CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 443 results for author: <span class="mathjax">Hu, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Hu%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07195">arXiv:2502.07195</a> <span> [<a href="https://arxiv.org/pdf/2502.07195">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First experimental proof of PET imaging based on multi-anode MCP-PMTs with Cherenkov radiator-integrated window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+W">Weiyan Pan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lingyue Chen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+G">Guorui Huang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+W">Wei Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xianchao Huang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiaorou Han</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xiaoshan Jiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Z">Zhen Jin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Daowu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingwen Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zehong Liang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Lishuang Ma</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Z">Zhe Ning</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+S">Sen Qian</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+L">Ling Ren</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianning Sun</a>, <a href="/search/physics?searchtype=author&query=Si%2C+S">Shuguang Si</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yunhua Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Long Wei</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+Q">Qing Wei</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyi Wang</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07195v1-abstract-short" style="display: inline;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07195v1-abstract-full" style="display: none;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective approach is to use microchannel plate photomultiplier tubes (MCP-PMTs) for prompt Cherenkov photon detection. In this study, we developed a dual-module Cherenkov PET imaging experimental platform, utilising our proprietary 8 * 8-anode Cherenkov radiator-integrated window MCP-PMTs in combination with custom-designed multi-channel electronics, and designed a specific calibration and correction method for the platform. Using this platform, a CTR of 103 ps FWHM was achieved. We overcame the limitations of single-anode detectors in previous experiments, significantly enhanced imaging efficiency and achieved module-level Cherenkov PET imaging for the first time. Imaging experiments involving radioactive sources and phantoms of various shapes and types were conducted, which preliminarily validated the feasibility and advancement of this imaging method. In addition, the effects of normalisation correction and the interaction probability between the gamma rays and the MCP on the images and experimental results were analysed and verified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'none'; document.getElementById('2502.07195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, manuscript has been submitted to Physics in Medicine & Biology and is under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13196">arXiv:2501.13196</a> <span> [<a href="https://arxiv.org/pdf/2501.13196">pdf</a>, <a href="https://arxiv.org/format/2501.13196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Direct Measurement of the $^{39}$Ar Half-life from 3.4 Years of Data with the DEAP-3600 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13196v1-abstract-short" style="display: inline;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13196v1-abstract-full" style="display: none;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of triggers by two orders of magnitude, ensuring high statistics and making DEAP-3600 well-suited for measuring this isotope's half-life. Use of the pulse-shape discrimination technique in DEAP-3600 allows for powerful discrimination between nuclear recoils and electron recoils, resulting in the selection of a clean sample of $^{39}$Ar decays. Observing over a period of 3.4 years, the $^{39}$Ar half-life is measured to be $(302 \pm 8_{\rm stat} \pm 6_{\rm sys})$ years. This new direct measurement suggests that the half-life of $^{39}$Ar may be significantly longer than the accepted value, with potential implications for measurements using this isotope's half-life as input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'none'; document.getElementById('2501.13196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12683">arXiv:2501.12683</a> <span> [<a href="https://arxiv.org/pdf/2501.12683">pdf</a>, <a href="https://arxiv.org/format/2501.12683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Proton Acceleration via Petawatt Laguerre-Gaussian Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenpeng Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xinyue Sun</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+F">Fengyu Sun</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+Z">Zhengxing Lv</a>, <a href="/search/physics?searchtype=author&query=Glize%2C+K">K. Glize</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zhiyong Shi</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yi Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zongxin Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+F">Fenxiang Wu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiabing Hu</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+J">Jiayi Qian</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jiacheng Zhu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+X">Xiaoyan Liang</a>, <a href="/search/physics?searchtype=author&query=Leng%2C+Y">Yuxin Leng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zhizhan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12683v1-abstract-short" style="display: inline;"> High-energy, high-flux collimated proton beams with high repetition rates are critical for applications such as proton therapy, proton radiography, high-energy-density matter generation, and compact particle accelerators. However, achieving proton beam collimation has typically relied on complex and expensive target fabrication or precise control of auxiliary laser pulses, which poses significant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12683v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12683v1-abstract-full" style="display: none;"> High-energy, high-flux collimated proton beams with high repetition rates are critical for applications such as proton therapy, proton radiography, high-energy-density matter generation, and compact particle accelerators. However, achieving proton beam collimation has typically relied on complex and expensive target fabrication or precise control of auxiliary laser pulses, which poses significant limitations for high-repetition applications. Here, we demonstrate an all-optical method for collimated proton acceleration using a single femtosecond Laguerre-Gaussian (LG) laser with an intensity exceeding 1020 W/cm2 irradiating a simple planar target. Compared to conventional Gaussian laser-driven schemes, the maximum proton energy is enhanced by 60% (reaching 35 MeV) and beam divergence is much reduced. Particle-in-cell simulations reveal that a plasma jet is initially focused by the hollow electric sheath field of the LG laser, and then electrons in the jet are further collimated by self-generated magnetic fields. This process amplifies the charge-separation electric field between electrons and ions, leading to increased proton energy in the longitudinal direction and improved collimation in the transverse direction. This single-LG-laser-driven collimation mechanism offers a promising pathway for high-repetition, high-quality proton beam generation, with broad potential applications including proton therapy and fast ignition in inertial confinement fusion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12683v1-abstract-full').style.display = 'none'; document.getElementById('2501.12683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07917">arXiv:2501.07917</a> <span> [<a href="https://arxiv.org/pdf/2501.07917">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Roadmap on Neuromorphic Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brunner%2C+D">Daniel Brunner</a>, <a href="/search/physics?searchtype=author&query=Shastri%2C+B+J">Bhavin J. Shastri</a>, <a href="/search/physics?searchtype=author&query=Qadasi%2C+M+A+A">Mohammed A. Al Qadasi</a>, <a href="/search/physics?searchtype=author&query=Ballani%2C+H">H. Ballani</a>, <a href="/search/physics?searchtype=author&query=Barbay%2C+S">Sylvain Barbay</a>, <a href="/search/physics?searchtype=author&query=Biasi%2C+S">Stefano Biasi</a>, <a href="/search/physics?searchtype=author&query=Bienstman%2C+P">Peter Bienstman</a>, <a href="/search/physics?searchtype=author&query=Bilodeau%2C+S">Simon Bilodeau</a>, <a href="/search/physics?searchtype=author&query=Bogaerts%2C+W">Wim Bogaerts</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hm%2C+F">Fabian B枚hm</a>, <a href="/search/physics?searchtype=author&query=Brennan%2C+G">G. Brennan</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+S">Sonia Buckley</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/physics?searchtype=author&query=Strinati%2C+M+C">Marcello Calvanese Strinati</a>, <a href="/search/physics?searchtype=author&query=Canakci%2C+B">B. Canakci</a>, <a href="/search/physics?searchtype=author&query=Charbonnier%2C+B">Benoit Charbonnier</a>, <a href="/search/physics?searchtype=author&query=Chemnitz%2C+M">Mario Chemnitz</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+S">Stanley Cheung</a>, <a href="/search/physics?searchtype=author&query=Chiles%2C+J">Jeff Chiles</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">Suyeon Choi</a>, <a href="/search/physics?searchtype=author&query=Christodoulides%2C+D+N">Demetrios N. Christodoulides</a>, <a href="/search/physics?searchtype=author&query=Chrostowski%2C+L">Lukas Chrostowski</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+J">J. Chu</a>, <a href="/search/physics?searchtype=author&query=Clegg%2C+J+H">J. H. Clegg</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07917v2-abstract-short" style="display: inline;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07917v2-abstract-full" style="display: none;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07917v2-abstract-full').style.display = 'none'; document.getElementById('2501.07917v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18867">arXiv:2412.18867</a> <span> [<a href="https://arxiv.org/pdf/2412.18867">pdf</a>, <a href="https://arxiv.org/format/2412.18867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quality Assurance and Quality Control of the $26~\text{m}^2$ SiPM production for the DarkSide-20k dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+M+A+E">M. Angiolilli. E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a>, <a href="/search/physics?searchtype=author&query=Bloem%2C+M">M. Bloem</a>, <a href="/search/physics?searchtype=author&query=Blua%2C+S">S. Blua</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a> , et al. (267 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18867v1-abstract-short" style="display: inline;"> DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with \SI{50} {tonnes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18867v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18867v1-abstract-full" style="display: none;"> DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with \SI{50} {tonnes} of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-Cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Povo, Trento, Italy) were selected as the photon sensors covering two $10.5~\text{m}^2$ Optical Planes, one at each end of the TPC, and a total of $5~\text{m}^2$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK~NUV-HD-Cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77~K at the wafer level with a custom-designed probe station. As of May~2024, 603 of the 1400 production wafers (43\% of the total) for DarkSide-20k were tested, including wafers from all 57 production Lots. The wafer yield is $93.6\pm2.5$\%, which exceeds the 80\% specification defined in the original DarkSide-20k production plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18867v1-abstract-full').style.display = 'none'; document.getElementById('2412.18867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18642">arXiv:2412.18642</a> <span> [<a href="https://arxiv.org/pdf/2412.18642">pdf</a>, <a href="https://arxiv.org/format/2412.18642">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A 64-Channel Precision Time-to-Digital Converter with Average 4.77 ps RMS Implemented in a 28 nm FPGA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zehong Liang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X">Xiongbo Yan</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Z">Zhe Ning</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xiaoshan Jiang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yunhua Sun</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+W">Weiyan Pan</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+J">Jingbo Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18642v1-abstract-short" style="display: inline;"> We have developed a Time-to-Digital Converter (TDC) application in a Xilinx Kintex-7 Field Programmable Gate Array (FPGA). This TDC, based on the Tapped-Delay Line (TDL) and Wave Union A (WU-A) techniques, achieves an independent time measurement on 32-channel rising edges and 32-channel falling edges. The average time resolution or the Least Significant Bit (LSB) of the 64 channels is measured to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18642v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18642v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18642v1-abstract-full" style="display: none;"> We have developed a Time-to-Digital Converter (TDC) application in a Xilinx Kintex-7 Field Programmable Gate Array (FPGA). This TDC, based on the Tapped-Delay Line (TDL) and Wave Union A (WU-A) techniques, achieves an independent time measurement on 32-channel rising edges and 32-channel falling edges. The average time resolution or the Least Significant Bit (LSB) of the 64 channels is measured to be 3 ps level, with an average root mean square (RMS) precision of 4.77 ps, and a maximum RMS below 8 ps. We also propose an online processing scheme that handles the bubble issues caused by clock region skew. