CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;40 of 40 results for author: <span class="mathjax">An, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=An%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="An, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=An%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="An, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04806">arXiv:2410.04806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Topological beaming of light: Proof-of-concept experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Choi%2C+Y+S">Yu Sung Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+K+Y">Ki Young Lee</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Soo-Chan An</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+M">Minchul Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Youngjae Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+S+H">Seung Han Shin</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+J+W">Jae Woong Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04806v1-abstract-short" style="display: inline;"> Beam shaping in nanophotonic systems remains a challenge due to the reliance on complex heuristic optimization procedures. In this work, we experimentally demonstrate a novel approach to topological beam shaping using Jackiw-Rebbi states in metasurfaces. By fabricating thin-film dielectric structures with engineered Dirac-mass distributions, we create domain walls that allow precise control over b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04806v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04806v1-abstract-full" style="display: none;"> Beam shaping in nanophotonic systems remains a challenge due to the reliance on complex heuristic optimization procedures. In this work, we experimentally demonstrate a novel approach to topological beam shaping using Jackiw-Rebbi states in metasurfaces. By fabricating thin-film dielectric structures with engineered Dirac-mass distributions, we create domain walls that allow precise control over beam profiles. We observe the emergence of Jackiw-Rebbi states and confirm their localized characteristics. Notably, we achieve a flat-top beam profile by carefully tailoring the Dirac mass distribution, highlighting the potential of this method for customized beam shaping. This experimental realization establishes our approach as a new mechanism for beam control, rooted in topological physics, and offers an efficient strategy for nanophotonic design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04806v1-abstract-full').style.display = 'none'; document.getElementById('2410.04806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04763">arXiv:2409.04763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04763">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chalcogenide Metasurfaces Enabling Ultra-Wideband Detectors from Visible to Mid-infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shutao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shu An</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+M">Mingjin Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q+Y+S">Qing Yang Steve Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Adanan%2C+N+Q">Nur Qalishah Adanan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+Y+L">Henry Yit Loong Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+N+L+M">Nancy Lai Mun Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Suwardi%2C+A">Ady Suwardi</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Simpson%2C+R+E">Robert Edward Simpson</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q+J">Qi Jie Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J+K+W">Joel K. W. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhaogang Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04763v1-abstract-short" style="display: inline;"> Thermoelectric materials can be designed to support optical resonances across multiple spectral ranges to enable ultra-wide band photodetection. For instance, antimony telluride (Sb2Te3) chalcogenide exhibits interband plasmonic resonances in the visible range and Mie resonances in the mid-infrared (mid-IR) range, while simultaneously possessing large thermoelectric Seebeck coefficients. In this p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04763v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04763v1-abstract-full" style="display: none;"> Thermoelectric materials can be designed to support optical resonances across multiple spectral ranges to enable ultra-wide band photodetection. For instance, antimony telluride (Sb2Te3) chalcogenide exhibits interband plasmonic resonances in the visible range and Mie resonances in the mid-infrared (mid-IR) range, while simultaneously possessing large thermoelectric Seebeck coefficients. In this paper, we designed and fabricated Sb2Te3 metasurface devices to achieve resonant absorption for enabling photodetectors operating across an ultra-wideband spectrum, from visible to mid-IR. Furthermore, relying on asymmetric Sb2Te3 metasurface, we demonstrated the thermoelectric photodetectors with polarization-selectivity. This work provides a potential platform towards the portable ultrawide band spectrometers at room temperature, for environmental sensing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04763v1-abstract-full').style.display = 'none'; document.getElementById('2409.04763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03014">arXiv:2407.03014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03014">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dielectric Fano Nanoantennas for Enabling Sub-Nanosecond Lifetimes in NV-based Single Photon Emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shu An</a>, <a href="/search/physics?searchtype=author&amp;query=Kalashnikov%2C+D">Dmitry Kalashnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W">Wenqiao Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahfoud%2C+Z">Zackaria Mahfoud</a>, <a href="/search/physics?searchtype=author&amp;query=Chew%2C+A+B">Ah Bian Chew</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+D">Di Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">Weibo Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Leong%2C+V">Victor Leong</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhaogang Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03014v1-abstract-short" style="display: inline;"> Solid-state quantum emitters are essential sources of single photons, and enhancing their emission rates is of paramount importance for applications in quantum communications, computing, and metrology. One approach is to couple quantum emitters with resonant photonic nanostructures, where the emission rate is enhanced due to the Purcell effect. Dielectric nanoantennas are promising as they provide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03014v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03014v1-abstract-full" style="display: none;"> Solid-state quantum emitters are essential sources of single photons, and enhancing their emission rates is of paramount importance for applications in quantum communications, computing, and metrology. One approach is to couple quantum emitters with resonant photonic nanostructures, where the emission rate is enhanced due to the Purcell effect. Dielectric nanoantennas are promising as they provide strong emission enhancement compared to plasmonic ones, which suffer from high Ohmic loss. Here, we designed and fabricated a dielectric Fano resonator based on a pair of silicon (Si) ellipses and a disk, which supports the mode hybridization between quasi-bound-states-in-the-continuum (quasi-BIC) and Mie resonance. We demonstrated the performance of the developed resonant system by interfacing it with single photon emitters (SPEs) based on nitrogen-vacancy (NV-) centers in nanodiamonds (NDs). We observed that the interfaced emitters have a Purcell enhancement factor of ~10, with sub-ns emission lifetime and a polarization contrast of 9. Our results indicate a promising method for developing efficient and compact single-photon sources for integrated quantum photonics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03014v1-abstract-full').style.display = 'none'; document.getElementById('2407.03014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16003">arXiv:2406.16003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16003">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gromyko%2C+D">Dmitrii Gromyko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shu An</a>, <a href="/search/physics?searchtype=author&amp;query=Gorelik%2C+S">Sergey Gorelik</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jiahui Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+L+J">Li Jun Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+Y+L">Henry Yit Loong Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Tjiptoharsono%2C+F">Febiana Tjiptoharsono</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Z">Zhi-Kuang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhaogang Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Lin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16003v1-abstract-short" style="display: inline;"> Controlling and channelling light emissions from unpolarized quantum dots into specific directions with chiral polarization remains a key challenge in modern photonics. Stacked metasurface designs offer a potential compact solution for chirality and directionality engineering. However, experimental observations of directional chiral radiation from resonant metasurfaces with quantum emitters remain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16003v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16003v1-abstract-full" style="display: none;"> Controlling and channelling light emissions from unpolarized quantum dots into specific directions with chiral polarization remains a key challenge in modern photonics. Stacked metasurface designs offer a potential compact solution for chirality and directionality engineering. However, experimental observations of directional chiral radiation from resonant metasurfaces with quantum emitters remain obscure. In this paper, we present experimental observations of unidirectional chiral emission from a twisted bi-layer metasurface via multi-dimensional control, including twist angle, interlayer distance, and lateral displacement between the top and bottom layers, as enabled by doublet alignment lithography (DAL). First, maintaining alignment, the metasurface demonstrates a resonant intrinsic optical chirality with near-unity circular dichroism of 0.94 and reflectance difference of 74%, where a high circular dichroism greater than 0.9 persists across a wide range of angles from -11 to 11 degrees. Second, engineered lateral displacement induces a unidirectional chiral resonance, resulting in unidirectional chiral emission from the quantum dots deposited onto the metasurface. Our bi-layer metasurfaces offer a universal compact platform for efficient radiation manipulation over a wide angular range, promising potential applications in miniaturized lasers, grating couplers, and chiral nanoantennas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16003v1-abstract-full').style.display = 'none'; document.getElementById('2406.16003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15179">arXiv:2310.15179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15179">pdf</a>, <a href="https://arxiv.org/format/2310.15179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Statistics">stat.OT</span> </div> </div> <p class="title is-5 mathjax"> Reducing Uncertainty in Sea-level Rise Prediction: A Spatial-variability-aware Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S">Subhankar Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuai An</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+A">Arun Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+J">Jayant Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Shekhar%2C+S">Shashi Shekhar</a>, <a href="/search/physics?searchtype=author&amp;query=Subramanian%2C+A">Aneesh Subramanian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15179v1-abstract-short" style="display: inline;"> Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change&#39;s impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15179v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15179v1-abstract-full" style="display: none;"> Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change&#39;s impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or deep learning to combine different climate projections. Such approaches are inadequate when different regions require different weighting schemes for accurate and reliable sea-level rise predictions. This paper proposes a zonal regression model which addresses spatial variability and model inter-dependency. Experimental results show more reliable predictions using the weights learned via this approach on a regional scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15179v1-abstract-full').style.display = 'none'; document.getElementById('2310.15179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, I-GUIDE 2023 conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; I.2.m; I.2.6; I.2.1; I.