CINXE.COM
simplicial presheaf (changes) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> simplicial presheaf (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> simplicial presheaf (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11068/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #22 to #23: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='homotopy_theory'>Homotopy theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/homotopy+type+theory'>homotopy type theory</a></strong></p> <p>flavors: <a class='existingWikiWord' href='/nlab/show/diff/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/diff/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/diff/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/diff/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/diff/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/diff/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/diff/cohesive+homotopy+theory'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/diff/directed+homotopy+theory'>directed</a>…</p> <p>models: <a class='existingWikiWord' href='/nlab/show/diff/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/diff/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/diff/localic+homotopy+theory'>localic</a>, …</p> <p>see also <strong><a class='existingWikiWord' href='/nlab/show/diff/algebraic+topology'>algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/diff/higher+homotopy'>higher homotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+type'>homotopy type</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/diff/spherical+object'>spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopical+category'>homotopical category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+category'>model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/diff/cofibration+category'>cofibration category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Waldhausen+category'>Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+category'>homotopy category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Ho%28Top%29'>Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>left homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cylinder+object'>cylinder object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mapping+cone'>mapping cone</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>right homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/path+space+object'>path object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mapping+cocone'>mapping cocone</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/generalized+universal+bundle'>universal bundle</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/interval+object'>interval object</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/localization+at+geometric+homotopies'>homotopy localization</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinitesimal+interval+object'>infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+group'>homotopy group</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group'>fundamental group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+groupoid'>fundamental groupoid</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/path+groupoid'>path groupoid</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+category'>fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/nerve+theorem'>nerve theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+theorem'>Whitehead's theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hurewicz+theorem'>Hurewicz theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Galois+theory'>Galois theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> </li> </ul> </div> <h4 id='topos_theory'><math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-Topos Theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-topos+theory'>(∞,1)-topos theory</a></strong></p> <h2 id='sidebar_background'>Background</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sheaf+and+topos+theory'>sheaf and topos theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-functor'>(∞,1)-functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-presheaf'>(∞,1)-presheaf</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+of+%28infinity%2C1%29-presheaves'>(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> <h2 id='sidebar_definitions'>Definitions</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/elementary+%28infinity%2C1%29-topos'>elementary (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-site'>(∞,1)-site</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/reflective+sub-%28infinity%2C1%29-category'>reflective sub-(∞,1)-category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/localization+of+an+%28infinity%2C1%29-category'>localization of an (∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/topological+localization'>topological localization</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hypercompletion'>hypercompletion</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(∞,1)-category of (∞,1)-sheaves</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-sheaf'>(∞,1)-sheaf</a>/<a class='existingWikiWord' href='/nlab/show/diff/infinity-stack'>∞-stack</a>/<a class='existingWikiWord' href='/nlab/show/diff/derived+stack'>derived stack</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-topos'>(∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28n%2C1%29-topos'>(n,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/diff/n-topos'>n-topos</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/truncation'>n-truncated object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/connected+object'>n-connected object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/topos'>(1,1)-topos</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/presheaf'>presheaf</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sheaf'>sheaf</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/2-topos'>(2,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/diff/2-topos'>2-topos</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/%282%2C1%29-presheaf'>(2,1)-presheaf</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-quasitopos'>(∞,1)-quasitopos</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/separated+%28infinity%2C1%29-presheaf'>separated (∞,1)-presheaf</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/quasitopos'>quasitopos</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/separated+presheaf'>separated presheaf</a></li> </ul> </li> <li> <p><span class='newWikiWord'>(2,1)-quasitopos<a href='/nlab/new/%282%2C1%29-quasitopos'>?