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18642v1-abstract-full').style.display = 'none'; document.getElementById('2412.18642v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16483">arXiv:2412.16483</a> <span> [<a href="https://arxiv.org/pdf/2412.16483">pdf</a>, <a href="https://arxiv.org/format/2412.16483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jingjing Hu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Dan Guo</a>, <a href="/search/physics?searchtype=author&query=Si%2C+Z">Zhan Si</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&query=Diao%2C+Y">Yunfeng Diao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jinxing Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Meng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16483v2-abstract-short" style="display: inline;"> Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electroni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16483v2-abstract-full').style.display = 'inline'; document.getElementById('2412.16483v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16483v2-abstract-full" style="display: none;"> Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electronic information, as well as the internal semantic reasoning within molecules. This omission of fundamental chemical knowledge in graph semantics leads to incomplete molecular representations, missing the integration of structural and electronic data. To address these issues, we introduce MOL-Mamba, a framework that enhances molecular representation by combining structural and electronic insights. MOL-Mamba consists of an Atom & Fragment Mamba-Graph (MG) for hierarchical structural reasoning and a Mamba-Transformer (MT) fuser for integrating molecular structure and electronic correlation learning. Additionally, we propose a Structural Distribution Collaborative Training and E-semantic Fusion Training framework to further enhance molecular representation learning. Extensive experiments demonstrate that MOL-Mamba outperforms state-of-the-art baselines across eleven chemical-biological molecular datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16483v2-abstract-full').style.display = 'none'; document.getElementById('2412.16483v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15600">arXiv:2412.15600</a> <span> [<a href="https://arxiv.org/pdf/2412.15600">pdf</a>, <a href="https://arxiv.org/format/2412.15600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> On-Demand Magnon Resonance Isolation in Cavity Magnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pishehvar%2C+A">Amin Pishehvar</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhaoyou Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yujie Zhu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Zixin Yan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Fangxin Li</a>, <a href="/search/physics?searchtype=author&query=Jornet%2C+J+M">Josep M. Jornet</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jia-Mian Hu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15600v1-abstract-short" style="display: inline;"> Cavity magnonics is a promising field focusing the interaction between spin waves (magnons) and other types of signals. In cavity magnonics, the function of isolating magnons from the cavity to allow signal storage and processing fully in the magnonic domain is highly desired, but its realization is often hindered by the lack of necessary tunability on the interaction. This work shows that by util… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15600v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15600v1-abstract-full" style="display: none;"> Cavity magnonics is a promising field focusing the interaction between spin waves (magnons) and other types of signals. In cavity magnonics, the function of isolating magnons from the cavity to allow signal storage and processing fully in the magnonic domain is highly desired, but its realization is often hindered by the lack of necessary tunability on the interaction. This work shows that by utilizing the collective mode of two YIG spheres and adopting Floquet engineering, magnonic signals can be switched on-demand to a magnon dark mode that is protected from the environment, enabling a variety of manipulation over the magnon dynamics. Our demonstration can be scaled up to systems with an array of magnonic resonators, paving the way for large-scale programmable hybrid magnonic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15600v1-abstract-full').style.display = 'none'; document.getElementById('2412.15600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01679">arXiv:2412.01679</a> <span> [<a href="https://arxiv.org/pdf/2412.01679">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimisation and Loss Analyses of Pulsed Field Magnetisation in a Superconducting Motor with Cryocooled Iron Cores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+L">Luning Hao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongye Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+G">Guojin Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+H">Haigening Wei</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jintao Hu</a>, <a href="/search/physics?searchtype=author&query=Coombs%2C+T">Tim Coombs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01679v1-abstract-short" style="display: inline;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fiel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01679v1-abstract-full" style="display: none;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fields. After PFM, the superconducting motor operates on the same principle as permanent magnet synchronous motors. This study explores the behaviour of HTS stacks by altering the stack's layer number from one to nine and adjusting the pulsed current amplitude from 250 A to 1000 A. The primary objective of this paper is to identify the optimal combination of pulsed current amplitudes and TFS layer numbers for achieving maximum magnetisation fields. The secondary objective is to evaluate the overall losses in both superconducting and non-superconducting parts of the machine during magnetisation, including heat generated in various layers of the TFS, and losses in the motor's active materials (copper windings and iron cores). Two motor configurations were proposed, and two calculation methods using linear interpolation of iron losses and steel grades were introduced to estimate the iron losses for the studied iron material, M270-35A. This pioneering study is expected to serve as a valuable reference for loss analyses and structural design considerations in developing superconducting machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'none'; document.getElementById('2412.01679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01018">arXiv:2412.01018</a> <span> [<a href="https://arxiv.org/pdf/2412.01018">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vertical Emission of Blue Light from a Symmetry Breaking Plasmonic Nanocavity-Emitter System Supporting Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yongqi Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiayi Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiang Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+X">Xiumei Yin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yangzhe Guo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+N">Nan Gao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhiguang Sun</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+H">Haonan Wei</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoran Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+B">Bin Dong</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yurui Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01018v1-abstract-short" style="display: inline;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01018v1-abstract-full" style="display: none;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum emitters, due to the strong intrinsic Ohmic losses of metals. Here, we propose and realize a 蟽h symmetry-breaking plasmonic honeycomb nanocavities (PHC) that support quasi-BIC resonance modes with high-Q factors. Our anodic oxidation-engineered strategy breaks out-of-plane symmetry while preserving in-plane symmetry, enabling the PHC to exhibit collective plasmonic lattice resonances (PLR) couplings and achieve Q-factors exceeding 106. Experimentally, we couple perovskite quantum dots (PQDs) to the PHC, demonstrating effective tuning of their emission properties and beam quality in the blue spectral region, achieving a 32-fold emission enhancement by suppress Ohmic loss and the life time of quantum emitters, simultaneously realize vertical emission in the 2.556 - 2.638 eV region, with a far-field hexagonal beam shape and a full width at half maximum of 12.6 degree under optimal coupling conditions. Furthermore, we demonstrate topological band inversion characterized by Zak phase transitions by continuously tuning the system parameters, confirming that the PHC supports topologically non-trivial q-BIC due to PLR coupling. The PHC presents itself as a promising next-generation, high-brightness nanoscale light source matrix, which can be directly scaled up to cover a wide wavelength range from UV to IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'none'; document.getElementById('2412.01018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16759">arXiv:2411.16759</a> <span> [<a href="https://arxiv.org/pdf/2411.16759">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A wireless passive pressure sensor with high sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+B">Baiyun Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yijia Cheng</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+Y">Yujie Hua</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+W">Wenxuan Tang</a>, <a href="/search/physics?searchtype=author&query=Sha%2C+W+E+I">Wei E. I. Sha</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+K">Kang Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jundi Hu</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+H">Huaqing Fan</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+H">Huanran Peng</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+G">Gang Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16759v1-abstract-short" style="display: inline;"> A high-sensitivity wireless pressure sensor with active processing structure designed on the dielectric substrate has been present and evaluated in this paper. The sensor configuration has been optimized by computer-aided design to achieve highest sensitivity and maximum working range for a given dimension. With the average sensitivity of 187kHz/kPa, the proposed pressure sensor is equipped with t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16759v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16759v1-abstract-full" style="display: none;"> A high-sensitivity wireless pressure sensor with active processing structure designed on the dielectric substrate has been present and evaluated in this paper. The sensor configuration has been optimized by computer-aided design to achieve highest sensitivity and maximum working range for a given dimension. With the average sensitivity of 187kHz/kPa, the proposed pressure sensor is equipped with the ability to measure pressure loaded up to 1.5MPa under room temperature. Additionally, a novel simulation method applied on pressure related design is proposed in this article, with the accuracy reaching threefold enhancement, filling the blank of electromagnetic simulation of pressure deformation. Other characteristics of the devices have been investigated and are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16759v1-abstract-full').style.display = 'none'; document.getElementById('2411.16759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12577">arXiv:2411.12577</a> <span> [<a href="https://arxiv.org/pdf/2411.12577">pdf</a>, <a href="https://arxiv.org/format/2411.12577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Complex Frequency Fingerprint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+J">Juntao Huang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+K">Kun Ding</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhesen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12577v1-abstract-short" style="display: inline;"> In this work, we present a novel method called the complex frequency fingerprint (CFF) to detect the complex frequency Green's function, $G(蠅\in\mathbb{C})$, in a driven-dissipative system. By utilizing the CFF, we can measure the complex frequency density of states (DOS) and local DOS (LDOS), providing unique insights into the characterization of non-Hermitian systems. By applying our method to s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12577v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12577v1-abstract-full" style="display: none;"> In this work, we present a novel method called the complex frequency fingerprint (CFF) to detect the complex frequency Green's function, $G(蠅\in\mathbb{C})$, in a driven-dissipative system. By utilizing the CFF, we can measure the complex frequency density of states (DOS) and local DOS (LDOS), providing unique insights into the characterization of non-Hermitian systems. By applying our method to systems exhibiting the non-Hermitian skin effect (NHSE), we demonstrate how to use our theory to detect both the non-Hermitian eigenvalues and eigenstates. This offers a distinctive and reliable approach to identifying the presence or absence of NHSE in experimental settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12577v1-abstract-full').style.display = 'none'; document.getElementById('2411.12577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+5 pages, 4+1 figures, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09605">arXiv:2411.09605</a> <span> [<a href="https://arxiv.org/pdf/2411.09605">pdf</a>, <a href="https://arxiv.org/format/2411.09605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> An explicit, energy-conserving particle-in-cell scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ricketson%2C+L+F">Lee F. Ricketson</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jingwei Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09605v1-abstract-short" style="display: inline;"> We present an explicit temporal discretization of particle-in-cell schemes for the Vlasov equation that results in exact energy conservation when combined with an appropriate spatial discretization. The scheme is inspired by a simple, second-order explicit scheme that conserves energy exactly in the Eulerian context. We show that direct translation to particle-in-cell does not result in strict con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09605v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09605v1-abstract-full" style="display: none;"> We present an explicit temporal discretization of particle-in-cell schemes for the Vlasov equation that results in exact energy conservation when combined with an appropriate spatial discretization. The scheme is inspired by a simple, second-order explicit scheme that conserves energy exactly in the Eulerian context. We show that direct translation to particle-in-cell does not result in strict conservation, but derive a simple correction based on an analytically solvable optimization problem that recovers conservation. While this optimization problem is not guaranteed to have a real solution for every particle, we provide a correction that makes imaginary values extremely rare and still admits $\mathcal{O}(10^{-12})$ fractional errors in energy for practical simulation parameters. We present the scheme in both electrostatic -- where we use the Amp猫re formulation -- and electromagnetic contexts. With an electromagnetic field solve, the field update is most naturally linearly implicit, but the more computationally intensive particle update remains fully explicit. We also show how the scheme can be extended to use the fully explicit leapfrog and pseudospectral analytic time-domain (PSATD) field solvers. The scheme is tested on standard kinetic plasma problems, confirming its conservation properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09605v1-abstract-full').style.display = 'none'; document.getElementById('2411.09605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24099">arXiv:2410.24099</a> <span> [<a href="https://arxiv.org/pdf/2410.24099">pdf</a>, <a href="https://arxiv.org/format/2410.24099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterization of the optical model of the T2K 3D segmented plastic scintillator detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+T">T. Arai</a>, <a href="/search/physics?searchtype=author&query=Arihara%2C+T">T. Arihara</a>, <a href="/search/physics?searchtype=author&query=Arimoto%2C+S">S. Arimoto</a>, <a href="/search/physics?searchtype=author&query=Babu%2C+N">N. Babu</a>, <a href="/search/physics?searchtype=author&query=Baranov%2C+V">V. Baranov</a>, <a href="/search/physics?searchtype=author&query=Bartoszek%2C+L">L. Bartoszek</a>, <a href="/search/physics?searchtype=author&query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+S">S. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Boikov%2C+A+V">A. V. Boikov</a>, <a href="/search/physics?searchtype=author&query=Buizza-Avanzini%2C+M">M. Buizza-Avanzini</a>, <a href="/search/physics?searchtype=author&query=Cap%C3%B3%2C+J">J. Cap贸</a>, <a href="/search/physics?searchtype=author&query=Cayo%2C+J">J. Cayo</a>, <a href="/search/physics?searchtype=author&query=Chakrani%2C+J">J. Chakrani</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+P+S">P. S. Chong</a>, <a href="/search/physics?searchtype=author&query=Chvirova%2C+A">A. Chvirova</a>, <a href="/search/physics?searchtype=author&query=Danilov%2C+M">M. Danilov</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+C">C. Davis</a>, <a href="/search/physics?searchtype=author&query=Davydov%2C+Y+I">Yu. I. Davydov</a>, <a href="/search/physics?searchtype=author&query=Dergacheva%2C+A">A. Dergacheva</a>, <a href="/search/physics?searchtype=author&query=Dokania%2C+N">N. Dokania</a>, <a href="/search/physics?searchtype=author&query=Douqa%2C+D">D. Douqa</a>, <a href="/search/physics?searchtype=author&query=Doyle%2C+T+A">T. A. Doyle</a> , et al. (106 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24099v1-abstract-short" style="display: inline;"> The magnetised near detector (ND280) of the T2K long-baseline neutrino oscillation experiment has been recently upgraded aiming to satisfy the requirement of reducing the systematic uncertainty from measuring the neutrinonucleus interaction cross section, which is the largest systematic uncertainty in the search for leptonic charge-parity symmetry violation. A key component of the upgrade is Super… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24099v1-abstract-full').style.display = 'inline'; document.getElementById('2410.24099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24099v1-abstract-full" style="display: none;"> The magnetised near detector (ND280) of the T2K long-baseline neutrino oscillation experiment has been recently upgraded aiming to satisfy the requirement of reducing the systematic uncertainty from measuring the neutrinonucleus interaction cross section, which is the largest systematic uncertainty in the search for leptonic charge-parity symmetry violation. A key component of the upgrade is SuperFGD, a 3D segmented plastic scintillator detector made of approximately 2,000,000 optically-isolated 1 cm3 cubes. It will provide a 3D image of GeV neutrino interactions by combining tracking and stopping power measurements of final state particles with sub-nanosecond time resolution. The performance of SuperFGD is characterized by the precision of its response to charged particles as well as the systematic effects that might affect the physics measurements. Hence, a detailed Geant4 based optical simulation of the SuperFGD building block, i.e. a plastic scintillating cube read out by three wavelength shifting fibers, has been developed and validated with the different datasets collected in various beam tests. In this manuscript the description of the optical model as well as the comparison with data are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24099v1-abstract-full').style.display = 'none'; document.getElementById('2410.24099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14192">arXiv:2410.14192</a> <span> [<a href="https://arxiv.org/pdf/2410.14192">pdf</a>, <a href="https://arxiv.org/format/2410.14192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Optimizing the image projection of spatially incoherent light from a multimode fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deng%2C+K">Ken Deng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhongchi Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Huaichuan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zihan Zhao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiazhong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14192v2-abstract-short" style="display: inline;"> We study the spatially incoherent light generated by a multimode fiber(MMF) in the application of image projection designed for the ultracold-atom experiments. Inspired by previous half-analytic methods concerning the incoherent light, here a full-numerical model is established to provide more quantitative descriptions, and part of results is compared with experiments. Particularly, our model abou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14192v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14192v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14192v2-abstract-full" style="display: none;"> We study the spatially incoherent light generated by a multimode fiber(MMF) in the application of image projection designed for the ultracold-atom experiments. Inspired by previous half-analytic methods concerning the incoherent light, here a full-numerical model is established to provide more quantitative descriptions, and part of results is compared with experiments. Particularly, our model about the MMF is also compatible with light propagation in free space. Based on this, we study both the intrinsic speckle and the perturbation robustness of a MMF light field, under the influence of light propagation and fiber parameters. We point out several guidelines about choosing the suitable MMF in creating a spatially incoherent light source, which is useful in the context of the ultracold-atom experiments associating with the optical potential projection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14192v2-abstract-full').style.display = 'none'; document.getElementById('2410.14192v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07141">arXiv:2410.07141</a> <span> [<a href="https://arxiv.org/pdf/2410.07141">pdf</a>, <a href="https://arxiv.org/format/2410.07141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Large-scale self-assembled nanophotonic scintillators for X-ray imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Martin-Monier%2C+L">Louis Martin-Monier</a>, <a href="/search/physics?searchtype=author&query=Pajovic%2C+S">Simo Pajovic</a>, <a href="/search/physics?searchtype=author&query=Abebe%2C+M+G">Muluneh G. Abebe</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Joshua Chen</a>, <a href="/search/physics?searchtype=author&query=Vaidya%2C+S">Sachin Vaidya</a>, <a href="/search/physics?searchtype=author&query=Min%2C+S">Seokhwan Min</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">Seou Choi</a>, <a href="/search/physics?searchtype=author&query=Kooi%2C+S+E">Steven E. Kooi</a>, <a href="/search/physics?searchtype=author&query=Maes%2C+B">Bjorn Maes</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&query=Soljacic%2C+M">Marin Soljacic</a>, <a href="/search/physics?searchtype=author&query=Roques-Carmes%2C+C">Charles Roques-Carmes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07141v1-abstract-short" style="display: inline;"> Scintillators are essential for converting X-ray energy into visible light in imaging technologies. Their widespread application in imaging technologies has been enabled by scalable, high-quality, and affordable manufacturing methods. Nanophotonic scintillators, which feature nanostructures at the scale of their emission wavelength, provide a promising approach to enhance emission properties like… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07141v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07141v1-abstract-full" style="display: none;"> Scintillators are essential for converting X-ray energy into visible light in imaging technologies. Their widespread application in imaging technologies has been enabled by scalable, high-quality, and affordable manufacturing methods. Nanophotonic scintillators, which feature nanostructures at the scale of their emission wavelength, provide a promising approach to enhance emission properties like light yield, decay time, and directionality. However, scalable fabrication of such nanostructured scintillators has been a significant challenge, impeding their widespread adoption. Here, we present a scalable fabrication method for large-area nanophotonic scintillators based on the self-assembly of chalcogenide glass photonic crystals. This technique enables the production of nanophotonic scintillators over wafer-scale areas, achieving a six-fold enhancement in light yield compared to unpatterned scintillators. We demonstrate this approach using a conventional X-ray scintillator material, cerium-doped yttrium aluminum garnet (YAG:Ce). By analyzing the influence of surface nanofabrication disorder, we establish its effect on imaging performance and provide a route towards large-scale scintillation enhancements without decrease in spatial resolution. Finally, we demonstrate the practical applicability of our nanophotonic scintillators through X-ray imaging of biological and inorganic specimens. Our results indicate that this scalable fabrication technique could enable the industrial implementation of a new generation of nanophotonic-enhanced scintillators, with significant implications for advancements in medical imaging, security screening, and nondestructive testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07141v1-abstract-full').style.display = 'none'; document.getElementById('2410.07141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00721">arXiv:2410.00721</a> <span> [<a href="https://arxiv.org/pdf/2410.00721">pdf</a>, <a href="https://arxiv.org/format/2410.00721">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jspc.2024.100003">10.1016/j.jspc.2024.100003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-order spin magnetohydrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zhe Fang</a>, <a href="/search/physics?searchtype=author&query=Hattori%2C+K">Koichi Hattori</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00721v1-abstract-short" style="display: inline;"> Based on recent papers, we discuss the formulation of the first-order relativistic spin magnetohydrodynamics (MHD) with the totally antisymmetric spin current and properties of the anisotropic linear waves awaken near an equilibrium configuration. We show that there appears a critical angle in the momentum direction of the linear waves, where a pair of propagating modes turns into purely diffusive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00721v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00721v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00721v1-abstract-full" style="display: none;"> Based on recent papers, we discuss the formulation of the first-order relativistic spin magnetohydrodynamics (MHD) with the totally antisymmetric spin current and properties of the anisotropic linear waves awaken near an equilibrium configuration. We show that there appears a critical angle in the momentum direction of the linear waves, where a pair of propagating modes turns into purely diffusive modes. Due to this critical behavior, polynomial solutions do not fully capture the angle dependence of the linear waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00721v1-abstract-full').style.display = 'none'; document.getElementById('2410.00721v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the "Reimei workshop 2024" in Jeju. arXiv admin note: text overlap with arXiv:2409.07096</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16616">arXiv:2409.16616</a> <span> [<a href="https://arxiv.org/pdf/2409.16616">pdf</a>, <a href="https://arxiv.org/format/2409.16616">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Broadband measurement of Feibelman's quantum surface response functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Shu Yang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Y">Yipu Xia</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yonggen Shen</a>, <a href="/search/physics?searchtype=author&query=Su%2C+H">Huirong Su</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+M">Maohai Xie</a>, <a href="/search/physics?searchtype=author&query=Christensen%2C+T">Thomas Christensen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16616v2-abstract-short" style="display: inline;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16616v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16616v2-abstract-full" style="display: none;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation of a $d$-parameter database for interfaces of interest in nano-optics. However, accurate first-principles calculations of $d$-parameters face computational challenges, whereas existing measurements of $d$-parameters are scarce and restricted to narrow spectral windows. We demonstrate a general broadband ellipsometric approach to measure $d$-parameters at a gold--air interface across the visible--ultraviolet regimes. Gold is found to spill in and spill out at different frequencies. We also observe gold's Bennett mode, a surface-dipole resonance associated with a pole of the $d$-parameter, around 2.5 eV. Our measurements give rise to and are further validated by the passivity and Kramers--Kronig causality analysis of $d$-parameters. Our work advances the understanding of quantum surface response and may enable applications like enhanced electron field emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'none'; document.getElementById('2409.16616v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13350">arXiv:2409.13350</a> <span> [<a href="https://arxiv.org/pdf/2409.13350">pdf</a>, <a href="https://arxiv.org/format/2409.13350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> How flagellated bacteria wobble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinglei Hu</a>, <a href="/search/physics?searchtype=author&query=Gui%2C+C">Chen Gui</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+M">Mingxin Mao</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+P">Pu Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yurui Liu</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+X">Xiangjun Gong</a>, <a href="/search/physics?searchtype=author&query=Gompper%2C+G">Gerhard Gompper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13350v1-abstract-short" style="display: inline;"> A flagellated bacterium navigates fluid environments by rotating its helical flagellar bundle. The wobbling of the bacterial body significantly influences its swimming behavior. To quantify the three underlying motions--precession, nutation, and spin, we extract the Euler angles from trajectories generated