CINXE.COM
Search results for: Vortex induced vibration
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Vortex induced vibration</title> <meta name="description" content="Search results for: Vortex induced vibration"> <meta name="keywords" content="Vortex induced vibration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Vortex induced vibration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Vortex induced vibration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1067</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Vortex induced vibration</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Yui%20Khing">T. Yui Khing</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Zahari"> M. A. Zahari</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Dol"> S. S. Dol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ocean current is always available around the surrounding of SHELL Sabah Water Platform and data are collected every 10 minutes, 24 hours a day, for a period of 365 days. Due to low current speed, conventional hydrokinetic power generation is not feasible, thus leading to the study of low current enabled vortex induced vibration power generation application. In this case, the design of a vortex induced vibration application is studied to obtain an optimum design for the VIV oscillator. Power output is then determined to study the feasibility of the VIV application in low current condition.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Renewable%20energy" title="Renewable energy">Renewable energy</a>, <a href="https://publications.waset.org/search?q=Vortex%20induced%20vibration" title=" Vortex induced vibration"> Vortex induced vibration</a>, <a href="https://publications.waset.org/search?q=Turbulence" title=" Turbulence"> Turbulence</a>, <a href="https://publications.waset.org/search?q=Lock-in." title=" Lock-in."> Lock-in.</a> </p> <a href="https://publications.waset.org/10002610/application-of-vortex-induced-vibration-energy-generation-technologies-to-the-offshore-oil-and-gas-platform-the-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002610/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002610/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002610/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002610/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002610/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002610/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002610/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002610/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002610/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002610/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2483</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20A.%20Zahari">M. A. Zahari</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Dol"> S. S. Dol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The global demand for continuous and eco-friendly renewable energy as alternative to fossils fuels is large and ever growing in nowadays. This paper will focus on capability of Vortex Induced Vibration (VIV) phenomenon in generating alternative energy for offshore platform application. In order to maximize the potential of energy generation, the effects of lock in phenomenon and different geometries of cylinder were studied in this project. VIV is the motion induced on bluff body which creates alternating lift forces perpendicular to fluid flow. Normally, VIV is unwanted in order to prevent mechanical failure of the vibrating structures. But in this project, instead of eliminating these vibrations, VIV will be exploited to transform these vibrations into a valuable resource of energy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vortex%20Induced%20Vibration" title="Vortex Induced Vibration">Vortex Induced Vibration</a>, <a href="https://publications.waset.org/search?q=Vortex%20Shedding" title=" Vortex Shedding"> Vortex Shedding</a>, <a href="https://publications.waset.org/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a> </p> <a href="https://publications.waset.org/9999580/application-of-vortex-induced-vibration-energy-generation-technologies-to-the-offshore-oil-and-gas-platform-the-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999580/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999580/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999580/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999580/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999580/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999580/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999580/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999580/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999580/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999580/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3758</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Li">T. Li</a>, <a href="https://publications.waset.org/search?q=J.Y.%20Zhang"> J.Y. Zhang</a>, <a href="https://publications.waset.org/search?q=W.H.%20Zhang"> W.H. Zhang</a>, <a href="https://publications.waset.org/search?q=M.H.%20Zhu"> M.H. Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid-structure%20interaction" title="Fluid-structure interaction">Fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=Navier-Stokes%20equation" title=" Navier-Stokes equation"> Navier-Stokes equation</a>, <a href="https://publications.waset.org/search?q=Space-time%20finite%20element%20method" title="Space-time finite element method">Space-time finite element method</a>, <a href="https://publications.waset.org/search?q=vortex-induced%20vibration." title=" vortex-induced vibration."> vortex-induced vibration.</a> </p> <a href="https://publications.waset.org/11024/vortex-induced-vibration-characteristics-of-an-elastic-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11024/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11024/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11024/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11024/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11024/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11024/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11024/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11024/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11024/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11024/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2923</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhipeng%20Feng">Zhipeng Feng</a>, <a href="https://publications.waset.org/search?q=Huanhuan%20Qi"> Huanhuan Qi</a>, <a href="https://publications.waset.org/search?q=Pingchuan%20Shen"> Pingchuan Shen</a>, <a href="https://publications.waset.org/search?q=Fenggang%20Zang"> Fenggang Zang</a>, <a href="https://publications.waset.org/search?q=Yixiong%20Zhang"> Yixiong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×10<sup>4</sup>. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vortex%20induced%20vibration" title="Vortex induced vibration">Vortex induced vibration</a>, <a href="https://publications.waset.org/search?q=limit%20cycle" title=" limit cycle"> limit cycle</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=FEM." title=" FEM. "> FEM. </a> </p> <a href="https://publications.waset.org/10005505/analysis-of-vortex-induced-vibration-characteristics-for-a-three-dimensional-flexible-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005505/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005505/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005505/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005505/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005505/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005505/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005505/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005505/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005505/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005505/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Self-Excited Vibration in Hydraulic Ball Check Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Grinis">L. Grinis</a>, <a href="https://publications.waset.org/search?q=V.%20Haslavsky"> V. Haslavsky</a>, <a href="https://publications.waset.org/search?q=U.%20Tzadka"> U. Tzadka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Check-valve" title="Check-valve">Check-valve</a>, <a href="https://publications.waset.org/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/1394/self-excited-vibration-in-hydraulic-ball-check-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1394/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1394/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1394/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1394/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1394/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1394/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1394/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1394/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1394/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1394/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2844</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammed%20F.%20Alhaddad">Mohammed F. Alhaddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Vortex Induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centreline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Energy" title="Energy">Energy</a>, <a href="https://publications.waset.org/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/search?q=electrostatic" title=" electrostatic"> electrostatic</a>, <a href="https://publications.waset.org/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/search?q=vortex." title=" vortex."> vortex.</a> </p> <a href="https://publications.waset.org/10013794/enhancing-oscillation-amplitude-response-generated-by-vortex-induced-vibrations-through-experimental-identification-of-optimum-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013794/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013794/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013794/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013794/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013794/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013794/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013794/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013794/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013794/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013794/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> A Vortex Plate Theory of Hovering Animal Flight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaled.%20M.%20Faqih">Khaled. M. Faqih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A model of vortex wake is suggested to determine the induced power during animal hovering flight. The wake is modeled by a series of equi-spaced rigid rectangular vortex plates, positioned horizontally and moving vertically downwards with identical speeds; each plate is generated during powering of the functionally wing stroke. The vortex representation of the wake considered in the current theory allows a considerable loss of momentum to occur. The current approach accords well with the nature of the wingbeat since it considers the unsteadiness in the wake as an important fluid dynamical characteristic. Induced power in hovering is calculated as the aerodynamic power required to generate the vortex wake system. Specific mean induced power to mean wing tip velocity ratio is determined by solely the normal spacing parameter (f) for a given wing stroke amplitude. The current theory gives much higher specific induced power estimate than anticipated by classical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=vortex%20theory" title="vortex theory">vortex theory</a>, <a href="https://publications.waset.org/search?q=hovering%20flight" title=" hovering flight"> hovering flight</a>, <a href="https://publications.waset.org/search?q=induced%20power" title=" induced power"> induced power</a>, <a href="https://publications.waset.org/search?q=Prandlt%27s%20tip%20theory." title="Prandlt's tip theory.">Prandlt's tip theory.</a> </p> <a href="https://publications.waset.org/662/a-vortex-plate-theory-of-hovering-animal-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/662/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/662/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/662/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/662/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/662/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/662/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/662/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/662/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/662/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/662/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1747</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> A Further Improvement on the Resurrected Core-Spreading Vortex Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M-J.%20Huang">M-J. Huang</a>, <a href="https://publications.waset.org/search?q=C-J.%20Huang"> C-J. Huang</a>, <a href="https://publications.waset.org/search?q=L-C.