CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–17 of 17 results for author: <span class="mathjax">Nazarenko, S V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Nazarenko%2C+S+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Nazarenko, S V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Nazarenko%2C+S+V&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Nazarenko, S V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01930">arXiv:2305.01930</a> <span> [<a href="https://arxiv.org/pdf/2305.01930">pdf</a>, <a href="https://arxiv.org/ps/2305.01930">ps</a>, <a href="https://arxiv.org/format/2305.01930">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.423">10.1017/jfm.2024.423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlocal gravity wave turbulence in presence of condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Korotkevich%2C+A+O">A. O. Korotkevich</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Y. Pan</a>, <a href="/search/physics?searchtype=author&query=Shatah%2C+J">J. Shatah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01930v1-abstract-short" style="display: inline;"> We develop a theory of turbulence of weak random gravity waves on surface of deep water in which the main nonlinear process at high-frequency part of the spectrum is a nonlocal interaction with a strong low-frequency component. The latter component, which we call ``condensate", may appear in the system due to, e.g., the finite size effects which lead to an energy stagnation at waves whose waveleng… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01930v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01930v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01930v1-abstract-full" style="display: none;"> We develop a theory of turbulence of weak random gravity waves on surface of deep water in which the main nonlinear process at high-frequency part of the spectrum is a nonlocal interaction with a strong low-frequency component. The latter component, which we call ``condensate", may appear in the system due to, e.g., the finite size effects which lead to an energy stagnation at waves whose wavelength is comparable to the size of the retaining flume. Our theory assumes the form of a linear spectral diffusion equation. We find a scaling solution of this equation and propose it as a possible explanation of recent numerical results for the gravity wave spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01930v1-abstract-full').style.display = 'none'; document.getElementById('2305.01930v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Fluid Mechanics, vol. 992, p. A1 ( 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13365">arXiv:2112.13365</a> <span> [<a href="https://arxiv.org/pdf/2112.13365">pdf</a>, <a href="https://arxiv.org/format/2112.13365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/ac89bc">10.1088/1751-8121/ac89bc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipole dynamics in the point vortex model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lydon%2C+K">Karl Lydon</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Laurie%2C+J">Jason Laurie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13365v2-abstract-short" style="display: inline;"> At the very heart of turbulent fluid flows are many interacting vortices that produce a chaotic and seemingly unpredictable velocity field. Gaining new insight into the complex motion of vortices and how they can lead to topological changes of flows is of fundamental importance in our strive to understand turbulence. Our aim is form an understanding of vortex interactions by investigating the dyna… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13365v2-abstract-full').style.display = 'inline'; document.getElementById('2112.13365v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13365v2-abstract-full" style="display: none;"> At the very heart of turbulent fluid flows are many interacting vortices that produce a chaotic and seemingly unpredictable velocity field. Gaining new insight into the complex motion of vortices and how they can lead to topological changes of flows is of fundamental importance in our strive to understand turbulence. Our aim is form an understanding of vortex interactions by investigating the dynamics of point vortex dipoles interacting with a hierarchy of vortex structures using the idealized point vortex model. Motivated by its close analogy to the dynamics of quantum vortices in Bose-Einstein condensates, we present new results on dipole size evolution, stability properties of vortex clusters, and the role of dipole-cluster interactions in turbulent mixing in 2D quantum turbulence. In particular, we discover a mechanism of rapid cluster disintegration analogous to a time-reversed self-similar vortex collapse solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13365v2-abstract-full').style.display = 'none'; document.getElementById('2112.13365v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages (40 pages + appendix), 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 55 385702 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14591">arXiv:2104.14591</a> <span> [<a href="https://arxiv.org/pdf/2104.14591">pdf</a>, <a href="https://arxiv.org/format/2104.14591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2021.105903">10.1016/j.cnsns.2021.105903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical analysis of a self-similar turbulent flow in Bose--Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Semisalov%2C+B+V">B. V. Semisalov</a>, <a href="/search/physics?searchtype=author&query=Grebenev%2C+V+N">V. N. Grebenev</a>, <a href="/search/physics?searchtype=author&query=Medvedev%2C+S+B">S. B. Medvedev</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14591v1-abstract-short" style="display: inline;"> We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum $n(蠅)$ at the zero frequency $蠅$. The self-similar solution is of the second ki… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14591v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14591v1-abstract-full" style="display: none;"> We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum $n(蠅)$ at the zero frequency $蠅$. The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at $蠅=0$ and a power-law asymptotic $n(蠅) \to 蠅^{-x}$ at $蠅\to \infty \;\; x\in \mathbb{R}^+$. Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value $x^*$ of the exponent $x$ for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy $\approx 4.7 \%$ which is realized for $x^* \approx 1.22$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14591v1-abstract-full').style.display = 'none'; document.getElementById('2104.14591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04613">arXiv:2003.04613</a> <span> [<a href="https://arxiv.org/pdf/2003.04613">pdf</a>, <a href="https://arxiv.org/ps/2003.04613">ps</a>, <a href="https://arxiv.org/format/2003.04613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Steady states in dual-cascade wave turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Grebenev%2C+V+N">V. N. Grebenev</a>, <a href="/search/physics?searchtype=author&query=Medvedev%2C+S+B">S. B. Medvedev</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Semisalov%2C+B+V">B. V. Semisalov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04613v1-abstract-short" style="display: inline;"> We study stationary solutions in the differential kinetic equation, which was introduced in for description of a local dual cascade wave turbulence. We give a full classification of single-cascade states in which there is a finite flux of only one conserved quantity. Analysis of the steady-state spectrum is based on a phase-space analysis of orbits of the underlying dynamical system. The orbits of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04613v1-abstract-full').style.display = 'inline'; document.getElementById('2003.04613v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04613v1-abstract-full" style="display: none;"> We study stationary solutions in the differential kinetic equation, which was introduced in for description of a local dual cascade wave turbulence. We give a full classification of single-cascade states in which there is a finite flux of only one conserved quantity. Analysis of the steady-state spectrum is based on a phase-space analysis of orbits of the underlying dynamical system. The orbits of the dynamical system demonstrate the blow-up behaviour which corresponds to a "sharp front" where the spectrum vanishes at a finite wave number. The roles of the KZ and thermodynamic scaling as intermediate asymptotic, as well as of singular solutions, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04613v1-abstract-full').style.display = 'none'; document.getElementById('2003.04613v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07623">arXiv:1809.07623</a> <span> [<a href="https://arxiv.org/pdf/1809.07623">pdf</a>, <a href="https://arxiv.org/format/1809.07623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physd.2019.01.007">10.1016/j.physd.2019.01.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear Diffusion Models for Gravitational Wave Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Galtier%2C+S">S茅bastien Galtier</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Buchlin%2C+%C3%89">脡ric Buchlin</a>, <a href="/search/physics?searchtype=author&query=Thalabard%2C+S">Simon Thalabard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07623v1-abstract-short" style="display: inline;"> A fourth-order and a second-order nonlinear diffusion models in spectral space are proposed to describe gravitational wave turbulence in the approximation of strongly local interactions. We show analytically that the model equations satisfy the conservation of energy and wave action, and reproduce the power law solutions previously derived from the kinetic equations with a direct cascade of energy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07623v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07623v1-abstract-full" style="display: none;"> A fourth-order and a second-order nonlinear diffusion models in spectral space are proposed to describe gravitational wave turbulence in the approximation of strongly local interactions. We show analytically that the model equations satisfy the conservation of energy and wave action, and reproduce the power law solutions previously derived from the kinetic equations with a direct cascade of energy and an explosive inverse cascade of wave action. In the latter case, we show numerically by computing the second-order diffusion model that the non-stationary regime exhibits an anomalous scaling which is understood as a self-similar solution of the second kind with a front propagation following the law $k_f \sim (t_*-t)^{3.296}$, with $t<t_*$. These results are relevant to better understand the dynamics of the primordial universe where potent sources of gravitational waves may produce space-time turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07623v1-abstract-full').style.display = 'none'; document.getElementById('1809.07623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01311">arXiv:1612.01311</a> <span> [<a href="https://arxiv.org/pdf/1612.01311">pdf</a>, <a href="https://arxiv.org/ps/1612.01311">ps</a>, <a href="https://arxiv.org/format/1612.01311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/50/3/035501">10.1088/1751-8121/50/3/035501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Grebenev%2C+V+N">V. N. Grebenev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01311v1-abstract-short" style="display: inline;"> The last stage of evolution toward the stationary Kolmogorov spectrum of hydrodynamic turbulence is studied using the Leith model. This evolution is shown to manifest itself as a reflection wave in the wavenumber space propagating from the largest toward the smallest wavenumbers, and is described by a self-similar solution of a new (third) kind. This stage follows the previously studied stage of