by mesoscale hydrodynamics simulations, which is experimentally unattainable. In contrast to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13350v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13350v1-abstract-full" style="display: none;"> A flagellated bacterium navigates fluid environments by rotating its helical flagellar bundle. The wobbling of the bacterial body significantly influences its swimming behavior. To quantify the three underlying motions--precession, nutation, and spin, we extract the Euler angles from trajectories generated by mesoscale hydrodynamics simulations, which is experimentally unattainable. In contrast to the common assumption, the cell body does not undergo complete cycles of spin, a general result for multiflagellated bacteria. Our simulations produce apparent wobbling periods that closely match the results of {\it E. coli} obtained from experiments and reveal the presence of two kinds of precession modes, consistent with theoretical analysis. Small-amplitude yet periodic nutation is also observed in the simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13350v1-abstract-full').style.display = 'none'; document.getElementById('2409.13350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12845">arXiv:2409.12845</a> <span> [<a href="https://arxiv.org/pdf/2409.12845">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Analysis of fluid flow in fractal microfluidic channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhan-Long Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12845v1-abstract-short" style="display: inline;"> Fractal channels have significant applications in fields such as microfluidic chips and in vitro diagnostics. However, there is currently insufficient understanding and recognition of fluid flow within fractal channels. In this paper, the fluid flow within dendritic fractal structures was studied with finite element analysis (FEA), focusing on fluid velocity and mass fraction variations. The resea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12845v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12845v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12845v1-abstract-full" style="display: none;"> Fractal channels have significant applications in fields such as microfluidic chips and in vitro diagnostics. However, there is currently insufficient understanding and recognition of fluid flow within fractal channels. In this paper, the fluid flow within dendritic fractal structures was studied with finite element analysis (FEA), focusing on fluid velocity and mass fraction variations. The research introduces the ratio RA (the ratio of the longitudinal channel length to the lateral channel length) as a key parameter to evaluate fractal structures. A smaller RA corresponds to a flatter fractal configuration. By comparing flow rate, velocity, and mass distribution at the outlet of fractal channels with varying RA values, the results demonstrate that flatter fractal structures lead to more uniform flow distribution at the outlet. Meanwhile, the uniformity of fluid flow at the outlet of the fractal channels was analyzed. This work indicates that channel geometry significantly influences fluid dynamics, and also provides valuable insights into optimizing flow dynamics in small-scale applications, contributing to the design of more efficient fluidic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12845v1-abstract-full').style.display = 'none'; document.getElementById('2409.12845v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12313">arXiv:2409.12313</a> <span> [<a href="https://arxiv.org/pdf/2409.12313">pdf</a>, <a href="https://arxiv.org/format/2409.12313">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unravelling and circumventing failure mechanisms in chalcogenide optical phase change materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Popescu%2C+C+C">Cosmin Constantin Popescu</a>, <a href="/search/physics?searchtype=author&query=Aryana%2C+K">Kiumars Aryana</a>, <a href="/search/physics?searchtype=author&query=Mills%2C+B">Brian Mills</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+T+W">Tae Woo Lee</a>, <a href="/search/physics?searchtype=author&query=Martin-Monier%2C+L">Louis Martin-Monier</a>, <a href="/search/physics?searchtype=author&query=Ranno%2C+L">Luigi Ranno</a>, <a href="/search/physics?searchtype=author&query=Sia%2C+J+X+B">Jia Xu Brian Sia</a>, <a href="/search/physics?searchtype=author&query=Dao%2C+K+P">Khoi Phuong Dao</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+H">Hyung-Bin Bae</a>, <a href="/search/physics?searchtype=author&query=Liberman%2C+V">Vladimir Liberman</a>, <a href="/search/physics?searchtype=author&query=Vitale%2C+S">Steven Vitale</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+M">Myungkoo Kang</a>, <a href="/search/physics?searchtype=author&query=Richardson%2C+K+A">Kathleen A. Richardson</a>, <a href="/search/physics?searchtype=author&query=Ocampo%2C+C+A+R">Carlos A. R铆os Ocampo</a>, <a href="/search/physics?searchtype=author&query=Calahan%2C+D">Dennis Calahan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yifei Zhang</a>, <a href="/search/physics?searchtype=author&query=Humphreys%2C+W+M">William M. Humphreys</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">Hyun Jung Kim</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12313v1-abstract-short" style="display: inline;"> Chalcogenide optical phase change materials (PCMs) have garnered significant interest for their growing applications in programmable photonics, optical analog computing, active metasurfaces, and beyond. Limited endurance or cycling lifetime is however increasingly becoming a bottleneck toward their practical deployment for these applications. To address this issue, we performed a systematic study… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12313v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12313v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12313v1-abstract-full" style="display: none;"> Chalcogenide optical phase change materials (PCMs) have garnered significant interest for their growing applications in programmable photonics, optical analog computing, active metasurfaces, and beyond. Limited endurance or cycling lifetime is however increasingly becoming a bottleneck toward their practical deployment for these applications. To address this issue, we performed a systematic study elucidating the cycling failure mechanisms of Ge$_2$Sb$_2$Se$_4$Te (GSST), a common optical PCM tailored for infrared photonic applications, in an electrothermal switching configuration commensurate with their applications in on-chip photonic devices. We further propose a set of design rules building on insights into the failure mechanisms, and successfully implemented them to boost the endurance of the GSST device to over 67,000 cycles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12313v1-abstract-full').style.display = 'none'; document.getElementById('2409.12313v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08196">arXiv:2409.08196</a> <span> [<a href="https://arxiv.org/pdf/2409.08196">pdf</a>, <a href="https://arxiv.org/format/2409.08196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic higher-order topological insulator from momentum-space nonsymmorphic symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+K">Kai Zhou</a>, <a href="/search/physics?searchtype=author&query=Song%2C+T">Tianle Song</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xuntao Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+S">Songlin Zhuang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08196v1-abstract-short" style="display: inline;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08196v1-abstract-full" style="display: none;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glide reflection from the measured momentum half translation of edge bands and their momentum-resolved probability distribution using a cylinder geometry made of acoustic resonator arrays. In particular, we observe both intrinsic and extrinsic HOTI features in such a cylinder: hopping strength variation along the open boundary leads to a bulk gap closure, while that along the closed boundary results in an edge gap closure. In addition, we confirm the presence of quadrupole corner modes with transmission and field distribution measurements. Our observation enriches the study of topological physics of momentum-space nonsymmorphic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'none'; document.getElementById('2409.08196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05689">arXiv:2409.05689</a> <span> [<a href="https://arxiv.org/pdf/2409.05689">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multi-degree-of-freedom hybrid optical skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yao%2C+J">Jun Yao</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yijie Shen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yuanjie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05689v1-abstract-short" style="display: inline;"> The optical counterparts of skyrmions have recently been constructed with diverse topological types and by different degrees of freedom, such as field, spins, and Stokes vectors, exhibiting extensive potential in modern information science. However, there is currently no method capable of generating multiple types of optical skyrmions in free space. Here, we present a simple approach for realizing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05689v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05689v1-abstract-full" style="display: none;"> The optical counterparts of skyrmions have recently been constructed with diverse topological types and by different degrees of freedom, such as field, spins, and Stokes vectors, exhibiting extensive potential in modern information science. However, there is currently no method capable of generating multiple types of optical skyrmions in free space. Here, we present a simple approach for realizing hybrid optical skyrmions of electric field vectors, spin angular momentum and Stokes vectors in a same structured light field. We show that a vector beam truncated by an annular aperture can form an electric field skyrmion in the diffracted light field. In the meantime, electric field meron pairs, spin skyrmions and Stokes skyrmions can be generated by tuning spin-orbital coupling of the incident light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05689v1-abstract-full').style.display = 'none'; document.getElementById('2409.05689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05419">arXiv:2409.05419</a> <span> [<a href="https://arxiv.org/pdf/2409.05419">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Super-bunching light with giant high-order correlations and extreme multi-photon events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+C">Chengbing Qin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yu Yan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiamin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiangdong Li</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yunrui Song</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuedong Zhang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shuangping Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zihua Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yanqiang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guofeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruiyun Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianyong Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhichun Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xinhui Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05419v3-abstract-short" style="display: inline;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2409.05419v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05419v3-abstract-full" style="display: none;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching light source in photonic crystal fiber with g2(0) reaching 5.86*104 and g5(0) up to 2.72*108, through measuring its photon number probability distributions. under giant g2(0) values, the super-bunching light source presents upturned-tail photon distributions and ubiquitous extreme multi-photon events, where 31 photons from a single light pulse at a mean of 1.99*10-4 photons per pulse have been determined. The probability of this extreme event has been enhanced by 10139 folds compared to a coherent laser with Poissonian distribution. By varying the power of the pumping laser, both photon number distributions and corresponding high-order correlations of this light source can be substantially tailored from Poissonian to super-bunching distributions. These phenomena are attributed to the synchronized nonlinear interactions in photonic crystal fibers pumping by bright squeezed light, and the theoretical simulations agree well with the experimental results. Our research showcases the ability to achieve non-classical light sources with giant high-order correlations and extreme multi-photon events, paving the way for high-order correlation imaging, extreme nonlinear optical effects, quantum information processing, and exploring light-matter interactions with multi-photon physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'none'; document.getElementById('2409.05419v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03412">arXiv:2409.03412</a> <span> [<a href="https://arxiv.org/pdf/2409.03412">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> TG-LMM: Enhancing Medical Image Segmentation Accuracy through Text-Guided Large Multi-Modal Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yihao Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+E">Enhao Zhong</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+C">Cuiyun Yuan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+M">Man Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chunxia Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chenbin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03412v1-abstract-short" style="display: inline;"> We propose TG-LMM (Text-Guided Large Multi-Modal Model), a novel approach that leverages textual descriptions of organs to enhance segmentation accuracy in medical images. Existing medical image segmentation methods face several challenges: current medical automatic segmentation models do not effectively utilize prior knowledge, such as descriptions of organ locations; previous text-visual models… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03412v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03412v1-abstract-full" style="display: none;"> We propose TG-LMM (Text-Guided Large Multi-Modal Model), a novel approach that leverages textual descriptions of organs to enhance segmentation accuracy in medical images. Existing medical image segmentation methods face several challenges: current medical automatic segmentation models do not effectively utilize prior knowledge, such as descriptions of organ locations; previous text-visual models focus on identifying the target rather than improving the segmentation accuracy; prior models attempt to use prior knowledge to enhance accuracy but do not incorporate pre-trained models. To address these issues, TG-LMM integrates prior knowledge, specifically expert descriptions of the spatial locations of organs, into the segmentation process. Our model utilizes