CINXE.COM
Search results for: superhydrophobic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: superhydrophobic</title> <meta name="description" content="Search results for: superhydrophobic"> <meta name="keywords" content="superhydrophobic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="superhydrophobic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="superhydrophobic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: superhydrophobic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Ren"> Weiwei Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Mu"> Xiaojing Mu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhang"> Feng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Xu"> Yi Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title="eccentricity">eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-channel" title=" micro-channel"> micro-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-grooves" title=" micro-grooves"> micro-grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20surface" title=" superhydrophobic surface"> superhydrophobic surface</a> </p> <a href="https://publications.waset.org/abstracts/62094/flow-inside-micro-channel-bounded-by-superhydrophobic-surface-with-eccentric-micro-grooves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yung%20Chou">Chia-Yung Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Chuan%20Cheng"> Che-Chuan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Chi%20Hsu"> Chin Chi Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hui%20Wu"> Chun-Hui Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title="hydrophobic">hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20length" title=" slip length"> slip length</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a> </p> <a href="https://publications.waset.org/abstracts/108729/the-superhydrophobic-surface-effect-on-laminar-boundary-layer-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Superhydrophobic Coatings Based On Waterborne Polyolefin And Silica Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyuwon%20Lee">Kyuwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Wook%20Chang"> Young-Wook Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superhydrophobic surfaces have been paid great attentions over the years due to their various applications. In this study, superhydrophobic coatings based on the hybrids of hydrophobically modified silica nanoparticles and waterborne polyolefin were fabricated onto a cotton fabric by spraying a mixture of surface dodecylated silica nanoparticles with aqueous dispersion of polyolefin onto the fabric and a subsequent drying at 80℃. The coated fabrics were characterized using water-contact angle measurement, SEM, and AFM analysis. The coated fabrics exhibit superhydrophobicity with a water contact angle of 155° along with excellent self-cleaning and water/oil separation ability. It was also revealed that such superhydrophobicity was maintained after repeated mechanical abrasion using a sandpaper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20coating" title="superhydrophobic coating">superhydrophobic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=waterborne%20polyolefin" title=" waterborne polyolefin"> waterborne polyolefin</a>, <a href="https://publications.waset.org/abstracts/search?q=dodecylated%20silica%20nanoparticle" title=" dodecylated silica nanoparticle"> dodecylated silica nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/117557/superhydrophobic-coatings-based-on-waterborne-polyolefin-and-silica-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abinash%20Tripathy">Abinash Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20Muralidharan"> Girish Muralidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Pramanik"> Amitava Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosenjit%20Sen"> Prosenjit Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle%20hysteresis" title=" contact angle hysteresis"> contact angle hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title=" contact time"> contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/45602/drop-impact-study-on-flexible-superhydrophobic-surface-containing-micro-nano-hierarchical-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debarun%20Dhar%20Purkayastha">Debarun Dhar Purkayastha</a>, <a href="https://publications.waset.org/abstracts/search?q=Talinungsang"> Talinungsang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20energy" title=" surface energy"> surface energy</a> </p> <a href="https://publications.waset.org/abstracts/86183/superhydrophobic-behavior-of-sno2-tio2-composite-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Varshney">Priya Varshney</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumya%20S.%20Mohapatra"> Soumya S. Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title="superhydrophobic">superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=water-repellent" title=" water-repellent"> water-repellent</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corrosion" title=" anti-corrosion"> anti-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a> </p> <a href="https://publications.waset.org/abstracts/61291/fabrication-of-durable-and-renegerable-superhydrophobic-coatings-on-metallic-surfaces-for-potential-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Oluwagbemiga%20Alayande">S. Oluwagbemiga Alayande</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Olugbenga%20Dare"> E. Olugbenga Dare</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20A.%20M.