a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01311v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01311v1-abstract-full" style="display: none;"> The last stage of evolution toward the stationary Kolmogorov spectrum of hydrodynamic turbulence is studied using the Leith model. This evolution is shown to manifest itself as a reflection wave in the wavenumber space propagating from the largest toward the smallest wavenumbers, and is described by a self-similar solution of a new (third) kind. This stage follows the previously studied stage of an initial explosive propagation of the spectral front from the smallest to the largest wavenumbers reaching arbitrarily large wavenumbers in a finite time, and which was described by a self-similar solution of the second kind. Nonstationary solutions corresponding to"warm cascades" characterised by a thermalised spectrum at large wavenumbers are also obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01311v1-abstract-full').style.display = 'none'; document.getElementById('1612.01311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 106560.R1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07806">arXiv:1507.07806</a> <span> [<a href="https://arxiv.org/pdf/1507.07806">pdf</a>, <a href="https://arxiv.org/format/1507.07806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.92.053019">10.1103/PhysRevE.92.053019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Derivation of the Biot-Savart equation from the Nonlinear Schr枚dinger equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bustamante%2C+M+D">Miguel D. Bustamante</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07806v2-abstract-short" style="display: inline;"> We present a systematic derivation of the Biot-Savart equation from the Nonlinear Schr枚dinger equation, in the limit when the curvature radius of vortex lines and the inter-vortex distance are much greater than the vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian expressed in terms of vortex lines,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07806v2-abstract-full').style.display = 'inline'; document.getElementById('1507.07806v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07806v2-abstract-full" style="display: none;"> We present a systematic derivation of the Biot-Savart equation from the Nonlinear Schr枚dinger equation, in the limit when the curvature radius of vortex lines and the inter-vortex distance are much greater than the vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian expressed in terms of vortex lines, $$ H= \frac{魏^2}{8 蟺}\int_{|{\bf s}-{\bf s}'|>尉_*} \frac{d{\bf s} \cdot d {\bf s}'}{|{\bf s}-{\bf s}'|} \,,$$ with cut-off length $尉_* \approx 0.3416293 /\sqrt{蟻_0},$ where $蟻_0$ is the background condensate density far from the vortex lines and $魏$ is the quantum of circulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07806v2-abstract-full').style.display = 'none'; document.getElementById('1507.07806v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 92, 053019 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.7349">arXiv:1310.7349</a> <span> [<a href="https://arxiv.org/pdf/1310.7349">pdf</a>, <a href="https://arxiv.org/ps/1310.7349">ps</a>, <a href="https://arxiv.org/format/1310.7349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2014.465">10.1017/jfm.2014.465 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wave turbulence in the two-layer ocean model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Harper%2C+K+L">Katie L Harper</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Medvedev%2C+S+B">Sergey B Medvedev</a>, <a href="/search/physics?searchtype=author&query=Connaughton%2C+C">Colm Connaughton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.7349v2-abstract-short" style="display: inline;"> This paper looks at the two-layer ocean model from a wave turbulence perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It turns out that energy is transferred via local triad interactions from the large-scale baroclinic modes to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.7349v2-abstract-full').style.display = 'inline'; document.getElementById('1310.7349v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.7349v2-abstract-full" style="display: none;"> This paper looks at the two-layer ocean model from a wave turbulence perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It turns out that energy is transferred via local triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale. From there it is then transferred to the large-scale barotropic modes via a nonlocal inverse transfer. Using scale separation a sys- tem of coupled equations were obtained for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. It is found that this transfer is mostly anisotropic and mostly to the zonal component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.7349v2-abstract-full').style.display = 'none'; document.getElementById('1310.7349v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5495">arXiv:1212.5495</a> <span> [<a href="https://arxiv.org/pdf/1212.5495">pdf</a>, <a href="https://arxiv.org/ps/1212.5495">ps</a>, <a href="https://arxiv.org/format/1212.5495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4802187">10.1063/1.4802187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zonal flow generation and its feedback on turbulence production in drift wave turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pushkarev%2C+A+V">Andrey V. Pushkarev</a>, <a href="/search/physics?searchtype=author&query=Bos%2C+W+J+T">Wouter J. T. Bos</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5495v1-abstract-short" style="display: inline;"> Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5495v1-abstract-full').style.display = 'inline'; document.getElementById('1212.5495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5495v1-abstract-full" style="display: none;"> Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5495v1-abstract-full').style.display = 'none'; document.getElementById('1212.5495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Plasmas 20, 042304 