%20Chen"> L-C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a previously developed fast vortex method, the diffusion of the vortex sheet induced at the solid wall by the no-slip boundary conditions was modeled according to the approximation solution of Koumoutsakos and converted into discrete blobs in the vicinity of the wall. This scheme had been successfully applied to a simulation of the flow induced with an impulsively initiated circular cylinder. In this work, further modifications on this vortex method are attempted, including replacing the approximation solution by the boundary-element-method solution, incorporating a new algorithm for handling the over-weak vortex blobs, and diffusing the vortex sheet circulation in a new way suitable for high-curvature solid bodies. The accuracy is thus largely improved. The predictions of lift and drag coefficients for a uniform flow past a NASA airfoil agree well with the existing literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Resurrected%20core-spreading%20vortex%20method" title="Resurrected core-spreading vortex method">Resurrected core-spreading vortex method</a>, <a href="https://publications.waset.org/search?q=Boundaryelement%20method" title=" Boundaryelement method"> Boundaryelement method</a>, <a href="https://publications.waset.org/search?q=Vortex%20sheet" title=" Vortex sheet"> Vortex sheet</a>, <a href="https://publications.waset.org/search?q=Over-weak%20vortex%20blobs." title=" Over-weak vortex blobs."> Over-weak vortex blobs.</a> </p> <a href="https://publications.waset.org/2200/a-further-improvement-on-the-resurrected-core-spreading-vortex-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2200/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2200/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2200/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2200/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2200/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2200/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2200/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2200/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2200/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2200/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1418</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yiming%20Jin">Yiming Jin</a>, <a href="https://publications.waset.org/search?q=Yuanhao%20Gao"> Yuanhao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vortex-induced%20vibrations" title="Vortex-induced vibrations">Vortex-induced vibrations</a>, <a href="https://publications.waset.org/search?q=marine%20pipeline" title=" marine pipeline"> marine pipeline</a>, <a href="https://publications.waset.org/search?q=seabed" title=" seabed"> seabed</a>, <a href="https://publications.waset.org/search?q=sub-harmonic%20resonance." title=" sub-harmonic resonance."> sub-harmonic resonance.</a> </p> <a href="https://publications.waset.org/10004792/second-sub-harmonic-resonance-in-vortex-induced-vibrations-of-a-marine-pipeline-close-to-the-seabed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004792/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004792/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004792/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004792/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004792/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004792/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004792/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004792/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004792/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004792/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1391</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Malik%20I.%20Al-Amayreh">Malik I. Al-Amayreh</a>, <a href="https://publications.waset.org/search?q=Mohammad%20I.%20Kilani"> Mohammad I. Kilani</a>, <a href="https://publications.waset.org/search?q=Ahmed%20S.%20Al-Salaymeh"> Ahmed S. Al-Salaymeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting.The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the pressure distributions and Frequency spectrum of the pressure pulsations downstream the valves and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance.These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe.CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Butterfly%20Valve%20Vibration%20Analysis" title="Butterfly Valve Vibration Analysis">Butterfly Valve Vibration Analysis</a>, <a href="https://publications.waset.org/search?q=Computational%0D%0AFluid%20Dynamics" title=" Computational Fluid Dynamics"> Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/search?q=Fluid%20Flow%20Circuit%20Design" title=" Fluid Flow Circuit Design"> Fluid Flow Circuit Design</a>, <a href="https://publications.waset.org/search?q=Fluid%20Mechanics." title=" Fluid Mechanics."> Fluid Mechanics.</a> </p> <a href="https://publications.waset.org/9999876/numerical-study-of-a-butterfly-valve-for-vibration-analysis-and-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999876/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999876/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999876/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999876/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999876/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999876/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999876/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999876/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999876/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999876/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3817</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> Wave Vortex Parameters as an Indicator of Breaking Intensity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Robertson">B. Robertson</a>, <a href="https://publications.waset.org/search?q=K.%20Hall"> K. Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Breaking%20Wave%20Measurement" title="Breaking Wave Measurement">Breaking Wave Measurement</a>, <a href="https://publications.waset.org/search?q=Wave%20Vortex%20Parameters" title=" Wave Vortex Parameters"> Wave Vortex Parameters</a>, <a href="https://publications.waset.org/search?q=Analytical%20Techniques" title=" Analytical Techniques"> Analytical Techniques</a>, <a href="https://publications.waset.org/search?q=Ocean%20Remote%20Sensing." title=" Ocean Remote Sensing."> Ocean Remote Sensing.