%20Msagati"> Titus A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kehinde%20Akinlabi"> A. Kehinde Akinlabi </a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Aiyedun"> P. O. Aiyedun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expanded%20polystyrene" title="expanded polystyrene">expanded polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=superoleophillic" title=" superoleophillic"> superoleophillic</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-membrane" title=" oil-membrane"> oil-membrane</a> </p> <a href="https://publications.waset.org/abstracts/13690/surface-modified-electrospun-expanded-polystyrene-fibre-with-superhydrophobicsuperoleophillic-properties-as-potential-oil-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Reactive Dyed Superhydrophobic Cotton Fabric Production by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuddis%20B%C3%BCy%C3%BCkak%C4%B1ll%C4%B1">Kuddis Büyükakıllı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pretreated and bleached mercerized cotton fabric was dyed with reactive Everzol Brilliant Yellow 4GR (C.I. Yellow 160) dyestuff. Superhydrophobicity is provided to white and reactive dyed fabrics by using a nanotechnological sol-gel method with tetraethoxysilane and fluorcarbon water repellent agents by the two-step method. The effect of coating on color yield, fastness and functional properties of fabric was investigated. It was observed that water drop contact angles were higher in colorless coated fabrics compared to colored coated fabrics, there was no significant color change in colored superhydrophobic fabric and high color fastness values. Although there are no significant color losses in the fabrics after multiple washing and dry cleaning processes, water drop contact angles are greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorcarbon%20water%20repellent%20agent" title="fluorcarbon water repellent agent">fluorcarbon water repellent agent</a>, <a href="https://publications.waset.org/abstracts/search?q=colored%20cotton%20fabric" title=" colored cotton fabric"> colored cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/124211/reactive-dyed-superhydrophobic-cotton-fabric-production-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Eleshaky">Mohamed E. Eleshaky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow%20in%20micropipes" title=" laminar flow in micropipes"> laminar flow in micropipes</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=superhyrophobic%20surfaces" title=" superhyrophobic surfaces"> superhyrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=microposts" title=" microposts"> microposts</a> </p> <a href="https://publications.waset.org/abstracts/48306/simulations-of-laminar-liquid-flows-through-superhydrophobic-micro-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Kumar">Aditya Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title="superhydrophobic">superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=water-repellent" title=" water-repellent"> water-repellent</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corrosion" title=" anti-corrosion"> anti-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a> </p> <a href="https://publications.waset.org/abstracts/61288/development-of-excellent-water-repellent-coatings-for-metallic-and-ceramic-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Javier%20Montes%20Ruiz-Cabello">Francisco Javier Montes Ruiz-Cabello</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Guerrero-Vacas"> Guillermo Guerrero-Vacas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Bermudez-Romero"> Sara Bermudez-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Cabrerizo%20Vilchez"> Miguel Cabrerizo Vilchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Rodriguez-Valverde"> Miguel Angel Rodriguez-Valverde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galvanaized%20steel" title="galvanaized steel">galvanaized steel</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20surfaces" title=" superhydrophobic surfaces"> superhydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20nanoparticles" title=" sintering nanoparticles"> sintering nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20nanopowder" title=" zinc nanopowder"> zinc nanopowder</a> </p> <a href="https://publications.waset.org/abstracts/124318/fabrication-of-superhydrophobic-galvanized-steel-by-sintering-zinc-nanopowder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Rymuszka">Diana Rymuszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Terpi%C5%82owski"> Konrad Terpiłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucyna%20Ho%C5%82ysz"> Lucyna Hołysz</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Goncharuk"> Elena Goncharuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Iryna%20Sulym"> Iryna Sulym</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20free%20energy" title=" surface free energy"> surface free energy</a> </p> <a href="https://publications.waset.org/abstracts/25491/wettability-of-superhydrophobic-polymer-layers-filled-with-hydrophobized-silica-on-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Balordi">M. Balordi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Santucci%20de%20Magistris"> G. Santucci de Magistris</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pini"> F. Pini</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Marcacci"> P. Marcacci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20coatings" title="superhydrophobic coatings">superhydrophobic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-icing" title=" anti-icing"> anti-icing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-snow" title=" anti-snow"> anti-snow</a>, <a href="https://publications.waset.org/abstracts/search?q=overheads%20lines" title=" overheads lines"> overheads lines</a> </p> <a href="https://publications.waset.org/abstracts/136459/superhydrophobic-materials-a-promising-way-to-enhance-resilience-of-electric-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Shams">Hamza Shams</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Saleem"> Sajid Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20A.