CINXE.COM

Peter Schuster - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Peter Schuster - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Y9ldH2UddVH9NN270uD+unsP4EDg4DnxJx5WdCp2VVTlNWi9LuOLE17fa9PKP4HopFkh0lHiRdvaPXGY3bCtdQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="peter schuster" /> <meta name="description" content="Professor emeritus in theoretical chemistry interested in molecular genetics and modelling evolution." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '3180645286f3c9e536897c9e222337a6555bcffe'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15279,"monthly_visitors":"124 million","monthly_visitor_count":124494275,"monthly_visitor_count_in_millions":124,"user_count":278983180,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734488405000); window.Aedu.timeDifference = new Date().getTime() - 1734488405000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-772ddef14990ef25ff745ff7a68e1f5d083987771af2b9046e5dd4ece84c9e02.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-8ced32df41cb1a30061eaa13a8fe865a252f94d76a6a6a05ea0ba77c04f53a96.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/PSchuster" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-77c1bbdf640d3ab9a9b87cd905f5a36d6e6aeca610cba7e42bc42af726770bbb.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","photo":"https://0.academia-photos.com/11507755/5025271/5767664/s65_peter.schuster.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":1601,"name":"Teacher Education","url":"https://www.academia.edu/Documents/in/Teacher_Education"},{"id":7709,"name":"Applied Linguistics","url":"https://www.academia.edu/Documents/in/Applied_Linguistics"},{"id":2524,"name":"Sociolinguistics","url":"https://www.academia.edu/Documents/in/Sociolinguistics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":3392,"name":"Critical Pedagogy","url":"https://www.academia.edu/Documents/in/Critical_Pedagogy"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/PSchuster&quot;,&quot;location&quot;:&quot;/PSchuster&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/PSchuster&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-9c2581a8-b3e1-4fc4-9f0e-77470462dfb4"></div> <div id="ProfileCheckPaperUpdate-react-component-9c2581a8-b3e1-4fc4-9f0e-77470462dfb4"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Peter Schuster" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/11507755/5025271/5767664/s200_peter.schuster.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Peter Schuster</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Peter" data-follow-user-id="11507755" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="11507755"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">24</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Professor emeritus in theoretical chemistry&nbsp; interested in molecular genetics and modelling evolution.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="11507755" href="https://www.academia.edu/Documents/in/Teacher_Education"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/PSchuster&quot;,&quot;location&quot;:&quot;/PSchuster&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/PSchuster&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Teacher Education&quot;]}" data-trace="false" data-dom-id="Pill-react-component-aa96a1ec-1980-4a92-8993-91a2b62d47ac"></div> <div id="Pill-react-component-aa96a1ec-1980-4a92-8993-91a2b62d47ac"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="11507755" href="https://www.academia.edu/Documents/in/Applied_Linguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied Linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8a919ca7-e5a5-4a0b-acc7-677ff589a46c"></div> <div id="Pill-react-component-8a919ca7-e5a5-4a0b-acc7-677ff589a46c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="11507755" href="https://www.academia.edu/Documents/in/Sociolinguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Sociolinguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-818b95c0-e60e-42aa-b84b-3f5cdd93667e"></div> <div id="Pill-react-component-818b95c0-e60e-42aa-b84b-3f5cdd93667e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="11507755" href="https://www.academia.edu/Documents/in/Statistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Statistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2b049e80-f2cb-43c7-9d13-8f65e3257299"></div> <div id="Pill-react-component-2b049e80-f2cb-43c7-9d13-8f65e3257299"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="11507755" href="https://www.academia.edu/Documents/in/Critical_Pedagogy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Critical Pedagogy&quot;]}" data-trace="false" data-dom-id="Pill-react-component-86131774-9e1c-47ac-a641-dea2cdb799da"></div> <div id="Pill-react-component-86131774-9e1c-47ac-a641-dea2cdb799da"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Peter Schuster</h3></div><div class="js-work-strip profile--work_container" data-work-id="104691389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes"><img alt="Research paper thumbnail of RNA folding landscapes and combinatory landscapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes">RNA folding landscapes and combinatory landscapes</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691389]").text(description); $(".js-view-count[data-work-id=104691389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104691389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691389,"title":"RNA folding landscapes and combinatory landscapes","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes","translated_internal_url":"","created_at":"2023-07-18T06:26:46.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"RNA_folding_landscapes_and_combinatory_landscapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":1864824,"name":"RNA folding","url":"https://www.academia.edu/Documents/in/RNA_folding"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution"><img alt="Research paper thumbnail of Landscapes in RN Af olding and evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/104352461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution">Landscapes in RN Af olding and evolution</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of spe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="12b6ac13e5fa457900464ada1cd2c13f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352461,&quot;asset_id&quot;:104691388,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691388]").text(description); $(".js-view-count[data-work-id=104691388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "12b6ac13e5fa457900464ada1cd2c13f" } } $('.js-work-strip[data-work-id=104691388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691388,"title":"Landscapes in RN Af olding and evolution","translated_title":"","metadata":{"grobid_abstract":"The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.","grobid_abstract_attachment_id":104352461},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution","translated_internal_url":"","created_at":"2023-07-18T06:26:46.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352461/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352461/GI-Proceedings.71-1-libre.pdf?1689687338=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=QhQP3MfgJ48nHv8TzEdZMYRRKZSRRBKPC-8LTm0ieBlG3aA7awyniB4~hsLgV0kRklHAZhQw36katOHilqmTXlEsjNn3719xbIgxA7nHTAHMaupUcekaViYCK0COgHC~jJ-N5HDmhvB6YCKZCO5~uLF2MitJQBI3mQh0xqLjq7CnTrNPsbaNtHRgvKhOyN0FaQdxwAz4VsnAPVBNIBW3fRvAm1prg70y8peLzqWxsMkRfRaZ722RA2OyJJ2CzLvdJG-L7rtoTPocyroKI-oX1SYMGt-TxqwoxuUDTfcIbiaYXdu8gEkcymO1tJLT-MLnj7p3EIze7mBZmOgLWf78-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Landscapes_in_RN_Af_olding_and_evolution","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"OHREcTZNemhuaW5SUFRyZktiMnRZc09aY0d3WDg4aElDRmdmTG00NHBCRT0tLU5NZlI3cWNkQ3ZnQ1dNV2lTU2gvWFE9PQ==--93fd3c5b4a3d242be4f91844fe711e65be68f59c"},"attachments":[{"id":104352461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352461/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352461/GI-Proceedings.71-1-libre.pdf?1689687338=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=QhQP3MfgJ48nHv8TzEdZMYRRKZSRRBKPC-8LTm0ieBlG3aA7awyniB4~hsLgV0kRklHAZhQw36katOHilqmTXlEsjNn3719xbIgxA7nHTAHMaupUcekaViYCK0COgHC~jJ-N5HDmhvB6YCKZCO5~uLF2MitJQBI3mQh0xqLjq7CnTrNPsbaNtHRgvKhOyN0FaQdxwAz4VsnAPVBNIBW3fRvAm1prg70y8peLzqWxsMkRfRaZ722RA2OyJJ2CzLvdJG-L7rtoTPocyroKI-oX1SYMGt-TxqwoxuUDTfcIbiaYXdu8gEkcymO1tJLT-MLnj7p3EIze7mBZmOgLWf78-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104352460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352460/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352460/download_file","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352460/GI-Proceedings.71-1-libre.pdf?1689687339=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=DWGh8o1F2-K9tGtg91odFqFqRYs4i9XKqAXLDegjmZ7bKLShicgIZp3BSnGPUH1rqN2F-nv12lWR2hPyQt3k9vLSvn8k6TL5wsqLXxAD1jBJeLfa1HBvVxYRuCFD1sAtbfChe-jDQq3SA9hKcb-ATQjTt8he1giQYRG2aL6Yz-6PlnxVoHUL-zDVC4aq3Joi6D0rjul5JftmxuQ30ufyQQo0j9HPyWWKWnY7O1pofhMbziPZJvS7pQJtoVlmjItSrDgY6NUQ-qWILZzmjjHueAcq9OygI6zJN5SnGMg-GmL0WNfxJ0wfBQN65qVQs8gi0hG232bm-bQoGHwihixVlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":32953761,"url":"http://subs.emis.de/LNI/Proceedings/Proceedings71/GI-Proceedings.71-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691387"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference"><img alt="Research paper thumbnail of www.rnaworkbench.com: A new program for analyzing RNA interference" class="work-thumbnail" src="https://attachments.academia-assets.com/104352494/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference">www.rnaworkbench.com: A new program for analyzing RNA interference</a></div><div class="wp-workCard_item"><span>Computer Methods and Programs in Biomedicine</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0edf52359267b1ac4d50d89402883f09" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352494,&quot;asset_id&quot;:104691387,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691387"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691387"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691387; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691387]").text(description); $(".js-view-count[data-work-id=104691387]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691387; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691387']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691387, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0edf52359267b1ac4d50d89402883f09" } } $('.js-work-strip[data-work-id=104691387]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691387,"title":"www.rnaworkbench.com: A new program for analyzing RNA interference","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Computer Methods and Programs in Biomedicine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference","translated_internal_url":"","created_at":"2023-07-18T06:26:45.882-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352494/thumbnails/1.jpg","file_name":"pks_331.pdf","download_url":"https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"www_rnaworkbench_com_A_new_program_for_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352494/pks_331-libre.pdf?1689687340=\u0026response-content-disposition=attachment%3B+filename%3Dwww_rnaworkbench_com_A_new_program_for_a.pdf\u0026Expires=1734471438\u0026Signature=YJmRSOQkg4SJKdhdGvMuPa~N8ZwccDzxIwJO9iRjC6D37i4C0K3nJBIWwKD3E2G8vy5XB7TU2kKxvRtQiIomdPT8xwV2kCGALxO5syrz1sM0vckF-qLFH2P8NkOu4JQKa5M-bflqbHNvWOJQDUWLKjdlNt324-EcnvRo~ixxf0FerJAcSNzw8uSpCME0jjIKcWv8xq-wB7fbiURveN8xYrTQu4mQfg7sq8plcnhQ17Fzs3At0gIzQsXVzULs10h-4kH9cgKbbb52z5cRLpmJ7QoAPFahsQgjfR~JIi5p6QBxWFR5d4uTd34arL8pj4p0O4H63MpkzcOaOtAlsj1r5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"MVFGUXg1RWRaNGluRnR4VjRkQmNpb1JiUElreWV4dDZVWG9oajFaMjFyST0tLVN2SmJ4MlJoZWFuOE5nbWhRdmkrVnc9PQ==--63f59aaecbe017e59d09d70366ea7974b62d29fd"},"attachments":[{"id":104352494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352494/thumbnails/1.jpg","file_name":"pks_331.pdf","download_url":"https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"www_rnaworkbench_com_A_new_program_for_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352494/pks_331-libre.pdf?1689687340=\u0026response-content-disposition=attachment%3B+filename%3Dwww_rnaworkbench_com_A_new_program_for_a.pdf\u0026Expires=1734471438\u0026Signature=YJmRSOQkg4SJKdhdGvMuPa~N8ZwccDzxIwJO9iRjC6D37i4C0K3nJBIWwKD3E2G8vy5XB7TU2kKxvRtQiIomdPT8xwV2kCGALxO5syrz1sM0vckF-qLFH2P8NkOu4JQKa5M-bflqbHNvWOJQDUWLKjdlNt324-EcnvRo~ixxf0FerJAcSNzw8uSpCME0jjIKcWv8xq-wB7fbiURveN8xYrTQu4mQfg7sq8plcnhQ17Fzs3At0gIzQsXVzULs10h-4kH9cgKbbb52z5cRLpmJ7QoAPFahsQgjfR~JIi5p6QBxWFR5d4uTd34arL8pj4p0O4H63MpkzcOaOtAlsj1r5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32923,"name":"Gene Silencing","url":"https://www.academia.edu/Documents/in/Gene_Silencing"},{"id":51121,"name":"RNA interference","url":"https://www.academia.edu/Documents/in/RNA_interference"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":337175,"name":"Secondary Structure","url":"https://www.academia.edu/Documents/in/Secondary_Structure"},{"id":502720,"name":"Gene Targeting","url":"https://www.academia.edu/Documents/in/Gene_Targeting"},{"id":786185,"name":"Software Tool","url":"https://www.academia.edu/Documents/in/Software_Tool"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1157475,"name":"Workbench","url":"https://www.academia.edu/Documents/in/Workbench"},{"id":1238671,"name":"RNA Secondary Structure","url":"https://www.academia.edu/Documents/in/RNA_Secondary_Structure"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":3718301,"name":"short interfering RNA","url":"https://www.academia.edu/Documents/in/short_interfering_RNA"}],"urls":[{"id":32953760,"url":"https://api.elsevier.com/content/article/PII:S0169260707003008?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691308/Molecular_insights_into_evolution"><img alt="Research paper thumbnail of Molecular insights into evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/104352442/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691308/Molecular_insights_into_evolution">Molecular insights into evolution</a></div><div class="wp-workCard_item"><span>Artificial Life and Robotics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study ev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="75105f191326e6b34b8079730d0d46d1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352442,&quot;asset_id&quot;:104691308,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691308]").text(description); $(".js-view-count[data-work-id=104691308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "75105f191326e6b34b8079730d0d46d1" } } $('.js-work-strip[data-work-id=104691308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691308,"title":"Molecular insights into evolution","translated_title":"","metadata":{"publisher":"Springer Nature","ai_title_tag":"Molecular Modeling of RNA Evolution and Optimization Processes","grobid_abstract":"Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Artificial Life and Robotics","grobid_abstract_attachment_id":104352442},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691308/Molecular_insights_into_evolution","translated_internal_url":"","created_at":"2023-07-18T06:24:51.791-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352442/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_insights_into_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352442/download-libre.pdf?1689687351=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_insights_into_evolution.pdf\u0026Expires=1734471438\u0026Signature=D9N2lDjSVWb8ocqXo7kuS2jEk0Ql3oSh5QGBD5A7Cwl1MYp-yS0mmZVHwld0RRX759OMgKmzFoGI32c1SziAwezgP5GjvkpA8dk~G3ddxlDaioMa-x2qlrDR3UMxC~RnNRLgOQdyMc~8UfrdC~YU0rNsSmYYZYvm6Z3wjDIeY4oOyuuI44zr6FSgTYONXt88b8ftiiwJY78LTAAsLWgB9PKSeBCYO3iWmGJcn-xpUYpNyNDm5NrTAinVCoxqoZAVqPx5J9fuh~2emEjPtzQxwJ~Zxt-xR--fUYgkcst9oxrGn5jfNGr~2gQi56vudpLV0ek8eGHlQ4LWdnrsLGh9Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_insights_into_evolution","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"cHBJcDBBY0pmNHA3RjIyUXRqYjRQT2g4RHJrbDB0dmp2YmFSaHdFZWVrZz0tLWNaZVE4aUVPRTUyclRsaU14SFc5OWc9PQ==--0048c9d63b9be85a3df229e2b146237cce2ef3aa"},"attachments":[{"id":104352442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352442/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_insights_into_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352442/download-libre.pdf?1689687351=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_insights_into_evolution.pdf\u0026Expires=1734471438\u0026Signature=D9N2lDjSVWb8ocqXo7kuS2jEk0Ql3oSh5QGBD5A7Cwl1MYp-yS0mmZVHwld0RRX759OMgKmzFoGI32c1SziAwezgP5GjvkpA8dk~G3ddxlDaioMa-x2qlrDR3UMxC~RnNRLgOQdyMc~8UfrdC~YU0rNsSmYYZYvm6Z3wjDIeY4oOyuuI44zr6FSgTYONXt88b8ftiiwJY78LTAAsLWgB9PKSeBCYO3iWmGJcn-xpUYpNyNDm5NrTAinVCoxqoZAVqPx5J9fuh~2emEjPtzQxwJ~Zxt-xR--fUYgkcst9oxrGn5jfNGr~2gQi56vudpLV0ek8eGHlQ4LWdnrsLGh9Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":4967,"name":"Molecular Evolution","url":"https://www.academia.edu/Documents/in/Molecular_Evolution"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1238671,"name":"RNA Secondary Structure","url":"https://www.academia.edu/Documents/in/RNA_Secondary_Structure"},{"id":2925060,"name":"ribonucleic acid","url":"https://www.academia.edu/Documents/in/ribonucleic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100211678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation"><img alt="Research paper thumbnail of Structural parameters affecting the kinetics of RNA hairpin formation" class="work-thumbnail" src="https://attachments.academia-assets.com/101098909/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation">Structural parameters affecting the kinetics of RNA hairpin formation</a></div><div class="wp-workCard_item"><span>Nucleic Acids Research</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program &#39;Kinfold&#39;. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc01ca25a4dc11c8e248adf0a5e5c68f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:101098909,&quot;asset_id&quot;:100211678,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100211678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100211678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100211678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100211678]").text(description); $(".js-view-count[data-work-id=100211678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100211678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100211678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100211678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc01ca25a4dc11c8e248adf0a5e5c68f" } } $('.js-work-strip[data-work-id=100211678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100211678,"title":"Structural parameters affecting the kinetics of RNA hairpin formation","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","grobid_abstract":"There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program 'Kinfold'. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Nucleic Acids Research","grobid_abstract_attachment_id":101098909},"translated_abstract":null,"internal_url":"https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation","translated_internal_url":"","created_at":"2023-04-15T02:46:32.473-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101098909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098909/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098909/gkl445-libre.pdf?1681552693=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=A~631Zkt1~ab7P4jRt0I5L3JOM82sVpxceRkTiqE7Bouutejj-rwmG6l1qp~WQppQP8xkrIcySbyubelcfMT7pXyxwRhzX4OZ5WQZxB2fgwz9JK3Yhfb3SSPCsx73noyZJWIqopOhIOeKmBB8LusmHRJa~I8t1dL3ZYa67u9IPurPQJngO5eUegrxax2uNETA00HOZ9NyOvQZgU-pSIb2-bRsZ59x6C5C6SHaPPi0HI2ZXbxeLja-om9Q2lSaBsfzKElbHx-sWcq54enqLOc~gOhM7FXRgumBP1SnxKlXmFXMIvoJ2TZTls2xBbEiN5yE8gdZPCqLLKXyUZvhXvGFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program 'Kinfold'. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"R2dvazdoVHpHNzVNK1ltWCtONlY4djJvOVkzOWdqa1BxbXdnSmpoQWJIWT0tLWVvbVhJalZ6M0RZcEFBNEs2bmtmQVE9PQ==--2d098dcfd05cc35408ac77a021ce7c9e8ab9f350"},"attachments":[{"id":101098909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098909/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098909/gkl445-libre.pdf?1681552693=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=A~631Zkt1~ab7P4jRt0I5L3JOM82sVpxceRkTiqE7Bouutejj-rwmG6l1qp~WQppQP8xkrIcySbyubelcfMT7pXyxwRhzX4OZ5WQZxB2fgwz9JK3Yhfb3SSPCsx73noyZJWIqopOhIOeKmBB8LusmHRJa~I8t1dL3ZYa67u9IPurPQJngO5eUegrxax2uNETA00HOZ9NyOvQZgU-pSIb2-bRsZ59x6C5C6SHaPPi0HI2ZXbxeLja-om9Q2lSaBsfzKElbHx-sWcq54enqLOc~gOhM7FXRgumBP1SnxKlXmFXMIvoJ2TZTls2xBbEiN5yE8gdZPCqLLKXyUZvhXvGFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101098908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098908/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098908/download_file","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098908/gkl445-libre.pdf?1681552692=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=f3tyQjQiDDICsY1e-TnSyu8MBjVEyQ3txI0MoBGoB3fuf2tGd6moQHrwwvNaGnl07RaA3jKkV6kKnElTkGLZ8SJwynx~7dNboVu5ND--gHCzMuJBFKmpujVjdzmUY6tfz~CQ4EQao6Eu1mKYtpnmuam9EhKbRZEZg7Sq-7q3ojpwqQ4g25LGeR52zaQ1kzFLcH7NKcmH~DCtsBSmgFp0GAgJhIO0s7eBC7TqAF4lrK4IZ4bs41W6FSavquUSCmUMAv2tTzAGnyZxD2ICx60STH1GQI6t6b2mWYMmdQvXb1~df0IxENRbkx~PUMHC3LdOT~MCQRNDTCPQPn2QUpOyXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":178906,"name":"Nucleic Acids","url":"https://www.academia.edu/Documents/in/Nucleic_Acids"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1362652,"name":"Nucleic Acid Conformation","url":"https://www.academia.edu/Documents/in/Nucleic_Acid_Conformation"},{"id":2234942,"name":"Ribonucleases","url":"https://www.academia.edu/Documents/in/Ribonucleases"}],"urls":[{"id":30637084,"url":"http://academic.oup.com/nar/article-pdf/34/12/3568/7036416/gkl445.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747753"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid"><img alt="Research paper thumbnail of Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid" class="work-thumbnail" src="https://attachments.academia-assets.com/79724303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid">Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid</a></div><div class="wp-workCard_item"><span>The Journal of Physical Chemistry</span><span>, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-h...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH &lt;&lt; 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH &gt;&gt; 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH &lt;&lt; 7 and protolysis reactions at pH &gt;&gt; 7.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b88f11bbbe6dc97e5d301cd315ad68cb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724303,&quot;asset_id&quot;:69747753,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747753"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747753"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747753; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747753]").text(description); $(".js-view-count[data-work-id=69747753]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747753; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747753']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747753, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b88f11bbbe6dc97e5d301cd315ad68cb" } } $('.js-work-strip[data-work-id=69747753]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747753,"title":"Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH \u003c\u003c 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH \u003e\u003e 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH \u003c\u003c 7 and protolysis reactions at pH \u003e\u003e 7.","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"The Journal of Physical Chemistry","grobid_abstract_attachment_id":79724303},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid","translated_internal_url":"","created_at":"2022-01-28T01:24:55.001-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724303/thumbnails/1.jpg","file_name":"2395627.pdf","download_url":"https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_transfer_reactions_of_dibasic_aci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724303/2395627-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_transfer_reactions_of_dibasic_aci.pdf\u0026Expires=1734471438\u0026Signature=A-bRA1-3j9ROK1htbDrj0V2ljiwfr4Ji9yMUphZ1cjduYILSm31NbwAa2EczGeHdTJ5jF-Avyc~wI5AH78a15bV4mAsz2dZwRrWOQw505s4VTWsrxmoYZIvYbTUZMyKGbIX~R5H2yIUmCGqa1lvQwrcqXUCBPaBRjQRjK-C5uI8M0gGWrDsqO3R8-UnWf6xGerWuY4D4BzeE~U8W5MRBUWL2X4yLR18Jur~9XBPmwurSD8DbhawF0BDJli8t-bApZOiQKmghHO7eddq5yUWah2y8VYQtUAI60SG0jHanmusLmlrS0o~2wYG1uwEoJHF9lX5TjVHdJoPH6x7wdGalqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH \u003c\u003c 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH \u003e\u003e 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH \u003c\u003c 7 and protolysis reactions at pH \u003e\u003e 7.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"MjhRZ0VqV1AyTzVIQXY3UGc3eTNmM1U1TDl1N0NnVFZua2hwQnYreGZ2VT0tLTl5ckd2VlJEME8wd0dkWEhscytHcmc9PQ==--bbb5d350c36faf7768e701df53c8b15372facb4c"},"attachments":[{"id":79724303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724303/thumbnails/1.jpg","file_name":"2395627.pdf","download_url":"https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_transfer_reactions_of_dibasic_aci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724303/2395627-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_transfer_reactions_of_dibasic_aci.pdf\u0026Expires=1734471438\u0026Signature=A-bRA1-3j9ROK1htbDrj0V2ljiwfr4Ji9yMUphZ1cjduYILSm31NbwAa2EczGeHdTJ5jF-Avyc~wI5AH78a15bV4mAsz2dZwRrWOQw505s4VTWsrxmoYZIvYbTUZMyKGbIX~R5H2yIUmCGqa1lvQwrcqXUCBPaBRjQRjK-C5uI8M0gGWrDsqO3R8-UnWf6xGerWuY4D4BzeE~U8W5MRBUWL2X4yLR18Jur~9XBPmwurSD8DbhawF0BDJli8t-bApZOiQKmghHO7eddq5yUWah2y8VYQtUAI60SG0jHanmusLmlrS0o~2wYG1uwEoJHF9lX5TjVHdJoPH6x7wdGalqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":148640,"name":"Proton Transfer","url":"https://www.academia.edu/Documents/in/Proton_Transfer"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example"><img alt="Research paper thumbnail of Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example">Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747750]").text(description); $(".js-view-count[data-work-id=69747750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747750, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69747750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747750,"title":"Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example","translated_internal_url":"","created_at":"2022-01-28T01:24:54.647-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747748"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands"><img alt="Research paper thumbnail of The interaction of alkali metal cations with oxygen-containing ligands" class="work-thumbnail" src="https://attachments.academia-assets.com/79724306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands">The interaction of alkali metal cations with oxygen-containing ligands</a></div><div class="wp-workCard_item"><span>Theoretica Chimica Acta</span><span>, 1975</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO&#39;s.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1535177390ef8fa5965a8740acb81349" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724306,&quot;asset_id&quot;:69747748,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747748"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747748"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747748; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747748]").text(description); $(".js-view-count[data-work-id=69747748]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747748; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747748']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747748, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1535177390ef8fa5965a8740acb81349" } } $('.js-work-strip[data-work-id=69747748]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747748,"title":"The interaction of alkali metal cations with oxygen-containing ligands","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO's.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"Theoretica Chimica Acta","grobid_abstract_attachment_id":79724306},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands","translated_internal_url":"","created_at":"2022-01-28T01:24:54.263-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724306/thumbnails/1.jpg","file_name":"bf0066833820220128-29450-1nb44pu.pdf","download_url":"https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interaction_of_alkali_metal_cations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724306/bf0066833820220128-29450-1nb44pu-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_of_alkali_metal_cations.pdf\u0026Expires=1734471439\u0026Signature=BtgKwejM2rVk-vj0buecRdi2VelUdq~ZJ7PDL895sckZ5yqQ0hlyQQ7EznIRIS4Fef6uD0YcPzuNOiABUNbP71d8~n6NCJj8-QbMZfWV-l1RsBmTujObgG5mOmm5QB5GDXND8WJJf-82gv2AU25fFsBtNMaaGDddSqPoDyrpqB4NhxIbxkpz8O~P4X1JECC7RO9uJUa4CqwqrXVg6sXxf1pBTpPw5e420tvGym316iK5s~VUTQwz-9f6O3aP6XQ7w916fpYGO06LdtUpAXNpzhxashHAvbbODYk0aBmbPHcwfTk0zjXGR6zaUcYs-qqG-hun1zxSu1GYE15t-VN~pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO's.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"R1VQbGtDUXplNTdNbWgzdDBlZTZLZnRYYlYreExqbmdsWDh5WWJiWnc5ST0tLVF2NFFFK3cwQnB1WFliZG9ZUXFFUXc9PQ==--81429c6b5da329ddce241abd1488026067274755"},"attachments":[{"id":79724306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724306/thumbnails/1.jpg","file_name":"bf0066833820220128-29450-1nb44pu.pdf","download_url":"https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interaction_of_alkali_metal_cations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724306/bf0066833820220128-29450-1nb44pu-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_of_alkali_metal_cations.pdf\u0026Expires=1734471439\u0026Signature=BtgKwejM2rVk-vj0buecRdi2VelUdq~ZJ7PDL895sckZ5yqQ0hlyQQ7EznIRIS4Fef6uD0YcPzuNOiABUNbP71d8~n6NCJj8-QbMZfWV-l1RsBmTujObgG5mOmm5QB5GDXND8WJJf-82gv2AU25fFsBtNMaaGDddSqPoDyrpqB4NhxIbxkpz8O~P4X1JECC7RO9uJUa4CqwqrXVg6sXxf1pBTpPw5e420tvGym316iK5s~VUTQwz-9f6O3aP6XQ7w916fpYGO06LdtUpAXNpzhxashHAvbbODYk0aBmbPHcwfTk0zjXGR6zaUcYs-qqG-hun1zxSu1GYE15t-VN~pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":144609,"name":"Alkali Metals","url":"https://www.academia.edu/Documents/in/Alkali_Metals"},{"id":214560,"name":"Electron Density","url":"https://www.academia.edu/Documents/in/Electron_Density"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":800918,"name":"Charge transfer","url":"https://www.academia.edu/Documents/in/Charge_transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds"><img alt="Research paper thumbnail of Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds" class="work-thumbnail" src="https://attachments.academia-assets.com/79724310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds">Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds</a></div><div class="wp-workCard_item"><span>Organic Magnetic Resonance</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. &#39; This work, See also Ref. 11.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ab85f30c157619e765af82ff468927c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724310,&quot;asset_id&quot;:69747744,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747744]").text(description); $(".js-view-count[data-work-id=69747744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747744, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ab85f30c157619e765af82ff468927c" } } $('.js-work-strip[data-work-id=69747744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747744,"title":"Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. ' This work, See also Ref. 11.","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Organic Magnetic Resonance","grobid_abstract_attachment_id":79724310},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds","translated_internal_url":"","created_at":"2022-01-28T01:24:53.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724310/thumbnails/1.jpg","file_name":"mrc.127008060720220128-4985-7ygtr2.pdf","download_url":"https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_magnetic_resonance_spectra_and_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724310/mrc.127008060720220128-4985-7ygtr2-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_magnetic_resonance_spectra_and_co.pdf\u0026Expires=1734471439\u0026Signature=Z54H5R8LVKXPG2WN-QCi1nJEC1mynGNGBtgTVRHr827wLeN1RKk~6QnhznsLpL365O1FFtHgwG5PSDscaCupJJj8ucQf7OMvGR0tOOXU4571IlELZRMsTcRmAduWKXzoJk-rXa6deq0FBALCNsszePZ0pROdgb8uwGUxDXQObN08spjA2DromdUZUm1l2~WM-CarDZMXTj6iyHGsxNaPotykcfqAu83Isb3kDAwrh~0k0kNEXd3dT2w9JBDIsxFRcbSyJQkHLVYVxbkJBJcD9PKPMkF93TsdzIagunwxr64a5sxI5GUzgOznBYAadKZAjBaf167bY08pP690DyTCbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. ' This work, See also Ref. 11.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"NkZpMEd3QXhqRUVHeERWeHZhRGVwL1J3Z0g2cVhxVk9ORkxqYlBnQ1FaOD0tLVdtVFdKREpDR3MrSVFCMVJKR1ZOUWc9PQ==--b2b3660e12872df5c1065e7f0d5dd5713f9fd93a"},"attachments":[{"id":79724310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724310/thumbnails/1.jpg","file_name":"mrc.127008060720220128-4985-7ygtr2.pdf","download_url":"https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_magnetic_resonance_spectra_and_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724310/mrc.127008060720220128-4985-7ygtr2-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_magnetic_resonance_spectra_and_co.pdf\u0026Expires=1734471439\u0026Signature=Z54H5R8LVKXPG2WN-QCi1nJEC1mynGNGBtgTVRHr827wLeN1RKk~6QnhznsLpL365O1FFtHgwG5PSDscaCupJJj8ucQf7OMvGR0tOOXU4571IlELZRMsTcRmAduWKXzoJk-rXa6deq0FBALCNsszePZ0pROdgb8uwGUxDXQObN08spjA2DromdUZUm1l2~WM-CarDZMXTj6iyHGsxNaPotykcfqAu83Isb3kDAwrh~0k0kNEXd3dT2w9JBDIsxFRcbSyJQkHLVYVxbkJBJcD9PKPMkF93TsdzIagunwxr64a5sxI5GUzgOznBYAadKZAjBaf167bY08pP690DyTCbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":119259,"name":"Magnetic Resonance","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747742"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity"><img alt="Research paper thumbnail of Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?" class="work-thumbnail" src="https://attachments.academia-assets.com/79724295/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity">Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?</a></div><div class="wp-workCard_item"><span>Complexity</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a te...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob&#39;s concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny&#39;s book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole &quot;malicious&quot; development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny&#39;s suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00202357f429f40d436384cbe56c7422" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724295,&quot;asset_id&quot;:69747742,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747742"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747742"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747742; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747742]").text(description); $(".js-view-count[data-work-id=69747742]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747742; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747742']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747742, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00202357f429f40d436384cbe56c7422" } } $('.js-work-strip[data-work-id=69747742]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747742,"title":"Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob's concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny's book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole \"malicious\" development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny's suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Complexity","grobid_abstract_attachment_id":79724295},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity","translated_internal_url":"","created_at":"2022-01-28T01:24:53.