</a> </p> <a href="https://publications.waset.org/6937/wave-vortex-parameters-as-an-indicator-of-breaking-intensity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6937/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6937/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6937/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6937/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6937/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6937/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6937/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6937/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6937/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6937/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1768</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hiroshi%20Katanoda">Hiroshi Katanoda</a>, <a href="https://publications.waset.org/search?q=Mohd%20Hazwan%20bin%20Yusof"> Mohd Hazwan bin Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study.It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing aregion with higher total temperature,compared to the distant region,peripheral to the vortex core.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Energy%20separation%20mechanism" title="Energy separation mechanism">Energy separation mechanism</a>, <a href="https://publications.waset.org/search?q=theoretical%20analysis" title=" theoretical analysis"> theoretical analysis</a>, <a href="https://publications.waset.org/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a>, <a href="https://publications.waset.org/search?q=vortical%20flow." title=" vortical flow."> vortical flow.</a> </p> <a href="https://publications.waset.org/9998498/energy-separation-mechanism-in-uni-flow-vortex-tube-using-compressible-vortex-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998498/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998498/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998498/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998498/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998498/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998498/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998498/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998498/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998498/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998498/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1903</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Grinis">L. Grinis</a>, <a href="https://publications.waset.org/search?q=V.%20Haslavsky"> V. Haslavsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Drilling" title="Drilling">Drilling</a>, <a href="https://publications.waset.org/search?q=stuck-pipe" title=" stuck-pipe"> stuck-pipe</a>, <a href="https://publications.waset.org/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/search?q=vortex%20shedding." title=" vortex shedding."> vortex shedding.</a> </p> <a href="https://publications.waset.org/16519/cfd-simulation-of-the-hydrodynamic-vibrator-for-stuck-pipe-liquidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16519/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16519/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16519/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16519/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16519/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16519/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16519/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16519/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16519/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16519/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2602</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Vortex Shedding at the End of Parallel-plate Thermoacoustic Stack in the Oscillatory Flow Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lei%20Shi">Lei Shi</a>, <a href="https://publications.waset.org/search?q=Zhibin%20Yu"> Zhibin Yu</a>, <a href="https://publications.waset.org/search?q=Artur%20J.%20Jaworski"> Artur J. Jaworski</a>, <a href="https://publications.waset.org/search?q=Abdulrahman%20S.%20Abduljalil"> Abdulrahman S. Abduljalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Here, Particle Image Velocimetry (PIV) is used to quantify the vortex shedding processes within an acoustic cycle phase-by-phase, in particular during the “ejection" of the fluid out of the stack. Standard hot-wire anemometry measurement is also applied to detect the velocity fluctuations near the end of the stack. Combination of these two measurement techniques allowed a detailed analysis of the vortex shedding phenomena. The results obtained show that, as the Reynolds number varies (by varying the plate thickness and drive ratio), different flow patterns of vortex shedding are observed by the PIV measurement. On the other hand, the time-dependent hot-wire measurements allow obtaining detailed frequency spectra of the velocity signal, used for calculating characteristic Strouhal numbers. The impact of the plate thickness and the Reynolds number on the vortex shedding pattern has been discussed. Furthermore, a detailed map of the relationship between the Strouhal number and Reynolds number has been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oscillatory%20flow" title="Oscillatory flow">Oscillatory flow</a>, <a href="https://publications.waset.org/search?q=Parallel-plate%20thermoacoustic%20stack" title=" Parallel-plate thermoacoustic stack"> Parallel-plate thermoacoustic stack</a>, <a href="https://publications.waset.org/search?q=Strouhal%20numbers" title=" Strouhal numbers"> Strouhal numbers</a>, <a href="https://publications.waset.org/search?q=Vortex%20shedding." title=" Vortex shedding."> Vortex shedding.</a> </p> <a href="https://publications.waset.org/10616/vortex-shedding-at-the-end-of-parallel-plate-thermoacoustic-stack-in-the-oscillatory-flow-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10616/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10616/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10616/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10616/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10616/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10616/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10616/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10616/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10616/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10616/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1883</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Taghi%20Shervani%20Tabar">Mohammad Taghi Shervani Tabar</a>, <a href="https://publications.waset.org/search?q=Zahra%20Poursharifi"> Zahra Poursharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Axial%20flow%20pump" title="Axial flow pump">Axial flow pump</a>, <a href="https://publications.waset.org/search?q=Gap%20cavitation" title=" Gap cavitation"> Gap cavitation</a>, <a href="https://publications.waset.org/search?q=Leakage%20vortex" title=" Leakage vortex"> Leakage vortex</a>, <a href="https://publications.waset.org/search?q=Tip%20vortex%20cavitation." title=" Tip vortex cavitation."> Tip vortex cavitation.