%20Siddiqui"> Bilal A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=316L%20SS" title="316L SS">316L SS</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20force%20microscopy" title=" lateral force microscopy"> lateral force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20stainless%20steel" title=" marine stainless steel"> marine stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=oleophobic%20coating" title=" oleophobic coating"> oleophobic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20coating" title=" superhydrophobic coating"> superhydrophobic coating</a> </p> <a href="https://publications.waset.org/abstracts/35412/characterization-of-nano-coefficient-of-friction-through-lfm-of-superhydrophobicoleophobic-coatings-applied-on-316l-ss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingcheng%20Ma">Jingcheng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20B.%20Weisensee"> Patricia B. Weisensee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20H.%20Shin"> Young H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Chang"> Yujin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjiao%20Tian"> Junjiao Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20P.%20King"> William P. King</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20Miljkovic"> Nenad Miljkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title="contact time">contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20dynamics" title=" impact dynamics"> impact dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=pear-shape%20droplet" title=" pear-shape droplet"> pear-shape droplet</a> </p> <a href="https://publications.waset.org/abstracts/58337/water-droplet-impact-on-vibrating-rigid-superhydrophobic-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhifeng%20Hao"> Zhifeng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jing%20Mo"> Ping Jing Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20nanocomposite" title="superhydrophobic nanocomposite">superhydrophobic nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20release" title=" fouling release"> fouling release</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a> </p> <a href="https://publications.waset.org/abstracts/142921/preparation-of-novel-siliconegraphene-based-nanostructured-surfaces-as-fouling-release-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Development of Antibacterial Surface Based on Bio-Inspired Hierarchical Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.Ayazi">M.Ayazi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Golshan%20Ebrahimi"> N. Golshan Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of antibacterial surface has devoted extensive researches and important field due to the growing antimicrobial resistance strains. The superhydrophobic surface has raised attention because of reducing bacteria adhesion in the absence of antibiotic agents. Evaluating the current development antibacterial surface has to be investigating to consider the potential of applying superhydrophobic surface to reduce bacterial adhesion or role of patterned surfaces on it. In this study, we present different samples with bio-inspired hierarchical and microstructures to consider their ability in reducing bacterial adhesion. The structures have inspired from rice-like pattern and lotus-leaf that developed on the polydimethylsiloxane (PDMS) and polypropylene (PP). The results of the attachment behaviors have considered on two bacteria strains of gram-negative Escherichia coli (E. coli) bacteria and gram-positive Staphylococcus aureus (S. aureus). The reduction of bacteria adhesion on these roughness surfaces demonstrated the effectiveness of rinsing ability on removing bacterial cells on structured plastic surfaces. Results have also offered the important role of bacterial species, material chemistry and hierarchical structure to prevent bacterial adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title="hierarchical structure">hierarchical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=lotus-effect" title=" lotus-effect"> lotus-effect</a>, <a href="https://publications.waset.org/abstracts/search?q=bactericidal" title=" bactericidal"> bactericidal</a> </p> <a href="https://publications.waset.org/abstracts/98682/development-of-antibacterial-surface-based-on-bio-inspired-hierarchical-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Chang">Chia-Yu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title="CO2 capture">CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane" title=" polydimethylsiloxane"> polydimethylsiloxane</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/21442/electrospinning-preparation-of-superhydrophobic-polydimethylsiloxanepolystyrene-nanofibrous-membranes-for-carbon-dioxide-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hekmat%20R.%20Madian"> Hekmat R. Madian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20El-Safty"> Sherif A. El-Safty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shenashen"> Mohamed A. Shenashen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicone%20antifouling" title="silicone antifouling">silicone antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20repellency" title=" fouling repellency"> fouling repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/159063/eco-friendly-siliconegraphene-based-nanocomposites-as-superhydrophobic-antifouling-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Naderizadeh">S. Naderizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Athanassiou"> A. Athanassiou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Bayer"> I. S. Bayer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobicity" title=" superhydrophobicity"> superhydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polyurethane" title=" thermoplastic polyurethane"> thermoplastic polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/77514/water-repellent-coating-based-on-thermoplastic-polyurethane-silica-nanoparticles-and-graphene-nanoplatelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Wetting