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15779">arXiv:2308.15779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15779">pdf</a>, <a href="https://arxiv.org/format/2308.15779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring GaN crystallographic orientation disparity and its origin on bare and partly graphene-covered $m$-plane sapphire substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hyunkyu Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+H">Hyeonoh Jo</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J+H">Jae Hun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+J">Jongwoo Ha</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S+Y">Su Young An</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J">Jaewu Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chinkyo Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15779v1-abstract-short" style="display: inline;"> The crystallographic orientation of 3D materials grown over 2D material-covered substrates is one of the critical factors in discerning the true growth mechanism among competing possibilities, including remote epitaxy, van der Waals epitaxy, and pinhole-seeded lateral epitaxy also known as thru-hole epitaxy. However, definitive identification demands meticulous investigation to accurately interpre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15779v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15779v1-abstract-full" style="display: none;"> The crystallographic orientation of 3D materials grown over 2D material-covered substrates is one of the critical factors in discerning the true growth mechanism among competing possibilities, including remote epitaxy, van der Waals epitaxy, and pinhole-seeded lateral epitaxy also known as thru-hole epitaxy. However, definitive identification demands meticulous investigation to accurately interpret experimentally observed crystallographic orientations, as misinterpretation can lead to mistaken conclusions regarding the underlying growth mechanism. In this study, we demonstrate that GaN domains exhibit orientation disparities when grown on both bare and partly graphene-covered $m$-plane sapphire substrates. Comprehensive measurements of crystallographic orientation unambiguously reveal that GaN domains adopt (100) and (103) orientations even when grown under identical growth conditions on bare and partly graphene-covered $m$-plane sapphire substrates, respectively. Particularly, high-resolution transmission electron microscopy unequivocally establishes that GaN grown over partly graphene-covered $m$-plane sapphire substrates started to nucleate on the exposed sapphire surface. Our research elucidates that crystallographic orientation disparities can arise even from thru-hole epitaxy, challenging the commonly accepted notion that such disparities cannot be attributed to thru-hole epitaxy when grown under identical growth conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15779v1-abstract-full').style.display = 'none'; document.getElementById('2308.15779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00211">arXiv:2308.00211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00211">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity achromatic metalens imaging via deep neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Y">Yunxi Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00211v1-abstract-short" style="display: inline;"> Meta-optics are attracting intensive interest as alternatives to traditional optical systems comprising multiple lenses and diffractive elements. Among applications, single metalens imaging is highly attractive due to the potential for achieving significant size reduction and simplified design. However, single metalenses exhibit severe chromatic aberration arising from material dispersion and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00211v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00211v1-abstract-full" style="display: none;"> Meta-optics are attracting intensive interest as alternatives to traditional optical systems comprising multiple lenses and diffractive elements. Among applications, single metalens imaging is highly attractive due to the potential for achieving significant size reduction and simplified design. However, single metalenses exhibit severe chromatic aberration arising from material dispersion and the nature of singlet optics, making them unsuitable for full-color imaging requiring achromatic performance. In this work, we propose and validate a deep learning-based single metalens imaging system to overcome chromatic aberration in varied scenarios. The developed deep learning networks computationally reconstruct raw imaging captures through reliably refocusing red, green and blue channels to eliminate chromatic aberration and enhance resolution without altering the metalens hardware. The networks demonstrate consistent enhancement across different aperture sizes and focusing distances. Images outside the training set and real-world photos were also successfully reconstructed. Our approach provides a new means to achieve achromatic metalenses without complex engineering, enabling practical and simplified implementation to overcome inherent limitations of meta-optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00211v1-abstract-full').style.display = 'none'; document.getElementById('2308.00211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12974">arXiv:2307.12974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12974">pdf</a>, <a href="https://arxiv.org/format/2307.12974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Wide Field-of-View, Large-Area Long-wave Infrared Silicon Metalenses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+H">Hung-I Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Geldmeier%2C+J">Jeffrey Geldmeier</a>, <a href="/search/physics?searchtype=author&amp;query=Baleine%2C+E">Erwan Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Ying Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12974v1-abstract-short" style="display: inline;"> Long-wave infrared (LWIR, 8-12 $渭m$ wavelengths) is a spectral band of vital importance to thermal imaging. Conventional LWIR optics made from single-crystalline Ge and chalcogenide glasses are bulky and fragile. The challenge is exacerbated for wide field-of-view (FOV) optics, which traditionally mandates multiple cascaded elements that severely add to complexity and cost. Here we designed and ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12974v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12974v1-abstract-full" style="display: none;"> Long-wave infrared (LWIR, 8-12 $渭m$ wavelengths) is a spectral band of vital importance to thermal imaging. Conventional LWIR optics made from single-crystalline Ge and chalcogenide glasses are bulky and fragile. The challenge is exacerbated for wide field-of-view (FOV) optics, which traditionally mandates multiple cascaded elements that severely add to complexity and cost. Here we designed and experimentally realized a LWIR metalens platform based on bulk Si wafers featuring 140$^\circ$ FOV. The metalenses, which have diameters exceeding 4 cm, were fabricated using a scalable wafer-level process involving photolithography and deep reactive ion etching. Using a metalens-integrated focal plane array, we further demonstrated wide-angle thermal imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12974v1-abstract-full').style.display = 'none'; document.getElementById('2307.12974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03173">arXiv:2304.03173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03173">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/nanoph-2023-0125">10.1515/nanoph-2023-0125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical addressing of exceptional points in compact plasmonic structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jeong%2C+H+Y">Hoon Yeub Jeong</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+Y">Yeonsoo Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+J">Jungho Han</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Soo-Chan An</a>, <a href="/search/physics?searchtype=author&amp;query=Jun%2C+Y+C">Young Chul Jun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03173v1-abstract-short" style="display: inline;"> Exceptional points (EPs) are degenerate singularities in a non-Hermitian system that can be induced by controlling the interaction between resonant photonic modes. EPs can enable unusual optical phenomena and significantly enhance the optical sensitivity under small perturbations. However, most studies thus far have been limited to static photonic structures. In this study, we propose and experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03173v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03173v1-abstract-full" style="display: none;"> Exceptional points (EPs) are degenerate singularities in a non-Hermitian system that can be induced by controlling the interaction between resonant photonic modes. EPs can enable unusual optical phenomena and significantly enhance the optical sensitivity under small perturbations. However, most studies thus far have been limited to static photonic structures. In this study, we propose and experimentally demonstrate electrically addressable EP in a plasmonic structure. Inspired by optical microcavity studies, we employ a localized spoof plasmon structure that supports circulating plasmonic modes in a compact single-resonator geometry. The plasmonic modes are perturbed by an angled metal line, and the interaction between the plasmonic modes is electrically controlled using a varactor. Continuous electrical tuning of the varactor capacitance facilitates simultaneous coalescence of the real and imaginary parts of the eigenfrequency, allowing the direct addressing of EPs. We first investigate the eigenmodes and their coupling in localized plasmonic structures using numerical simulations. We then present experimentally measured spectra that manifest the coalescence of the two resonant modes in both the resonance frequency and linewidth. Electrically addressable EPs in compact plasmonic structures may provide exciting opportunities for highly functional and tunable elements in integrated device platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03173v1-abstract-full').style.display = 'none'; document.getElementById('2304.03173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanophotonics, 12, 2029 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05241">arXiv:2302.05241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05241">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adh0414">10.1126/sciadv.adh0414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral electroluminescence from thin-film perovskite metacavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S">Seongheon Kim</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Soo-Chan An</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Younggon Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+Y+S">Yun Seop Shin</a>, <a href="/search/physics?searchtype=author&amp;query=Antonov%2C+A+A">Alexander A. Antonov</a>, <a href="/search/physics?searchtype=author&amp;query=Seo%2C+I+C">In Cheol Seo</a>, <a href="/search/physics?searchtype=author&amp;query=Woo%2C+B+H">Byung Hoon Woo</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+Y">Yeonsoo Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Gorkunov%2C+M+V">Maxim V. Gorkunov</a>, <a