CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;8 of 8 results for author: <span class="mathjax">Shkolnikov, V O</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Shkolnikov%2C+V+O">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shkolnikov, V O"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shkolnikov%2C+V+O&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shkolnikov, V O"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05340">arXiv:2109.05340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05340">pdf</a>, <a href="https://arxiv.org/format/2109.05340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2023-06-12-1040">10.22331/q-2023-06-12-1040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Avoiding symmetry roadblocks and minimizing the measurement overhead of adaptive variational quantum eigensolvers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayhall%2C+N+J">Nicholas J. Mayhall</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Economou%2C+S+E">Sophia E. Economou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barnes%2C+E">Edwin Barnes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05340v2-abstract-short" style="display: inline;"> Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for this purpose consists of variational quantum eigensolvers (VQEs). Among these, problem-tailored versions such as ADAPT-VQE that build variational ans盲tz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05340v2-abstract-full').style.display = 'inline'; document.getElementById('2109.05340v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05340v2-abstract-full" style="display: none;"> Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for this purpose consists of variational quantum eigensolvers (VQEs). Among these, problem-tailored versions such as ADAPT-VQE that build variational ans盲tze step by step from a predefined operator pool perform particularly well in terms of circuit depths and variational parameter counts. However, this improved performance comes at the expense of an additional measurement overhead compared to standard VQEs. Here, we show that this overhead can be reduced to an amount that grows only linearly with the number $n$ of qubits, instead of quartically as in the original ADAPT-VQE. We do this by proving that operator pools of size $2n-2$ can represent any state in Hilbert space if chosen appropriately. We prove that this is the minimal size of such &#34;complete&#34; pools, discuss their algebraic properties, and present necessary and sufficient conditions for their completeness that allow us to find such pools efficiently. We further show that, if the simulated problem possesses symmetries, then complete pools can fail to yield convergent results, unless the pool is chosen to obey certain symmetry rules. We demonstrate the performance of such symmetry-adapted complete pools by using them in classical simulations of ADAPT-VQE for several strongly correlated molecules. Our findings are relevant for any VQE that uses an ansatz based on Pauli strings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05340v2-abstract-full').style.display = 'none'; document.getElementById('2109.05340v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 7, 1040 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10205">arXiv:1911.10205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10205">pdf</a>, <a href="https://arxiv.org/format/1911.10205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.2.020310">10.1103/PRXQuantum.2.020310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansatze on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+H+L">Ho Lun Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barron%2C+G+S">George S. Barron</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Grimsley%2C+H+R">Harper R. Grimsley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mayhall%2C+N+J">Nicholas J. Mayhall</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barnes%2C+E">Edwin Barnes</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Economou%2C+S+E">Sophia E. Economou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10205v2-abstract-short" style="display: inline;"> Quantum simulation, one of the most promising applications of a quantum computer, is currently being explored intensely using the variational quantum eigensolver. The feasibility and performance of this algorithm depend critically on the form of the wavefunction ansatz. Recently in Nat. Commun. 10, 3007 (2019), an algorithm termed ADAPT-VQE was introduced to build system-adapted ans盲tze with subst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10205v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10205v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10205v2-abstract-full" style="display: none;"> Quantum simulation, one of the most promising applications of a quantum computer, is currently being explored intensely using the variational quantum eigensolver. The feasibility and performance of this algorithm depend critically on the form of the wavefunction ansatz. Recently in Nat. Commun. 10, 3007 (2019), an algorithm termed ADAPT-VQE was introduced to build system-adapted ans盲tze with substantially fewer variational parameters compared to other approaches. This algorithm relies heavily on a predefined operator pool with which it builds the ansatz. However, Nat. Commun. 10, 3007 (2019) did not provide a prescription for how to select the pool, how many operators it must contain, or whether the resulting ansatz will succeed in converging to the ground state. In addition, the pool used in that work leads to state preparation circuits that are too deep for a practical application on near-term devices. Here, we address all these key outstanding issues of the algorithm. We present a hardware-efficient variant of ADAPT-VQE that drastically reduces circuit depths using an operator pool that is guaranteed to contain the operators necessary to construct exact ans盲tze. Moreover, we show that the minimal pool size that achieves this scales linearly with the number of qubits. Through numerical simulations on $\text{H}_4$, LiH and $\text{H}_6$, we show that our algorithm (&#34;qubit-ADAPT&#34;) reduces the circuit depth by an order of magnitude while maintaining the same accuracy as the original ADAPT-VQE. A central result of our approach is that the additional measurement overhead of qubit-ADAPT compared to fixed-ansatz variational algorithms scales only linearly with the number of qubits. Our work provides a crucial step forward in running algorithms on near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10205v2-abstract-full').style.display = 'none'; document.getElementById('1911.10205v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures; v2 includes a new proof that the minimal operator pool size scales linearly in the number of qubits. Explicit examples of such pools are also now included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 2, 020310 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.08443">arXiv:1908.08443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.08443">pdf</a>, <a href="https://arxiv.org/format/1908.08443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.155306">10.1103/PhysRevB.101.155306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-microwave