Features of Butterflies Morpho Peleides and Anti-icing Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burdin%20Louise">Burdin Louise</a>, <a href="https://publications.waset.org/abstracts/search?q=Brulez%20Anne-Catherine"> Brulez Anne-Catherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazurcyk%20Radoslaw"> Mazurcyk Radoslaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Leclercq%20Jean-louis"> Leclercq Jean-louis</a>, <a href="https://publications.waset.org/abstracts/search?q=Benayoun%20St%C3%A9phane"> Benayoun Stéphane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using a biomimetic approach, an investigation was conducted to determine the connections between morphology and wetting. The interest is focused on the Morpho peleides butterfly. This butterfly is already well-known among researchers for its brilliant iridescent color and has inspired numerous innovations. The intricate structure of its wings is responsible for such color. However, this multiscale structure exhibits a multitude of other features, such as hydrophobicity. Given the limited research on the wetting properties of Morpho butterfly, a detailed analysis of its wetting behavior is proposed. Multiscale surface topographies of the Morpho peleides butterfly were analyzed using scanning electron microscope and atomic force microscopy. To understand the relationship between morphology and wettability, a goniometer was employed to measured static and dynamic contact angle. Since several studies have consistently demonstrated that superhydrophobic surfaces can effectively delay freezing, icing delay time the Morpho’s wings was also measured. The results revealed contact angles close to 136°, indicating a high degree of hydrophobicity. Moreover, sliding angles (SA) were measured in different directions, including along and against the rolling-outward direction. The findings suggest anisotropic wetting. Specifically, when the wing was tilted along the rolling outward direction (i.e., away from the insect’s body) SA was about 7°. While, when the wing was tilted against the rolling outward direction, SA was about 29°. This phenomenon is directly linked to the butterfly’s survival strategy. To investigate the exclusive morphological impact on anti-icing properties, PDMS replicas of the Morpho butterfly were obtained. When compared to flat PDMS and microscale textured PDMS, Morpho replications exhibited a longer freezing time. Therefore, this could be a source of inspiration for designing superhydrophobic surfaces with anti-icing applications or functional surfaces with controlled wettability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title="biomimetic">biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20wetting" title=" anisotropic wetting"> anisotropic wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-icing" title=" anti-icing"> anti-icing</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20roughness" title=" multiscale roughness"> multiscale roughness</a> </p> <a href="https://publications.waset.org/abstracts/178297/wetting-features-of-butterflies-morpho-peleides-and-anti-icing-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mazrouei-Sebdani">Z. Mazrouei-Sebdani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khoddami"> A. Khoddami</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hadadzadeh"> H. Hadadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zarrebini"> M. Zarrebini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Superhydrophobicity" title="Superhydrophobicity">Superhydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Insulation" title=" Insulation"> Insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol-gel" title=" Sol-gel"> Sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20energy" title=" Surface energy"> Surface energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Roughness." title=" Roughness."> Roughness.</a> </p> <a href="https://publications.waset.org/abstracts/21678/a-novel-method-to-manufacture-superhydrophobic-and-insulating-polyester-nanofibers-via-a-meso-porous-aerogel-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Superhydrophobic, Heteroporous Flexible Ceramic for Micro-Emulsion Separation, Oil Sorption, and Recovery of Fats, Oils, and Grease from Restaurant Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhoanne%20Pedres%20Bo%C3%B1gol">Jhoanne Pedres Boñgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Liu"> Zhang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuyin%20Qiu"> Yuyin Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=King%20Lun%20Yeung"> King Lun Yeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible ceramic sorbent material can be a viable technology to capture and recover emulsified fats, oils, and grease (FOG) that often cause sanitary sewer overflows. This study investigates the sorption capacity and recovery rate of ceramic material in surfactant-stabilized oil-water emulsion by synthesizing silica aerogel: SiO₂–X via acid-base sol-gel method followed by ambient pressure drying. The SiO₂–X is amorphous, microstructured, lightweight, flexible, and highly oleophilic. It displays spring-back behavior apparent at 80% compression with compressive strength of 0.20 MPa and can stand a weight of 1000 times its own. The contact angles measured at 0° and 177° in oil and water, respectively, confirm its oleophilicity and hydrophobicity while its thermal stability even at 450 °C is confirmed via TGA. In pure oil phase, the qe,AV. of 1x1 mm SiO₂–X is 7.5 g g⁻¹ at tqe= 10 min, and a qe,AV. of 6.05 to 6.76 g g⁻¹ at tqe= 24 hrs in O/W emulsion. The filter ceramic can be reused 50 x with 75-80 % FOG recovery by manual compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=aerogel" title=" aerogel"> aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=FOG" title=" FOG"> FOG</a> </p> <a href="https://publications.waset.org/abstracts/147856/superhydrophobic-heteroporous-flexible-ceramic-for-micro-emulsion-separation-oil-sorption-and-recovery-of-fats-oils-and-grease-from-restaurant-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulkifli">Zulkifli</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20W.