href="/search/physics?searchtype=author&amp;query=Kivshar%2C+Y+S">Yuri S. Kivshar</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J+Y">Jin Young Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Jun%2C+Y+C">Young Chul Jun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05241v1-abstract-short" style="display: inline;"> Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media employed for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of cir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05241v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05241v1-abstract-full" style="display: none;"> Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media employed for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP), being critical for the development of practical devices. Here, we propose a new concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05241v1-abstract-full').style.display = 'none'; document.getElementById('2302.05241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 9, eadh0414 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10906">arXiv:2212.10906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/01/C01017">10.1088/1748-0221/18/01/C01017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of micro pore optics for full-field X-ray fluorescence imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Siwen An</a>, <a href="/search/physics?searchtype=author&amp;query=Krapohl%2C+D">David Krapohl</a>, <a href="/search/physics?searchtype=author&amp;query=Th%C3%B6rnberg%2C+B">Benny Th枚rnberg</a>, <a href="/search/physics?searchtype=author&amp;query=Roudot%2C+R">Romain Roudot</a>, <a href="/search/physics?searchtype=author&amp;query=Schyns%2C+E">Emile Schyns</a>, <a href="/search/physics?searchtype=author&amp;query=Norlin%2C+B">B枚rje Norlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10906v1-abstract-short" style="display: inline;"> Elemental mapping images can be achieved through step scanning imaging using pinhole optics or micro pore optics (MPO), or alternatively by full-field X-ray fluorescence imaging (FF-XRF). X-ray optics for FF-XRF can be manufactured with different micro-channel geometries such as square, hexagonal or circular channels. Each optic geometry creates different imaging artefacts. Square-channel MPOs gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10906v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10906v1-abstract-full" style="display: none;"> Elemental mapping images can be achieved through step scanning imaging using pinhole optics or micro pore optics (MPO), or alternatively by full-field X-ray fluorescence imaging (FF-XRF). X-ray optics for FF-XRF can be manufactured with different micro-channel geometries such as square, hexagonal or circular channels. Each optic geometry creates different imaging artefacts. Square-channel MPOs generate a high intensity central spot due to two reflections via orthogonal channel walls inside a single channel, which is the desirable part for image formation, and two perpendicular lines forming a cross due to reflections in one plane only. Thus, we have studied the performance of a square-channel MPO in an FF-XRF imaging system. The setup consists of a commercially available MPO provided by Photonis and a Timepix3 readout chip with a silicon detector. Imaging of fluorescence from small metal particles has been used to obtain the point spread function (PSF) characteristics. The transmission through MPO channels and variation of the critical reflection angle are characterized by measurements of fluorescence from Copper and Titanium metal fragments. Since the critical angle of reflection is energy dependent, the cross-arm artefacts will affect the resolution differently for different fluorescence energies. It is possible to identify metal fragments due to the form of the PSF function. The PSF function can be further characterized using a Fourier transform to suppress diffuse background signals in the image. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10906v1-abstract-full').style.display = 'none'; document.getElementById('2212.10906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Instrumentation, presented at 23r International Workshop on Radiation Imaging Detectors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06855">arXiv:2111.06855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06855">pdf</a>, <a href="https://arxiv.org/format/2111.06855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/05/P05022">10.1088/1748-0221/17/05/P05022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&amp;query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&amp;query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&amp;query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+F+A">F. Alam Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&amp;query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&amp;query=Alpana%2C+A">A. Alpana</a>, <a href="/search/physics?searchtype=author&amp;query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&amp;query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Atakisi%2C+I+O">I. O. Atakisi</a>, <a href="/search/physics?searchtype=author&amp;query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&amp;query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&amp;query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&amp;query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&amp;query=Bannerjee%2C+S">S. Bannerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&amp;query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&amp;query=Beaudette%2C+F">F. Beaudette</a> , et al. (364 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06855v3-abstract-short" style="display: inline;"> The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06855v3-abstract-full').style.display = 'inline'; document.getElementById('2111.06855v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06855v3-abstract-full" style="display: none;"> The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm$^2$ are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN&#39;s Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06855v3-abstract-full').style.display = 'none'; document.getElementById('2111.06855v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09295">arXiv:2108.09295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09295">pdf</a>, <a href="https://arxiv.org/format/2108.09295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Wide field-of-view flat lens: an analytical formalism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09295v2-abstract-short" style="display: inline;"> Wide field-of-view (FOV) optics are widely used in various imaging, display, and sensing applications. While conventional wide FOV optics rely on cascading multiple elements to suppress coma and other aberrations, it has recently been demonstrated that diffraction-limited, near-180 degree FOV operation can be achieved with a single-piece flat fisheye lens designed via iterative numerical optimizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09295v2-abstract-full').style.display = 'inline'; document.getElementById('2108.09295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09295v2-abstract-full" style="display: none;"> Wide field-of-view (FOV) optics are widely used in various imaging, display, and sensing applications. While conventional wide FOV optics rely on cascading multiple elements to suppress coma and other aberrations, it has recently been demonstrated that diffraction-limited, near-180 degree FOV operation can be achieved with a single-piece flat fisheye lens designed via iterative numerical optimization [Nano Lett. 20, 7429(2020)]. Here we derive an analytical solution to enable computationally efficient design of flat wide FOV lenses based on metasurfaces or diffractive optical elements (DOEs). Leveraging this analytical approach, we further quantified trade-offs between optical performance and design parameters in wide FOV metalenses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09295v2-abstract-full').style.display = 'none'; document.getElementById('2108.09295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, format change</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01761">arXiv:2102.01761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01761">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Y">Yunxi Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Haerinia%2C+M">Mohammad Haerinia</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+A+M">Anuradha Murthy Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01761v1-abstract-short" style="display: inline;"> Metasurfaces have provided a novel and promising platform for the realization of compact and large-scale optical devices. The conventional metasurface design approach assumes periodic boundary conditions for each element, which is inaccurate in most cases since the near-field coupling effects between elements will change when surrounded by non-identical structures. In this paper, we propose a deep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01761v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01761v1-abstract-full" style="display: none;"> Metasurfaces have provided a novel and promising platform for the realization of compact and large-scale optical devices. The conventional metasurface design approach assumes periodic boundary conditions for each element, which is inaccurate in most cases since the near-field coupling effects between elements will change when surrounded by non-identical structures. In this paper, we propose a deep learning approach to predict the actual electromagnetic (EM) responses of each target meta-atom placed in a large array with near-field coupling effects taken into account. The predicting neural network takes the physical specifications of the target meta-atom and its neighbors as input, and calculates its phase and amplitude in milliseconds. This approach can be applied to explain metasurfaces&#39; performance deterioration caused by mutual coupling and further used to optimize their efficiencies once combined with optimization algorithms. To demonstrate the efficacy of this methodology, we obtain large improvements in efficiency for a beam deflector and a metalens over the conventional design approach. Moreover, we show the correlations between a metasurface&#39;s performance and its design errors caused by mutual coupling are not bound to certain specifications (materials, shapes, etc.). As such, we envision that this approach can be readily applied to explore the mutual coupling effects and improve the performance of various metasurface designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01761v1-abstract-full').style.display = 'none'; document.getElementById('2102.01761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06336">arXiv:2012.06336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.06336">pdf</a>, <a href="https://arxiv.org/format/2012.06336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Construction and commissioning of CMS CE prototype silicon modules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&amp;query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&amp;query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&amp;query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&amp;query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&amp;query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&amp;query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&amp;query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M">M. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Atakisi%2C+I+A">I. A. Atakisi</a>, <a href="/search/physics?searchtype=author&amp;query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&amp;query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&amp;query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&amp;query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&amp;query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&amp;query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&amp;query=Becheva%2C+E">E. Becheva</a>, <a href="/search/physics?searchtype=author&amp;query=Behera%2C+P">P. Behera</a>, <a href="/search/physics?searchtype=author&amp;query=Belloni%2C+A">A. Belloni</a> , et al. (307 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06336v1-abstract-short" style="display: inline;"> As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06336v1-abstract-full').style.display = 'inline'; document.getElementById('2012.06336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06336v1-abstract-full" style="display: none;"> As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1~$cm^2$, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06336v1-abstract-full').style.display = 'none'; document.getElementById('2012.06336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03876">arXiv:2012.03876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.03876">pdf</a>, <a href="https://arxiv.org/format/2012.03876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/T04001">10.1088/1748-0221/16/04/T04001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&amp;query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&amp;query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&amp;query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&amp;query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&amp;query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&amp;query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&amp;query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M">M. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Atakisi%2C+I+A">I. A. Atakisi</a>, <a href="/search/physics?searchtype=author&amp;query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&amp;query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&amp;query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&amp;query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&amp;query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&amp;query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&amp;query=Becheva%2C+E">E. Becheva</a>, <a href="/search/physics?searchtype=author&amp;query=Behera%2C+P">P. Behera</a>, <a href="/search/physics?searchtype=author&amp;query=Belloni%2C+A">A. Belloni</a> , et al. (307 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03876v2-abstract-short" style="display: inline;"> The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03876v2-abstract-full').style.display = 'inline'; document.getElementById('2012.03876v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03876v2-abstract-full" style="display: none;"> The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\approx}12,000\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03876v2-abstract-full').style.display = 'none'; document.getElementById('2012.03876v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04869">arXiv:2010.04869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04869">pdf</a>, <a href="https://arxiv.org/format/2010.04869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct Measurement of Curvature-Dependent Surface Tension in a Capillary-Condensed Alcohol Nanomeniscus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dohyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Jongwoo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Hwang%2C+J">Jonggeun Hwang</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+D">Dongha Shin</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sangmin An</a>, <a href="/search/physics?searchtype=author&amp;query=Jhe%2C+W">Wonho Jhe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04869v1-abstract-short" style="display: inline;"> Surface tension is a key parameter for understanding nucleation from the very initial stage of phase transformation. Although surface tension has been predicted to vary with the curvature of the liquid-vapor interface, particularly at the large curvature of, e.g., the subnanometric critical nucleus, experimental study still remains challenging due to inaccessibility to such a small cluster. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04869v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04869v1-abstract-full" style="display: none;"> Surface tension is a key parameter for understanding nucleation from the very initial stage of phase transformation. Although surface tension has been predicted to vary with the curvature of the liquid-vapor interface, particularly at the large curvature of, e.g., the subnanometric critical nucleus, experimental study still remains challenging due to inaccessibility to such a small cluster. Here, by directly measuring the critical size of a single capillary-condensed nanomeniscus using atomic force microscopy, we address the curvature dependence of surface tension of alcohols and observe the surface tension is doubled for ethanol and n-propanol with the radius-of-curvature of ~ -0.46 nm. We also find that the interface of larger negative (positive) curvature exhibits the larger (smaller) surface tension, which evidently governs nucleation at ~ 1 nm scale, indicating more facilitated nucleation than normally expected. Such well characterized curvature effects contribute to better understanding and accurate analysis of nucleation occurring in various fields including material science and atmospheric science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04869v1-abstract-full').style.display = 'none'; document.getElementById('2010.04869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures and Supplementary Material(pdf)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06659">arXiv:2008.06659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-021-00881-9">10.1038/s41565-021-00881-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically Reconfigurable Nonvolatile Metasurface Using Low-Loss Optical Phase Change Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Junhao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Azhar%2C+B">Bilal Azhar</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Deckoff-Jones%2C+S">Skylar Deckoff-Jones</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+J+B">Jeffrey B. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+C+M">Christopher M. Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Liberman%2C+V">Vladimir Liberman</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%ADos%2C+C">Carlos R铆os</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06659v2-abstract-short" style="display: inline;"> Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06659v2-abstract-full').style.display = 'inline'; document.getElementById('2008.06659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06659v2-abstract-full" style="display: none;"> Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe to be the first electrically reconfigurable nonvolatile metasurfaces based on O-PCMs. The O-PCM alloy used in the devices, Ge2Sb2Se4Te1 (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss, and a large reversible switching volume, enabling significantly enhanced light-matter interactions within the active O-PCM medium. Capitalizing on these favorable attributes, we demonstrated continuously tunable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06659v2-abstract-full').style.display = 'none'; document.getElementById('2008.06659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07944">arXiv:2007.07944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07944">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multi-level Electro-thermal Switching of Optical Phase-Change Materials Using Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=R%C3%ADos%2C+C">Carlos R铆os</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M">Mikhail Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Deckoff-Jones%2C+S">Skylar Deckoff-Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+C">Christopher Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+J+B">Jeffrey B. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Liberman%2C+V">Vladimir Liberman</a>, <a href="/search/physics?searchtype=author&amp;query=Vitale%2C+S+A">Steven A. Vitale</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+J">Jing Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07944v1-abstract-short" style="display: inline;"> Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a constant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfigurat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07944v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07944v1-abstract-full" style="display: none;"> Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a constant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfiguration techniques which are compatible with on-chip integration with different photonic platforms and do not disrupt their optical performances. In this paper, a solution is demonstrated using an optoelectronic framework for nonvolatile tunable photonics that employs undoped-graphene microheaters to thermally and reversibly switch the optical phase-change material Ge$_2$Sb$_2$Se$_4$Te$_1$ (GSST). An in-situ Raman spectroscopy method is utilized to demonstrate, in real-time, reversible switching between four different levels of crystallinity. Moreover, a 3D computational model is developed to precisely interpret the switching characteristics, and to quantify the impact of current saturation on power dissipation, thermal diffusion, and switching speed. This model is used to inform the design of nonvolatile active photonic devices; namely, broadband Si$_3$N$_4$ integrated photonic circuits with small form-factor modulators and reconfigurable metasurfaces displaying 2$蟺$ phase coverage through neural-network-designed GSST meta-atoms. This framework will enable scalable, low-loss nonvolatile applications across a diverse range of photonics platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07944v1-abstract-full').style.display = 'none'; document.getElementById('2007.07944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 Figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07675">arXiv:2004.07675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07675">pdf</a>, <a href="https://arxiv.org/ps/2004.07675">ps</a>, <a href="https://arxiv.org/format/2004.07675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Software Challenges For HL-LHC Data Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=ROOT+Team"> ROOT Team</a>, <a href="/search/physics?searchtype=author&amp;query=Brann%2C+K+A">Kim Albertsson Brann</a>, <a href="/search/physics?searchtype=author&amp;query=Amadio%2C+G">Guilherme Amadio</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sitong An</a>, <a href="/search/physics?searchtype=author&amp;query=Bellenot%2C+B">Bertrand Bellenot</a>, <a href="/search/physics?searchtype=author&amp;query=Blomer%2C+J">Jakob Blomer</a>, <a href="/search/physics?searchtype=author&amp;query=Canal%2C+P">Philippe Canal</a>, <a href="/search/physics?searchtype=author&amp;query=Couet%2C+O">Olivier Couet</a>, <a href="/search/physics?searchtype=author&amp;query=Galli%2C+M">Massimiliano Galli</a>, <a href="/search/physics?searchtype=author&amp;query=Guiraud%2C+E">Enrico Guiraud</a>, <a href="/search/physics?searchtype=author&amp;query=Hageboeck%2C+S">Stephan Hageboeck</a>, <a href="/search/physics?searchtype=author&amp;query=Linev%2C+S">Sergey Linev</a>, <a href="/search/physics?searchtype=author&amp;query=Vila%2C+P+M">Pere Mato Vila</a>, <a href="/search/physics?searchtype=author&amp;query=Moneta%2C+L">Lorenzo Moneta</a>, <a href="/search/physics?searchtype=author&amp;query=Naumann%2C+A">Axel Naumann</a>, <a href="/search/physics?searchtype=author&amp;query=Tadel%2C+A+M">Alja Mrak Tadel</a>, <a href="/search/physics?searchtype=author&amp;query=Padulano%2C+V+E">Vincenzo Eduardo Padulano</a>, <a href="/search/physics?searchtype=author&amp;query=Rademakers%2C+F">Fons Rademakers</a>, <a href="/search/physics?searchtype=author&amp;query=Shadura%2C+O">Oksana Shadura</a>, <a href="/search/physics?searchtype=author&amp;query=Tadel%2C+M">Matevz Tadel</a>, <a href="/search/physics?searchtype=author&amp;query=Saavedra%2C+E+T">Enric Tejedor Saavedra</a>, <a href="/search/physics?searchtype=author&amp;query=Pla%2C+X+V">Xavier Valls Pla</a>, <a href="/search/physics?searchtype=author&amp;query=Vassilev%2C+V">Vassil Vassilev</a>, <a href="/search/physics?searchtype=author&amp;query=Wunsch%2C+S">Stefan Wunsch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07675v2-abstract-short" style="display: inline;"> The high energy physics community is discussing where investment is needed to prepare software for the HL-LHC and its unprecedented challenges. The ROOT project