pre-trained image and text encoders to reduce the number of training parameters and accelerate the training process. Additionally, we designed a comprehensive image-text information fusion structure to ensure thorough integration of the two modalities of data. We evaluated TG-LMM on three authoritative medical image datasets, encompassing the segmentation of various parts of the human body. Our method demonstrated superior performance compared to existing approaches, such as MedSAM, SAM and nnUnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03412v1-abstract-full').style.display = 'none'; document.getElementById('2409.03412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02262">arXiv:2409.02262</a> <span> [<a href="https://arxiv.org/pdf/2409.02262">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Thermal Inverse design for resistive micro-heaters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dao%2C+K+P">Khoi Phuong Dao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02262v1-abstract-short" style="display: inline;"> This paper proposes an inverse design scheme for resistive heaters. By adjusting the spatial distribution of a binary electrical resistivity map, the scheme enables objective-driven optimization of heaters to achieve pre-defined steady-state temperature profiles. The approach can be fully automated and is computationally efficient since it does not entail extensive iterative simulations of the ent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02262v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02262v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02262v1-abstract-full" style="display: none;"> This paper proposes an inverse design scheme for resistive heaters. By adjusting the spatial distribution of a binary electrical resistivity map, the scheme enables objective-driven optimization of heaters to achieve pre-defined steady-state temperature profiles. The approach can be fully automated and is computationally efficient since it does not entail extensive iterative simulations of the entire heater structure. The design scheme offers a powerful solution for resistive heater device engineering in applications spanning electronics, photonics, and microelectromechanical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02262v1-abstract-full').style.display = 'none'; document.getElementById('2409.02262v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17270">arXiv:2408.17270</a> <span> [<a href="https://arxiv.org/pdf/2408.17270">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generic and Automated Methodology to Simulate Melting Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dai%2C+F">Fu-Zhi Dai</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Si-Hao Yuan</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yan-Bo Hao</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+X">Xin-Fu Gu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shipeng Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jidong Hu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yifen Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17270v1-abstract-short" style="display: inline;"> The melting point of a material constitutes a pivotal property with profound implications across various disciplines of science, engineering, and technology. Recent advancements in machine learning potentials have revolutionized the field, enabling ab initio predictions of materials' melting points through atomic-scale simulations. However, a universal simulation methodology that can be universall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17270v1-abstract-full').style.display = 'inline'; document.getElementById('2408.17270v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17270v1-abstract-full" style="display: none;"> The melting point of a material constitutes a pivotal property with profound implications across various disciplines of science, engineering, and technology. Recent advancements in machine learning potentials have revolutionized the field, enabling ab initio predictions of materials' melting points through atomic-scale simulations. However, a universal simulation methodology that can be universally applied to any material remains elusive. In this paper, we present a generic, fully automated workflow designed to predict the melting points of materials utilizing molecular dynamics simulations. This workflow incorporates two tailored simulation modalities, each addressing scenarios with and without elemental partitioning between solid and liquid phases. When the compositions of both phases remain unchanged upon melting or solidification, signifying the absence of partitioning, the melting point is identified as the temperature at which these phases coexist in equilibrium. Conversely, in cases where elemental partitioning occurs, our workflow estimates both the nominal melting point, marking the initial transition from solid to liquid, and the nominal solidification point, indicating the reverse process. To ensure precision in determining these critical temperatures, we employ an innovative temperature-volume data fitting technique, suitable for a diverse range of materials exhibiting notable volume disparities between their solid and liquid states. This comprehensive approach offers a robust and versatile solution for predicting melting points, fostering advancements in materials science and technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17270v1-abstract-full').style.display = 'none'; document.getElementById('2408.17270v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17116">arXiv:2408.17116</a> <span> [<a href="https://arxiv.org/pdf/2408.17116">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> H-Matrix Accelerated Direct Matrix Solver for Maxwell's Equations using the Chebyshev-based Nystr枚m Boundary Integral Equation Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jin Hu</a>, <a href="/search/physics?searchtype=author&query=Sever%2C+E">Emrah Sever</a>, <a href="/search/physics?searchtype=author&query=Babazadeh%2C+O">Omid Babazadeh</a>, <a href="/search/physics?searchtype=author&query=Jeffrey%2C+I">Ian Jeffrey</a>, <a href="/search/physics?searchtype=author&query=Okhmatovski%2C+V">Vladimir Okhmatovski</a>, <a href="/search/physics?searchtype=author&query=Sideris%2C+C">Constantine Sideris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17116v2-abstract-short" style="display: inline;"> An H-matrix accelerated direct solver employing the high-order Chebyshev-based Boundary Integral Equation (CBIE) method has been formulated, tested, and profiled for performance on high contrast dielectric materials and electrically large perfect electric conductor objects. The matrix fill performance of the CBIE proves to be fast for small to moderately sized problems compared to its counterparts… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17116v2-abstract-full').style.display = 'inline'; document.getElementById('2408.17116v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17116v2-abstract-full" style="display: none;"> An H-matrix accelerated direct solver employing the high-order Chebyshev-based Boundary Integral Equation (CBIE) method has been formulated, tested, and profiled for performance on high contrast dielectric materials and electrically large perfect electric conductor objects. The matrix fill performance of the CBIE proves to be fast for small to moderately sized problems compared to its counterparts, e.g. the locally corrected Nystr枚m (LCN) method, due to the way it handles the singularities by means of a global change of variable method. However, in the case of electrically large scattering problems, the matrix fill and factorization still dominate the solution time when using a direct solution approach. To address this issue, an H-Matrix framework is employed, effectively resolving the challenge and establishing the CBIE as a competitive high-order method for solving scattering problems with poorly conditioned matrix equations. The efficacy of this approach is demonstrated through extensive numerical results, showcasing its robustness to problems that are electrically large, near physical resonances, or that have large dielectric permittivities. The capability of the proposed solver for handling arbitrary geometries is also demonstrated by considering various scattering examples from complex CAD models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17116v2-abstract-full').style.display = 'none'; document.getElementById('2408.17116v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15051">arXiv:2408.15051</a> <span> [<a href="https://arxiv.org/pdf/2408.15051">pdf</a>, <a href="https://arxiv.org/format/2408.15051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Routing via High Efficiency Composite Acoustic Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yuxiang Zhao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiangyong Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Ruijuan Liu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+R">Ruochen Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+H">Huanfeng Zhu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S">Saijun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15051v2-abstract-short" style="display: inline;"> Acousto-optical modulation (AOM) is a powerful and widely used technique for rapidly controlling the frequency, phase, intensity, and direction of light. Based on Bragg diffraction, AOMs typically exhibit moderate diffraction efficiency, often less than 90\% even for collimated inputs. In this work, we demonstrate that this efficiency can be significantly improved using a composite (CP) setup comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15051v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15051v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15051v2-abstract-full" style="display: none;"> Acousto-optical modulation (AOM) is a powerful and widely used technique for rapidly controlling the frequency, phase, intensity, and direction of light. Based on Bragg diffraction, AOMs typically exhibit moderate diffraction efficiency, often less than 90\% even for collimated inputs. In this work, we demonstrate that this efficiency can be significantly improved using a composite (CP) setup comprising a pair of 4-F-linked AOMs, enabling beamsplitting with fully tunable splitting amplitude and phase. The efficiency enhancement arises from two effects, termed "momentum echo" and "high-order rephasing," which can be simultaneously optimized by adjusting the relative distance between the two AOMs. This method is resource-efficient, does not require ultra-collimation, and maintains control bandwidth. Experimentally, we achieved a diffraction efficiency exceeding 99\% (excluding insertion loss) and a 35 dB single-mode suppression of the 0th-order beam, demonstrating a full-contrast optical router with a switching time of less than 100~nanoseconds. Theoretically, we formulate the dynamics of CP-AOM in terms of multi-mode quantum control and discuss extensions beyond the $N=2$ configuration presented in this work. The substantially enhanced performance of CP-AOMs, coupled with reduced acoustic amplitude requirements, may significantly advance our ability to accurately control light at high speeds with low-loss acousto-optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15051v2-abstract-full').style.display = 'none'; document.getElementById('2408.15051v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor revision with improved clarity. 12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span> [<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/20/02/P02016">10.1088/1748-0221/20/02/P02016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v2-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v2-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v2-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of over 10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of more than 8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v2-abstract-full').style.display = 'none'; document.getElementById('2408.14071v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 25 figures, 1 table. Updated to match the published journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 20 P02016 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07374">arXiv:2408.07374</a> <span> [<a href="https://arxiv.org/pdf/2408.07374">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Coupling Between Local and Global Oscillations in Palladium-Catalysed Methane Oxidation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yuxiong Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianyu Hu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+M">Mengzhao Sun</a>, <a href="/search/physics?searchtype=author&query=Li%2C+A">Aowen Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+S">Shucheng Shi</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+P+J">P. J. Hu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/physics?searchtype=author&query=Willinger%2C+M">Marc-Georg Willinger</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+D">Dan Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xi Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei-Xue Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhu-Jun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07374v1-abstract-short" style="display: inline;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07374v1-abstract-full" style="display: none;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite of complementary operando techniques across various spatial scales. We found that reaction intensity and collective dynamic modes can be tuned by the reactant gas-flow rate. At lower gas-flow rates, we observed periodic facet reconstruction of Pd NPs correlated with repeated bubbling behaviour at the Pd/PdO interface, without evident global oscillatory responses. Conversely, at higher gas-flow rates, Pd NPs undergo chaotic transformations between metallic and oxidized states, resulting in overall oscillation. Integrating our observations at different gas-flow rates, we attributed the emergence of global oscillation to thermal coupling regulated by gas flow and connected local and global dynamics through a weak synchronization mechanism. This work demonstrates the correlations between open surfaces and interfaces, chaos and regularity, and dissipative processes and coupling behaviour. Our findings offer critical insights into the complexity behind catalytic oscillations and provide guidance for modulating oscillatory behaviours in catalytic processes, with significant implications for both science and industry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'none'; document.getElementById('2408.07374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06559">arXiv:2408.06559</a> <span> [<a href="https://arxiv.org/pdf/2408.06559">pdf</a>, <a href="https://arxiv.org/format/2408.06559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Asymptotic perpendicular transport in low-beta collisionless plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Coughlin%2C+J">Jack Coughlin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jingwei Hu</a>, <a href="/search/physics?searchtype=author&query=Shumlak%2C+U">Uri Shumlak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06559v1-abstract-short" style="display: inline;"> Kinetic