</a> </p> <a href="https://publications.waset.org/480/an-experimental-study-of-tip-vortex-cavitation-inception-in-an-axial-flow-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/480/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/480/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/480/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/480/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/480/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/480/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/480/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/480/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/480/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/480/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2699</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ilia%20Marchevsky">Ilia Marchevsky</a>, <a href="https://publications.waset.org/search?q=Victoriya%20Moreva"> Victoriya Moreva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vortex%20element%20method" title="Vortex element method">Vortex element method</a>, <a href="https://publications.waset.org/search?q=vortex%20layer" title=" vortex layer"> vortex layer</a>, <a href="https://publications.waset.org/search?q=integral%20equation" title=" integral equation"> integral equation</a>, <a href="https://publications.waset.org/search?q=ill-conditioned%20matrix." title=" ill-conditioned matrix."> ill-conditioned matrix.</a> </p> <a href="https://publications.waset.org/10787/on-modified-numerical-schemes-in-vortex-element-method-for-2d-flow-simulation-around-airfoils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10787/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10787/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10787/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10787/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10787/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10787/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10787/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10787/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10787/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10787/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1672</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wei%20Hua%20Ho">Wei Hua Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Jet%20Engine%20Test%20Cell" title="Jet Engine Test Cell">Jet Engine Test Cell</a>, <a href="https://publications.waset.org/search?q=Unsteady%20flow" title=" Unsteady flow"> Unsteady flow</a>, <a href="https://publications.waset.org/search?q=Inlet%20Vortex" title=" Inlet Vortex"> Inlet Vortex</a> </p> <a href="https://publications.waset.org/15812/location-of-vortex-formation-threshold-at-suction-inlets-near-ground-planes-ascending-and-descending-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15812/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15812/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15812/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15812/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15812/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15812/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15812/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15812/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15812/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15812/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2040</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lavish%20Ordia">Lavish Ordia</a>, <a href="https://publications.waset.org/search?q=A.%20Venugopal"> A. Venugopal</a>, <a href="https://publications.waset.org/search?q=Amit%20Agrawal"> Amit Agrawal</a>, <a href="https://publications.waset.org/search?q=S.%20V.%20Prabhu"> S. V. Prabhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flow%20visualization" title="Flow visualization">Flow visualization</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=Strouhal%20number" title=" Strouhal number"> Strouhal number</a>, <a href="https://publications.waset.org/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/search?q=vortex%20formation%20length" title=" vortex formation length"> vortex formation length</a>, <a href="https://publications.waset.org/search?q=wake%20width." title=" wake width."> wake width.</a> </p> <a href="https://publications.waset.org/16936/influence-of-after-body-shape-on-the-performance-of-blunt-shaped-bodies-as-vortex-shedders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16936/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16936/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16936/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16936/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16936/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16936/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16936/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16936/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16936/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16936/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2977</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Weakened Vortex Shedding from a Rotating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sharul%20S.%20Dol">Sharul S. Dol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, <em>λ </em>between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for <em>λ </em>< 2.0. Alternate vortex shedding is weak and close to being suppressed at <em>λ </em>= 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Circulation" title="Circulation">Circulation</a>, <a href="https://publications.waset.org/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/search?q=rotating%20circular%20cylinder" title=" rotating circular cylinder"> rotating circular cylinder</a>, <a href="https://publications.waset.org/search?q=smoke-wire%20flow%20visualization" title=" smoke-wire flow visualization"> smoke-wire flow visualization</a>, <a href="https://publications.waset.org/search?q=Strouhal%20number" title=" Strouhal number"> Strouhal number</a>, <a href="https://publications.waset.org/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/search?q=vortex%20street." title=" vortex street."> vortex street.</a> </p> <a href="https://publications.waset.org/17120/weakened-vortex-shedding-from-a-rotating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17120/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17120/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17120/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17120/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17120/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17120/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17120/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17120/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17120/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17120/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2864</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/search?q=vortex%20ring." title=" vortex ring."