is one of the central software players in high energy physics since decades. From its experience and expectations, the ROOT team has distilled a comprehensive set of areas that should see research and development in the context of data ana&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07675v2-abstract-full').style.display = 'inline'; document.getElementById('2004.07675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07675v2-abstract-full" style="display: none;"> The high energy physics community is discussing where investment is needed to prepare software for the HL-LHC and its unprecedented challenges. The ROOT project is one of the central software players in high energy physics since decades. From its experience and expectations, the ROOT team has distilled a comprehensive set of areas that should see research and development in the context of data analysis software, for making best use of HL-LHC&#39;s physics potential. This work shows what these areas could be, why the ROOT team believes investing in them is needed, which gains are expected, and where related work is ongoing. It can serve as an indication for future research proposals and cooperations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07675v2-abstract-full').style.display = 'none'; document.getElementById('2004.07675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11603">arXiv:2003.11603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11603">pdf</a>, <a href="https://arxiv.org/format/2003.11603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ju%2C+X">Xiangyang Ju</a>, <a href="/search/physics?searchtype=author&amp;query=Farrell%2C+S">Steven Farrell</a>, <a href="/search/physics?searchtype=author&amp;query=Calafiura%2C+P">Paolo Calafiura</a>, <a href="/search/physics?searchtype=author&amp;query=Murnane%2C+D">Daniel Murnane</a>, <a href="/search/physics?searchtype=author&amp;query=Prabhat"> Prabhat</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+L">Lindsey Gray</a>, <a href="/search/physics?searchtype=author&amp;query=Klijnsma%2C+T">Thomas Klijnsma</a>, <a href="/search/physics?searchtype=author&amp;query=Pedro%2C+K">Kevin Pedro</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">Giuseppe Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Kowalkowski%2C+J">Jim Kowalkowski</a>, <a href="/search/physics?searchtype=author&amp;query=Perdue%2C+G">Gabriel Perdue</a>, <a href="/search/physics?searchtype=author&amp;query=Spentzouris%2C+P">Panagiotis Spentzouris</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+N">Nhan Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Vlimant%2C+J">Jean-Roch Vlimant</a>, <a href="/search/physics?searchtype=author&amp;query=Zlokapa%2C+A">Alexander Zlokapa</a>, <a href="/search/physics?searchtype=author&amp;query=Pata%2C+J">Joosep Pata</a>, <a href="/search/physics?searchtype=author&amp;query=Spiropulu%2C+M">Maria Spiropulu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sitong An</a>, <a href="/search/physics?searchtype=author&amp;query=Aurisano%2C+A">Adam Aurisano</a>, <a href="/search/physics?searchtype=author&amp;query=Hewes%2C+V">V Hewes</a>, <a href="/search/physics?searchtype=author&amp;query=Tsaris%2C+A">Aristeidis Tsaris</a>, <a href="/search/physics?searchtype=author&amp;query=Terao%2C+K">Kazuhiro Terao</a>, <a href="/search/physics?searchtype=author&amp;query=Usher%2C+T">Tracy Usher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11603v2-abstract-short" style="display: inline;"> Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11603v2-abstract-full').style.display = 'inline'; document.getElementById('2003.11603v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11603v2-abstract-full" style="display: none;"> Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11603v2-abstract-full').style.display = 'none'; document.getElementById('2003.11603v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at NeurIPS 2019 Workshop &#34;Machine Learning and the Physical Sciences&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00121">arXiv:2001.00121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Freeform Dielectric Metasurface Modeling Approach Based on Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+A+M">Anuradha Murthy Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00121v1-abstract-short" style="display: inline;"> Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. Design of meta-atoms, the fundamental building blocks of metasurfaces, relies on trial-and-error method to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of different meta-atom designs with differe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00121v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00121v1-abstract-full" style="display: none;"> Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. Design of meta-atoms, the fundamental building blocks of metasurfaces, relies on trial-and-error method to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of different meta-atom designs with different physical and geometric parameters, which normally demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with free-form 2D patterns and different lattice sizes, material refractive indexes and thicknesses. Moreover, the presented approach features the capability to predict meta-atoms&#39; wide spectrum responses in the timescale of milliseconds, which makes it attractive for applications such as fast meta-atom/metasurface on-demand designs and optimizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00121v1-abstract-full').style.display = 'none'; document.getElementById('2001.00121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12970">arXiv:1911.12970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12970">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21440-9">10.1038/s41467-021-21440-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconfigurable all-dielectric metalens with diffraction limited performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+P">Peter Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liberman%2C+V">Vladimir Liberman</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+J+B">Jeffrey B. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+C+M">Christopher M. Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Rios%2C+C">Carlos Rios</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Qingyang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+A">Anuradha Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K">Kathleen Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12970v2-abstract-short" style="display: inline;"> Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12970v2-abstract-full').style.display = 'inline'; document.getElementById('1911.12970v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12970v2-abstract-full" style="display: none;"> Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2$蟺$ range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling switching of metasurfaces between two arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for active meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 $渭$m wavelength. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast ($螖$ n &gt; 1) and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio of 29.5 dB. We further validated aberration-free imaging using the metalens at both optical states, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12970v2-abstract-full').style.display = 'none'; document.getElementById('1911.12970v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10841">arXiv:1911.10841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10841">pdf</a>, <a href="https://arxiv.org/format/1911.10841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.110501">10.1103/PhysRevLett.124.110501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-rate, high-fidelity entanglement of qubits across an elementary quantum network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stephenson%2C+L+J">L J Stephenson</a>, <a href="/search/physics?searchtype=author&amp;query=Nadlinger%2C+D+P">D P Nadlinger</a>, <a href="/search/physics?searchtype=author&amp;query=Nichol%2C+B+C">B C Nichol</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">S An</a>, <a href="/search/physics?searchtype=author&amp;query=Drmota%2C+P">P Drmota</a>, <a href="/search/physics?searchtype=author&amp;query=Ballance%2C+T+G">T G Ballance</a>, <a href="/search/physics?searchtype=author&amp;query=Thirumalai%2C+K">K Thirumalai</a>, <a href="/search/physics?searchtype=author&amp;query=Goodwin%2C+J+F">J F Goodwin</a>, <a href="/search/physics?searchtype=author&amp;query=Lucas%2C+D+M">D M Lucas</a>, <a href="/search/physics?searchtype=author&amp;query=Ballance%2C+C+J">C J Ballance</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10841v2-abstract-short" style="display: inline;"> We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two ${}^{88}$Sr${}^{+}$ qubits are entangled via the polarization degree of freedom of two photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beamsplitter. A novel geometry allows high-eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10841v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10841v2-abstract-full" style="display: none;"> We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two ${}^{88}$Sr${}^{+}$ qubits are entangled via the polarization degree of freedom of two photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beamsplitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate remote Bell pairs with fidelity $F=0.940(5)$ at an average rate $182\,\mathrm{s}^{-1}$ (success probability $2.18\times10^{-4}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10841v2-abstract-full').style.display = 'none'; document.getElementById('1911.10841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 updated to include responses to reviewers, as published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 110501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07029">arXiv:1910.07029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07029">pdf</a>, <a href="https://arxiv.org/format/1910.07029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> End-to-end particle and event identification at the Large Hadron Collider with CMS Open Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alison%2C+J">John Alison</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sitong An</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M">Michael Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+P">Patrick Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Burkle%2C+B">Bjorn Burkle</a>, <a href="/search/physics?searchtype=author&amp;query=Gleyzer%2C+S">Sergei Gleyzer</a>, <a href="/search/physics?searchtype=author&amp;query=Heintz%2C+U">Ulrich Heintz</a>, <a href="/search/physics?searchtype=author&amp;query=Narain%2C+M">Meenakshi Narain</a>, <a href="/search/physics?searchtype=author&amp;query=Paulini%2C+M">Manfred Paulini</a>, <a href="/search/physics?searchtype=author&amp;query=Poczos%2C+B">Barnabas Poczos</a>, <a href="/search/physics?searchtype=author&amp;query=Usai%2C+E">Emanuele Usai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07029v1-abstract-short" style="display: inline;"> From particle identification to the discovery of the Higgs boson, deep learning algorithms have become an increasingly important tool for data analysis at the Large Hadron Collider (LHC). We present an innovative end-to-end deep learning approach for jet identification at the Compact Muon Solenoid (CMS) experiment at the LHC. The method combines deep neural networks with low-level detector informa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07029v1-abstract-full').style.display = 'inline'; document.getElementById('1910.07029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07029v1-abstract-full" style="display: none;"> From particle identification to the discovery of the Higgs boson, deep learning algorithms have become an increasingly important tool for data analysis at the Large Hadron Collider (LHC). We present an innovative end-to-end deep learning approach for jet identification at the Compact Muon Solenoid (CMS) experiment at the LHC. The method combines deep neural networks with low-level detector information, such as calorimeter energy deposits and tracking information, to build a discriminator to identify different particle species. Using two physics