physics, including finite Larmor radius (FLR) effects, are known to affect the physics of magnetized plasma phenomena such as the Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Accurately incorporating FLR effects into fluid simulations requires moment closures for the heat flux and stress tensor, including the gyroviscous stress in collisionless magnetized plasmas. However, the most… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06559v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06559v1-abstract-full" style="display: none;"> Kinetic physics, including finite Larmor radius (FLR) effects, are known to affect the physics of magnetized plasma phenomena such as the Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Accurately incorporating FLR effects into fluid simulations requires moment closures for the heat flux and stress tensor, including the gyroviscous stress in collisionless magnetized plasmas. However, the most commonly used gyroviscous stress tensor closure (Braginskii Rev. Plasma Phys., 1965) is based on a strongly collisional assumption for the asymptotic expansion of the kinetic equation in the so-called fast-dynamics ordering. This collisional assumption becomes less valid for some high-temperature plasmas. To explore perpendicular transport in collisionless and weakly collisional plasmas, an asymptotic analysis of the weakly collisional Vlasov equation in the slow-dynamics or drift ordering is performed in a new "semi-fluid" formalism, which integrates in perpendicular velocity to obtain a five-moment system. The associated heat flux and stress tensor closures are determined via a Hilbert expansion of the kinetic equation. A numerically affordable approximation to the stress tensor is proposed which adjusts the Braginskii closure to account for temperature gradient-driven stress. Continuum kinetic simulations of a family of sheared-flow configurations with variable magnetization and temperature gradients are performed to validate the drift ordering semi-fluid expansion. The expected convergence with magnetization is observed, and residuals are examined and discussed in terms of their relationship to higher-order terms in the expansion. The adjusted Braginskii closure is found to accurately correct for the error committed by the Braginskii gyroviscous stress tensor closure in the presence of temperature gradients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06559v1-abstract-full').style.display = 'none'; document.getElementById('2408.06559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35Q83; 35Q35; 76M22; 76M20; 76W05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02042">arXiv:2408.02042</a> <span> [<a href="https://arxiv.org/pdf/2408.02042">pdf</a>, <a href="https://arxiv.org/format/2408.02042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Evolutionary dynamics in stochastic nonlinear public goods games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+W">Wenqiang Zhu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xin Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chaoqian Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Longzhao Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiaxin Hu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Z">Zhiming Zheng</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+S">Shaoting Tang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hongwei Zheng</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+J">Jin Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02042v1-abstract-short" style="display: inline;"> Understanding the evolution of cooperation in multiplayer games is of vital significance for natural and social systems. An important challenge is that group interactions often leads to nonlinear synergistic effects. However, previous models mainly focus on deterministic nonlinearity where the arise of synergy or discounting effect is determined by certain conditions, ignoring uncertainty and stoc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02042v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02042v1-abstract-full" style="display: none;"> Understanding the evolution of cooperation in multiplayer games is of vital significance for natural and social systems. An important challenge is that group interactions often leads to nonlinear synergistic effects. However, previous models mainly focus on deterministic nonlinearity where the arise of synergy or discounting effect is determined by certain conditions, ignoring uncertainty and stochasticity in real-world systems. Here, we develop a probabilistic framework to study the cooperative behavior in stochastic nonlinear public goods games. Through both analytical treatment and Monte Carlo simulations, we provide comprehensive understanding of social dilemmas with stochastic nonlinearity in both well-mixed and structured populations. We find that increasing the degree of nonlinearity makes synergy more advantageous when competing with discounting, thereby promoting cooperation. Interestingly, we show that network reciprocity loses effectiveness when the probability of synergy is small. Moreover, group size exhibits nonlinear effects on group cooperation regardless of the underlying structure. Our findings thus provide novel insights into how stochastic nonlinearity influences the emergence of prosocial behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02042v1-abstract-full').style.display = 'none'; document.getElementById('2408.02042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20053">arXiv:2407.20053</a> <span> [<a href="https://arxiv.org/pdf/2407.20053">pdf</a>, <a href="https://arxiv.org/format/2407.20053">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Orca: Ocean Significant Wave Height Estimation with Spatio-temporally Aware Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+R">Ronghui Xu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jilin Hu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+Z">Zhong Peng</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+X">Xi Lu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+C">Chenjuan Guo</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+B">Bin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20053v1-abstract-short" style="display: inline;"> Significant wave height (SWH) is a vital metric in marine science, and accurate SWH estimation is crucial for various applications, e.g., marine energy development, fishery, early warning systems for potential risks, etc. Traditional SWH estimation methods that are based on numerical models and physical theories are hindered by computational inefficiencies. Recently, machine learning has emerged a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20053v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20053v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20053v1-abstract-full" style="display: none;"> Significant wave height (SWH) is a vital metric in marine science, and accurate SWH estimation is crucial for various applications, e.g., marine energy development, fishery, early warning systems for potential risks, etc. Traditional SWH estimation methods that are based on numerical models and physical theories are hindered by computational inefficiencies. Recently, machine learning has emerged as an appealing alternative to improve accuracy and reduce computational time. However, due to limited observational technology and high costs, the scarcity of real-world data restricts the potential of machine learning models. To overcome these limitations, we propose an ocean SWH estimation framework, namely Orca. Specifically, Orca enhances the limited spatio-temporal reasoning abilities of classic LLMs with a novel spatiotemporal aware encoding module. By segmenting the limited buoy observational data temporally, encoding the buoys' locations spatially, and designing prompt templates, Orca capitalizes on the robust generalization ability of LLMs to estimate significant wave height effectively with limited data. Experimental results on the Gulf of Mexico demonstrate that Orca achieves state-of-the-art performance in SWH estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20053v1-abstract-full').style.display = 'none'; document.getElementById('2407.20053v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19656">arXiv:2407.19656</a> <span> [<a href="https://arxiv.org/pdf/2407.19656">pdf</a>, <a href="https://arxiv.org/format/2407.19656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring quantum sensing for fine-grained liquid recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiao%2C+Y">Yuechun Jiao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinlian Hu</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+Z">Zitong Lan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fusang Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+J">Jie Xiong</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jingxu Bai</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Z">Zhaoxin Chang</a>, <a href="/search/physics?searchtype=author&query=Su%2C+Y">Yuqi Su</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+B">Beihong Jin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Daqing Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jianming Zhao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19656v1-abstract-short" style="display: inline;"> Recent years have witnessed the use of pervasive wireless signals (e.g., Wi-Fi, RFID, and mmWave) for sensing purposes. Due to its non-intrusive characteristic, wireless sensing plays an important role in various intelligent sensing applications. However, limited by the inherent thermal noise of RF transceivers, the sensing granularity of existing wireless sensing systems are still coarse, limitin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19656v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19656v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19656v1-abstract-full" style="display: none;"> Recent years have witnessed the use of pervasive wireless signals (e.g., Wi-Fi, RFID, and mmWave) for sensing purposes. Due to its non-intrusive characteristic, wireless sensing plays an important role in various intelligent sensing applications. However, limited by the inherent thermal noise of RF transceivers, the sensing granularity of existing wireless sensing systems are still coarse, limiting their adoption for fine-grained sensing applications. In this paper, we introduce the quantum receiver, which does not contain traditional electronic components such as mixers, amplifiers, and analog-to-digital converters (ADCs) to wireless sensing systems, significantly reducing the source of thermal noise. By taking non-intrusive liquid recognition as an application example, we show the superior performance of quantum wireless sensing. By leveraging the unique property of quantum receiver, we propose a novel double-ratio method to address several well-known challenges in liquid recognition, eliminating the effect of liquid volume, device-target distance and container. We implement the quantum sensing prototype and evaluate the liquid recognition performance comprehensively. The results show that our system is able to recognize 17 commonly seen liquids, including very similar ones~(e.g., Pepsi and Coke) at an accuracy higher than 99.9\%. For milk expiration monitoring, our system is able to achieve an accuracy of 99.0\% for pH value measurements at a granularity of 0.1, which is much finer than that required for expiration monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19656v1-abstract-full').style.display = 'none'; document.getElementById('2407.19656v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15587">arXiv:2407.15587</a> <span> [<a href="https://arxiv.org/pdf/2407.15587">pdf</a>, <a href="https://arxiv.org/ps/2407.15587">ps</a>, <a href="https://arxiv.org/format/2407.15587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-organized spatiotemporal quasi-phase-matching in microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Ji Zhou</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianqi Hu</a>, <a href="/search/physics?searchtype=author&query=Clementi%2C+M">Marco Clementi</a>, <a href="/search/physics?searchtype=author&query=Yakar%2C+O">Ozan Yakar</a>, <a href="/search/physics?searchtype=author&query=Nitiss%2C+E">Edgars Nitiss</a>, <a href="/search/physics?searchtype=author&query=Stroganov%2C+A">Anton Stroganov</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A8s%2C+C">Camille-Sophie Br猫s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15587v1-abstract-short" style="display: inline;"> Quasi-phase-matching (QPM) is a widely adopted technique for mitigating stringent momentum conservation in nonlinear optical processes such as second-harmonic generation (SHG). It effectively compensates for the phase velocity mismatch between optical harmonics by introducing a periodic spatial modulation to the nonlinear optical medium. Such a mechanism has been further generalized to the spatiot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15587v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15587v1-abstract-full" style="display: none;"> Quasi-phase-matching (QPM) is a widely adopted technique for mitigating stringent momentum conservation in nonlinear optical processes such as second-harmonic generation (SHG). It effectively compensates for the phase velocity mismatch between optical harmonics by introducing a periodic spatial modulation to the nonlinear optical medium. Such a mechanism has been further generalized to the spatiotemporal domain, where a non-stationary spatial QPM can induce a frequency shift of the generated light. Here we demonstrate how a spatiotemporal QPM grating, consisting in a concurrent spatial and temporal modulation of the nonlinear response, naturally emerges through all-optical poling in silicon nitride microresonators. Mediated by the coherent photogalvanic effect, a traveling space-charge grating is self-organized, affecting momentum and energy conservation, resulting in a quasi-phase-matched and Doppler-shifted second harmonic. Our observation of the photoinduced spatiotemporal QPM expands the scope of phase matching conditions in nonlinear photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15587v1-abstract-full').style.display = 'none'; document.getElementById('2407.15587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07343">arXiv:2407.07343</a> <span> [<a href="https://arxiv.org/pdf/2407.07343">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrically Tuning Quasi-Bound States in the Continuum with Hybrid Graphene-Silicon Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+Z">Ziqiang Cai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xianzhe Zhang</a>, <a href="/search/physics?searchtype=author&query=Karnik%2C+T+S">Tushar Sanjay Karnik</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yihao Xu</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T+Y">Tae Yoon Kim</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yongmin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07343v1-abstract-short" style="display: inline;"> Metasurfaces have become one of the most prominent research topics in the field of optics owing to their unprecedented properties and novel applications on an ultrathin platform. By combining graphene with metasurfaces, electrical tunable functions can be achieved