> vortex ring.</a> </p> <a href="https://publications.waset.org/10005566/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1382</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Influence of Vortex Generator on Flow Behavior of Air Stream </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chakkapong%20Supasri">Chakkapong Supasri</a>, <a href="https://publications.waset.org/search?q=Tanongkiat%20Kiatsiriroat"> Tanongkiat Kiatsiriroat</a>, <a href="https://publications.waset.org/search?q=Atipoang%20Nuntaphan"> Atipoang Nuntaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p style="margin-left: 40px;"> </p> <p class="Abstract" style="text-indent:10.2pt">This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vortex%20generator" title="Vortex generator">Vortex generator</a>, <a href="https://publications.waset.org/search?q=Flow%20behavior" title=" Flow behavior"> Flow behavior</a>, <a href="https://publications.waset.org/search?q=Visual%20study" title=" Visual study"> Visual study</a>, <a href="https://publications.waset.org/search?q=Delta%20wing" title=" Delta wing"> Delta wing</a>, <a href="https://publications.waset.org/search?q=Delta%20winglet" title=" Delta winglet"> Delta winglet</a>, <a href="https://publications.waset.org/search?q=Smoke%20generator." title=" Smoke generator."> Smoke generator.</a> </p> <a href="https://publications.waset.org/16854/influence-of-vortex-generator-on-flow-behavior-of-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16854/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16854/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16854/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16854/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16854/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16854/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16854/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16854/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16854/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16854/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2225</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sergey%20I.%20Shtork">Sergey I. Shtork</a>, <a href="https://publications.waset.org/search?q=Aleksey%20P.%20Vinokurov"> Aleksey P. Vinokurov</a>, <a href="https://publications.waset.org/search?q=Sergey%20V.%20Alekseenko"> Sergey V. Alekseenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Acoustic%20probes" title="Acoustic probes">Acoustic probes</a>, <a href="https://publications.waset.org/search?q=detached%20eddy%20simulation%20%28DES%29" title=" detached eddy simulation (DES)"> detached eddy simulation (DES)</a>, <a href="https://publications.waset.org/search?q=laser-Doppler%20anemometry%20%28LDA%29" title=" laser-Doppler anemometry (LDA)"> laser-Doppler anemometry (LDA)</a>, <a href="https://publications.waset.org/search?q=precessing%20vortex%20core%20%28PVC%29." title=" precessing vortex core (PVC)."> precessing vortex core (PVC).</a> </p> <a href="https://publications.waset.org/9390/study-of-unsteady-swirling-flow-in-a-hydrodynamic-vortex-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9390/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9390/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9390/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9390/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9390/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9390/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9390/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9390/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9390/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9390/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2271</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Airliner-UAV Flight Formation in Climb Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pavel%20Zikmund">Pavel Zikmund</a>, <a href="https://publications.waset.org/search?q=Robert%20Popela"> Robert Popela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme formation is a theoretical concept of selfsustain flight when a big airliner is followed by a small UAV glider flying in the airliner wake vortex. The paper presents results of a climb analysis with the goal to lift the gliding UAV to airliners cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Afterwards, flight performance of the UAV in a wake vortex is evaluated by analytical methods. Time history of optimal distance between an airliner and the UAV during a climb is determined. The results are encouraging. Therefore available UAV drag margin for electricity generation is figured out for different vortex models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flight%20in%20formation" title="Flight in formation">Flight in formation</a>, <a href="https://publications.waset.org/search?q=self-sustained%20flight" title=" self-sustained flight"> self-sustained flight</a>, <a href="https://publications.waset.org/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/search?q=wake%0D%0Avortex." title=" wake vortex."> wake vortex.</a> </p> <a href="https://publications.waset.org/10002718/airliner-uav-flight-formation-in-climb-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002718/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002718/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002718/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002718/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002718/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002718/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002718/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002718/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002718/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002718/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1990</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pakorn%20Uttayopas">Pakorn Uttayopas</a>, <a href="https://publications.waset.org/search?q=Chawalit%20Kittichaikarn"> Chawalit Kittichaikarn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D<sub>1</sub> = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Downstream%20structures" title="Downstream structures">Downstream structures</a>, <a href="https://publications.waset.org/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/search?q=flow-induced%20vibration" title=" flow-induced vibration"> flow-induced vibration</a>, <a href="https://publications.waset.org/search?q=piezoelectric%20material" title=" piezoelectric material"> piezoelectric material</a>, <a href="https://publications.waset.org/search?q=wind%20tunnel." title=" wind tunnel. "> wind tunnel. </a> </p> <a href="https://publications.waset.org/10008900/an-experimental-study-of-downstream-structures-on-the-flow-induced-vibrations-energy-harvester-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008900/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008900/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008900/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008900/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008900/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008900/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008900/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008900/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008900/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008900/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">925</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20K.