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724295/thumbnails/1.jpg","file_name":"pks_313.pdf","download_url":"https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Untamable_curiosity_innovation_discovery.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724295/pks_313-libre.pdf?1643446404=\u0026response-content-disposition=attachment%3B+filename%3DUntamable_curiosity_innovation_discovery.pdf\u0026Expires=1734379711\u0026Signature=OuuPxNEsPBgp8VuWRTwVj8y2lLKY9Y5e9jjx2yfqOjbKgmqOSODXnA5oQZ0eOLuKnE8RzmF8WLDScjgqDylBcVmuDc9lE6HRlPcDNuYqCdoavzz7HoW4TxTT0ghTOjy68deCjL7S5uuyLPAjpHLvO-Hcg1~aHJ7wwYQcBcUJvJeAO-58mSihyCH149l4~4yDakIL9mKTI863TSBoEact3ukkt9QyIX0KIsQhYBvxem~JCH2AxXpYjir8j0ElQr23U7~byIc2V7gMxHZm~rnZ07vEW23JMZfKKLdLZgUQuvPrYY0pOi12nQrRAh-Hu8OIytlGfSn1PoPuXMLbTmW-Fw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob's concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny's book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole \"malicious\" development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny's suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[{"id":79724295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724295/thumbnails/1.jpg","file_name":"pks_313.pdf","download_url":"https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Untamable_curiosity_innovation_discovery.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724295/pks_313-libre.pdf?1643446404=\u0026response-content-disposition=attachment%3B+filename%3DUntamable_curiosity_innovation_discovery.pdf\u0026Expires=1734379711\u0026Signature=OuuPxNEsPBgp8VuWRTwVj8y2lLKY9Y5e9jjx2yfqOjbKgmqOSODXnA5oQZ0eOLuKnE8RzmF8WLDScjgqDylBcVmuDc9lE6HRlPcDNuYqCdoavzz7HoW4TxTT0ghTOjy68deCjL7S5uuyLPAjpHLvO-Hcg1~aHJ7wwYQcBcUJvJeAO-58mSihyCH149l4~4yDakIL9mKTI863TSBoEact3ukkt9QyIX0KIsQhYBvxem~JCH2AxXpYjir8j0ElQr23U7~byIc2V7gMxHZm~rnZ07vEW23JMZfKKLdLZgUQuvPrYY0pOi12nQrRAh-Hu8OIytlGfSn1PoPuXMLbTmW-Fw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":1135652,"name":"Complex","url":"https://www.academia.edu/Documents/in/Complex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning"><img alt="Research paper thumbnail of Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning" class="work-thumbnail" src="https://attachments.academia-assets.com/79724298/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning">Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning</a></div><div class="wp-workCard_item"><span>Complexity</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, anima...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in &quot;panspermia&quot; and therefore got this part of his concept completely wrong. In summary, Darwin&#39;s insight revealed a principle that operates on the population level and at the same</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4992ee51c43118c313d1da51165040e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724298,&quot;asset_id&quot;:69747740,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747740]").text(description); $(".js-view-count[data-work-id=69747740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4992ee51c43118c313d1da51165040e" } } $('.js-work-strip[data-work-id=69747740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747740,"title":"Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning","translated_title":"","metadata":{"publisher":"Wiley","ai_title_tag":"Evolutionary Optimization: Learning from Molecules to Man","grobid_abstract":"hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in \"panspermia\" and therefore got this part of his concept completely wrong. In summary, Darwin's insight revealed a principle that operates on the population level and at the same","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Complexity","grobid_abstract_attachment_id":79724298},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning","translated_internal_url":"","created_at":"2022-01-28T01:24:53.610-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724298,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724298/thumbnails/1.jpg","file_name":"pks_301.pdf","download_url":"https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_information_and_complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724298/pks_301-libre.pdf?1643446403=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_information_and_complexity.pdf\u0026Expires=1734471439\u0026Signature=QX7578K~XIBeIwxWFbH4bz7agksavA1UBw7COoCMjeiE-R4DldAIfCN5OguTdjyCDAghrt9MwOsh~V3FeefClS5eg2ZhA4IBbsE34bbRbL3cskOF4c~Z5neIDXq8K3ZQ8XWmMtMu~tgN9VL~mW~x~wSpHOeq0Sy0R7Q6InegRPjc1StfIkPbaXBeefaHA4ybpWzriOFPWhANO~pDn4mMoXYcBCUf1X7tGUFOtBukLMGNDUfwNOUGJ5ycI1G0K1qp3O-2pzkcfgfekgf9yxYU5S-kIF3fIstRegr4A2wzddyd3ZVJ~3TvijHIP43p2AHXJFujO4fBE6E153x3Yke7Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in \"panspermia\" and therefore got this part of his concept completely wrong. In summary, Darwin's insight revealed a principle that operates on the population level and at the same","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"eUFUQkdzRFJSMStobDFaT0tNdTdTdlMzQ0dZNm5Wek9tRWhSazVHR3VjQT0tLXRZY0NIK2I0L05JSDV3T0xDQllFQ2c9PQ==--483023c810fbfc427531d8e0dbac445d09fb18c2"},"attachments":[{"id":79724298,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724298/thumbnails/1.jpg","file_name":"pks_301.pdf","download_url":"https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_information_and_complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724298/pks_301-libre.pdf?1643446403=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_information_and_complexity.pdf\u0026Expires=1734471439\u0026Signature=QX7578K~XIBeIwxWFbH4bz7agksavA1UBw7COoCMjeiE-R4DldAIfCN5OguTdjyCDAghrt9MwOsh~V3FeefClS5eg2ZhA4IBbsE34bbRbL3cskOF4c~Z5neIDXq8K3ZQ8XWmMtMu~tgN9VL~mW~x~wSpHOeq0Sy0R7Q6InegRPjc1StfIkPbaXBeefaHA4ybpWzriOFPWhANO~pDn4mMoXYcBCUf1X7tGUFOtBukLMGNDUfwNOUGJ5ycI1G0K1qp3O-2pzkcfgfekgf9yxYU5S-kIF3fIstRegr4A2wzddyd3ZVJ~3TvijHIP43p2AHXJFujO4fBE6E153x3Yke7Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":1135652,"name":"Complex","url":"https://www.academia.edu/Documents/in/Complex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744887"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity"><img alt="Research paper thumbnail of Present Day Biology seen in the Looking Glass of Physics of Complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/79722495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity">Present Day Biology seen in the Looking Glass of Physics of Complexity</a></div><div class="wp-workCard_item"><span>Understanding Complex Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Darwin&#39;s theory of variation and selection in its simplest form is directly applicable to RNA evo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Darwin&#39;s theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05ec0d67a7572614f8263d3ff0f6096d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722495,&quot;asset_id&quot;:69744887,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744887"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744887"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744887; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744887]").text(description); $(".js-view-count[data-work-id=69744887]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744887; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744887']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744887, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05ec0d67a7572614f8263d3ff0f6096d" } } $('.js-work-strip[data-work-id=69744887]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744887,"title":"Present Day Biology seen in the Looking Glass of Physics of Complexity","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.","publication_name":"Understanding Complex Systems","grobid_abstract_attachment_id":79722495},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity","translated_internal_url":"","created_at":"2022-01-28T01:05:43.450-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722495/thumbnails/1.jpg","file_name":"pks_357.pdf","download_url":"https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Present_Day_Biology_seen_in_the_Looking.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722495/pks_357-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DPresent_Day_Biology_seen_in_the_Looking.pdf\u0026Expires=1734471439\u0026Signature=SJbVJowiVYPdNYpb3lPd1t75jIMNMZMM5vHL9K3J49x36zWSoRg0NxzpuL~9UYiNTFlwDmmfPs2EoWyuVD9eQL9w3vhnRVhnkPOQmkPthzBGqBtku0YAqy~Ymb0qvDmqXsQBTTFQfqWJj6sFG7X0ltN4E6f96xUY4z2qD9bnP7-xaRkd1w5i53vg7Dk-M0301wMU1npj34PdbjYBMXQnNGVR6LcqJ~rXYICGggrmStvlDkgjxQapxbNpo1~gI~ZQkTYyM-sF~dkDDBp94h580YsYhDZqy2XVvBdoPVhbTq2kgQCMrqbIHd~J6ArOHFXu96QLCmSQQV1N-zBVxrSezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity","translated_slug":"","page_count":37,"language":"en","content_type":"Work","summary":"Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"NnFJUUVCS01uT3Z2bUxQOVFISmF1L3hJRlFsV1BCL3dkaEIxZFJuYk9IOD0tLXYyM1NvT3I2aFdmSlJTV05VcCtxaHc9PQ==--f7924580fc7246feb05a60cbb08582f7cf39ed40"},"attachments":[{"id":79722495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722495/thumbnails/1.jpg","file_name":"pks_357.pdf","download_url":"https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Present_Day_Biology_seen_in_the_Looking.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722495/pks_357-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DPresent_Day_Biology_seen_in_the_Looking.pdf\u0026Expires=1734471439\u0026Signature=SJbVJowiVYPdNYpb3lPd1t75jIMNMZMM5vHL9K3J49x36zWSoRg0NxzpuL~9UYiNTFlwDmmfPs2EoWyuVD9eQL9w3vhnRVhnkPOQmkPthzBGqBtku0YAqy~Ymb0qvDmqXsQBTTFQfqWJj6sFG7X0ltN4E6f96xUY4z2qD9bnP7-xaRkd1w5i53vg7Dk-M0301wMU1npj34PdbjYBMXQnNGVR6LcqJ~rXYICGggrmStvlDkgjxQapxbNpo1~gI~ZQkTYyM-sF~dkDDBp94h580YsYhDZqy2XVvBdoPVhbTq2kgQCMrqbIHd~J6ArOHFXu96QLCmSQQV1N-zBVxrSezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":17006520,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-34070-3_44"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744885"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution"><img alt="Research paper thumbnail of Beherrschung von Komplexität in der molekularen Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution">Beherrschung von Komplexität in der molekularen Evolution</a></div><div class="wp-workCard_item"><span>Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744885"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744885"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744885; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744885]").text(description); $(".js-view-count[data-work-id=69744885]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744885; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744885']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744885, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744885]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744885,"title":"Beherrschung von Komplexität in der molekularen Evolution","translated_title":"","metadata":{"abstract":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","publisher":"Springer Berlin Heidelberg","publication_name":"Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft"},"translated_abstract":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","internal_url":"https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:43.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Beherrschung_von_Komplexität_in_der_molekularen_Evolution","translated_slug":"","page_count":null,"language":"de","content_type":"Work","summary":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"alNrZ0FEZHlNOHA3cm5QaWZmamZMZHJESHozT0xZWG1PWW8vUWxGc1U3MD0tLS9oTzZ1RFRjT1R4ZUdPcUphdUtoUmc9PQ==--c726f62a901577851bc96d8ea8c0477ce61641e2"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":17006519,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-60063-0_8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity"><img alt="Research paper thumbnail of Evolution in simple systems and the emergence of complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/79722373/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity">Evolution in simple systems and the emergence of complexity</a></div><div class="wp-workCard_item"><span>The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI&#39;05)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d88679331b43087f1d6152aa2225707" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722373,&quot;asset_id&quot;:69744884,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744884]").text(description); $(".js-view-count[data-work-id=69744884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d88679331b43087f1d6152aa2225707" } } $('.js-work-strip[data-work-id=69744884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744884,"title":"Evolution in simple systems and the emergence of complexity","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity","translated_internal_url":"","created_at":"2022-01-28T01:05:42.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722373/thumbnails/1.jpg","file_name":"01517812.pdf","download_url":"https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_in_simple_systems_and_the_emer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722373/01517812-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_in_simple_systems_and_the_emer.pdf\u0026Expires=1734471439\u0026Signature=AdWWYALGq-icFYP3GPaU8snuBGirPb7Ux4WR7tNFqovrpsNG-uHXeCcfMnaKbZdfTR8Ik6K4b~LKSmtU6~oC8Qt-gV2~ZJlsv5sYGYy5CQSp3Z~q9fMBIOEoWCDu1alQM0rrjWl4F1FSv9b16Eox3oC39qLzPRhW5kBRqtpNQicvSM2EQSMyex1cDcaoNDX6VRJqRG-E8jicvgglMa-2OTtcqBSavmisV3wh8lDsdCImMPE3oCsqB632Gw8oSq-DaQiFn0bNGiqreEaAKB3OZzSBffeyYxSQdOQNK~GFIetog2x2HAkDXTnEUcOdWYmdiMQEgR09y9XFBOwFmPlCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_in_simple_systems_and_the_emergence_of_complexity","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"amlxUHUzbFpSelYxdnVLWTJhdjZDb3lkS1ZYUEE4Ymd6T3BVTXh6TU9xYz0tLTJvRGdteDFxZHRjZitSbW92MWNnbWc9PQ==--341359bd16d9ffe9f7b50ff917027bff38d9b22f"},"attachments":[{"id":79722373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722373/thumbnails/1.jpg","file_name":"01517812.pdf","download_url":"https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_in_simple_systems_and_the_emer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722373/01517812-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_in_simple_systems_and_the_emer.pdf\u0026Expires=1734471439\u0026Signature=AdWWYALGq-icFYP3GPaU8snuBGirPb7Ux4WR7tNFqovrpsNG-uHXeCcfMnaKbZdfTR8Ik6K4b~LKSmtU6~oC8Qt-gV2~ZJlsv5sYGYy5CQSp3Z~q9fMBIOEoWCDu1alQM0rrjWl4F1FSv9b16Eox3oC39qLzPRhW5kBRqtpNQicvSM2EQSMyex1cDcaoNDX6VRJqRG-E8jicvgglMa-2OTtcqBSavmisV3wh8lDsdCImMPE3oCsqB632Gw8oSq-DaQiFn0bNGiqreEaAKB3OZzSBffeyYxSQdOQNK~GFIetog2x2HAkDXTnEUcOdWYmdiMQEgR09y9XFBOwFmPlCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":19206,"name":"Molecular Biophysics","url":"https://www.academia.edu/Documents/in/Molecular_Biophysics"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":1633082,"name":"Hamming Distance","url":"https://www.academia.edu/Documents/in/Hamming_Distance"},{"id":2919301,"name":"Nucleotide sequence","url":"https://www.academia.edu/Documents/in/Nucleotide_sequence"},{"id":2925060,"name":"ribonucleic acid","url":"https://www.academia.edu/Documents/in/ribonucleic_acid"}],"urls":[{"id":17006518,"url":"http://xplorestaging.ieee.org/ielx5/10179/32502/01517812.pdf?arnumber=1517812"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744883"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution"><img alt="Research paper thumbnail of Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution">Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution</a></div><div class="wp-workCard_item"><span>Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to opt...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744883"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744883"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744883; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744883]").text(description); $(".js-view-count[data-work-id=69744883]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744883; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744883']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744883, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744883]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744883,"title":"Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution","translated_title":"","metadata":{"abstract":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","publisher":"Springer Berlin Heidelberg","publication_name":"Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers"},"translated_abstract":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","internal_url":"https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:42.