holonomic control of an electron-nuclear two-qubit register in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mauch%2C+R">Roman Mauch</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burkard%2C+G">Guido Burkard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.08443v2-abstract-short" style="display: inline;"> We present a theoretical scheme that allows to perform a universal set of holonomic gates on a two qubit register, formed by a $^{13}$C nuclear spin coupled to the electron spin of a nitrogen-vacancy center in diamond. Strong hyperfine interaction between the electron spin and the spins of the first three shells of $^{13}$C atoms allows to operate the state of the register on the submicrosecond ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08443v2-abstract-full').style.display = 'inline'; document.getElementById('1908.08443v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.08443v2-abstract-full" style="display: none;"> We present a theoretical scheme that allows to perform a universal set of holonomic gates on a two qubit register, formed by a $^{13}$C nuclear spin coupled to the electron spin of a nitrogen-vacancy center in diamond. Strong hyperfine interaction between the electron spin and the spins of the first three shells of $^{13}$C atoms allows to operate the state of the register on the submicrosecond timescale using microwave pulses only. We describe the system and the operating regime analytically and numerically, as well as simulate the initialization protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08443v2-abstract-full').style.display = 'none'; document.getElementById('1908.08443v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised v2; added author; 11 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 155306 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11841">arXiv:1810.11841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11841">pdf</a>, <a href="https://arxiv.org/format/1810.11841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.195413">10.1103/PhysRevB.99.195413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Resonance in Defect Spins mediated by Spin Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%BChlherr%2C+C">Clara M眉hlherr</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burkard%2C+G">Guido Burkard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11841v1-abstract-short" style="display: inline;"> In search of two level quantum systems that implement a qubit, the nitrogen-vacancy (NV) center in diamond has been intensively studied for years. Despite favorable properties such as remarkable defect spin coherence times, the addressability of NV centers raises some technical issues. The coupling of a single NV center to an external driving field is limited to short distances, since an efficient&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11841v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11841v1-abstract-full" style="display: none;"> In search of two level quantum systems that implement a qubit, the nitrogen-vacancy (NV) center in diamond has been intensively studied for years. Despite favorable properties such as remarkable defect spin coherence times, the addressability of NV centers raises some technical issues. The coupling of a single NV center to an external driving field is limited to short distances, since an efficient coupling requires the NV to be separated by only a few microns away from the source. As a way to overcome this problem, an enhancement of coherent coupling between NV centers and a microwave field has recently been experimentally demonstrated using spin waves propagating in an adjacent yttrium iron garnet (YIG) film [1]. In this paper we analyze the optically detected magnetic resonance spectra that arise when an NV center is placed on top of a YIG film for a geometry similar to the one in the experiment. We analytically calculate the oscillating magnetic field of the spin wave on top of the YIG surface to determine the coupling of spin waves to the NV center. We compare this coupling to the case when the spin waves are absent and the NV center is driven only with the antenna field and show that the calculated coupling enhancement is dramatic and agrees well with the one obtained in the recent experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11841v1-abstract-full').style.display = 'none'; document.getElementById('1810.11841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 195413 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00193">arXiv:1810.00193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.00193">pdf</a>, <a href="https://arxiv.org/format/1810.00193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.042101">10.1103/PhysRevA.101.042101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Hamiltonian theory of the geometric evolution of quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burkard%2C+G">Guido Burkard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00193v2-abstract-short" style="display: inline;"> In this work we present an effective Hamiltonian description of the quantum dynamics of a generalized Lambda system undergoing adiabatic evolution. We assume the system to be initialized in the dark subspace and show that its holonomic evolution can be viewed as a conventional Hamiltonian dynamics in an appropriately chosen extended Hilbert space. In contrast to the existing approaches, our method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00193v2-abstract-full').style.display = 'inline'; document.getElementById('1810.00193v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00193v2-abstract-full" style="display: none;"> In this work we present an effective Hamiltonian description of the quantum dynamics of a generalized Lambda system undergoing adiabatic evolution. We assume the system to be initialized in the dark subspace and show that its holonomic evolution can be viewed as a conventional Hamiltonian dynamics in an appropriately chosen extended Hilbert space. In contrast to the existing approaches, our method does not require the calculation of the non-Abelian Berry connection and can be applied without any parametrization of the dark subspace, which becomes a challenging problem with increasing system size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00193v2-abstract-full').style.display = 'none'; document.getElementById('1810.00193v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages (including appendix), 3 figures, v2: extended and revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 042101 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00654">arXiv:1705.00654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.00654">pdf</a>, <a href="https://arxiv.org/format/1705.00654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.140503">10.1103/PhysRevLett.119.140503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holonomic Quantum Control by Coherent Optical Excitation in Diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+B+B">Brian B. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jerger%2C+P+C">Paul C. Jerger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Heremans%2C+F+J">F. Joseph Heremans</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burkard%2C+G">Guido Burkard</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Awschalom%2C+D+D">David D. Awschalom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00654v2-abstract-short" style="display: inline;"> Although geometric phases in quantum evolution were historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of non-adiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-ton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00654v2-abstract-full').style.display = 'inline'; document.getElementById('1705.00654v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00654v2-abstract-full" style="display: none;"> Although geometric phases in quantum evolution were historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of non-adiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00654v2-abstract-full').style.display = 'none'; document.getElementById('1705.00654v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor revisions to main text (6 pages); added supplementary material (7 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 140503 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.0373">arXiv:1405.0373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.0373">pdf</a>, <a href="https://arxiv.org/format/1405.0373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-2048/28/2/025009">10.1088/0953-2048/28/2/025009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fabrication and measurements of hybrid Nb/Al Josephson junctions and flux qubits with pi-shifters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shcherbakova%2C+A+V">A. V. Shcherbakova</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fedorov%2C+K+G">K. G. Fedorov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shulga%2C+K+V">K. V. Shulga</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ryazanov%2C+V+V">V. V. Ryazanov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bolginov%2C+V+V">V. V. Bolginov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oboznov%2C+V+A">V. A Oboznov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Egorov%2C+S+V">S. V. Egorov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wolf%2C+M+J">M. J. Wolf</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Beckmann%2C+D">D. Beckmann</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ustinov%2C+A+V">A. V. Ustinov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.0373v1-abstract-short" style="display: inline;"> We describe fabrication and testing of composite flux qubits combining Nb- and Al-based superconducting circuit technology. This hybrid approach to making qubits allows for employing pi-phase shifters fabricated using well-established Nb-based technology of superconductor-ferromagnet-superconductor Josephson junctions. The important feature here is to obtain high interface transparency between Nb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0373v1-abstract-full').style.display = 'inline'; document.getElementById('1405.0373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.0373v1-abstract-full" style="display: none;"> We describe fabrication and testing of composite flux qubits combining Nb- and Al-based superconducting circuit technology. This hybrid approach to making qubits allows for employing pi-phase shifters fabricated using well-established Nb-based technology of superconductor-ferromagnet-superconductor Josephson junctions. The important feature here is to obtain high interface transparency between Nb and Al layers without degrading sub-micron shadow mask. We achieve this by in-situ Ar etching using e-beam gun. Shadow-evaporated Al/AlOx/Al Josephson junctions with Nb bias pads show the expected current-voltage characteristics with reproducible critical currents. Using this technique, we fabricated composite Nb/Al flux qubits with Nb/CuNi/Nb pi-shifters and measured their magnetic field response. The observed offset between the field responses of the qubits with and without pi-junction is attributed to the pi phase shift. The reported approach can be used for implementing a variety of hybrid Nb/Al superconducting quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0373v1-abstract-full').style.display = 'none'; document.getElementById('1405.0373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6351">arXiv:1402.6351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6351">pdf</a>, <a href="https://arxiv.org/format/1402.6351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.205420">10.1103/PhysRevB.95.205420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A cavity-mediated quantum CPHASE gate between NV spin qubits in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Burkard%2C+G">Guido Burkard</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shkolnikov%2C+V+O">V. O. Shkolnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Awschalom%2C+D+D">D. D. Awschalom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6351v2-abstract-short" style="display: inline;"> While long spin coherence times and efficient single-qubit quantum control have been implemented successfully in nitrogen-vacancy (NV) centers in diamond, the controlled coupling of remote NV spin qubits remains challenging. Here, we propose and analyze a controlled-phase (CPHASE) gate for the spins of two NV centers embedded in a common optical cavity and driven by two off-resonant lasers. In com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6351v2-abstract-full').style.display = 'inline'; document.getElementById('1402.6351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6351v2-abstract-full" style="display: none;"> While long spin coherence times and efficient single-qubit quantum control have been implemented successfully in nitrogen-vacancy (NV) centers in diamond, the controlled coupling of remote NV spin qubits remains challenging. Here, we propose and analyze a controlled-phase (CPHASE) gate for the spins of two NV centers embedded in a common optical cavity and driven by two off-resonant lasers. In combination with previously demonstrated single-qubit gates, CPHASE allows for arbitrary quantum computations. The coupling of the NV spin to the cavity mode is based upon Raman transitions via the NV excited states and can be controlled with the laser intensities and relative phase. We find characteristic laser frequencies at which the scattering amplitude of a laser photon into the cavity mode is strongly dependent on the NV center spin. A scattered photon can be reabsorbed by another selectively driven NV center and generate a conditional phase (CPHASE) gate. Gate times around 200 ns are within reach, nearly three orders of magnitude shorter than typical NV spin coherence times of around 10 microseconds. The separation between the two interacting NV centers is only limited by the extension of the cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6351v2-abstract-full').style.display = 'none'; document.getElementById('1402.6351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. v2: substantial revision and extension</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 205420 (2017) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10