%20Singh">N. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=channel%20with%20vortex%20generators" title=" channel with vortex generators"> channel with vortex generators</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/search?q=effect%20of%20Reynolds%20number%20on%20heat%20transfer." title=" effect of Reynolds number on heat transfer."> effect of Reynolds number on heat transfer.</a> </p> <a href="https://publications.waset.org/9997368/numerical-investigation-of-heat-transfer-in-a-channel-with-delta-winglet-vortex-generators-at-different-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997368/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997368/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997368/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997368/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997368/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997368/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997368/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997368/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997368/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997368/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2438</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saqib%20Mahmood">Saqib Mahmood</a>, <a href="https://publications.waset.org/search?q=Rolf%20Radespiel"> Rolf Radespiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=VGJ" title="VGJ">VGJ</a>, <a href="https://publications.waset.org/search?q=Chimera%20Grid" title=" Chimera Grid"> Chimera Grid</a>, <a href="https://publications.waset.org/search?q=DES" title=" DES"> DES</a>, <a href="https://publications.waset.org/search?q=RANS." title=" RANS."> RANS.</a> </p> <a href="https://publications.waset.org/14808/detached-eddy-simulation-of-vortex-generator-jet-using-chimera-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14808/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14808/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14808/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14808/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14808/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14808/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14808/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14808/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14808/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14808/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2481</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Bridge Analysis Structure under Human Induced Dynamic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=O.%20Kratochv%C3%ADl">O. Kratochvíl</a>, <a href="https://publications.waset.org/search?q=J.%20Kri%C5%BEan"> J. Križan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the analysis of the dynamic response of footbridges under human - induced dynamic loads. This is a frequently occurring and often dominant load for footbridges as it stems from the very purpose of a footbridge - to convey pedestrian. Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of the society. These structures however are always lively with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. Pedestrian bridges are designed according to first and second limit states, these are the criteria involved in response to static design load. However, it is necessary to assess the dynamic response of bridge design load on pedestrians and assess it impact on the comfort of the user movement. Usually the load is considered a person or a small group which can be assumed in perfect motion synchronization. Already one person or small group can excite significant vibration of the deck. In order to calculate the dynamic response to the movement of people, designer needs available and suitable computational model and criteria. For the calculation program ANSYS based on finite element method was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Footbridge" title="Footbridge">Footbridge</a>, <a href="https://publications.waset.org/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/search?q=vibration%0D%0Aserviceability%20of%20footbridges" title=" vibration serviceability of footbridges"> vibration serviceability of footbridges</a>, <a href="https://publications.waset.org/search?q=lateral%20vibration" title=" lateral vibration"> lateral vibration</a>, <a href="https://publications.waset.org/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/search?q=dynamic%0D%0Aforce" title=" dynamic force"> dynamic force</a>, <a href="https://publications.waset.org/search?q=walking%20force" title=" walking force"> walking force</a>, <a href="https://publications.waset.org/search?q=slender%20suspension%20footbridges" title=" slender suspension footbridges"> slender suspension footbridges</a>, <a href="https://publications.waset.org/search?q=natural%0D%0Afrequencies%20and%20vibration%20modes" title=" natural frequencies and vibration modes"> natural frequencies and vibration modes</a>, <a href="https://publications.waset.org/search?q=rhythm%20jumping" title=" rhythm jumping"> rhythm jumping</a>, <a href="https://publications.waset.org/search?q=normal%20walking." title=" normal walking."> normal walking.</a> </p> <a href="https://publications.waset.org/9619/bridge-analysis-structure-under-human-induced-dynamic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9619/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9619/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9619/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9619/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9619/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9619/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9619/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9619/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9619/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9619/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2663</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Vortex Shedding on Combined Bodies at Incidence to a Uniform Air Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Yavuz">T. Yavuz</a>, <a href="https://publications.waset.org/search?q=Y.