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"UHFXekxhK1ZEeWlSVnB0Z2g1QUVVdzZ4a2xGQ3lpOVVGZk90Sy9WdTZPND0tLXdTK1lSNDMxdHBpbGtTUGx4bjFoWVE9PQ==--50378006d1e4674b1067311625826f77050c9b7f"},"attachments":[],"research_interests":[],"urls":[{"id":17006517,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-70795-7_2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution"><img alt="Research paper thumbnail of The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution">The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution</a></div><div class="wp-workCard_item"><span>Lecture Notes in Economics and Mathematical Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen &amp;amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin&amp;#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By &amp;quot;selection&amp;quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin&amp;#39;s &amp;quot;survival of the fittest&amp;quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744882]").text(description); $(".js-view-count[data-work-id=69744882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744882, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744882,"title":"The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution","translated_title":"","metadata":{"abstract":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","publisher":"Springer Berlin Heidelberg","publication_name":"Lecture Notes in Economics and Mathematical Systems"},"translated_abstract":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","internal_url":"https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:41.764-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"Z1FPdW9wZFhQUXUxUnpNemxrK0h0c0NITGtXMWl2NEREY2JPNDl3enhtRT0tLTJneTgxME1Mc2dhL05ETFpmNUptRGc9PQ==--831229dbfa0dcf8cec2a86e4d53ed0d06324d835"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17006516,"url":"http://link.springer.com/content/pdf/10.1007/978-3-662-00545-3_20.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744881"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models"><img alt="Research paper thumbnail of Permanence and Uninvadability for Deterministic Population Models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models">Permanence and Uninvadability for Deterministic Population Models</a></div><div class="wp-workCard_item"><span>Stochastic Phenomena and Chaotic Behaviour in Complex Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of permanence is used to deal with population dynamical systems which are too complica...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744881"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744881"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744881; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744881]").text(description); $(".js-view-count[data-work-id=69744881]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744881; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744881']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744881, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744881]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744881,"title":"Permanence and Uninvadability for Deterministic Population Models","translated_title":"","metadata":{"abstract":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","publisher":"Springer Berlin Heidelberg","publication_name":"Stochastic Phenomena and Chaotic Behaviour in Complex Systems"},"translated_abstract":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","internal_url":"https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models","translated_internal_url":"","created_at":"2022-01-28T01:05:41.438-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Permanence_and_Uninvadability_for_Deterministic_Population_Models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"}],"urls":[{"id":17006515,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-69591-9_16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744879"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution"><img alt="Research paper thumbnail of Potential Functions and Molecular Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution">Potential Functions and Molecular Evolution</a></div><div class="wp-workCard_item"><span>Springer Series in Synergetics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Selection and molecular evolution are often considered as processes on potential surfaces which a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744879"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744879"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744879; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744879]").text(description); $(".js-view-count[data-work-id=69744879]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744879; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744879']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744879, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744879]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744879,"title":"Potential Functions and Molecular Evolution","translated_title":"","metadata":{"abstract":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","publisher":"Springer Berlin Heidelberg","publication_name":"Springer Series in Synergetics"},"translated_abstract":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","internal_url":"https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:41.257-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Potential_Functions_and_Molecular_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"RWVKQUZ0dk5OY3dEcmNUdXhJeTlmeG1oYjRNWCtLbTJUS0JGZjBwRC92ST0tLUdOdE9QOHBLUmVyWm13dE5qM0lLWWc9PQ==--51e3c50e7acfd6a06b28e32fb2369be135248f6c"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":17006513,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-73688-9_16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744878"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation"><img alt="Research paper thumbnail of Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation">Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation</a></div><div class="wp-workCard_item"><span>Physik in unserer Zeit</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744878"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744878"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744878; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744878]").text(description); $(".js-view-count[data-work-id=69744878]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744878; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744878']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744878, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744878]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744878,"title":"Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation","translated_title":"","metadata":{"publisher":"Wiley","publication_name":"Physik in unserer Zeit"},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation","translated_internal_url":"","created_at":"2022-01-28T01:05:41.026-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolution_Von_Molekülen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation","translated_slug":"","page_count":null,"language":"de","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":17006512,"url":"https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fpiuz.19830140302"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution"><img alt="Research paper thumbnail of Polynucleotide Replication and Biological Evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/79722365/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution">Polynucleotide Replication and Biological Evolution</a></div><div class="wp-workCard_item"><span>Synergetics — From Microscopic to Macroscopic Order</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Polynucleotide replication is considered as an example of primitive biological evolution which ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bed2e8b6584f60a693bb6799ae50bd8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722365,&quot;asset_id&quot;:69744877,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744877]").text(description); $(".js-view-count[data-work-id=69744877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744877, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bed2e8b6584f60a693bb6799ae50bd8" } } $('.js-work-strip[data-work-id=69744877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744877,"title":"Polynucleotide Replication and Biological Evolution","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order","publication_name":"Synergetics — From Microscopic to Macroscopic Order","grobid_abstract_attachment_id":79722365},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:40.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722365/thumbnails/1.jpg","file_name":"978-3-642-69540-7_12.pdf","download_url":"https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Polynucleotide_Replication_and_Biologica.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722365/978-3-642-69540-7_12-libre.pdf?1643362057=\u0026response-content-disposition=attachment%3B+filename%3DPolynucleotide_Replication_and_Biologica.pdf\u0026Expires=1734379711\u0026Signature=ZTQtp7F3VE5mhSkfCjQybFM5MQu442daRE2DUWLckH0MX2VFbxGPpp8drk5GHElm-LPQuFNPNKaF7HNp4a2M~5m3bcBbvMWGs4HJEOf5OhuuA54eL~cYR0Mhvptvr4KHoPfLgn7L78rVq6Yu16oXlWxVaa5OYP88KM-bqQ31ELwxOXwnlLgyuKmgFjRVgasLfKxpPMPVuW84~BBy-fhwjCB4qSgTepe32GtyhFw-4b6X0vK08SEZK7W57-sXRMyvCoeuMI4lgKeFvimghzPAZf9TOo4EUWzVi8jz7BHMDAh~-PCJ~f85i9bsyToz6ZnWLFoz9nVC3rSJl3omJbnpSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Polynucleotide_Replication_and_Biological_Evolution","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[{"id":79722365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722365/thumbnails/1.jpg","file_name":"978-3-642-69540-7_12.pdf","download_url":"https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Polynucleotide_Replication_and_Biologica.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722365/978-3-642-69540-7_12-libre.pdf?1643362057=\u0026response-content-disposition=attachment%3B+filename%3DPolynucleotide_Replication_and_Biologica.pdf\u0026Expires=1734379711\u0026Signature=ZTQtp7F3VE5mhSkfCjQybFM5MQu442daRE2DUWLckH0MX2VFbxGPpp8drk5GHElm-LPQuFNPNKaF7HNp4a2M~5m3bcBbvMWGs4HJEOf5OhuuA54eL~cYR0Mhvptvr4KHoPfLgn7L78rVq6Yu16oXlWxVaa5OYP88KM-bqQ31ELwxOXwnlLgyuKmgFjRVgasLfKxpPMPVuW84~BBy-fhwjCB4qSgTepe32GtyhFw-4b6X0vK08SEZK7W57-sXRMyvCoeuMI4lgKeFvimghzPAZf9TOo4EUWzVi8jz7BHMDAh~-PCJ~f85i9bsyToz6ZnWLFoz9nVC3rSJl3omJbnpSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":17006511,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-69540-7_12.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1382256" id="papers"><div class="js-work-strip profile--work_container" data-work-id="104691389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes"><img alt="Research paper thumbnail of RNA folding landscapes and combinatory landscapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes">RNA folding landscapes and combinatory landscapes</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691389]").text(description); $(".js-view-count[data-work-id=104691389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691389, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104691389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691389,"title":"RNA folding landscapes and combinatory landscapes","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691389/RNA_folding_landscapes_and_combinatory_landscapes","translated_internal_url":"","created_at":"2023-07-18T06:26:46.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"RNA_folding_landscapes_and_combinatory_landscapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":1864824,"name":"RNA folding","url":"https://www.academia.edu/Documents/in/RNA_folding"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution"><img alt="Research paper thumbnail of Landscapes in RN Af olding and evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/104352461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution">Landscapes in RN Af olding and evolution</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of spe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="12b6ac13e5fa457900464ada1cd2c13f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352461,&quot;asset_id&quot;:104691388,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691388]").text(description); $(".js-view-count[data-work-id=104691388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "12b6ac13e5fa457900464ada1cd2c13f" } } $('.js-work-strip[data-work-id=104691388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691388,"title":"Landscapes in RN Af olding and evolution","translated_title":"","metadata":{"grobid_abstract":"The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.","grobid_abstract_attachment_id":104352461},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691388/Landscapes_in_RN_Af_olding_and_evolution","translated_internal_url":"","created_at":"2023-07-18T06:26:46.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352461/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352461/GI-Proceedings.71-1-libre.pdf?1689687338=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=QhQP3MfgJ48nHv8TzEdZMYRRKZSRRBKPC-8LTm0ieBlG3aA7awyniB4~hsLgV0kRklHAZhQw36katOHilqmTXlEsjNn3719xbIgxA7nHTAHMaupUcekaViYCK0COgHC~jJ-N5HDmhvB6YCKZCO5~uLF2MitJQBI3mQh0xqLjq7CnTrNPsbaNtHRgvKhOyN0FaQdxwAz4VsnAPVBNIBW3fRvAm1prg70y8peLzqWxsMkRfRaZ722RA2OyJJ2CzLvdJG-L7rtoTPocyroKI-oX1SYMGt-TxqwoxuUDTfcIbiaYXdu8gEkcymO1tJLT-MLnj7p3EIze7mBZmOgLWf78-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Landscapes_in_RN_Af_olding_and_evolution","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The landscape concept is an old metaphor used by Sewall Wright to illustrate the evolution of species in analogy to an adaptive walk on an abstract fitness landscape. Twosuccessful experimental approaches turned the metaphor into ap owerful concept for studies on evolution of molecules and biopolymer folding: (i) In vitro evolution and selection experiments, mainly with populations of RNAmolecules, provides insight into the distribution of fitness values in sequence space, and (ii) conformational energy landscapes, invented and first used for small molecules in quantum chemistry and spectroscopy, were extended by means of empirical parameters to successful computations of energies and free energies of biopolymers. Theoreticalinvestigations of biopolymer landscapes were encouraged by the fast and straightforward computation of RNAsecondary structures and, therefore, most of the currently available exact results deal with RNAfolding or RNAevolution. Newtechniques, which are suitable for studying landscapes on discrete spaces, were developed and successfully applied to RNAand model proteins. The lecture presents an overviewofthe state of the art in calculations of RNAconformational landscapes and reviews RNAoptimization through adaptive walks of populations in sequence space. Finally,weaddress the question whether or not there is astrong correlation between the suboptimal structures of RNAsequences and the structures of their one error neighbors in sequence space.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"OHREcTZNemhuaW5SUFRyZktiMnRZc09aY0d3WDg4aElDRmdmTG00NHBCRT0tLU5NZlI3cWNkQ3ZnQ1dNV2lTU2gvWFE9PQ==--93fd3c5b4a3d242be4f91844fe711e65be68f59c"},"attachments":[{"id":104352461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352461/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352461/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352461/GI-Proceedings.71-1-libre.pdf?1689687338=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=QhQP3MfgJ48nHv8TzEdZMYRRKZSRRBKPC-8LTm0ieBlG3aA7awyniB4~hsLgV0kRklHAZhQw36katOHilqmTXlEsjNn3719xbIgxA7nHTAHMaupUcekaViYCK0COgHC~jJ-N5HDmhvB6YCKZCO5~uLF2MitJQBI3mQh0xqLjq7CnTrNPsbaNtHRgvKhOyN0FaQdxwAz4VsnAPVBNIBW3fRvAm1prg70y8peLzqWxsMkRfRaZ722RA2OyJJ2CzLvdJG-L7rtoTPocyroKI-oX1SYMGt-TxqwoxuUDTfcIbiaYXdu8gEkcymO1tJLT-MLnj7p3EIze7mBZmOgLWf78-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104352460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352460/thumbnails/1.jpg","file_name":"GI-Proceedings.71-1.pdf","download_url":"https://www.academia.edu/attachments/104352460/download_file","bulk_download_file_name":"Landscapes_in_RN_Af_olding_and_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352460/GI-Proceedings.71-1-libre.pdf?1689687339=\u0026response-content-disposition=attachment%3B+filename%3DLandscapes_in_RN_Af_olding_and_evolution.pdf\u0026Expires=1734471438\u0026Signature=DWGh8o1F2-K9tGtg91odFqFqRYs4i9XKqAXLDegjmZ7bKLShicgIZp3BSnGPUH1rqN2F-nv12lWR2hPyQt3k9vLSvn8k6TL5wsqLXxAD1jBJeLfa1HBvVxYRuCFD1sAtbfChe-jDQq3SA9hKcb-ATQjTt8he1giQYRG2aL6Yz-6PlnxVoHUL-zDVC4aq3Joi6D0rjul5JftmxuQ30ufyQQo0j9HPyWWKWnY7O1pofhMbziPZJvS7pQJtoVlmjItSrDgY6NUQ-qWILZzmjjHueAcq9OygI6zJN5SnGMg-GmL0WNfxJ0wfBQN65qVQs8gi0hG232bm-bQoGHwihixVlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":32953761,"url":"http://subs.emis.de/LNI/Proceedings/Proceedings71/GI-Proceedings.71-1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691387"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference"><img alt="Research paper thumbnail of www.rnaworkbench.com: A new program for analyzing RNA interference" class="work-thumbnail" src="https://attachments.academia-assets.com/104352494/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference">www.rnaworkbench.com: A new program for analyzing RNA interference</a></div><div class="wp-workCard_item"><span>Computer Methods and Programs in Biomedicine</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0edf52359267b1ac4d50d89402883f09" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352494,&quot;asset_id&quot;:104691387,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691387"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691387"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691387; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691387]").text(description); $(".js-view-count[data-work-id=104691387]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691387; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691387']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691387, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0edf52359267b1ac4d50d89402883f09" } } $('.js-work-strip[data-work-id=104691387]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691387,"title":"www.rnaworkbench.com: A new program for analyzing RNA interference","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Computer