examples as references: electron vs. photon discrimination and quark vs. gluon discrimination, we demonstrate the performance of the end-to-end approach on simulated events with full detector geometry as available in the CMS Open Data. We also offer insights into the importance of the information extracted from various sub-detectors and describe how end-to-end techniques can be extended to event-level classification using information from the whole CMS detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07029v1-abstract-full').style.display = 'none'; document.getElementById('1910.07029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston, C1907293</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04851">arXiv:1908.04851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.04851">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Multifunctional Metasurface Design with a Generative Adversarial Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04851v2-abstract-short" style="display: inline;"> Metasurfaces have enabled precise electromagnetic wave manipulation with strong potential to obtain unprecedented functionalities and multifunctional behavior in flat optical devices. These advantages in precision and functionality come at the cost of tremendous difficulty in finding individual meta-atom structures based on specific requirements (commonly formulated in terms of electromagnetic res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04851v2-abstract-full').style.display = 'inline'; document.getElementById('1908.04851v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04851v2-abstract-full" style="display: none;"> Metasurfaces have enabled precise electromagnetic wave manipulation with strong potential to obtain unprecedented functionalities and multifunctional behavior in flat optical devices. These advantages in precision and functionality come at the cost of tremendous difficulty in finding individual meta-atom structures based on specific requirements (commonly formulated in terms of electromagnetic responses), which makes the design of multifunctional metasurfaces a key challenge in this field. In this paper, we present a Generative Adversarial Networks (GAN) that can tackle this problem and generate meta-atom/metasurface designs to meet multifunctional design goals. Unlike conventional trial-and-error or iterative optimization design methods, this new methodology produces on-demand free-form structures involving only a single design iteration. More importantly, the network structure and the robust training process are independent of the complexity of design objectives, making this approach ideal for multifunctional device design. Additionally, the ability of the network to generate distinct classes of structures with similar electromagnetic responses but different physical features could provide added latitude to accommodate other considerations such as fabrication constraints and tolerances. We demonstrate the network&#39;s ability to produce a variety of multifunctional metasurface designs by presenting a bifocal metalens, a polarization-multiplexed beam deflector, a polarization-multiplexed metalens and a polarization-independent metalens. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04851v2-abstract-full').style.display = 'none'; document.getElementById('1908.04851v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03626">arXiv:1908.03626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03626">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A single-layer panoramic metalens with &gt; 170掳 diffraction-limited field of view </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+P">Peter Su</a>, <a href="/search/physics?searchtype=author&amp;query=Lyzwa%2C+D">Dominika Lyzwa</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+A">Anuradha Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03626v2-abstract-short" style="display: inline;"> Wide-angle optical functionality is crucial for implementation of advanced imaging and image projection devices. Conventionally, wide-angle operation is attained by complicated assembly of multiple optical elements. Recent advances in nanophotonics have led to metasurface lenses or metalenses, a new class of ultra-thin planar lenses utilizing subwavelength nanoantennas to gain full control of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03626v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03626v2-abstract-full" style="display: none;"> Wide-angle optical functionality is crucial for implementation of advanced imaging and image projection devices. Conventionally, wide-angle operation is attained by complicated assembly of multiple optical elements. Recent advances in nanophotonics have led to metasurface lenses or metalenses, a new class of ultra-thin planar lenses utilizing subwavelength nanoantennas to gain full control of the phase, amplitude, and/or polarization of light. Here we present a novel metalens design capable of performing diffraction-limited focusing and imaging over an unprecedented &gt; 170 degree angular field of view (FOV). The lens is monolithically integrated on a one-piece flat substrate and involves only a single layer of metasurface that corrects third-order Seidel aberrations including coma, astigmatism, and field curvature. The metalens further features a planar focal plane, which enables considerably simplified system architectures for applications in imaging and projection. We fabricated the metalens using Huygens meta-atoms operating at 5.2 micron wavelength and experimentally demonstrated aberration-free focusing and imaging over the entire FOV. The design concept is generic and can be readily adapted to different meta-atom geometries and wavelength ranges to meet diverse application demands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03626v2-abstract-full').style.display = 'none'; document.getElementById('1908.03626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05718">arXiv:1906.05718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05718">pdf</a>, <a href="https://arxiv.org/format/1906.05718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Iterative subtraction method for Feature Ranking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Glaysher%2C+P">Paul Glaysher</a>, <a href="/search/physics?searchtype=author&amp;query=Katzy%2C+J+M">Judith M. Katzy</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sitong An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05718v1-abstract-short" style="display: inline;"> Training features used to analyse physical processes are often highly correlated and determining which ones are most important for the classification is a non-trivial tasks. For the use case of a search for a top-quark pair produced in association with a Higgs boson decaying to bottom-quarks at the LHC, we compare feature ranking methods for a classification BDT. Ranking methods, such as the BDT S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05718v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05718v1-abstract-full" style="display: none;"> Training features used to analyse physical processes are often highly correlated and determining which ones are most important for the classification is a non-trivial tasks. For the use case of a search for a top-quark pair produced in association with a Higgs boson decaying to bottom-quarks at the LHC, we compare feature ranking methods for a classification BDT. Ranking methods, such as the BDT Selection Frequency commonly used in High Energy Physics and the Permutational Performance, are compared with the computationally expense Iterative Addition and Iterative Removal procedures, while the latter was found to be the most performant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05718v1-abstract-full').style.display = 'none'; document.getElementById('1906.05718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03387">arXiv:1906.03387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.03387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Novel Modeling Approach for All-Dielectric Metasurfaces Using Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Fowler%2C+C">Clayton Fowler</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Shalaginov%2C+M+Y">Mikhail Y. Shalaginov</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+A+M">Anuradha Murthy Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Rivero-Baleine%2C+C">Clara Rivero-Baleine</a>, <a href="/search/physics?searchtype=author&amp;query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03387v1-abstract-short" style="display: inline;"> Metasurfaces have become a promising means for manipulating optical wavefronts in flat and high-performance optical devices. Conventional metasurface device design relies on trial-and-error methods to obtain target electromagnetic (EM) response, an approach that demands significant efforts to investigate the enormous number of possible meta-atom structures. In this paper, a deep neural network app&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03387v1-abstract-full').style.display = 'inline'; document.getElementById('1906.03387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03387v1-abstract-full" style="display: none;"> Metasurfaces have become a promising means for manipulating optical wavefronts in flat and high-performance optical devices. Conventional metasurface device design relies on trial-and-error methods to obtain target electromagnetic (EM) response, an approach that demands significant efforts to investigate the enormous number of possible meta-atom structures. In this paper, a deep neural network approach is introduced that significantly improves on both speed and accuracy compared to techniques currently used to assemble metasurface-based devices. Our neural network approach overcomes three key challenges that have limited previous neural-network-based design schemes: input/output vector dimensional mismatch, accurate EM-wave phase prediction, as well as adaptation to 3-D dielectric structures, and can be generically applied to a wide variety of metasurface device designs across the entire electromagnetic spectrum. Using this new methodology, examples of neural networks capable of producing on-demand designs for meta-atoms, metasurface filters, and phase-change reconfigurable metasurfaces are demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03387v1-abstract-full').style.display = 'none'; document.getElementById('1906.03387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08276">arXiv:1902.08276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08276">pdf</a>, <a href="https://arxiv.org/ps/1902.08276">ps</a>, <a href="https://arxiv.org/format/1902.08276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164304">10.1016/j.nima.2020.164304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M">Michael Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Alison%2C+J">John Alison</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sitong An</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+P">Patrick Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Burkle%2C+B">Bjorn Burkle</a>, <a href="/search/physics?searchtype=author&amp;query=Gleyzer%2C+S">Sergei Gleyzer</a>, <a href="/search/physics?searchtype=author&amp;query=Narain%2C+M">Meenakshi Narain</a>, <a href="/search/physics?searchtype=author&amp;query=Paulini%2C+M">Manfred Paulini</a>, <a href="/search/physics?searchtype=author&amp;query=Poczos%2C+B">Barnabas Poczos</a>, <a href="/search/physics?searchtype=author&amp;query=Usai%2C+E">Emanuele Usai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08276v2-abstract-short" style="display: inline;"> We describe the construction of end-to-end jet image classifiers based on simulated low-level detector data to discriminate quark- vs. gluon-initiated jets with high-fidelity simulated CMS Open Data. We highlight the importance of precise spatial information and demonstrate competitive performance to existing state-of-the-art jet classifiers. We further generalize the end-to-end approach to event-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08276v2-abstract-full').style.display = 'inline'; document.getElementById('1902.08276v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08276v2-abstract-full" style="display: none;"> We describe the construction of end-to-end jet image classifiers based on simulated low-level detector data to discriminate quark- vs. gluon-initiated jets with high-fidelity simulated CMS Open Data. We highlight the importance of precise spatial information and demonstrate competitive performance to existing state-of-the-art jet classifiers. We further generalize the end-to-end approach to event-level classification of quark vs. gluon di-jet QCD events. We compare the fully end-to-end approach to using hand-engineered features and demonstrate that the end-to-end algorithm is robust against the effects of underlying event and pile-up. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08276v2-abstract-full').style.display = 'none'; document.getElementById('1902.08276v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 7 tables; v2: published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 977, 164304 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00206">arXiv:1902.00206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00206">pdf</a>, <a href="https://arxiv.org/format/1902.00206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing Quantum Fluctuations of Work with a Trapped Ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuoming An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing-Ning Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kihwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00206v1-abstract-short" style="display: inline;"> In this chapter, we illustrate how a trapped ion system can be used for the experimental study of quantum thermodynamics, in particular, quantum fluctuation of work. As technology of nano/micro scale develops, it becomes critical to understand thermodynamics at the quantum mechanical level. The trapped ion system is a representative physical platform to experimentally demonstrate quantum phenomena&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00206v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00206v1-abstract-full" style="display: none;"> In this chapter, we illustrate how a trapped ion system can be used for the experimental study of quantum thermodynamics, in particular, quantum fluctuation of work. As technology of nano/micro scale develops, it becomes critical to understand thermodynamics at the quantum mechanical level. The trapped ion system is a representative physical platform to experimentally demonstrate quantum phenomena with excellent control and precision. We provide a basic introduction of the trapped ion system and present the theoretical framework for the experimental study of quantum thermodynamics. Then we bring out two concrete examples of the experimental demonstrations. Finally, we discuss the results and the future of the experimental study of quantum thermodynamics with trapped ion systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00206v1-abstract-full').style.display = 'none'; document.getElementById('1902.00206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, Book chapter of &#34;Thermodynamics in the Quantum Regime - Recent Progress and Outlook&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.01587">arXiv:1804.01587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.01587">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electrically Tunable and Reconfigurable Topological Edge State Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+R">Ruizhe Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+C">Chi-Sen Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Wei Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.01587v2-abstract-short" style="display: inline;"> We report an actively tunable topological edge mode laser in a one-dimensional Su-Schrieffer-Heeger (SSH) laser chain, where the SSH chain is realized in an electrically-injected Fabry-Perot (FP) laser chain. A non-Hermitian SSH model is developed to investigate the SSH laser chain with tunable active topological defect. We theoretically demonstrate topological edge mode phase transition in the SS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01587v2-abstract-full').style.display = 'inline'; document.getElementById('1804.01587v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.01587v2-abstract-full" style="display: none;"> We report an actively tunable topological edge mode laser in a one-dimensional Su-Schrieffer-Heeger (SSH) laser chain, where the SSH chain is realized in an electrically-injected Fabry-Perot (FP) laser chain. A non-Hermitian SSH model is developed to investigate the SSH laser chain with tunable active topological defect. We theoretically demonstrate topological edge mode phase transition in the SSH laser chain. The phase transition manifested in the tight binding SSH laser chain is observed experimentally and agreed well with the theoretical predictions. Finally, by electronically tuning the gain and loss, a lossy topological mode is obtained, and lasing is experimentally observed in the lossy time-reversal configuration. This work presents a versatile platform to investigate novel concepts, such as topological mode, for main stream photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01587v2-abstract-full').style.display = 'none'; document.getElementById('1804.01587v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00582">arXiv:1711.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00582">pdf</a>, <a href="https://arxiv.org/format/1711.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.021027">10.1103/PhysRevX.8.021027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of the quantum Rabi model in a trapped ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuoming An</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhenyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing-Ning Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pedernales%2C+J+S">Julen S. Pedernales</a>, <a href="/search/physics?searchtype=author&amp;query=Lamata%2C+L">Lucas Lamata</a>, <a href="/search/physics?searchtype=author&amp;query=Solano%2C+E">Enrique Solano</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kihwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00582v1-abstract-short" style="display: inline;"> The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00582v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00582v1-abstract-full" style="display: none;"> The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong coupling regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00582v1-abstract-full').style.display = 'none'; document.getElementById('1711.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 021027 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06561">arXiv:1709.06561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06561">pdf</a>, <a href="https://arxiv.org/format/1709.06561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5019228">10.1063/1.5019228 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Demonstration of Laser-produced Neutron Diagnostic by Radiative Capture Gamma-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaopeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wenqing Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiaohui Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Songhai An</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yanqing Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jian Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+X">Xulei Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bing Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chuangye He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P">Peng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hua%2C+N">Neng Hua</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+W">Weiman Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengting Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yifei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yutong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+G">Guoqiang Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Longxiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Pengqian Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Su Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06561v1-abstract-short" style="display: inline;"> We report a new scenario of time-of-flight (TOF) technique in which fast neutrons and delayed gamma-ray signals were both recorded in a millisecond time window in harsh environments induced by high-intensity lasers. The delayed gamma signals, arriving far later than the original fast neutron and often being ignored previously, were identified to be the results of radiative captures of thermalized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06561v1-abstract-full').style.display = 'inline'; document.getElementById('1709.06561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06561v1-abstract-full" style="display: none;"> We report a new scenario of time-of-flight (TOF) technique in which fast neutrons and delayed gamma-ray signals were both recorded in a millisecond time window in harsh environments induced by high-intensity lasers. The delayed gamma signals, arriving far later than the original fast neutron and often being ignored previously, were identified to be the results of radiative captures of thermalized neutrons. The linear correlation between gamma photon number and the fast neutron yield shows that these delayed gamma events can be employed for neutron diagnosis. This method can reduce the detecting efficiency dropping problem caused by prompt high-flux gamma radiation, and provides a new way for neutron diagnosing in high-intensity laser-target interaction experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06561v1-abstract-full').style.display = 'none'; document.getElementById('1709.06561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01495">arXiv:1708.01495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01495">pdf</a>, <a href="https://arxiv.org/format/1708.01495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa9cd6">10.1088/1367-2630/aa9cd6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Verification of the Quantum Nonequilibrium Work Relation in the Presence of Decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Smith%2C+A">Andrew Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuoming An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing-Ning Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Z">Zongping Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Quan%2C+H+T">H. T. Quan</a>, <a href="/search/physics?searchtype=author&amp;query=Jarzynski%2C+C">Christopher Jarzynski</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kihwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01495v1-abstract-short" style="display: inline;"> Although nonequilibrium work and fluctuation relations have been studied in detail within classical statistical physics, extending these results to open quantum systems has proven to be conceptually difficult. For systems that undergo decoherence but not dissipation, we argue that it is natural to define quantum work exactly as for isolated quantum systems, using the two-point measurement protocol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01495v1-abstract-full').style.display = 'inline'; document.getElementById('1708.01495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01495v1-abstract-full" style="display: none;"> Although nonequilibrium work and fluctuation relations have been studied in detail within classical statistical physics, extending these results to open quantum systems has proven to be conceptually difficult. For systems that undergo decoherence but not dissipation, we argue that it is natural to define quantum work exactly as for isolated quantum systems, using the two-point measurement protocol. Complementing previous theoretical analysis using quantum channels, we show that the nonequilibrium work relation remains valid in this situation, and we test this assertion experimentally using a system engineered from an optically trapped ion. Our experimental results reveal the work relation&#39;s validity over a variety of driving speeds, decoherence rates, and effective temperatures and represent the first confirmation of the work relation for non-unitary dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01495v1-abstract-full').style.display = 'none'; document.getElementById('1708.01495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 