%20E.%20Akansu"> Y. E. Akansu</a>, <a href="https://publications.waset.org/search?q=M.%20Sar%C4%B1oglu"> M. Sarıoglu</a>, <a href="https://publications.waset.org/search?q=M.%20Ozmert"> M. Ozmert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex-shedding phenomenon of the flow around combined two bodies having various geometries and sizes has been investigated experimentally in the Reynolds number range between 4.1x103 and 1.75x104. To see the effect of the rotation of the bodies on the vortex shedding, the combined bodies were rotated from 0° to 180°. The combined models have a cross section composing of a main circular cylinder and an attached circular or square cylinder. Results have shown that Strouhal numbers for two cases were changed considerably with the angle of incidence, while it was found to be largely independent of Reynolds number at 150. Characteristics of the vortex formation region and location of flow attachments, reattachments, and separations were observed by means of the flow visualizations. Depending on the inclination angle the effects of flow attachment, separation and reattachment on vortex-shedding phenomenon have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bluff%20body" title="Bluff body">Bluff body</a>, <a href="https://publications.waset.org/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/search?q=flow%20reattachment" title=" flow reattachment"> flow reattachment</a> </p> <a href="https://publications.waset.org/10612/vortex-shedding-on-combined-bodies-at-incidence-to-a-uniform-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10612/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10612/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10612/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10612/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10612/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10612/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10612/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10612/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10612/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10612/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2123</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> A Large-Eddy Simulation of Vortex Cell flow with Incoming Turbulent Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arpiruk%20Hokpunna">Arpiruk Hokpunna</a>, <a href="https://publications.waset.org/search?q=Michael%20Manhart"> Michael Manhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a Large-Eddy simulation of a vortex cell with circular shaped. The results show that the flow field can be sub divided into four important zones, the shear layer above the cavity, the stagnation zone, the vortex core in the cavity and the boundary layer along the wall of the cavity. It is shown that the vortex core consits of solid body rotation without much turbulence activity. The vortex is mainly driven by high energy packets that are driven into the cavity from the stagnation point region and by entrainment of fluid from the cavity into the shear layer. The physics in the boundary layer along the cavity-s wall seems to be far from that of a canonical boundary layer which might be a crucial point for modelling this flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Turbulent%20flow" title="Turbulent flow">Turbulent flow</a>, <a href="https://publications.waset.org/search?q=Large%20eddy%20simulations" title=" Large eddy simulations"> Large eddy simulations</a>, <a href="https://publications.waset.org/search?q=boundary%20layer%20and%20cavity%20flow" title=" boundary layer and cavity flow"> boundary layer and cavity flow</a>, <a href="https://publications.waset.org/search?q=vortex%20cell%20flow." title=" vortex cell flow."> vortex cell flow.</a> </p> <a href="https://publications.waset.org/6250/a-large-eddy-simulation-of-vortex-cell-flow-with-incoming-turbulent-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6250/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6250/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6250/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6250/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6250/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6250/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6250/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6250/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6250/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6250/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8238</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Flow Control around Bluff Bodies by Attached Permeable Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20M.%20Ozkan">G. M. Ozkan</a>, <a href="https://publications.waset.org/search?q=H.%20Akilli"> H. Akilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0<sup>o</sup>, 15<sup>o</sup>, 30<sup>o</sup>, 45<sup>o</sup>, 60<sup>o</sup>) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45<sup>o</sup>and 60<sup>o</sup> which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bluff%20body" title="Bluff body">Bluff body</a>, <a href="https://publications.waset.org/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/search?q=permeable%20plate" title=" permeable plate"> permeable plate</a>, <a href="https://publications.waset.org/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/search?q=VIV" title=" VIV"> VIV</a>, <a href="https://publications.waset.org/search?q=vortex%20shedding." title=" vortex shedding. "> vortex shedding. </a> </p> <a href="https://publications.waset.org/9998430/flow-control-around-bluff-bodies-by-attached-permeable-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998430/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998430/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998430/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998430/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998430/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998430/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998430/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998430/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998430/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998430/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2583</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Vortex%20induced%20vibration&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>