Methods and Programs in Biomedicine"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691387/www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference","translated_internal_url":"","created_at":"2023-07-18T06:26:45.882-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352494/thumbnails/1.jpg","file_name":"pks_331.pdf","download_url":"https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"www_rnaworkbench_com_A_new_program_for_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352494/pks_331-libre.pdf?1689687340=\u0026response-content-disposition=attachment%3B+filename%3Dwww_rnaworkbench_com_A_new_program_for_a.pdf\u0026Expires=1734471438\u0026Signature=YJmRSOQkg4SJKdhdGvMuPa~N8ZwccDzxIwJO9iRjC6D37i4C0K3nJBIWwKD3E2G8vy5XB7TU2kKxvRtQiIomdPT8xwV2kCGALxO5syrz1sM0vckF-qLFH2P8NkOu4JQKa5M-bflqbHNvWOJQDUWLKjdlNt324-EcnvRo~ixxf0FerJAcSNzw8uSpCME0jjIKcWv8xq-wB7fbiURveN8xYrTQu4mQfg7sq8plcnhQ17Fzs3At0gIzQsXVzULs10h-4kH9cgKbbb52z5cRLpmJ7QoAPFahsQgjfR~JIi5p6QBxWFR5d4uTd34arL8pj4p0O4H63MpkzcOaOtAlsj1r5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"www_rnaworkbench_com_A_new_program_for_analyzing_RNA_interference","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"MVFGUXg1RWRaNGluRnR4VjRkQmNpb1JiUElreWV4dDZVWG9oajFaMjFyST0tLVN2SmJ4MlJoZWFuOE5nbWhRdmkrVnc9PQ==--63f59aaecbe017e59d09d70366ea7974b62d29fd"},"attachments":[{"id":104352494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352494/thumbnails/1.jpg","file_name":"pks_331.pdf","download_url":"https://www.academia.edu/attachments/104352494/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"www_rnaworkbench_com_A_new_program_for_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352494/pks_331-libre.pdf?1689687340=\u0026response-content-disposition=attachment%3B+filename%3Dwww_rnaworkbench_com_A_new_program_for_a.pdf\u0026Expires=1734471438\u0026Signature=YJmRSOQkg4SJKdhdGvMuPa~N8ZwccDzxIwJO9iRjC6D37i4C0K3nJBIWwKD3E2G8vy5XB7TU2kKxvRtQiIomdPT8xwV2kCGALxO5syrz1sM0vckF-qLFH2P8NkOu4JQKa5M-bflqbHNvWOJQDUWLKjdlNt324-EcnvRo~ixxf0FerJAcSNzw8uSpCME0jjIKcWv8xq-wB7fbiURveN8xYrTQu4mQfg7sq8plcnhQ17Fzs3At0gIzQsXVzULs10h-4kH9cgKbbb52z5cRLpmJ7QoAPFahsQgjfR~JIi5p6QBxWFR5d4uTd34arL8pj4p0O4H63MpkzcOaOtAlsj1r5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32923,"name":"Gene Silencing","url":"https://www.academia.edu/Documents/in/Gene_Silencing"},{"id":51121,"name":"RNA interference","url":"https://www.academia.edu/Documents/in/RNA_interference"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":337175,"name":"Secondary Structure","url":"https://www.academia.edu/Documents/in/Secondary_Structure"},{"id":502720,"name":"Gene Targeting","url":"https://www.academia.edu/Documents/in/Gene_Targeting"},{"id":786185,"name":"Software Tool","url":"https://www.academia.edu/Documents/in/Software_Tool"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1157475,"name":"Workbench","url":"https://www.academia.edu/Documents/in/Workbench"},{"id":1238671,"name":"RNA Secondary Structure","url":"https://www.academia.edu/Documents/in/RNA_Secondary_Structure"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":3718301,"name":"short interfering RNA","url":"https://www.academia.edu/Documents/in/short_interfering_RNA"}],"urls":[{"id":32953760,"url":"https://api.elsevier.com/content/article/PII:S0169260707003008?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104691308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104691308/Molecular_insights_into_evolution"><img alt="Research paper thumbnail of Molecular insights into evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/104352442/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104691308/Molecular_insights_into_evolution">Molecular insights into evolution</a></div><div class="wp-workCard_item"><span>Artificial Life and Robotics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study ev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="75105f191326e6b34b8079730d0d46d1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:104352442,&quot;asset_id&quot;:104691308,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104691308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104691308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104691308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104691308]").text(description); $(".js-view-count[data-work-id=104691308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104691308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104691308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104691308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "75105f191326e6b34b8079730d0d46d1" } } $('.js-work-strip[data-work-id=104691308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104691308,"title":"Molecular insights into evolution","translated_title":"","metadata":{"publisher":"Springer Nature","ai_title_tag":"Molecular Modeling of RNA Evolution and Optimization Processes","grobid_abstract":"Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Artificial Life and Robotics","grobid_abstract_attachment_id":104352442},"translated_abstract":null,"internal_url":"https://www.academia.edu/104691308/Molecular_insights_into_evolution","translated_internal_url":"","created_at":"2023-07-18T06:24:51.791-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104352442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352442/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_insights_into_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352442/download-libre.pdf?1689687351=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_insights_into_evolution.pdf\u0026Expires=1734471438\u0026Signature=D9N2lDjSVWb8ocqXo7kuS2jEk0Ql3oSh5QGBD5A7Cwl1MYp-yS0mmZVHwld0RRX759OMgKmzFoGI32c1SziAwezgP5GjvkpA8dk~G3ddxlDaioMa-x2qlrDR3UMxC~RnNRLgOQdyMc~8UfrdC~YU0rNsSmYYZYvm6Z3wjDIeY4oOyuuI44zr6FSgTYONXt88b8ftiiwJY78LTAAsLWgB9PKSeBCYO3iWmGJcn-xpUYpNyNDm5NrTAinVCoxqoZAVqPx5J9fuh~2emEjPtzQxwJ~Zxt-xR--fUYgkcst9oxrGn5jfNGr~2gQi56vudpLV0ek8eGHlQ4LWdnrsLGh9Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_insights_into_evolution","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Evolution of ribonucleic acid (RNA) molecules in the test-tube provides a possibility to study evolutionary optimization and adaptation to the environment on time scales accessible to human observers. Diversity of genotypes, however, is prohibitive for a complete experimental recording of the process on the molecular level. The number of RNA sequences and structures is too large to be determined by means of currently available techniques. Computer simulation, in contrary, is able to handle large numbers of individual sequences and has no major problem with data retrieval. However, it can deal only with simpli ed relations between genotypes and phenotypes, being RNA sequences and structures, respectively. Based on a course-grained notion of structure, as represented by RNA secondary structures, for example, a comprehensive model of evolution has been developed that allows to follow optimization at full molecular resolution. This model describes the course of in vitro selection experiments and provides a straightforward explanation for the occurrence of steps observed in evolution. It initiated the development of new mathematical concepts which analyse evolution as a complex process viewed simultaneously in concentration space, sequence space and shape space.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"cHBJcDBBY0pmNHA3RjIyUXRqYjRQT2g4RHJrbDB0dmp2YmFSaHdFZWVrZz0tLWNaZVE4aUVPRTUyclRsaU14SFc5OWc9PQ==--0048c9d63b9be85a3df229e2b146237cce2ef3aa"},"attachments":[{"id":104352442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104352442/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/104352442/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_insights_into_evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104352442/download-libre.pdf?1689687351=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_insights_into_evolution.pdf\u0026Expires=1734471438\u0026Signature=D9N2lDjSVWb8ocqXo7kuS2jEk0Ql3oSh5QGBD5A7Cwl1MYp-yS0mmZVHwld0RRX759OMgKmzFoGI32c1SziAwezgP5GjvkpA8dk~G3ddxlDaioMa-x2qlrDR3UMxC~RnNRLgOQdyMc~8UfrdC~YU0rNsSmYYZYvm6Z3wjDIeY4oOyuuI44zr6FSgTYONXt88b8ftiiwJY78LTAAsLWgB9PKSeBCYO3iWmGJcn-xpUYpNyNDm5NrTAinVCoxqoZAVqPx5J9fuh~2emEjPtzQxwJ~Zxt-xR--fUYgkcst9oxrGn5jfNGr~2gQi56vudpLV0ek8eGHlQ4LWdnrsLGh9Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":4967,"name":"Molecular Evolution","url":"https://www.academia.edu/Documents/in/Molecular_Evolution"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1238671,"name":"RNA Secondary Structure","url":"https://www.academia.edu/Documents/in/RNA_Secondary_Structure"},{"id":2925060,"name":"ribonucleic acid","url":"https://www.academia.edu/Documents/in/ribonucleic_acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100211678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation"><img alt="Research paper thumbnail of Structural parameters affecting the kinetics of RNA hairpin formation" class="work-thumbnail" src="https://attachments.academia-assets.com/101098909/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation">Structural parameters affecting the kinetics of RNA hairpin formation</a></div><div class="wp-workCard_item"><span>Nucleic Acids Research</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program &#39;Kinfold&#39;. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc01ca25a4dc11c8e248adf0a5e5c68f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:101098909,&quot;asset_id&quot;:100211678,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100211678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100211678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100211678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100211678]").text(description); $(".js-view-count[data-work-id=100211678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100211678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100211678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100211678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc01ca25a4dc11c8e248adf0a5e5c68f" } } $('.js-work-strip[data-work-id=100211678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100211678,"title":"Structural parameters affecting the kinetics of RNA hairpin formation","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","grobid_abstract":"There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program 'Kinfold'. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Nucleic Acids Research","grobid_abstract_attachment_id":101098909},"translated_abstract":null,"internal_url":"https://www.academia.edu/100211678/Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation","translated_internal_url":"","created_at":"2023-04-15T02:46:32.473-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101098909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098909/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098909/gkl445-libre.pdf?1681552693=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=A~631Zkt1~ab7P4jRt0I5L3JOM82sVpxceRkTiqE7Bouutejj-rwmG6l1qp~WQppQP8xkrIcySbyubelcfMT7pXyxwRhzX4OZ5WQZxB2fgwz9JK3Yhfb3SSPCsx73noyZJWIqopOhIOeKmBB8LusmHRJa~I8t1dL3ZYa67u9IPurPQJngO5eUegrxax2uNETA00HOZ9NyOvQZgU-pSIb2-bRsZ59x6C5C6SHaPPi0HI2ZXbxeLja-om9Q2lSaBsfzKElbHx-sWcq54enqLOc~gOhM7FXRgumBP1SnxKlXmFXMIvoJ2TZTls2xBbEiN5yE8gdZPCqLLKXyUZvhXvGFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_parameters_affecting_the_kinetics_of_RNA_hairpin_formation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine-to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program 'Kinfold'. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem-loop structures.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"R2dvazdoVHpHNzVNK1ltWCtONlY4djJvOVkzOWdqa1BxbXdnSmpoQWJIWT0tLWVvbVhJalZ6M0RZcEFBNEs2bmtmQVE9PQ==--2d098dcfd05cc35408ac77a021ce7c9e8ab9f350"},"attachments":[{"id":101098909,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098909/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098909/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098909/gkl445-libre.pdf?1681552693=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=A~631Zkt1~ab7P4jRt0I5L3JOM82sVpxceRkTiqE7Bouutejj-rwmG6l1qp~WQppQP8xkrIcySbyubelcfMT7pXyxwRhzX4OZ5WQZxB2fgwz9JK3Yhfb3SSPCsx73noyZJWIqopOhIOeKmBB8LusmHRJa~I8t1dL3ZYa67u9IPurPQJngO5eUegrxax2uNETA00HOZ9NyOvQZgU-pSIb2-bRsZ59x6C5C6SHaPPi0HI2ZXbxeLja-om9Q2lSaBsfzKElbHx-sWcq54enqLOc~gOhM7FXRgumBP1SnxKlXmFXMIvoJ2TZTls2xBbEiN5yE8gdZPCqLLKXyUZvhXvGFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101098908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101098908/thumbnails/1.jpg","file_name":"gkl445.pdf","download_url":"https://www.academia.edu/attachments/101098908/download_file","bulk_download_file_name":"Structural_parameters_affecting_the_kine.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101098908/gkl445-libre.pdf?1681552692=\u0026response-content-disposition=attachment%3B+filename%3DStructural_parameters_affecting_the_kine.pdf\u0026Expires=1734471438\u0026Signature=f3tyQjQiDDICsY1e-TnSyu8MBjVEyQ3txI0MoBGoB3fuf2tGd6moQHrwwvNaGnl07RaA3jKkV6kKnElTkGLZ8SJwynx~7dNboVu5ND--gHCzMuJBFKmpujVjdzmUY6tfz~CQ4EQao6Eu1mKYtpnmuam9EhKbRZEZg7Sq-7q3ojpwqQ4g25LGeR52zaQ1kzFLcH7NKcmH~DCtsBSmgFp0GAgJhIO0s7eBC7TqAF4lrK4IZ4bs41W6FSavquUSCmUMAv2tTzAGnyZxD2ICx60STH1GQI6t6b2mWYMmdQvXb1~df0IxENRbkx~PUMHC3LdOT~MCQRNDTCPQPn2QUpOyXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":3701,"name":"RNA","url":"https://www.academia.edu/Documents/in/RNA"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":178906,"name":"Nucleic Acids","url":"https://www.academia.edu/Documents/in/Nucleic_Acids"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1362652,"name":"Nucleic Acid Conformation","url":"https://www.academia.edu/Documents/in/Nucleic_Acid_Conformation"},{"id":2234942,"name":"Ribonucleases","url":"https://www.academia.edu/Documents/in/Ribonucleases"}],"urls":[{"id":30637084,"url":"http://academic.oup.com/nar/article-pdf/34/12/3568/7036416/gkl445.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747753"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid"><img alt="Research paper thumbnail of Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid" class="work-thumbnail" src="https://attachments.academia-assets.com/79724303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid">Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid</a></div><div class="wp-workCard_item"><span>The Journal of Physical Chemistry</span><span>, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-h...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH &lt;&lt; 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH &gt;&gt; 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH &lt;&lt; 7 and protolysis reactions at pH &gt;&gt; 7.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b88f11bbbe6dc97e5d301cd315ad68cb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724303,&quot;asset_id&quot;:69747753,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747753"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747753"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747753; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747753]").text(description); $(".js-view-count[data-work-id=69747753]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747753; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747753']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747753, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b88f11bbbe6dc97e5d301cd315ad68cb" } } $('.js-work-strip[data-work-id=69747753]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747753,"title":"Proton-transfer reactions of dibasic acids in aqueous solution: 3-hydroxypyridine and anthranilic acid","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH \u003c\u003c 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH \u003e\u003e 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH \u003c\u003c 7 and protolysis reactions at pH \u003e\u003e 7.","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"The Journal of Physical Chemistry","grobid_abstract_attachment_id":79724303},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747753/Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid","translated_internal_url":"","created_at":"2022-01-28T01:24:55.001-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724303/thumbnails/1.jpg","file_name":"2395627.pdf","download_url":"https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_transfer_reactions_of_dibasic_aci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724303/2395627-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_transfer_reactions_of_dibasic_aci.pdf\u0026Expires=1734471438\u0026Signature=A-bRA1-3j9ROK1htbDrj0V2ljiwfr4Ji9yMUphZ1cjduYILSm31NbwAa2EczGeHdTJ5jF-Avyc~wI5AH78a15bV4mAsz2dZwRrWOQw505s4VTWsrxmoYZIvYbTUZMyKGbIX~R5H2yIUmCGqa1lvQwrcqXUCBPaBRjQRjK-C5uI8M0gGWrDsqO3R8-UnWf6xGerWuY4D4BzeE~U8W5MRBUWL2X4yLR18Jur~9XBPmwurSD8DbhawF0BDJli8t-bApZOiQKmghHO7eddq5yUWah2y8VYQtUAI60SG0jHanmusLmlrS0o~2wYG1uwEoJHF9lX5TjVHdJoPH6x7wdGalqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proton_transfer_reactions_of_dibasic_acids_in_aqueous_solution_3_hydroxypyridine_and_anthranilic_acid","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Reaction enthalpies and reaction volumes of proton-transfer reactions in aqueous solutions of 3-hydroxypyridine have been estimated by measuring UV-visible absorption spectra at different temperatures, pressures, and pH values. Using these results together with published thermodynamic and kinetic data, we have simulated the relaxation spectrum of the proton-transfer reactions of 3-hydroxypyridine in aqueous solution. The first process identified in our normal mode analysis is the relaxation of the well-known tautomeric equilibrium between the neutral form and the zwitterion, AN = A,. The second relaxation process is the overall reaction A+ + A-= XAN + (2-x)Az, with x being roughly equal to unity. The amplitude of this relaxation is significantly smaller than that of the first. The third relaxation process consists of two branches. The first branch is the overall reaction A+ = XAN + (1x)A2 + H+, x-0.5, at pH \u003c\u003c 7, and the second branch is the overall reaction XAN + (1x)AZ + OH-= A-+ H20, x-0.5, at pH \u003e\u003e 7. The fourth relaxation process is more complicated than the others. It consists mainly of hydrolysis reactions at pH \u003c\u003c 7 and protolysis reactions at pH \u003e\u003e 7.