20, 013008 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00760">arXiv:1707.00760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00760">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-03831-7">10.1038/s41467-018-03831-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-thin, High-efficiency Mid-Infrared Transmissive Huygens Meta-Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Hanyu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Sensong An</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+H">Hongtao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bowen Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Qingyang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+G">Gufan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Michon%2C+J">Jerome Michon</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Z">Zhuoran Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+L">Longjiang Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00760v1-abstract-short" style="display: inline;"> The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Unlike visible or near-infrared optical parts which are commonplace and economically available off-the-shelf, mid-IR optics often requires exotic materials or complicated processing, which accounts for their high cost and inferior quality compared to their visible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00760v1-abstract-full').style.display = 'inline'; document.getElementById('1707.00760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00760v1-abstract-full" style="display: none;"> The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Unlike visible or near-infrared optical parts which are commonplace and economically available off-the-shelf, mid-IR optics often requires exotic materials or complicated processing, which accounts for their high cost and inferior quality compared to their visible or near-infrared counterparts. Here we theoretically analyzed and experimentally realized a Huygens metasurface platform capable of fulfilling a diverse cross-section of optical functions in the mid-IR. The meta-optical elements were constructed using high-index chalcogenide films deposited on fluoride substrates:the choices of wide-band transparent materials allow the design to be scaled across a broad infrared spectrum. Capitalizing on a novel two-component Huygens&#39; meta-atom design, the meta-optical devices feature an ultra-thin profile ($位_0/8$ in thickness, where $位_0$ is the free-space wavelength) and measured optical efficiencies up to 75% in transmissive mode, both of which represent major improvements over state-of-the-art. We have also demonstrated, for the first time, mid-IR transmissive meta-lenses with diffraction-limited focusing and imaging performance. The projected size, weight and power advantages, coupled with the manufacturing scalability leveraging standard microfabrication technologies, make the Huygens meta-optical devices promising for next-generation mid-IR system applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00760v1-abstract-full').style.display = 'none'; document.getElementById('1707.00760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 17 figures, 1 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> L Zhang, J Ding, H Zheng, et al. Ultra-thin High-efficiency Mid-Infrared Transmissive Huygens Meta-Optics. Nature Communications. 9:1480, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.04195">arXiv:1701.04195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.04195">pdf</a>, <a href="https://arxiv.org/format/1701.04195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-017-0007-1">10.1038/s41566-017-0007-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-qubit quantum memory exceeding $10$-minute coherence time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Ye Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Um%2C+M">Mark Um</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Junhua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuoming An</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+M">Ming Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+-">Jing -Ning Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+L+-">L. -M. Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Yum%2C+D">Dahyun Yum</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kihwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.04195v1-abstract-short" style="display: inline;"> A long-time quantum memory capable of storing and measuring quantum information at the single-qubit level is an essential ingredient for practical quantum computation and com-munication. Recently, there have been remarkable progresses of increasing coherence time for ensemble-based quantum memories of trapped ions, nuclear spins of ionized donors or nuclear spins in a solid. Until now, however, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04195v1-abstract-full').style.display = 'inline'; document.getElementById('1701.04195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.04195v1-abstract-full" style="display: none;"> A long-time quantum memory capable of storing and measuring quantum information at the single-qubit level is an essential ingredient for practical quantum computation and com-munication. Recently, there have been remarkable progresses of increasing coherence time for ensemble-based quantum memories of trapped ions, nuclear spins of ionized donors or nuclear spins in a solid. Until now, however, the record of coherence time of a single qubit is on the order of a few tens of seconds demonstrated in trapped ion systems. The qubit coherence time in a trapped ion is mainly limited by the increasing magnetic field fluctuation and the decreasing state-detection efficiency associated with the motional heating of the ion without laser cooling. Here we report the coherence time of a single qubit over $10$ minutes in the hyperfine states of a \Yb ion sympathetically cooled by a \Ba ion in the same Paul trap, which eliminates the heating of the qubit ion even at room temperature. To reach such coherence time, we apply a few thousands of dynamical decoupling pulses to suppress the field fluctuation noise. A long-time quantum memory demonstrated in this experiment makes an important step for construction of the memory zone in scalable quantum computer architectures or for ion-trap-based quantum networks. With further improvement of the coherence time by techniques such as magnetic field shielding and increase of the number of qubits in the quantum memory, our demonstration also makes a basis for other applications including quantum money. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04195v1-abstract-full').style.display = 'none'; document.getElementById('1701.04195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 11, 646-650 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05551">arXiv:1601.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.05551">pdf</a>, <a href="https://arxiv.org/format/1601.05551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms12999">10.1038/ncomms12999 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+S">Shuoming An</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/physics?searchtype=author&amp;query=del+Campo%2C+A">Adolfo del Campo</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kihwan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05551v3-abstract-short" style="display: inline;"> The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we present the first experimental implementation of counterdiabatic driving in a continuous variable system,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05551v3-abstract-full').style.display = 'inline'; document.getElementById('1601.05551v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05551v3-abstract-full" style="display: none;"> The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we present the first experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in the phase space. The resulting dynamics is equivalent to a &#34;fast-motion video&#34; of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05551v3-abstract-full').style.display = 'none'; document.getElementById('1601.05551v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 11 pages, 10 figures, supplementary material added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7, 12999 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0504116">arXiv:physics/0504116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0504116">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Hole emitter whispering galleries of photonic quantum ring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kwon%2C+O">Odae Kwon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+M+J">M. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=an%2C+S+-">S. -J. an</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+K">D. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+E">S. E. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+J+H">J. H. Yoon</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+B+H">B. H. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ahn%2C+J">J. Ahn</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">S. Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0504116v1-abstract-short" style="display: inline;"> We report on the first observation of hole whispering gallery lasers from semiconductor microcavities with three dimensional optical confinement, with thresholds potentially reducible to micro-to-nano ampere regimes according to a quadratic size-dependent reduction, due to ideal quantum wire properties of the naturally formed photonic quantum rings before imminent recombination in a dynamic stea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0504116v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0504116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0504116v1-abstract-full" style="display: none;"> We report on the first observation of hole whispering gallery lasers from semiconductor microcavities with three dimensional optical confinement, with thresholds potentially reducible to micro-to-nano ampere regimes according to a quadratic size-dependent reduction, due to ideal quantum wire properties of the naturally formed photonic quantum rings before imminent recombination in a dynamic steady state fashion. If the device size grows over a critical diameter, the quantum ring whispering gallery then begins to disappear. However, cooperative small hole arrays like 256x256 quantum ring emitters avoid the criticality and open a possibility of constructing practical dense electro-pumped micro-to-nano watt emitter arrays, amenable to mega-to-giga ring emitter chip development via present fabrication techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0504116v1-abstract-full').style.display = 'none'; document.getElementById('physics/0504116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, submitted to Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0405001">arXiv:physics/0405001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0405001">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A New Quantum Ring Emitter of Anti-Whispering Gallery Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kwon%2C+O">Odae Kwon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+M+J">M. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=an%2C+S+-">S. -J. an</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+E">S. E. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+K">D. K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0405001v1-abstract-short" style="display: inline;"> We have observed for the first time a new photonic quantum ring emission of anti-whispering gallery modes from a negative mesa-type toroid cavity due to semiconductor photonic corrals. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0405001v1-abstract-full" style="display: none;"> We have observed for the first time a new photonic quantum ring emission of anti-whispering gallery modes from a negative mesa-type toroid cavity due to semiconductor photonic corrals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405001v1-abstract-full').style.display = 'none'; document.getElementById('physics/0405001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures, ISLC2004</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10