sanfilippo%2C+F">F. Sanfilippo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ueding%2C+M">M. Ueding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wenger%2C+U">U. Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06747v3-abstract-short" style="display: inline;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'inline'; document.getElementById('2104.06747v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06747v3-abstract-full" style="display: none;"> We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_蟺$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $\sim 0.068$ to $\sim 0.092$ fm with linear lattice size up to $L \sim 5.5$~fm. The scale is set by the PDG value of the pion decay constant, $f_蟺^{isoQCD} = 130.4~(2)$ MeV, at the isoQCD pion point, $M_蟺^{isoQCD} = 135.0~(2)$ MeV, obtaining for the gradient-flow (GF) scales the values $w_0 = 0.17383~(63)$ fm, $\sqrt{t_0} = 0.14436~(61)$ fm and $t_0 / w_0 = 0.11969~(62)$ fm. The data are analyzed within the framework of SU(2) Chiral Perturbation Theory (ChPT) without resorting to the use of renormalized quark masses. At the isoQCD kaon point $M_K^{isoQCD} = 494.2~(4)$ MeV we get $(f_K / f_蟺)^{isoQCD} = 1.1995~(44)$, where the error includes both statistical and systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ and for the first-row CKM unitarity are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06747v3-abstract-full').style.display = 'none'; document.getElementById('2104.06747v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 14 figures, 12 tables. Version to appear in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02247">arXiv:2104.02247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02247">pdf</a>, <a href="https://arxiv.org/format/2104.02247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.054504">10.1103/PhysRevD.104.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The pion and kaon $\langle x^3 \rangle$ from lattice QCD and PDF reconstruction from Mellin moments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02247v1-abstract-short" style="display: inline;"> We present a calculation of the pion and kaon Mellin moment $\langle x^3 \rangle$ extracted directly in lattice QCD using a three-derivative local operator. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The ensemble reproduces a pion mass $\sim260$ MeV, and a kaon mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02247v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02247v1-abstract-full" style="display: none;"> We present a calculation of the pion and kaon Mellin moment $\langle x^3 \rangle$ extracted directly in lattice QCD using a three-derivative local operator. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The ensemble reproduces a pion mass $\sim260$ MeV, and a kaon mass $\sim530$ MeV. Excited-states contamination is evaluated using four values of the source-sink time separation within the range of $1.12-1.67$ fm. We use an operator that is free of mixing, and apply a multiplicative renormalization function calculated non-perturbatively. Our results are converted to the $\overline{\rm MS}$ scheme and evolved at a scale of 2 GeV, using three-loop expressions in perturbation theory. The final values are $\langle x^3 \rangle_蟺^{u^+}=0.024(18)_{\rm stat}(2)_{\rm syst}$, $\langle x^3 \rangle_K^{u^+}=0.035(6)_{\rm stat}(3)_{\rm syst}$, and $\langle x^3 \rangle_K^{s^+}=0.075(5)_{\rm stat}(1)_{\rm syst}$, where the systematic error is the uncertainty due to excited state contamination. We combine $\langle x^3 \rangle$ with the two lower moments to obtain the ratios $\langle x^3 \rangle/\langle x \rangle$ and $\langle x^3 \rangle/\langle x^2 \rangle$, as well as ratios between the pion and kaon moments. In addition, we reconstruct the $x$-dependence of the pion and kaon PDFs via 2- and 3-parameter fits to our results. We find that the reconstruction is feasible and that our lattice data favor a large $x$-dependence that falls as $(1-x)^2$ for both the pion and kaon PDFs. We integrate the reconstructed PDFs to extract the higher moments with $4\leq n\leq 6$. Finally, we compare the pion and kaon PDFs, as well as the ratios of their moments, to address the effect of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02247v1-abstract-full').style.display = 'none'; document.getElementById('2104.02247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 054504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13342">arXiv:2011.13342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13342">pdf</a>, <a href="https://arxiv.org/format/2011.13342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034509">10.1103/PhysRevD.103.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial and pseudoscalar form factors from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kostrzewa%2C+B">B. Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leontiou%2C+T">T. Leontiou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urbach%2C+C">C. Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13342v1-abstract-short" style="display: inline;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13342v1-abstract-full" style="display: none;"> We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13342v1-abstract-full').style.display = 'none'; document.getElementById('2011.13342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages and 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034509 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03495">arXiv:2010.03495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03495">pdf</a>, <a href="https://arxiv.org/format/2010.03495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014508">10.1103/PhysRevD.103.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Mellin moments $\langle x \rangle$ and $\langle x^2 \rangle$ for the pion and kaon from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauer%2C+C">Colin Lauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03495v2-abstract-short" style="display: inline;"> We present a calculation of the pion quark momentum fraction, $\langle x \rangle$, and its third Mellin moment $\langle x^2 \rangle$. We also obtain directly, for the first time, $\langle x \rangle$ and $\langle x^2 \rangle$ for the kaon using local operators. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03495v2-abstract-full').style.display = 'inline'; document.getElementById('2010.03495v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03495v2-abstract-full" style="display: none;"> We present a calculation of the pion quark momentum fraction, $\langle x \rangle$, and its third Mellin moment $\langle x^2 \rangle$. We also obtain directly, for the first time, $\langle x \rangle$ and $\langle x^2 \rangle$ for the kaon using local operators. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses are chosen so that they reproduce a pion mass of about 260 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattice has a spatial extent of 3 fm. We analyze several values of the source-sink time separation within the range of $1.12-2.23$ fm to study and eliminate excited-states contributions. The necessary renormalization functions are calculated non-perturbatively in the RI$&#39;$ scheme, and are converted to the $\overline{\rm MS}$ scheme at a scale of 2 GeV. The final values for the momentum fraction are $\langle x \rangle^蟺_{u^+}=0.261(3)_{\rm stat}(6)_{\rm syst}$, $\langle x \rangle^K_{u^+}=0.246(2)_{\rm stat}(2)_{\rm syst}$, and $\langle x \rangle^K_{s^+}=0.317(2)_{\rm stat}(1)_{\rm syst}$. For the third Mellin moments we find $\langle x^2 \rangle^蟺_{u^+}=0.082(21)_{\rm stat}(17)_{\rm syst}$, $\langle x^2 \rangle^K_{u^+}=0.093(5)_{\rm stat}(3)_{\rm syst}$, and $\langle x^2 \rangle^K_{s^+}=0.134(5)_{\rm stat}(2)_{\rm syst}$. The reported systematic uncertainties are due to excited-state contamination. We also give the ratio $\langle x^2 \rangle/\langle x \rangle$ which is an indication of how quickly the PDFs lose support at large $x$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03495v2-abstract-full').style.display = 'none'; document.getElementById('2010.03495v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08486">arXiv:2003.08486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08486">pdf</a>, <a href="https://arxiv.org/format/2003.08486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.094513">10.1103/PhysRevD.101.094513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Panagopoulos%2C+H">H. Panagopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Spanoudes%2C+G">G. Spanoudes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08486v1-abstract-short" style="display: inline;"> We evaluate the gluon and quark contributions to the spin of the proton using an ensemble of gauge configuration generated at physical pion mass. We compute all valence and sea quark contributions to high accuracy. We perform a non-perturbative renormalization for both quark and gluon matrix elements. We find that the contribution of the up, down, strange and charm quarks to the proton intrinsic s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08486v1-abstract-full').style.display = 'inline'; document.getElementById('2003.08486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08486v1-abstract-full" style="display: none;"> We evaluate the gluon and quark contributions to the spin of the proton using an ensemble of gauge configuration generated at physical pion mass. We compute all valence and sea quark contributions to high accuracy. We perform a non-perturbative renormalization for both quark and gluon matrix elements. We find that the contribution of the up, down, strange and charm quarks to the proton intrinsic spin is $\frac{1}{2}\sum_{q=u,d,s,c}螖危^{q^+}=0.191(15)$ and to the total spin $\sum_{q=u,d,s,c}J^{q^+}=0.285(45)$. The gluon contribution to the spin is $J^g=0.187(46)$ yielding $J=J^q+J^g=0.473(71)$ confirming the spin sum. The momentum fraction carried by quarks in the proton is found to be $0.618(60)$ and by gluons $0.427(92)$, the sum of which gives $1.045(118)$ confirming the momentum sum rule. All scale and scheme dependent quantities are given in the $\mathrm{ \overline{MS}}$ scheme at 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08486v1-abstract-full').style.display = 'none'; document.getElementById('2003.08486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.10744">arXiv:1909.10744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.10744">pdf</a>, <a href="https://arxiv.org/format/1909.10744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.031501">10.1103/PhysRevD.101.031501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon strange electromagnetic form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkenrath%2C+J">J. Finkenrath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.10744v1-abstract-short" style="display: inline;"> The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10744v1-abstract-full').style.display = 'inline'; document.getElementById('1909.10744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.10744v1-abstract-full" style="display: none;"> The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quantum Chromodynamics using simulations that include light, strange and charm quarks in the sea all tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form factors for values of the momentum transfer square up to 0.8~GeV$^2$. We find that both the electric and magnetic form factors are statistically non-zero. We obtain for the strange magnetic moment $渭^s=-0.017(4)$, the strange magnetic radius $\langle r^2_M \rangle^s=-0.015(9)$~fm$^2$, and the strange charge radius $\langle r^2_E \rangle^s=-0.0048(6)$~fm$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10744v1-abstract-full').style.display = 'none'; document.getElementById('1909.10744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 031501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.00485">arXiv:1909.00485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.00485">pdf</a>, <a href="https://arxiv.org/format/1909.00485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054517">10.1103/PhysRevD.102.054517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial, tensor and scalar charges and $蟽$-terms in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">C. Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchio%2C+S">S. Bacchio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">M. Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hadjiyiannakou%2C+K">K. Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">K. Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koutsou%2C+G">G. Koutsou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aviles-Casco%2C+A+V">A. Vaquero Aviles-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.00485v2-abstract-short" style="display: inline;"> We determine the nucleon axial, scalar and tensor charges within lattice Quantum Chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing $a=0.094$~fm and the third&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00485v2-abstract-full').style.display = 'inline'; document.getElementById('1909.00485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.00485v2-abstract-full" style="display: none;"> We determine the nucleon axial, scalar and tensor charges within lattice Quantum Chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing $a=0.094$~fm and the third with $a=0.08$~fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find $1.286(23)$ in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin $\frac{1}{2}螖危^q$ carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks $\frac{1}{2}螖危^{u}=0.431(8)$, $\frac{1}{2}螖危^{d}=-0.212(8)$, $\frac{1}{2}螖危^{s}=-0.023(4)$ and $\frac{1}{2}螖危^{c}=-0.005(2)$, respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon $蟽$-terms and find for the light quark content $蟽_{蟺N}=41.6(3.8)$~MeV and for the strange $蟽_{s}=45.6(6.2)$~MeV. The y-parameter that is used in phenomenological studies we find $y=0.078(7)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00485v2-abstract-full').style.display = 'none'; document.getElementById('1909.00485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Expanded version as accepted in Phys. Rev. D.20 pages and 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054517 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bacchio%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10