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"MjhRZ0VqV1AyTzVIQXY3UGc3eTNmM1U1TDl1N0NnVFZua2hwQnYreGZ2VT0tLTl5ckd2VlJEME8wd0dkWEhscytHcmc9PQ==--bbb5d350c36faf7768e701df53c8b15372facb4c"},"attachments":[{"id":79724303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724303/thumbnails/1.jpg","file_name":"2395627.pdf","download_url":"https://www.academia.edu/attachments/79724303/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_transfer_reactions_of_dibasic_aci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724303/2395627-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_transfer_reactions_of_dibasic_aci.pdf\u0026Expires=1734471438\u0026Signature=A-bRA1-3j9ROK1htbDrj0V2ljiwfr4Ji9yMUphZ1cjduYILSm31NbwAa2EczGeHdTJ5jF-Avyc~wI5AH78a15bV4mAsz2dZwRrWOQw505s4VTWsrxmoYZIvYbTUZMyKGbIX~R5H2yIUmCGqa1lvQwrcqXUCBPaBRjQRjK-C5uI8M0gGWrDsqO3R8-UnWf6xGerWuY4D4BzeE~U8W5MRBUWL2X4yLR18Jur~9XBPmwurSD8DbhawF0BDJli8t-bApZOiQKmghHO7eddq5yUWah2y8VYQtUAI60SG0jHanmusLmlrS0o~2wYG1uwEoJHF9lX5TjVHdJoPH6x7wdGalqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":148640,"name":"Proton Transfer","url":"https://www.academia.edu/Documents/in/Proton_Transfer"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example"><img alt="Research paper thumbnail of Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example">Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747750]").text(description); $(".js-view-count[data-work-id=69747750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747750, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69747750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747750,"title":"Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/69747750/Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example","translated_internal_url":"","created_at":"2022-01-28T01:24:54.647-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Modeling_Conformational_Flexibility_and_Evolution_of_Structure_RNA_as_an_Example","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747748"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands"><img alt="Research paper thumbnail of The interaction of alkali metal cations with oxygen-containing ligands" class="work-thumbnail" src="https://attachments.academia-assets.com/79724306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands">The interaction of alkali metal cations with oxygen-containing ligands</a></div><div class="wp-workCard_item"><span>Theoretica Chimica Acta</span><span>, 1975</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO&#39;s.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1535177390ef8fa5965a8740acb81349" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724306,&quot;asset_id&quot;:69747748,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747748"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747748"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747748; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747748]").text(description); $(".js-view-count[data-work-id=69747748]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747748; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747748']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747748, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1535177390ef8fa5965a8740acb81349" } } $('.js-work-strip[data-work-id=69747748]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747748,"title":"The interaction of alkali metal cations with oxygen-containing ligands","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO's.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"Theoretica Chimica Acta","grobid_abstract_attachment_id":79724306},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747748/The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands","translated_internal_url":"","created_at":"2022-01-28T01:24:54.263-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724306/thumbnails/1.jpg","file_name":"bf0066833820220128-29450-1nb44pu.pdf","download_url":"https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interaction_of_alkali_metal_cations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724306/bf0066833820220128-29450-1nb44pu-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_of_alkali_metal_cations.pdf\u0026Expires=1734471439\u0026Signature=BtgKwejM2rVk-vj0buecRdi2VelUdq~ZJ7PDL895sckZ5yqQ0hlyQQ7EznIRIS4Fef6uD0YcPzuNOiABUNbP71d8~n6NCJj8-QbMZfWV-l1RsBmTujObgG5mOmm5QB5GDXND8WJJf-82gv2AU25fFsBtNMaaGDddSqPoDyrpqB4NhxIbxkpz8O~P4X1JECC7RO9uJUa4CqwqrXVg6sXxf1pBTpPw5e420tvGym316iK5s~VUTQwz-9f6O3aP6XQ7w916fpYGO06LdtUpAXNpzhxashHAvbbODYk0aBmbPHcwfTk0zjXGR6zaUcYs-qqG-hun1zxSu1GYE15t-VN~pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_interaction_of_alkali_metal_cations_with_oxygen_containing_ligands","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Ab initio SCF calculations on the interaction of Li + cation with H20 and HzCO using two basis sets are presented. Partitioning of SCF energies of interaction into Coulomb-, exchange-and delocalization energies has been performed. Coulomb-and delocalization energies are compared with classical electrostatic and polarization energies. A detailed analysis of the calculated wave functions demonstrates that in the complexes investigated here, charge transfer is of minor importance only. Polarization of the molecules in the strong inhomogeneous field of the cation leads to complicated electron density rearrangements which can be interpreted most easily in terms of polarization of individual localized MO's.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"R1VQbGtDUXplNTdNbWgzdDBlZTZLZnRYYlYreExqbmdsWDh5WWJiWnc5ST0tLVF2NFFFK3cwQnB1WFliZG9ZUXFFUXc9PQ==--81429c6b5da329ddce241abd1488026067274755"},"attachments":[{"id":79724306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724306/thumbnails/1.jpg","file_name":"bf0066833820220128-29450-1nb44pu.pdf","download_url":"https://www.academia.edu/attachments/79724306/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interaction_of_alkali_metal_cations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724306/bf0066833820220128-29450-1nb44pu-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_of_alkali_metal_cations.pdf\u0026Expires=1734471439\u0026Signature=BtgKwejM2rVk-vj0buecRdi2VelUdq~ZJ7PDL895sckZ5yqQ0hlyQQ7EznIRIS4Fef6uD0YcPzuNOiABUNbP71d8~n6NCJj8-QbMZfWV-l1RsBmTujObgG5mOmm5QB5GDXND8WJJf-82gv2AU25fFsBtNMaaGDddSqPoDyrpqB4NhxIbxkpz8O~P4X1JECC7RO9uJUa4CqwqrXVg6sXxf1pBTpPw5e420tvGym316iK5s~VUTQwz-9f6O3aP6XQ7w916fpYGO06LdtUpAXNpzhxashHAvbbODYk0aBmbPHcwfTk0zjXGR6zaUcYs-qqG-hun1zxSu1GYE15t-VN~pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":144609,"name":"Alkali Metals","url":"https://www.academia.edu/Documents/in/Alkali_Metals"},{"id":214560,"name":"Electron Density","url":"https://www.academia.edu/Documents/in/Electron_Density"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":800918,"name":"Charge transfer","url":"https://www.academia.edu/Documents/in/Charge_transfer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds"><img alt="Research paper thumbnail of Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds" class="work-thumbnail" src="https://attachments.academia-assets.com/79724310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds">Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds</a></div><div class="wp-workCard_item"><span>Organic Magnetic Resonance</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. &#39; This work, See also Ref. 11.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ab85f30c157619e765af82ff468927c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724310,&quot;asset_id&quot;:69747744,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747744]").text(description); $(".js-view-count[data-work-id=69747744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747744, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ab85f30c157619e765af82ff468927c" } } $('.js-work-strip[data-work-id=69747744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747744,"title":"Proton magnetic resonance spectra and conformation of some trisubstituted cyclopropane compounds","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. ' This work, See also Ref. 11.","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Organic Magnetic Resonance","grobid_abstract_attachment_id":79724310},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747744/Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds","translated_internal_url":"","created_at":"2022-01-28T01:24:53.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724310/thumbnails/1.jpg","file_name":"mrc.127008060720220128-4985-7ygtr2.pdf","download_url":"https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_magnetic_resonance_spectra_and_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724310/mrc.127008060720220128-4985-7ygtr2-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_magnetic_resonance_spectra_and_co.pdf\u0026Expires=1734471439\u0026Signature=Z54H5R8LVKXPG2WN-QCi1nJEC1mynGNGBtgTVRHr827wLeN1RKk~6QnhznsLpL365O1FFtHgwG5PSDscaCupJJj8ucQf7OMvGR0tOOXU4571IlELZRMsTcRmAduWKXzoJk-rXa6deq0FBALCNsszePZ0pROdgb8uwGUxDXQObN08spjA2DromdUZUm1l2~WM-CarDZMXTj6iyHGsxNaPotykcfqAu83Isb3kDAwrh~0k0kNEXd3dT2w9JBDIsxFRcbSyJQkHLVYVxbkJBJcD9PKPMkF93TsdzIagunwxr64a5sxI5GUzgOznBYAadKZAjBaf167bY08pP690DyTCbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proton_magnetic_resonance_spectra_and_conformation_of_some_trisubstituted_cyclopropane_compounds","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The n.m.r. spectra of some 1,2,2-trisubstituted cyclopropanes are reported. Coupling constants and chemical shifts of the cyclopropane protons and their dependence on substituent effects are discussed. Conformations of benzylcyclopropane derivatives are investigated by long range magnetic shielding. The concentration dependence of the n.m.r. spectra of some 1,3-diols is explained by inter-and intramolecular hydrogen bonding. ' This work, See also Ref. 11.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"NkZpMEd3QXhqRUVHeERWeHZhRGVwL1J3Z0g2cVhxVk9ORkxqYlBnQ1FaOD0tLVdtVFdKREpDR3MrSVFCMVJKR1ZOUWc9PQ==--b2b3660e12872df5c1065e7f0d5dd5713f9fd93a"},"attachments":[{"id":79724310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724310/thumbnails/1.jpg","file_name":"mrc.127008060720220128-4985-7ygtr2.pdf","download_url":"https://www.academia.edu/attachments/79724310/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proton_magnetic_resonance_spectra_and_co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724310/mrc.127008060720220128-4985-7ygtr2-libre.pdf?1643446405=\u0026response-content-disposition=attachment%3B+filename%3DProton_magnetic_resonance_spectra_and_co.pdf\u0026Expires=1734471439\u0026Signature=Z54H5R8LVKXPG2WN-QCi1nJEC1mynGNGBtgTVRHr827wLeN1RKk~6QnhznsLpL365O1FFtHgwG5PSDscaCupJJj8ucQf7OMvGR0tOOXU4571IlELZRMsTcRmAduWKXzoJk-rXa6deq0FBALCNsszePZ0pROdgb8uwGUxDXQObN08spjA2DromdUZUm1l2~WM-CarDZMXTj6iyHGsxNaPotykcfqAu83Isb3kDAwrh~0k0kNEXd3dT2w9JBDIsxFRcbSyJQkHLVYVxbkJBJcD9PKPMkF93TsdzIagunwxr64a5sxI5GUzgOznBYAadKZAjBaf167bY08pP690DyTCbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":119259,"name":"Magnetic Resonance","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747742"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity"><img alt="Research paper thumbnail of Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?" class="work-thumbnail" src="https://attachments.academia-assets.com/79724295/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity">Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?</a></div><div class="wp-workCard_item"><span>Complexity</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a te...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob&#39;s concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny&#39;s book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole &quot;malicious&quot; development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny&#39;s suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00202357f429f40d436384cbe56c7422" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724295,&quot;asset_id&quot;:69747742,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747742"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747742"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747742; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747742]").text(description); $(".js-view-count[data-work-id=69747742]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747742; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747742']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747742, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00202357f429f40d436384cbe56c7422" } } $('.js-work-strip[data-work-id=69747742]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747742,"title":"Untamable curiosity, innovation, discovery, and bricolage: Are we doomed to progress to ever increasing complexity?","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob's concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny's book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole \"malicious\" development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny's suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Complexity","grobid_abstract_attachment_id":79724295},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747742/Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity","translated_internal_url":"","created_at":"2022-01-28T01:24:53.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724295/thumbnails/1.jpg","file_name":"pks_313.pdf","download_url":"https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Untamable_curiosity_innovation_discovery.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724295/pks_313-libre.pdf?1643446404=\u0026response-content-disposition=attachment%3B+filename%3DUntamable_curiosity_innovation_discovery.pdf\u0026Expires=1734379711\u0026Signature=OuuPxNEsPBgp8VuWRTwVj8y2lLKY9Y5e9jjx2yfqOjbKgmqOSODXnA5oQZ0eOLuKnE8RzmF8WLDScjgqDylBcVmuDc9lE6HRlPcDNuYqCdoavzz7HoW4TxTT0ghTOjy68deCjL7S5uuyLPAjpHLvO-Hcg1~aHJ7wwYQcBcUJvJeAO-58mSihyCH149l4~4yDakIL9mKTI863TSBoEact3ukkt9QyIX0KIsQhYBvxem~JCH2AxXpYjir8j0ElQr23U7~byIc2V7gMxHZm~rnZ07vEW23JMZfKKLdLZgUQuvPrYY0pOi12nQrRAh-Hu8OIytlGfSn1PoPuXMLbTmW-Fw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Untamable_curiosity_innovation_discovery_and_bricolage_Are_we_doomed_to_progress_to_ever_increasing_complexity","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"A trapper in the eighteenth century needed a box of matches, a gun and a knife, and perhaps, a tent and a canoe or a dogsled to survive in the wilderness. Today, almost anyone of us would feel uncomfortable without an additional GPS, a mobile phone with Internet access, a medicine chest with at least aspirin, an antibiotic as well as a serum against snake bite, and a lot more to master the same situation as the backwoods contemporary of George Washington. Only a short time in the span of human history has passed since the glorious days of trapper life, and no one would seriously doubt that complexity of life has increased enormously since then. This essay is an attempt to combine messages from three sources: (i) a book on scientific innovation, society, and the future written by Helga Nowotny [1], (ii) an article on a model for the evolution of technology by Brian Arthur and Wolfgang Polak [2], and (iii) François Jacob's concept evolution and tinkering [3] that has been recently revisited, for example, by Denis Duboule and Adam Wilkins [4]. Apart from a marvelous collection of many interesting details, Nowotny's book draws an ambiguous image of the future that, with a little modification, could be cast into the following sentences: Scientists and science as a whole are driven by curiosity, which is seen as an insatiable driving force leading to innovation. Success and progress in science are measured in terms of innovation, and cumulative innovations drive the Western World and, because of globalization, the World as a whole, into a fragile future full of risks and dangers. Fears of the future derived from the observed fast changes make societies ambivalent to scientific progress, torn between hopeful acceptance and vigorous rejection of novelties. Although one feels the unspoken desire to stop the whole \"malicious\" development, Nowotny accepts the innovation process as inevitable and pleads for a new synthesis of science, technology, and humanities. Adding to Nowotny's suggestions, we might argue that curiosity has been genetically inherited from our primate and mammal predecessors and like innovation or progress it is a priori neither good nor bad. In other words, curiosity as such is an evolutionarily selected trait and not a moral category. 1","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[{"id":79724295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724295/thumbnails/1.jpg","file_name":"pks_313.pdf","download_url":"https://www.academia.edu/attachments/79724295/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Untamable_curiosity_innovation_discovery.