with fast tuning speed, large modulation depth and broad tuning range. However, the tuning efficiency of hybrid graphene metasurfaces w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07343v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07343v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07343v1-abstract-full" style="display: none;"> Metasurfaces have become one of the most prominent research topics in the field of optics owing to their unprecedented properties and novel applications on an ultrathin platform. By combining graphene with metasurfaces, electrical tunable functions can be achieved with fast tuning speed, large modulation depth and broad tuning range. However, the tuning efficiency of hybrid graphene metasurfaces within the short-wavelength infrared (SWIR) spectrum is typically low because of the small resonance wavelength shift in this wavelength range. In this work, through the integration of graphene and silicon metasurfaces that support quasi-bound states in the continuum (quasi-BIC), we experimentally demonstrate significant transmittance tuning even with less than 30 nm resonance wavelength shift thanks to the high quality-factor of quasi-BIC metasurfaces. The tunable transmittance spectrum was measured using Fourier Transform Infrared Spectroscopy (FTIR) with a modified reflective lens to improve the accuracy, and the electrical tuning was realized utilizing the cut-and-stick method of ion gel. At the wavelength of 3.0 um, the measured change of transmittance T_max-T_min and modulation depth (T_max-T_min)/T_max can reach 22.2% and 28.9%, respectively, under a small bias voltage ranging from -2 V to +2 V. To the best of our knowledge, this work is the first experimental demonstration of tunable graphene/quasi-BIC metasurfaces, which have potential applications in optical modulation, reconfigurable photonic devices, and optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07343v1-abstract-full').style.display = 'none'; document.getElementById('2407.07343v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05676">arXiv:2407.05676</a> <span> [<a href="https://arxiv.org/pdf/2407.05676">pdf</a>, <a href="https://arxiv.org/format/2407.05676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0227250">10.1063/5.0227250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuous broadband Rydberg receiver using AC Stark shifts and Floquet States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+D">Danni Song</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+Y">Yuechun Jiao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinlian Hu</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Y">Yuwen Yin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhenhua Li</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yunhui He</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jingxu Bai</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jianming Zhao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05676v1-abstract-short" style="display: inline;"> We demonstrate the continuous broadband microwave receivers based on AC Stark shifts and Floquet States of Rydberg levels in a cesium atomic vapor cell. The resonant transition frequency of two adjacent Rydberg states 78$S_{1/2}$ and 78$P_{1/2}$ is tuned based on AC Stark effect of 70~MHz Radio frequency (RF) field that is applied outside the vapor cell. Meanwhile, the Rydberg states also exhibit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05676v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05676v1-abstract-full" style="display: none;"> We demonstrate the continuous broadband microwave receivers based on AC Stark shifts and Floquet States of Rydberg levels in a cesium atomic vapor cell. The resonant transition frequency of two adjacent Rydberg states 78$S_{1/2}$ and 78$P_{1/2}$ is tuned based on AC Stark effect of 70~MHz Radio frequency (RF) field that is applied outside the vapor cell. Meanwhile, the Rydberg states also exhibit Floquet even-order sidebands that are used to extend the bandwidths further. We achieve microwave electric field measurements over 1.172~GHz of continuous frequency range. The sensitivity of the Rydberg receiver with heterodyne technique in the absence of RF field is 280.2~nVcm$^{-1}$Hz$^{-1/2}$, while it is dramatically decreased with tuning the resonant transition frequency in the presence of RF field. Surprisingly, the sensitivity can be greatly improved if the microwave field couples the Floquet sideband transition. The achieving of continuous frequency and high sensitivity microwave detection will promote the application of Rydberg receiver in the radar technique and wireless communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05676v1-abstract-full').style.display = 'none'; document.getElementById('2407.05676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Applied Physics Letters 125, 194001 (2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00735">arXiv:2407.00735</a> <span> [<a href="https://arxiv.org/pdf/2407.00735">pdf</a>, <a href="https://arxiv.org/format/2407.00735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Generative prediction of flow field based on the diffusion model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jiajun Hu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yue Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00735v1-abstract-short" style="display: inline;"> We propose a geometry-to-flow diffusion model that utilizes the input of obstacle shape to predict a flow field past the obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-att… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00735v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00735v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00735v1-abstract-full" style="display: none;"> We propose a geometry-to-flow diffusion model that utilizes the input of obstacle shape to predict a flow field past the obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows past simple obstacles, including the circle, ellipse, rectangle, and triangle. For comparison, the CNN model is trained using the same dataset. Tests are carried out on flows past obstacles with simple and complex geometries, representing interpolation and extrapolation on the geometry condition, respectively. In the test set, challenging scenarios include a cross and characters `PKU'. Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the model accuracy and divergence in the fields demonstrate the high robustness of the diffusion model, indicating that the diffusion model learns physical laws implicitly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00735v1-abstract-full').style.display = 'none'; document.getElementById('2407.00735v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00440">arXiv:2407.00440</a> <span> [<a href="https://arxiv.org/pdf/2407.00440">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional non-reciprocal transport in photonic topological heterostructure of arbitrary shape </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mudi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+H">Haoran Xue</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+H">Hongwei Jia</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jing Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dongyang Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+T">Tianshu Jiang</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C+T">C. T. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00440v1-abstract-short" style="display: inline;"> Electromagnetic wave propagation in three-dimensional space typically suffers omnidirectional scattering when encountering obstacles. In this study, we employed Chern vectors to construct a topological heterostructure, where large-volume non-reciprocal topological transport in three-dimension is achieved. The shape of the cross-section in the heterostructure can be arbitrary designed, and we exper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00440v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00440v1-abstract-full" style="display: none;"> Electromagnetic wave propagation in three-dimensional space typically suffers omnidirectional scattering when encountering obstacles. In this study, we employed Chern vectors to construct a topological heterostructure, where large-volume non-reciprocal topological transport in three-dimension is achieved. The shape of the cross-section in the heterostructure can be arbitrary designed, and we experimentally observed the distinctive cross-shaped field pattern transport, non-reciprocal energy harvesting, and most importantly, the remarkable ability of electromagnetic wave to traverse obstacles and abrupt structure changes without encountering reflections in 3D space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00440v1-abstract-full').style.display = 'none'; document.getElementById('2407.00440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00059">arXiv:2407.00059</a> <span> [<a href="https://arxiv.org/pdf/2407.00059">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Microheater hotspot engineering for repeatable multi-level switching in foundry-processed phase change silicon photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hongyi Sun</a>, <a href="/search/physics?searchtype=author&query=Lian%2C+C">Chuanyu Lian</a>, <a href="/search/physics?searchtype=author&query=V%C3%A1squez-Aza%2C+F">Francis V谩squez-Aza</a>, <a href="/search/physics?searchtype=author&query=Kari%2C+S+R">Sadra Rahimi Kari</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yi-Siou Huang</a>, <a href="/search/physics?searchtype=author&query=Restelli%2C+A">Alessandro Restelli</a>, <a href="/search/physics?searchtype=author&query=Vitale%2C+S+A">Steven A. Vitale</a>, <a href="/search/physics?searchtype=author&query=Takeuchi%2C+I">Ichiro Takeuchi</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&query=Youngblood%2C+N">Nathan Youngblood</a>, <a href="/search/physics?searchtype=author&query=Pavlidis%2C+G">Georges Pavlidis</a>, <a href="/search/physics?searchtype=author&query=Ocampo%2C+C+A+R">Carlos A. R铆os Ocampo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00059v1-abstract-short" style="display: inline;"> Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching mechanisms with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. Recent works have demonstrated electrical multi-level switching; however, they relied on the stochastic nucleation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00059v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00059v1-abstract-full" style="display: none;"> Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching mechanisms with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. Recent works have demonstrated electrical multi-level switching; however, they relied on the stochastic nucleation process to achieve partial crystallization with low demonstrated repeatability and cyclability. Here, we re-engineer waveguide-integrated microheaters to achieve precise spatial control of the temperature profile (i.e., hotspot) and, thus, switch deterministic areas of an embedded phase change material cell. We experimentally demonstrate this concept using a variety of foundry-processed doped-silicon microheaters on a silicon-on-insulator platform to trigger multi-step amorphization and reversible switching of Sb$_{2}$Se$_{3}$ and Ge$_{2}$Sb$_{2}$Se$_{4}$Te alloys. We further characterize the response of our microheaters using Transient Thermoreflectance Imaging. Our approach combines the deterministic control resulting from a spatially resolved glassy-crystalline distribution with the scalability of electro-thermal switching devices, thus paving the way to reliable multi-level switching towards robust reprogrammable phase-change photonic devices for analog processing and computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00059v1-abstract-full').style.display = 'none'; document.getElementById('2407.00059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19368">arXiv:2406.19368</a> <span> [<a href="https://arxiv.org/pdf/2406.19368">pdf</a>, <a href="https://arxiv.org/format/2406.19368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-08354-4">10.1038/s41586-024-08354-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated Triply Resonant Electro-Optic Frequency Comb in Lithium Tantalate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junyin Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengli Wang</a>, <a href="/search/physics?searchtype=author&query=Denney%2C+C">Connor Denney</a>, <a href="/search/physics?searchtype=author&query=Lihachev%2C+G">Grigory Lihachev</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianqi Hu</a>, <a href="/search/physics?searchtype=author&query=Kao%2C+W">Wil Kao</a>, <a href="/search/physics?searchtype=author&query=Bl%C3%A9sin%2C+T">Terence Bl茅sin</a>, <a href="/search/physics?searchtype=author&query=Kuznetsov%2C+N">Nikolai Kuznetsov</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zihan Li</a>, <a href="/search/physics?searchtype=author&query=Churaev%2C+M">Mikhail Churaev</a>, <a href="/search/physics?searchtype=author&query=Ou%2C+X">Xin Ou</a>, <a href="/search/physics?searchtype=author&query=Riemensberger%2C+J">Johann Riemensberger</a>, <a href="/search/physics?searchtype=author&query=Santamaria-Botello%2C+G">Gabriel Santamaria-Botello</a>, <a href="/search/physics?searchtype=author&query=Kippenberg%2C+T+J">Tobias J. Kippenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19368v3-abstract-short" style="display: inline;"> Integrated frequency comb generators based on Kerr parametric oscillation have led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, LiDAR, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LN) photonic integrated circuits (PICs) has resulted in chip-scale electro-optic (EO) frequency com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19368v3-abstract-full').style.display = 'inline'; document.getElementById('2406.19368v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19368v3-abstract-full" style="display: none;"> Integrated frequency comb generators based on Kerr parametric oscillation have led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, LiDAR, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LN) photonic integrated circuits (PICs) has resulted in chip-scale electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of Lithium Niobate. Here, we overcome both challenges with an integrated triply resonant architecture, combining monolithic microwave integrated circuits (MMICs) with PICs based on the recently emerged thin-film lithium tantalate. With resonantly enhanced EO interaction and reduced birefringence in Lithium Tantalate, we achieve a four-fold comb span extension and a 16-fold power reduction compared to the conventional non-resonant microwave design. Driven by a hybrid-integrated laser diode, the comb spans over 450nm (60THz) with >2000 lines, and the generator fits within a compact 1cm^2 footprint. We additionally observe that the strong EO coupling leads to an increased comb existence range approaching the full free spectral range of the optical microresonator. The ultra-broadband comb generator, combined with detuning-agnostic operation, could advance chip-scale spectrometry and ultra-low-noise millimeter wave synthesis and unlock octave-spanning EO combs. The methodology of co-designing