%20Eltara"> I. W. Eltara</a>, <a href="https://publications.waset.org/abstracts/search?q=Anawati"> Anawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superoleophobic" title="superoleophobic">superoleophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title=" nanocellulose"> nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=aerogel" title=" aerogel"> aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/44412/superoleophobic-nanocellulose-aerogel-membrance-as-bioinspired-cargo-carrier-on-oil-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Pirzada">Tahira Pirzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ashrafi"> Zahra Ashrafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Khan"> Saad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20aerogels" title="hybrid aerogels">hybrid aerogels</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20electrospinning" title=" sol-gel electrospinning"> sol-gel electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/103235/multifunctional-nanofiber-based-aerogels-bridging-electrospinning-with-aerogel-fabrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Meshram">Ganesh Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Biswal"> Gloria Biswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20boltzmann%20method" title=" lattice boltzmann method"> lattice boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=d2q9%20model" title=" d2q9 model"> d2q9 model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-potential%20multiphase%20method" title=" pseudo-potential multiphase method"> pseudo-potential multiphase method</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wenzel%20state" title=" wenzel state"> wenzel state</a>, <a href="https://publications.waset.org/abstracts/search?q=cassie-baxter%20state" title=" cassie-baxter state"> cassie-baxter state</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/167911/numerical-study-of-wettability-on-the-triangular-micro-pillared-surfaces-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Il%20Shim">Dong Il Shim</a>, <a href="https://publications.waset.org/abstracts/search?q=Geehong%20Choi"> Geehong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghwi%20Lee"> Donghwi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Namkyu%20Lee"> Namkyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling%20heat%20transfer" title="boiling heat transfer">boiling heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20heat%20flux" title=" critical heat flux"> critical heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/89416/enhanced-boiling-heat-transfer-using-wettability-patterned-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Cost-Effective Materials for Hydrocarbons Recovery from Produced Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahd%20I.%20Alghunaimi">Fahd I. Alghunaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20S.%20Dossary"> Hind S. Dossary</a>, <a href="https://publications.waset.org/abstracts/search?q=Norah%20W.%20Aljuryyed"> Norah W. Aljuryyed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfik%20A.%20Saleh"> Tawfik A. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20to%20graphene" title="graphite to graphene">graphite to graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=oleophilic" title=" oleophilic"> oleophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/145924/cost-effective-materials-for-hydrocarbons-recovery-from-produced-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Development of Superhydrophobic Cotton Fabrics and Their Functional Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zaman%20Khan">Muhammad Zaman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Baheti"> Vijay Baheti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Militky"> Jiri Militky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort" title="comfort">comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=functional" title=" functional"> functional</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20protective" title=" UV protective"> UV protective</a> </p> <a href="https://publications.waset.org/abstracts/108008/development-of-superhydrophobic-cotton-fabrics-and-their-functional-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%C3%AAs%20Boticas">Inês Boticas</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20P.%20Ferreira"> Diana P. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Eus%C3%A9bio"> Ana Eusébio</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Silva"> Carlos Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Magalh%C3%A3es"> Pedro Magalhães</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Silva"> Ricardo Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Fangueiro"> Raul Fangueiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of the 20<sup>th</sup> century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathability" title="breathability">breathability</a>, <a href="https://publications.waset.org/abstracts/search?q=sportswear%20and%20casual%20clothing" title=" sportswear and casual clothing"> sportswear and casual clothing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobicity" title=" superhydrophobicity"> superhydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/113928/eco-design-of-multifunctional-system-based-on-a-shape-memory-polymer-and-zno-nanoparticles-for-sportswear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superhydrophobic&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superhydrophobic&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>