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724295/pks_313-libre.pdf?1643446404=\u0026response-content-disposition=attachment%3B+filename%3DUntamable_curiosity_innovation_discovery.pdf\u0026Expires=1734379711\u0026Signature=OuuPxNEsPBgp8VuWRTwVj8y2lLKY9Y5e9jjx2yfqOjbKgmqOSODXnA5oQZ0eOLuKnE8RzmF8WLDScjgqDylBcVmuDc9lE6HRlPcDNuYqCdoavzz7HoW4TxTT0ghTOjy68deCjL7S5uuyLPAjpHLvO-Hcg1~aHJ7wwYQcBcUJvJeAO-58mSihyCH149l4~4yDakIL9mKTI863TSBoEact3ukkt9QyIX0KIsQhYBvxem~JCH2AxXpYjir8j0ElQr23U7~byIc2V7gMxHZm~rnZ07vEW23JMZfKKLdLZgUQuvPrYY0pOi12nQrRAh-Hu8OIytlGfSn1PoPuXMLbTmW-Fw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":1135652,"name":"Complex","url":"https://www.academia.edu/Documents/in/Complex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69747740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning"><img alt="Research paper thumbnail of Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning" class="work-thumbnail" src="https://attachments.academia-assets.com/79724298/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning">Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning</a></div><div class="wp-workCard_item"><span>Complexity</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, anima...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in &quot;panspermia&quot; and therefore got this part of his concept completely wrong. In summary, Darwin&#39;s insight revealed a principle that operates on the population level and at the same</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4992ee51c43118c313d1da51165040e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79724298,&quot;asset_id&quot;:69747740,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69747740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69747740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69747740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69747740]").text(description); $(".js-view-count[data-work-id=69747740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69747740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69747740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69747740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4992ee51c43118c313d1da51165040e" } } $('.js-work-strip[data-work-id=69747740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69747740,"title":"Generation of information and complexity: Different forms of learning and innovation: A simple mechanism of learning","translated_title":"","metadata":{"publisher":"Wiley","ai_title_tag":"Evolutionary Optimization: Learning from Molecules to Man","grobid_abstract":"hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in \"panspermia\" and therefore got this part of his concept completely wrong. In summary, Darwin's insight revealed a principle that operates on the population level and at the same","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Complexity","grobid_abstract_attachment_id":79724298},"translated_abstract":null,"internal_url":"https://www.academia.edu/69747740/Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning","translated_internal_url":"","created_at":"2022-01-28T01:24:53.610-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79724298,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724298/thumbnails/1.jpg","file_name":"pks_301.pdf","download_url":"https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_information_and_complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724298/pks_301-libre.pdf?1643446403=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_information_and_complexity.pdf\u0026Expires=1734471439\u0026Signature=QX7578K~XIBeIwxWFbH4bz7agksavA1UBw7COoCMjeiE-R4DldAIfCN5OguTdjyCDAghrt9MwOsh~V3FeefClS5eg2ZhA4IBbsE34bbRbL3cskOF4c~Z5neIDXq8K3ZQ8XWmMtMu~tgN9VL~mW~x~wSpHOeq0Sy0R7Q6InegRPjc1StfIkPbaXBeefaHA4ybpWzriOFPWhANO~pDn4mMoXYcBCUf1X7tGUFOtBukLMGNDUfwNOUGJ5ycI1G0K1qp3O-2pzkcfgfekgf9yxYU5S-kIF3fIstRegr4A2wzddyd3ZVJ~3TvijHIP43p2AHXJFujO4fBE6E153x3Yke7Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generation_of_information_and_complexity_Different_forms_of_learning_and_innovation_A_simple_mechanism_of_learning","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"hat is the difference in evolutionary optimization of molecules, viruses, bacteria, plants, animals, and man? There are thousands of features in which the elements of the optimization process differ, in particular, the degree of complexity increases tremendously from molecules to man. The Darwinian principle of multiplication with inheritance, variation, and selection, however, applies to all of them. This is true despite the fact that the mechanistic details can be very different: RNA molecules and viruses are replicated by a complementary mechanism-the plus strand is the template for the synthesis of the minus strand and vice versa-bacteria and all other organisms duplicate their genetic material by means of direct double strand replication, and finally the higher species undergo a complex process of development from the fertilized egg to the adult organism. Inheritance of the genetic information for a repertoire of properties is an indispensable prerequisite and it exists in all the cases mentioned above. Needless to say, inheritance of properties in molecules is ridiculously simple compared to man. Variation is again different for the different systems and may be the result of simple mutation as in asexual species or a combination of recombination and mutation for sexual reproduction [1]. 1 From the point of mechanistic details molecules and man have indeed very little in common. Selection, eventually, is again in action on the level of populations correcting the overshooting of growth by adjustment to the carrying capacity of the ecosystem. The power of the Darwinian principle is its insensitivity to changes in mechanistic details. Otherwise, Darwin would have failed miserably in case the mechanism of inheritance mattered, because he believed most of his life in \"panspermia\" and therefore got this part of his concept completely wrong. In summary, Darwin's insight revealed a principle that operates on the population level and at the same","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"eUFUQkdzRFJSMStobDFaT0tNdTdTdlMzQ0dZNm5Wek9tRWhSazVHR3VjQT0tLXRZY0NIK2I0L05JSDV3T0xDQllFQ2c9PQ==--483023c810fbfc427531d8e0dbac445d09fb18c2"},"attachments":[{"id":79724298,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79724298/thumbnails/1.jpg","file_name":"pks_301.pdf","download_url":"https://www.academia.edu/attachments/79724298/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_information_and_complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79724298/pks_301-libre.pdf?1643446403=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_information_and_complexity.pdf\u0026Expires=1734471439\u0026Signature=QX7578K~XIBeIwxWFbH4bz7agksavA1UBw7COoCMjeiE-R4DldAIfCN5OguTdjyCDAghrt9MwOsh~V3FeefClS5eg2ZhA4IBbsE34bbRbL3cskOF4c~Z5neIDXq8K3ZQ8XWmMtMu~tgN9VL~mW~x~wSpHOeq0Sy0R7Q6InegRPjc1StfIkPbaXBeefaHA4ybpWzriOFPWhANO~pDn4mMoXYcBCUf1X7tGUFOtBukLMGNDUfwNOUGJ5ycI1G0K1qp3O-2pzkcfgfekgf9yxYU5S-kIF3fIstRegr4A2wzddyd3ZVJ~3TvijHIP43p2AHXJFujO4fBE6E153x3Yke7Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":8367,"name":"Complexity","url":"https://www.academia.edu/Documents/in/Complexity"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":1135652,"name":"Complex","url":"https://www.academia.edu/Documents/in/Complex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744887"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity"><img alt="Research paper thumbnail of Present Day Biology seen in the Looking Glass of Physics of Complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/79722495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity">Present Day Biology seen in the Looking Glass of Physics of Complexity</a></div><div class="wp-workCard_item"><span>Understanding Complex Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Darwin&#39;s theory of variation and selection in its simplest form is directly applicable to RNA evo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Darwin&#39;s theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05ec0d67a7572614f8263d3ff0f6096d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722495,&quot;asset_id&quot;:69744887,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744887"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744887"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744887; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744887]").text(description); $(".js-view-count[data-work-id=69744887]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744887; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744887']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744887, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05ec0d67a7572614f8263d3ff0f6096d" } } $('.js-work-strip[data-work-id=69744887]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744887,"title":"Present Day Biology seen in the Looking Glass of Physics of Complexity","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.","publication_name":"Understanding Complex Systems","grobid_abstract_attachment_id":79722495},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744887/Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity","translated_internal_url":"","created_at":"2022-01-28T01:05:43.450-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722495/thumbnails/1.jpg","file_name":"pks_357.pdf","download_url":"https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Present_Day_Biology_seen_in_the_Looking.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722495/pks_357-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DPresent_Day_Biology_seen_in_the_Looking.pdf\u0026Expires=1734471439\u0026Signature=SJbVJowiVYPdNYpb3lPd1t75jIMNMZMM5vHL9K3J49x36zWSoRg0NxzpuL~9UYiNTFlwDmmfPs2EoWyuVD9eQL9w3vhnRVhnkPOQmkPthzBGqBtku0YAqy~Ymb0qvDmqXsQBTTFQfqWJj6sFG7X0ltN4E6f96xUY4z2qD9bnP7-xaRkd1w5i53vg7Dk-M0301wMU1npj34PdbjYBMXQnNGVR6LcqJ~rXYICGggrmStvlDkgjxQapxbNpo1~gI~ZQkTYyM-sF~dkDDBp94h580YsYhDZqy2XVvBdoPVhbTq2kgQCMrqbIHd~J6ArOHFXu96QLCmSQQV1N-zBVxrSezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Present_Day_Biology_seen_in_the_Looking_Glass_of_Physics_of_Complexity","translated_slug":"","page_count":37,"language":"en","content_type":"Work","summary":"Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept-originally introduced by Sewall Wright-and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"NnFJUUVCS01uT3Z2bUxQOVFISmF1L3hJRlFsV1BCL3dkaEIxZFJuYk9IOD0tLXYyM1NvT3I2aFdmSlJTV05VcCtxaHc9PQ==--f7924580fc7246feb05a60cbb08582f7cf39ed40"},"attachments":[{"id":79722495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722495/thumbnails/1.jpg","file_name":"pks_357.pdf","download_url":"https://www.academia.edu/attachments/79722495/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Present_Day_Biology_seen_in_the_Looking.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722495/pks_357-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DPresent_Day_Biology_seen_in_the_Looking.pdf\u0026Expires=1734471439\u0026Signature=SJbVJowiVYPdNYpb3lPd1t75jIMNMZMM5vHL9K3J49x36zWSoRg0NxzpuL~9UYiNTFlwDmmfPs2EoWyuVD9eQL9w3vhnRVhnkPOQmkPthzBGqBtku0YAqy~Ymb0qvDmqXsQBTTFQfqWJj6sFG7X0ltN4E6f96xUY4z2qD9bnP7-xaRkd1w5i53vg7Dk-M0301wMU1npj34PdbjYBMXQnNGVR6LcqJ~rXYICGggrmStvlDkgjxQapxbNpo1~gI~ZQkTYyM-sF~dkDDBp94h580YsYhDZqy2XVvBdoPVhbTq2kgQCMrqbIHd~J6ArOHFXu96QLCmSQQV1N-zBVxrSezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":17006520,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-34070-3_44"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744885"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution"><img alt="Research paper thumbnail of Beherrschung von Komplexität in der molekularen Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution">Beherrschung von Komplexität in der molekularen Evolution</a></div><div class="wp-workCard_item"><span>Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744885"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744885"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744885; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744885]").text(description); $(".js-view-count[data-work-id=69744885]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744885; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744885']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744885, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744885]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744885,"title":"Beherrschung von Komplexität in der molekularen Evolution","translated_title":"","metadata":{"abstract":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","publisher":"Springer Berlin Heidelberg","publication_name":"Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft"},"translated_abstract":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","internal_url":"https://www.academia.edu/69744885/Beherrschung_von_Komplexit%C3%A4t_in_der_molekularen_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:43.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Beherrschung_von_Komplexität_in_der_molekularen_Evolution","translated_slug":"","page_count":null,"language":"de","content_type":"Work","summary":"Die Evolution von Rna-MolekuLen in vitro wird als Kletterprozes auf einer Fitness-Landschaft visualisiert, die aus molekularen Eigenschaften und Funktionen abgeleitet werden kann. Der Optimierungsprozes ist von einem hohen Redundanzgrad in den Abbildungen von den Polynukleotidsequenzen auf die MolekuLstrukturen GepraGt: Es gibt viel mehr Sequenzen als Strukturen und die Sequenzen, die in dieselbe Struktur falten, sind (beinahe) zufallig im Sequenzraum verteilt. Zwei Konsequenzen dieser Redundanz sind fur die Evolution wichtig: die GestaltraumuBerdeckung durch kleine verbundene Gebiete im Sequenzraum und die Existenz ausgedehnter neutraler Netzwerke. Beide Resultate erklaren zusammen, wie die Natur durch Versuch und Irrtum schnell und effizient Losungen fur komplexe Optimierungsprobleme finden kann, wahrend die Anzahl moglicher Genotypen jede Vorstellung ubersteigt. In Gegenwart neutraler Netzwerke vermeiden Populationen, in evolutionaren Fallen gefangen zu werden, und sie erreichen schlieslich das globale Optimum durch eine zusammengesetzte Dynamik von adaptiven Wanderungen und zufalliger Drift. Aus mathematischer Analyse abgeleitete Resultate werden mit den Resultaten von Computersimulationen und verfugbaren experimentellen Daten konfrontiert.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"alNrZ0FEZHlNOHA3cm5QaWZmamZMZHJESHozT0xZWG1PWW8vUWxGc1U3MD0tLS9oTzZ1RFRjT1R4ZUdPcUphdUtoUmc9PQ==--c726f62a901577851bc96d8ea8c0477ce61641e2"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":17006519,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-60063-0_8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity"><img alt="Research paper thumbnail of Evolution in simple systems and the emergence of complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/79722373/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity">Evolution in simple systems and the emergence of complexity</a></div><div class="wp-workCard_item"><span>The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI&#39;05)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d88679331b43087f1d6152aa2225707" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722373,&quot;asset_id&quot;:69744884,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744884]").text(description); $(".js-view-count[data-work-id=69744884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d88679331b43087f1d6152aa2225707" } } $('.js-work-strip[data-work-id=69744884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744884,"title":"Evolution in simple systems and the emergence of complexity","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744884/Evolution_in_simple_systems_and_the_emergence_of_complexity","translated_internal_url":"","created_at":"2022-01-28T01:05:42.674-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722373/thumbnails/1.jpg","file_name":"01517812.pdf","download_url":"https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_in_simple_systems_and_the_emer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722373/01517812-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_in_simple_systems_and_the_emer.pdf\u0026Expires=1734471439\u0026Signature=AdWWYALGq-icFYP3GPaU8snuBGirPb7Ux4WR7tNFqovrpsNG-uHXeCcfMnaKbZdfTR8Ik6K4b~LKSmtU6~oC8Qt-gV2~ZJlsv5sYGYy5CQSp3Z~q9fMBIOEoWCDu1alQM0rrjWl4F1FSv9b16Eox3oC39qLzPRhW5kBRqtpNQicvSM2EQSMyex1cDcaoNDX6VRJqRG-E8jicvgglMa-2OTtcqBSavmisV3wh8lDsdCImMPE3oCsqB632Gw8oSq-DaQiFn0bNGiqreEaAKB3OZzSBffeyYxSQdOQNK~GFIetog2x2HAkDXTnEUcOdWYmdiMQEgR09y9XFBOwFmPlCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_in_simple_systems_and_the_emergence_of_complexity","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"amlxUHUzbFpSelYxdnVLWTJhdjZDb3lkS1ZYUEE4Ymd6T3BVTXh6TU9xYz0tLTJvRGdteDFxZHRjZitSbW92MWNnbWc9PQ==--341359bd16d9ffe9f7b50ff917027bff38d9b22f"},"attachments":[{"id":79722373,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722373/thumbnails/1.jpg","file_name":"01517812.pdf","download_url":"https://www.academia.edu/attachments/79722373/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_in_simple_systems_and_the_emer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722373/01517812-libre.pdf?1643362041=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_in_simple_systems_and_the_emer.pdf\u0026Expires=1734471439\u0026Signature=AdWWYALGq-icFYP3GPaU8snuBGirPb7Ux4WR7tNFqovrpsNG-uHXeCcfMnaKbZdfTR8Ik6K4b~LKSmtU6~oC8Qt-gV2~ZJlsv5sYGYy5CQSp3Z~q9fMBIOEoWCDu1alQM0rrjWl4F1FSv9b16Eox3oC39qLzPRhW5kBRqtpNQicvSM2EQSMyex1cDcaoNDX6VRJqRG-E8jicvgglMa-2OTtcqBSavmisV3wh8lDsdCImMPE3oCsqB632Gw8oSq-DaQiFn0bNGiqreEaAKB3OZzSBffeyYxSQdOQNK~GFIetog2x2HAkDXTnEUcOdWYmdiMQEgR09y9XFBOwFmPlCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":19206,"name":"Molecular Biophysics","url":"https://www.academia.edu/Documents/in/Molecular_Biophysics"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":1633082,"name":"Hamming Distance","url":"https://www.academia.edu/Documents/in/Hamming_Distance"},{"id":2919301,"name":"Nucleotide sequence","url":"https://www.academia.edu/Documents/in/Nucleotide_sequence"},{"id":2925060,"name":"ribonucleic acid","url":"https://www.academia.edu/Documents/in/ribonucleic_acid"}],"urls":[{"id":17006518,"url":"http://xplorestaging.ieee.org/ielx5/10179/32502/01517812.pdf?arnumber=1517812"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744883"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution"><img alt="Research paper thumbnail of Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution">Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution</a></div><div class="wp-workCard_item"><span>Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to opt...