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.3156">arXiv:1212.3156</a> <span> [<a href="https://arxiv.org/pdf/1212.3156">pdf</a>, <a href="https://arxiv.org/format/1212.3156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8113/46/24/245501">10.1088/1751-8113/46/24/245501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadratic invariants for discrete clusters of weakly interacting waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Harper%2C+K+L">Katie L. Harper</a>, <a href="/search/physics?searchtype=author&query=Bustamante%2C+M+D">Miguel D. Bustamante</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.3156v2-abstract-short" style="display: inline;"> We consider discrete clusters of quasi-resonant triads arising from a Hamiltonian three-wave equation. A cluster consists of N modes forming a total of M connected triads. We investigate the problem of constructing a functionally independent set of quadratic constants of motion. We show that this problem is equivalent to an underlying basic linear problem, consisting of finding the null space of a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3156v2-abstract-full').style.display = 'inline'; document.getElementById('1212.3156v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.3156v2-abstract-full" style="display: none;"> We consider discrete clusters of quasi-resonant triads arising from a Hamiltonian three-wave equation. A cluster consists of N modes forming a total of M connected triads. We investigate the problem of constructing a functionally independent set of quadratic constants of motion. We show that this problem is equivalent to an underlying basic linear problem, consisting of finding the null space of a rectangular (M times N) matrix A with entries 1, -1 and 0. In particular, we prove that the number of independent quadratic invariants is equal to J = N - M* (greater than or equal to N - M), where M* is the number of linearly independent rows in A. Thus, the problem of finding all independent quadratic invariants is reduced to a linear algebra problem in the Hamiltonian case. We establish that the properties of the quadratic invariants (e.g., locality) are related to the topological properties of the clusters (e.g., types of linkage). To do so, we formulate an algorithm for decomposing large clusters into smaller ones and show how various invariants are related to certain parts of a cluster, including the basic structures leading to M* < M. We illustrate our findings by presenting examples from the Charney-Hasegawa-Mima wave model, and by showing a classification of small (up to three-triad) clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3156v2-abstract-full').style.display = 'none'; document.getElementById('1212.3156v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Improved version, accepted in J. Phys. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.0769">arXiv:1212.0769</a> <span> [<a href="https://arxiv.org/pdf/1212.0769">pdf</a>, <a href="https://arxiv.org/ps/1212.0769">ps</a>, <a href="https://arxiv.org/format/1212.0769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.87.033103">10.1103/PhysRevE.87.033103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak turbulence in two-dimensional magnetohydrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tronko%2C+N">Natalia Tronko</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Galtier%2C+S">Sebastien Galtier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.0769v1-abstract-short" style="display: inline;"> A weak wave turbulence theory is developed for two-dimensional (2D) magnetohydrodynamics (MHD). We derive and analyze the kinetic equation describing the three-wave interactions of pseudo-Alfv茅n waves. Our analysis is greatly helped by the fortunate fact that in 2D the wave-kinetic equation is integrable. In contrast with the 3D case, in 2D the wave interactions are nonlocal. Another distinct feat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0769v1-abstract-full').style.display = 'inline'; document.getElementById('1212.0769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.0769v1-abstract-full" style="display: none;"> A weak wave turbulence theory is developed for two-dimensional (2D) magnetohydrodynamics (MHD). We derive and analyze the kinetic equation describing the three-wave interactions of pseudo-Alfv茅n waves. Our analysis is greatly helped by the fortunate fact that in 2D the wave-kinetic equation is integrable. In contrast with the 3D case, in 2D the wave interactions are nonlocal. Another distinct feature is that strong derivatives of spectra tend to appear in the region of small parallel (i.e. along the uniform magnetic field direction) wavenumbers leading to a breakdown of the weak turbulence description in this region. We develop a qualitative theory beyond weak turbulence describing subsequent evolution and formation of a steady state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0769v1-abstract-full').style.display = 'none'; document.getElementById('1212.0769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.6682">arXiv:1110.6682</a> <span> [<a href="https://arxiv.org/pdf/1110.6682">pdf</a>, <a href="https://arxiv.org/ps/1110.6682">ps</a>, <a href="https://arxiv.org/format/1110.6682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.85.036406">10.1103/PhysRevE.85.036406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak Alfven-Wave Turbulence Revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schekochihin%2C+A+A">A. A. Schekochihin</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Yousef%2C+T+A">T. A. Yousef</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.6682v1-abstract-short" style="display: inline;"> Weak Alfvenic turbulence in a periodic domain is considered as a mixed state of Alfven waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed and indeed none is found. If the 2D modes are not directly forced, k^{-2} and k^{-1} spectra are found for the Alfven waves and the 2D modes, respectively, with the