microwave and optical resonators can be extended to a wide range of integrated electro-optics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19368v3-abstract-full').style.display = 'none'; document.getElementById('2406.19368v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 9 pages; SI: 20 pages; v2: Funding information correction; v3: Acknowledgement update</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18810">arXiv:2406.18810</a> <span> [<a href="https://arxiv.org/pdf/2406.18810">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Assisting Tibetan Students in Learning Quantum Mechanics via Mathematica </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+G">Guangtian Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jing Hu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+C">Chun Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18810v2-abstract-short" style="display: inline;"> Undergraduate students of physics in Tibet have great difficulty learning quantum mechanics (QM). We attempt to use PER-based methods to help Tibetan students learn QM. In this preliminary study, we incorporate Mathematica in a QM course at Tibet University and record students' learning experiences. Tibetan students tend to have subjective feelings of learning Mathematica, whereas Han students (ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18810v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18810v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18810v2-abstract-full" style="display: none;"> Undergraduate students of physics in Tibet have great difficulty learning quantum mechanics (QM). We attempt to use PER-based methods to help Tibetan students learn QM. In this preliminary study, we incorporate Mathematica in a QM course at Tibet University and record students' learning experiences. Tibetan students tend to have subjective feelings of learning Mathematica, whereas Han students (majority) are more focused on the operational techniques of Mathematica. The results also suggest that both Tibetan students and Han students show limited improvement in time-independent Schrodinger equations after learning QM with Mathematica. Further effort is needed to improve the academic literacy skills of physics students in Tibet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18810v2-abstract-full').style.display = 'none'; document.getElementById('2406.18810v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18597">arXiv:2406.18597</a> <span> [<a href="https://arxiv.org/pdf/2406.18597">pdf</a>, <a href="https://arxiv.org/format/2406.18597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Relative Measurement and Extrapolation of the Scintillation Quenching Factor of $伪$-Particles in Liquid Argon using DEAP-3600 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a> , et al. (79 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18597v2-abstract-short" style="display: inline;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18597v2-abstract-full" style="display: none;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace amounts in the DEAP-3600 detector and quantified the uncertainty of extrapolating the quenching factor to the low-energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'none'; document.getElementById('2406.18597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (added 1 figure, revised 3 figures), 2 tables, revised sections 3, 4, 5. Accepted in Eur. Phys. J. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14725">arXiv:2406.14725</a> <span> [<a href="https://arxiv.org/pdf/2406.14725">pdf</a>, <a href="https://arxiv.org/format/2406.14725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Wide Field of View Large Aperture Meta-Doublet Eyepiece </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wirth-Singh%2C+A">Anna Wirth-Singh</a>, <a href="/search/physics?searchtype=author&query=Fr%C3%B6ch%2C+J+E">Johannes E. Fr枚ch</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+L">Louis Martin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hualiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Tanguy%2C+Q+T">Quentin T. Tanguy</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhihao Zhou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Luocheng Huang</a>, <a href="/search/physics?searchtype=author&query=John%2C+D+D">Demis D. John</a>, <a href="/search/physics?searchtype=author&query=Stamenic%2C+B">Biljana Stamenic</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Juejun Hu</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+T">Tian Gu</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14725v1-abstract-short" style="display: inline;"> Wide field of view and light weight optics are critical for advanced eyewear, with applications in augmented/virtual reality and night vision. Conventional refractive lenses are often stacked to correct aberrations at wide field of view, leading to limited performance and increased size and weight. In particular, simultaneously achieving wide field of view and large aperture for light collection i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14725v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14725v1-abstract-full" style="display: none;"> Wide field of view and light weight optics are critical for advanced eyewear, with applications in augmented/virtual reality and night vision. Conventional refractive lenses are often stacked to correct aberrations at wide field of view, leading to limited performance and increased size and weight. In particular, simultaneously achieving wide field of view and large aperture for light collection is desirable but challenging to realize in a compact form-factor. Here, we demonstrate a wide field of view (greater than 60$^\circ$) meta-optic doublet eyepiece with an entrance aperture of 2.1 cm. At the design wavelength of 633 nm, the meta-optic doublet achieves comparable performance to a refractive lens-based eyepiece system. This meta-doublet eyepiece illustrates the potential for meta-optics to play an important role in the development of high-quality monochrome near-eye display and night vision systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14725v1-abstract-full').style.display = 'none'; document.getElementById('2406.14725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13203">arXiv:2406.13203</a> <span> [<a href="https://arxiv.org/pdf/2406.13203">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-024-01380-w">10.1038/s41524-024-01380-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical phase-field model of cavity electromagnonic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yujie Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jia-Mian Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13203v2-abstract-short" style="display: inline;"> Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetiz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13203v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13203v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13203v2-abstract-full" style="display: none;"> Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of application, we computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two magnon polariton modes. The simulation results are consistent with analytical calculations based on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant excitation of a chiral, fundamental (n=1) transverse acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs, the present dynamical phase-field model represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing, transduction, and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13203v2-abstract-full').style.display = 'none'; document.getElementById('2406.13203v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11879">arXiv:2406.11879</a> <span> [<a href="https://arxiv.org/pdf/2406.11879">pdf</a>, <a href="https://arxiv.org/format/2406.11879">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Experimental verification of the optimal fingerprint method for detecting climate change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jinbo Hu</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+H">Hong Yuan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Letian Chen</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C+P">C. P. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11879v1-abstract-short" style="display: inline;"> The optimal fingerprint method serves as a potent approach for detecting and attributing climate change. However, its experimental validation encounters challenges due to the intricate nature of climate systems. Here, we experimentally examine the optimal fingerprint method simulated by a precisely controlled magnetic resonance system of spins. The spin dynamic under an applied deterministic drivi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11879v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11879v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11879v1-abstract-full" style="display: none;"> The optimal fingerprint method serves as a potent approach for detecting and attributing climate change. However, its experimental validation encounters challenges due to the intricate nature of climate systems. Here, we experimentally examine the optimal fingerprint method simulated by a precisely controlled magnetic resonance system of spins. The spin dynamic under an applied deterministic driving field and a noise field is utilized to emulate the complex climate system with external forcing and internal variability. Our experimental results affirm the theoretical prediction regarding the existence of an optimal detection direction which maximizes the signal-to-noise ratio, thereby validating the optimal fingerprint method. This work offers direct empirical verification of the optimal fingerprint method, crucial for comprehending climate change and its societal impacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11879v1-abstract-full').style.display = 'none'; document.getElementById('2406.11879v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11693">arXiv:2406.11693</a> <span> [<a href="https://arxiv.org/pdf/2406.11693">pdf</a>, <a href="https://arxiv.org/ps/2406.11693">ps</a>, <a href="https://arxiv.org/format/2406.11693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.999">10.1017/jfm.2024.999 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wake dynamics of wind turbines in unsteady streamwise flow conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wei%2C+N+J">Nathaniel J. Wei</a>, <a href="/search/physics?searchtype=author&query=Makdah%2C+A+E">Adnan El Makdah</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">JiaCheng Hu</a>, <a href="/search/physics?searchtype=author&query=Kaiser%2C+F">Frieder Kaiser</a>, <a href="/search/physics?searchtype=author&query=Rival%2C+D+E">David E. Rival</a>, <a href="/search/physics?searchtype=author&query=Dabiri%2C+J+O">John O. Dabiri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11693v1-abstract-short" style="display: inline;"> The unsteady flow physics of wind-turbine wakes under dynamic forcing conditions are critical to the modeling and control of wind farms for optimal power density. Unsteady forcing in the streamwise direction may be generated by unsteady inflow conditions in the atmospheric boundary layer, dynamic induction control of the turbine, or streamwise surge motions of a floating offshore wind turbine due… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11693v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11693v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11693v1-abstract-full" style="display: none;"> The unsteady flow physics of wind-turbine wakes under dynamic forcing conditions are critical to the modeling and control of wind farms for optimal power density. Unsteady forcing in the streamwise direction may be generated by unsteady inflow conditions in the atmospheric boundary layer, dynamic induction control of the turbine, or streamwise surge motions of a floating offshore wind turbine due to floating-platform oscillations. This study seeks to identify the dominant flow mechanisms in unsteady wakes forced by a periodic upstream inflow condition. A theoretical framework for the problem is derived, which describes traveling-wave undulations in the wake radius and streamwise velocity. These dynamics encourage the aggregation of tip vortices into large structures that are advected along in the wake. Flow measurements in the wake of a periodically surging turbine were obtained in an optically accessible towing-tank facility, with an average diameter-based Reynolds number of 300,000 and with surge-velocity amplitudes of up to 40% of the mean inflow velocity. Qualitative agreement between trends in the measurements and model predictions is observed, supporting the validity of the theoretical analyses. The experiments also demonstrate large enhancements in the recovery of the wake relative to the steady-flow case, with wake-length reductions of up to 46.5% and improvements in the available power at 10 diameters downstream of up to 15.7%. These results provide fundamental insights into the dynamics of unsteady wakes and serve as additional evidence that unsteady fluid mechanics can be leveraged to increase the power density of wind farms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11693v1-abstract-full').style.display = 'none'; document.getElementById('2406.11693v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 1000 (2024) A66 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06553">arXiv:2406.06553</a> <span> [<a href="https://arxiv.org/pdf/2406.06553">pdf</a>, <a href="https://arxiv.org/format/2406.06553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Ensemble Model With Bert,Roberta and Xlnet For Molecular property prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+J">Junling Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06553v1-abstract-short" style="display: inline;"> This paper presents a novel approach for predicting molecular properties with high accuracy without the need for extensive pre-training. Employing ensemble learning and supervised fine-tuning of BERT, RoBERTa, and XLNet, our method demonstrates significant effectiveness compared to existing advanced models. Crucially, it addresses the issue of limited computational resources faced by experimental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06553v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06553v1-abstract-full" style="display: none;"> This paper presents a novel approach for predicting molecular properties with high accuracy without the need for extensive pre-training. Employing ensemble learning and supervised fine-tuning of BERT, RoBERTa, and XLNet, our method demonstrates significant effectiveness compared to existing advanced models. Crucially, it addresses the issue of limited computational resources faced by experimental groups, enabling them to accurately predict molecular properties. This innovation provides a cost-effective and resource-efficient solution, potentially advancing further research in the molecular domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06553v1-abstract-full').style.display = 'none'; document.getElementById('2406.06553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,7 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hu%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>