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744883"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744883"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744883; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744883]").text(description); $(".js-view-count[data-work-id=69744883]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744883; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744883']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744883, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744883]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744883,"title":"Effects of Finite Population Size and Other Stochastic Phenomena in Molecular Evolution","translated_title":"","metadata":{"abstract":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","publisher":"Springer Berlin Heidelberg","publication_name":"Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers"},"translated_abstract":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","internal_url":"https://www.academia.edu/69744883/Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:42.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_Finite_Population_Size_and_Other_Stochastic_Phenomena_in_Molecular_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Polynucleotide replication is visualized as a stochastic process. Adaptive selection leads to optimization of mean replication rates in ensembles of molecules. Due to the intrinsic dynamics of replication, populations become uniform also in the absence of differences in rate constants. We called this process “random selection” in order to distinguish from adaption. Random selection leads to random drift particularly in small populations. Sequence information is stable in replicating systems only if the process of replication is sufficiently accurate. We apply the theory of multitype branching processes and derive a stochastic error threshold for replication. In addition, this theory allows to study accumulation of fluctuations. The total population size may fluctuate strongly in an ensemble of replicating molecules, but relative frequencies of individual molecular species approach a “law of large numbers” in sufficiently large populations.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"UHFXekxhK1ZEeWlSVnB0Z2g1QUVVdzZ4a2xGQ3lpOVVGZk90Sy9WdTZPND0tLXdTK1lSNDMxdHBpbGtTUGx4bjFoWVE9PQ==--50378006d1e4674b1067311625826f77050c9b7f"},"attachments":[],"research_interests":[],"urls":[{"id":17006517,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-70795-7_2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution"><img alt="Research paper thumbnail of The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution">The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution</a></div><div class="wp-workCard_item"><span>Lecture Notes in Economics and Mathematical Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen &amp;amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin&amp;#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By &amp;quot;selection&amp;quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin&amp;#39;s &amp;quot;survival of the fittest&amp;quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744882]").text(description); $(".js-view-count[data-work-id=69744882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744882, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744882,"title":"The Interface between Chemistry and Biology — Laws Determining Regularities in Early Evolution","translated_title":"","metadata":{"abstract":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","publisher":"Springer Berlin Heidelberg","publication_name":"Lecture Notes in Economics and Mathematical Systems"},"translated_abstract":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","internal_url":"https://www.academia.edu/69744882/The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:41.764-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Interface_between_Chemistry_and_Biology_Laws_Determining_Regularities_in_Early_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"More than ten years ago Eigen (1971) started to develop a dynamical model of molecular self-organization which is based mainly on chemical ki­ netics and the presently known properties of biopolymers. Later on, this theoretical concept was extended (Eigen \u0026amp; Schuster, 1979,1982) and supported by experimental studies (Biebricher et al.,1981, 1982; Biebricher, 1983: for a popular review see Eigen et al.,1981). The model starts out from the simplest prerequisites: polynucleotides are present and activated monomers are available in sufficient amounts. Several principles of self-organization can be derived by straightforward analysis. We just enumerate them here. 1.1. Selection in systems of replicating molecules The first principle is a consequence of self-enhancement through repli­ cation. Selection in the sense of Darwin\u0026#39;s principle takes place in a solution of polynucleotides provided the environmental conditions sustain efficient replication. By \u0026quot;selection\u0026quot; we mean here that an originally heterogeneous mixture of different sequences becomes homogeneous after long enough time. (Homogeneous refers here to the distribution of sequences and characterizes systems in which exclusively one sequence is present). We distinguish two limiting cases, adaptive and random selection. (1) Adaptive selection takes place in a system of polynucleotides with dif­ ferent kinetic constants. It represents a process modelling Darwin\u0026#39;s \u0026quot;survival of the fittest\u0026quot; at the molecular level. Fitness is a measure of the number of descendants of a given sequence which enter the next replication cycle. In the molecular system fitness can be expressed in terms of rate constants (we neglect mutations for the moment and do not consider complementary replication explicitly). For a given sequence I. the fitness is simply","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"Z1FPdW9wZFhQUXUxUnpNemxrK0h0c0NITGtXMWl2NEREY2JPNDl3enhtRT0tLTJneTgxME1Mc2dhL05ETFpmNUptRGc9PQ==--831229dbfa0dcf8cec2a86e4d53ed0d06324d835"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17006516,"url":"http://link.springer.com/content/pdf/10.1007/978-3-662-00545-3_20.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744881"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models"><img alt="Research paper thumbnail of Permanence and Uninvadability for Deterministic Population Models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models">Permanence and Uninvadability for Deterministic Population Models</a></div><div class="wp-workCard_item"><span>Stochastic Phenomena and Chaotic Behaviour in Complex Systems</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of permanence is used to deal with population dynamical systems which are too complica...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744881"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744881"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744881; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744881]").text(description); $(".js-view-count[data-work-id=69744881]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744881; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744881']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744881, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744881]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744881,"title":"Permanence and Uninvadability for Deterministic Population Models","translated_title":"","metadata":{"abstract":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","publisher":"Springer Berlin Heidelberg","publication_name":"Stochastic Phenomena and Chaotic Behaviour in Complex Systems"},"translated_abstract":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","internal_url":"https://www.academia.edu/69744881/Permanence_and_Uninvadability_for_Deterministic_Population_Models","translated_internal_url":"","created_at":"2022-01-28T01:05:41.438-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Permanence_and_Uninvadability_for_Deterministic_Population_Models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"}],"urls":[{"id":17006515,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-69591-9_16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744879"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution"><img alt="Research paper thumbnail of Potential Functions and Molecular Evolution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution">Potential Functions and Molecular Evolution</a></div><div class="wp-workCard_item"><span>Springer Series in Synergetics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Selection and molecular evolution are often considered as processes on potential surfaces which a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744879"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744879"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744879; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744879]").text(description); $(".js-view-count[data-work-id=69744879]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744879; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744879']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744879, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744879]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744879,"title":"Potential Functions and Molecular Evolution","translated_title":"","metadata":{"abstract":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","publisher":"Springer Berlin Heidelberg","publication_name":"Springer Series in Synergetics"},"translated_abstract":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","internal_url":"https://www.academia.edu/69744879/Potential_Functions_and_Molecular_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:41.257-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Potential_Functions_and_Molecular_Evolution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster","email":"RWVKQUZ0dk5OY3dEcmNUdXhJeTlmeG1oYjRNWCtLbTJUS0JGZjBwRC92ST0tLUdOdE9QOHBLUmVyWm13dE5qM0lLWWc9PQ==--51e3c50e7acfd6a06b28e32fb2369be135248f6c"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":17006513,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-73688-9_16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744878"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation"><img alt="Research paper thumbnail of Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation">Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation</a></div><div class="wp-workCard_item"><span>Physik in unserer Zeit</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744878"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744878"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744878; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744878]").text(description); $(".js-view-count[data-work-id=69744878]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744878; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744878']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744878, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=69744878]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744878,"title":"Evolution—Von Molekülen zu Gesellschaften: Teil I. Dynamik der Polynukleotidreplikation","translated_title":"","metadata":{"publisher":"Wiley","publication_name":"Physik in unserer Zeit"},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744878/Evolution_Von_Molek%C3%BClen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation","translated_internal_url":"","created_at":"2022-01-28T01:05:41.026-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolution_Von_Molekülen_zu_Gesellschaften_Teil_I_Dynamik_der_Polynukleotidreplikation","translated_slug":"","page_count":null,"language":"de","content_type":"Work","summary":null,"owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":17006512,"url":"https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fpiuz.19830140302"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69744877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution"><img alt="Research paper thumbnail of Polynucleotide Replication and Biological Evolution" class="work-thumbnail" src="https://attachments.academia-assets.com/79722365/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution">Polynucleotide Replication and Biological Evolution</a></div><div class="wp-workCard_item"><span>Synergetics — From Microscopic to Macroscopic Order</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Polynucleotide replication is considered as an example of primitive biological evolution which ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bed2e8b6584f60a693bb6799ae50bd8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79722365,&quot;asset_id&quot;:69744877,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69744877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69744877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69744877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69744877]").text(description); $(".js-view-count[data-work-id=69744877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69744877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69744877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69744877, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bed2e8b6584f60a693bb6799ae50bd8" } } $('.js-work-strip[data-work-id=69744877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69744877,"title":"Polynucleotide Replication and Biological Evolution","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","grobid_abstract":"Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order","publication_name":"Synergetics — From Microscopic to Macroscopic Order","grobid_abstract_attachment_id":79722365},"translated_abstract":null,"internal_url":"https://www.academia.edu/69744877/Polynucleotide_Replication_and_Biological_Evolution","translated_internal_url":"","created_at":"2022-01-28T01:05:40.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":11507755,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79722365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722365/thumbnails/1.jpg","file_name":"978-3-642-69540-7_12.pdf","download_url":"https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Polynucleotide_Replication_and_Biologica.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722365/978-3-642-69540-7_12-libre.pdf?1643362057=\u0026response-content-disposition=attachment%3B+filename%3DPolynucleotide_Replication_and_Biologica.pdf\u0026Expires=1734379711\u0026Signature=ZTQtp7F3VE5mhSkfCjQybFM5MQu442daRE2DUWLckH0MX2VFbxGPpp8drk5GHElm-LPQuFNPNKaF7HNp4a2M~5m3bcBbvMWGs4HJEOf5OhuuA54eL~cYR0Mhvptvr4KHoPfLgn7L78rVq6Yu16oXlWxVaa5OYP88KM-bqQ31ELwxOXwnlLgyuKmgFjRVgasLfKxpPMPVuW84~BBy-fhwjCB4qSgTepe32GtyhFw-4b6X0vK08SEZK7W57-sXRMyvCoeuMI4lgKeFvimghzPAZf9TOo4EUWzVi8jz7BHMDAh~-PCJ~f85i9bsyToz6ZnWLFoz9nVC3rSJl3omJbnpSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Polynucleotide_Replication_and_Biological_Evolution","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Polynucleotide replication is considered as an example of primitive biological evolution which can be tested experimentally. We distinguish deterministic selection which is based on differences in the rate constants of replication and degradation and neutral selection, a stochastic phenomenon in finite populations which is a result of the nature of the replication process only. Depending on the structural E. Frehland (ed.), Synergetics-From Microscopic to Macroscopic Order","owner":{"id":11507755,"first_name":"Peter","middle_initials":"","last_name":"Schuster","page_name":"PSchuster","domain_name":"independent","created_at":"2014-04-25T18:24:34.245-07:00","display_name":"Peter Schuster","url":"https://independent.academia.edu/PSchuster"},"attachments":[{"id":79722365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79722365/thumbnails/1.jpg","file_name":"978-3-642-69540-7_12.pdf","download_url":"https://www.academia.edu/attachments/79722365/download_file?st=MTczNDQ4ODQwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Polynucleotide_Replication_and_Biologica.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79722365/978-3-642-69540-7_12-libre.pdf?1643362057=\u0026response-content-disposition=attachment%3B+filename%3DPolynucleotide_Replication_and_Biologica.pdf\u0026Expires=1734379711\u0026Signature=ZTQtp7F3VE5mhSkfCjQybFM5MQu442daRE2DUWLckH0MX2VFbxGPpp8drk5GHElm-LPQuFNPNKaF7HNp4a2M~5m3bcBbvMWGs4HJEOf5OhuuA54eL~cYR0Mhvptvr4KHoPfLgn7L78rVq6Yu16oXlWxVaa5OYP88KM-bqQ31ELwxOXwnlLgyuKmgFjRVgasLfKxpPMPVuW84~BBy-fhwjCB4qSgTepe32GtyhFw-4b6X0vK08SEZK7W57-sXRMyvCoeuMI4lgKeFvimghzPAZf9TOo4EUWzVi8jz7BHMDAh~-PCJ~f85i9bsyToz6ZnWLFoz9nVC3rSJl3omJbnpSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"}],"urls":[{"id":17006511,"url":"http://link.springer.com/content/pdf/10.1007/978-3-642-69540-7_12.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "b9f4437a0d2c666d797bd3734a22e57c6c9ed33c3d5c598bb658ba83380737ca", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="+hg5o0yXtr9wke9aiijcscGmqDtZmubMTEldFlZxwFZ89AwBB2lI/dN6WTKS96PjHvBpqeiYmuaxanr6obc4dw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/PSchuster" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="8f7TVpB6oGG27erJEktyHNRvHEN7hANu8SOy6JWTqB53Eub024ReIxUGXKEKlA1OCznd0cqGf0QMAJUEYlVQPw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10