latter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6682v1-abstract-full').style.display = 'inline'; document.getElementById('1110.6682v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.6682v1-abstract-full" style="display: none;"> Weak Alfvenic turbulence in a periodic domain is considered as a mixed state of Alfven waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed and indeed none is found. If the 2D modes are not directly forced, k^{-2} and k^{-1} spectra are found for the Alfven waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagting Alfven waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6682v1-abstract-full').style.display = 'none'; document.getElementById('1110.6682v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revtex, 5 pages, 2 figures; submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRE 85, 036406 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.3631">arXiv:1006.3631</a> <span> [<a href="https://arxiv.org/pdf/1006.3631">pdf</a>, <a href="https://arxiv.org/ps/1006.3631">ps</a>, <a href="https://arxiv.org/format/1006.3631">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.82.056322">10.1103/PhysRevE.82.056322 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discrete and mesoscopic regimes of finite-size wave turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=L%27vov%2C+V+S">V. S. L'vov</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.3631v1-abstract-short" style="display: inline;"> Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on Wave Turbulence, (WT) i.e. on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.3631v1-abstract-full').style.display = 'inline'; document.getElementById('1006.3631v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.3631v1-abstract-full" style="display: none;"> Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on Wave Turbulence, (WT) i.e. on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: Discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave "clusters" consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate, or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.3631v1-abstract-full').style.display = 'none'; document.getElementById('1006.3631v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to PRE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0904.3488">arXiv:0904.3488</a> <span> [<a href="https://arxiv.org/pdf/0904.3488">pdf</a>, <a href="https://arxiv.org/ps/0904.3488">ps</a>, <a href="https://arxiv.org/format/0904.3488">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S002211201100067X">10.1017/S002211201100067X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">S. V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Schekochihin%2C+A+A">A. A. Schekochihin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0904.3488v3-abstract-short" style="display: inline;"> It is proposed that critical balance - a scale-by-scale balance between the linear propagation and nonlinear interaction time scales - can be used as a universal scaling conjecture for determining the spectra of strong turbulence in anisotropic wave systems. Magnetohydrodynamic (MHD), rotating and stratified turbulence are considered under this assumption and, in particular, a novel and experiment… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.3488v3-abstract-full').style.display = 'inline'; document.getElementById('0904.3488v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0904.3488v3-abstract-full" style="display: none;"> It is proposed that critical balance - a scale-by-scale balance between the linear propagation and nonlinear interaction time scales - can be used as a universal scaling conjecture for determining the spectra of strong turbulence in anisotropic wave systems. Magnetohydrodynamic (MHD), rotating and stratified turbulence are considered under this assumption and, in particular, a novel and experimentally testable energy cascade scenario and a set of scalings of the spectra are proposed for low-Rossby-number rotating turbulence. It is argued that in neutral fluids, the critically balanced anisotropic cascade provides a natural path from strong anisotropy at large scales to isotropic Kolmogorov turbulence at very small scales. It is also argued that the kperp^{-2} spectra seen in recent numerical simulations of low-Rossby-number rotating turbulence may be analogous to the kperp^{-3/2} spectra of the numerical MHD turbulence in the sense that they could be explained by assuming that fluctuations are polarised (aligned) approximately as inertial waves (Alfven waves for MHD). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.3488v3-abstract-full').style.display = 'none'; document.getElementById('0904.3488v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">JFM-style tex, 16 pages, 1 figure; replaced with final published version (minor edits)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Fluid Mech.677:134,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.1258">arXiv:0807.1258</a> <span> [<a href="https://arxiv.org/pdf/0807.1258">pdf</a>, <a href="https://arxiv.org/ps/0807.1258">ps</a>, <a href="https://arxiv.org/format/0807.1258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-008-9844-0">10.1007/s10909-008-9844-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gradual eddy-wave crossover in superfluid turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=L%27vov%2C+V+S">Victor S. L'vov</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+O">Oleksii Rudenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.1258v1-abstract-short" style="display: inline;"> We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves component… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.1258v1-abstract-full').style.display = 'inline'; document.getElementById('0807.1258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.1258v1-abstract-full" style="display: none;"> We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves components of the system, which experience a smooth crossover between different regimes of motion over a finite range of scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.1258v1-abstract-full').style.display = 'none'; document.getElementById('0807.1258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, 1 appendix; submitted to Low Temperature Physics, 08 July 2008</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics 153, 140-161 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/nlin/0612018">arXiv:nlin/0612018</a> <span> [<a href="https://arxiv.org/pdf/nlin/0612018">pdf</a>, <a href="https://arxiv.org/ps/nlin/0612018">ps</a>, <a href="https://arxiv.org/format/nlin/0612018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.76.024520">10.1103/PhysRevB.76.024520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bottleneck crossover between classical and quantum superfluid turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=L%27vov%2C+V+S">Victor S. L'vov</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergei V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+O">Oleksii Rudenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="nlin/0612018v5-abstract-short" style="display: inline;"> We consider superfluid turbulence near absolute zero of temperature generated by classical means, e.g. towed grid or rotation but not by counterflow. We argue that such turbulence consists of a {\em polarized} tangle of mutually interacting vortex filaments with quantized vorticity. For this system we predict and describe a bottleneck accumulation of the energy spectrum at the classical-quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nlin/0612018v5-abstract-full').style.display = 'inline'; document.getElementById('nlin/0612018v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="nlin/0612018v5-abstract-full" style="display: none;"> We consider superfluid turbulence near absolute zero of temperature generated by classical means, e.g. towed grid or rotation but not by counterflow. We argue that such turbulence consists of a {\em polarized} tangle of mutually interacting vortex filaments with quantized vorticity. For this system we predict and describe a bottleneck accumulation of the energy spectrum at the classical-quantum crossover scale $\ell$. Demanding the same energy flux through scales, the value of the energy at the crossover scale should exceed the Kolmogorov-41 spectrum by a large factor $\ln^{10/3} (\ell/a_0)$ ($\ell$ is the mean intervortex distance and $a_0$ is the vortex core radius) for the classical and quantum spectra to be matched in value. One of the important consequences of the bottleneck is that it causes the mean vortex line density to be considerably higher that based on K41 alone, and this should be taken into account in (re)interpretation of new (and old) experiments as well as in further theoretical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nlin/0612018v5-abstract-full').style.display = 'none'; document.getElementById('nlin/0612018v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figure, 2 appendixes. Extended in accordance with referees comments and other scientific discussions. Moved from PRL to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 76, 024520 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/nlin/0606002">arXiv:nlin/0606002</a> <span> [<a href="https://arxiv.org/pdf/nlin/0606002">pdf</a>, <a href="https://arxiv.org/ps/nlin/0606002">ps</a>, <a href="https://arxiv.org/format/nlin/0606002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-006-9230-8">10.1007/s10909-006-9230-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Spectra of Developed Turbulencein Helium Superfluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=L%27vov%2C+V+S">Victor S. L'vov</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S+V">Sergei V. Nazarenko</a>, <a href="/search/physics?searchtype=author&query=Skrbek%2C+L">L. Skrbek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="nlin/0606002v1-abstract-short" style="display: inline;"> We suggest a "minimal model" for the 3D turbulent energy spectra in superfluids, based on their two-fluid description. We start from the Navier-Stokes equation for the normal fluid and from the coarse-grained hydrodynamic equation for the superfluid component (obtained from the Euler equation for the superfluid velocity after averaging over the vortex lines) and introduce a mutual friction coupl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nlin/0606002v1-abstract-full').style.display = 'inline'; document.getElementById('nlin/0606002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="nlin/0606002v1-abstract-full" style="display: none;"> We suggest a "minimal model" for the 3D turbulent energy spectra in superfluids, based on their two-fluid description. We start from the Navier-Stokes equation for the normal fluid and from the coarse-grained hydrodynamic equation for the superfluid component (obtained from the Euler equation for the superfluid velocity after averaging over the vortex lines) and introduce a mutual friction coupling term, proportional to the counterflow velocity, the average superfluid vorticity and to the temperature dependent parameter $q=伪/(1+伪')$, where $伪$ and $伪'$ denote the dimensionless parameters characterizing the mutual friction between quantized vortices and the normal component of the liquid. We then derive the energy balance equations, taking into account the cross-velocity correlations. We obtain all asymptotical solutions for normal and superfluid energy spectra for limiting cases of small/big normal to superfluid density ratio and coupling. We discuss the applicability limits of our model to superfluid He II and to $^3$He-B and compare the model predictions with available experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nlin/0606002v1-abstract-full').style.display = 'none'; document.getElementById('nlin/0606002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figs, J low Temperature Physics, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Low Temperature Physics, v. 145, 125 - 142 (2006) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>