</a></span></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/separated+%282%2C1%29-presheaf'>separated (2,1)-presheaf</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C2%29-topos'>(∞,2)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2Cn%29-topos'>(∞,n)-topos</a></p> </li> </ul> <h2 id='sidebar_characterization'>Characterization</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/pullback-stable+colimit'>universal colimits</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28sub%29object+classifier+in+an+%28infinity%2C1%29-topos'>object classifier</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/groupoid+object+in+an+%28infinity%2C1%29-category'>groupoid object in an (∞,1)-topos</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/effective+epimorphism'>effective epimorphism</a></li> </ul> </li> </ul> <h2 id='sidebar_morphisms'>Morphisms</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-geometric+morphism'>(∞,1)-geometric morphism</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29Topos'>(∞,1)Topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Lawvere+distribution'>Lawvere distribution</a></p> </li> </ul> <h2 id='sidebar_extra'>Extra stuff, structure and property</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hypercomplete+%28infinity%2C1%29-topos'>hypercomplete (∞,1)-topos</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hypercomplete+object'>hypercomplete object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+theorem'>Whitehead theorem</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/over-%28infinity%2C1%29-topos'>over-(∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/n-localic+%28infinity%2C1%29-topos'>n-localic (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/locally+n-connected+%28n%2B1%2C1%29-topos'>locally n-connected (n,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/structured+%28infinity%2C1%29-topos'>structured (∞,1)-topos</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/geometry+%28for+structured+%28infinity%2C1%29-toposes%29'>geometry (for structured (∞,1)-toposes)</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/locally+n-connected+%28n%2B1%2C1%29-topos'>locally ∞-connected (∞,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/diff/locally+n-connected+%28n%2B1%2C1%29-topos'>∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28%E2%88%9E%2C1%29-local+geometric+morphism'>local (∞,1)-topos</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/concrete+%28infinity%2C1%29-sheaf'>concrete (∞,1)-sheaf</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></p> </li> </ul> <h2 id='sidebar_models'>Models</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/presentations+of+%28infinity%2C1%29-sheaf+%28infinity%2C1%29-toposes'>models for ∞-stack (∞,1)-toposes</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+category'>model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+functors'>model structure on functors</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+site'>model site</a>/<a class='existingWikiWord' href='/nlab/show/diff/sSet-site'>sSet-site</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Verity+on+descent+for+strict+omega-groupoid+valued+presheaves'>descent for presheaves with values in strict ∞-groupoids</a></p> </li> </ul> </li> </ul> <h2 id='sidebar_constructions'>Constructions</h2> <p><strong>structures in a <a class='existingWikiWord' href='/nlab/show/diff/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/shape+of+an+%28infinity%2C1%29-topos'>shape</a> / <a class='existingWikiWord' href='/nlab/show/diff/coshape+of+an+%28infinity%2C1%29-topos'>coshape</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomology'>cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+groups+in+an+%28infinity%2C1%29-topos'>homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a>/<a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>of a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical</a>/<a class='existingWikiWord' href='/nlab/show/diff/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric</a> homotopy groups</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Postnikov+tower+in+an+%28infinity%2C1%29-category'>Postnikov tower</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+tower+in+an+%28infinity%2C1%29-topos'>Whitehead tower</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/function+algebras+on+infinity-stacks'>rational homotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/dimension'>dimension</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+dimension'>homotopy dimension</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomological+dimension'>cohomological dimension</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/covering+dimension'>covering dimension</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Heyting+dimension'>Heyting dimension</a></p> </li> </ul> </li> </ul> <div> <p> <a href='/nlab/edit/%28infinity%2C1%29-topos+-+contents'>Edit this sidebar</a> </p> </div></div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#definition'>Definition</a></li><li><a href='#interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</a></li><li><a href='#examples'>Examples</a></li><li><a href='#remarks'>Remarks</a></li><li><a href='#properties'>Properties</a></li><li><a href='#related_entries'>Related entries</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='definition'>Definition</h2> <p><em>Simplicial presheaves</em> over some <a class='existingWikiWord' href='/nlab/show/diff/site'>site</a> <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> are</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/presheaf'>Presheaves</a> with values in the category <a class='existingWikiWord' href='/nlab/show/diff/SimpSet'>SimpSet</a> of simplicial sets, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to \Simp\Set</annotation></semantics></math>, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to [\Delta^{op}, \Set]</annotation></semantics></math>;</li> </ul> <p>or equivalently, using the Hom-<a class='existingWikiWord' href='/nlab/show/diff/adjoint+functor'>adjunction</a> and symmetry of the <a class='existingWikiWord' href='/nlab/show/diff/closed+monoidal+category'>closed monoidal structure</a> on <a class='existingWikiWord' href='/nlab/show/diff/Cat'>Cat</a></p> <ul> <li>simplicial objects in the category of presheaves, i.e. functors <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^{op} \to [S^{op},\Set]</annotation></semantics></math>.</li> </ul> <h2 id='interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</h2> <p>Regarding <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>\Simp\Set</annotation></semantics></math> as a <a class='existingWikiWord' href='/nlab/show/diff/model+category'>model category</a> using the standard <a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+simplicial+sets'>model structure on simplicial sets</a> and inducing from that a model structure on <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S^{op}, \Simp\Set]</annotation></semantics></math> makes simplicial presheaves a model for <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/infinity-stack'>stacks</a>, as described at <a class='existingWikiWord' href='/nlab/show/diff/infinity-stack+homotopically'>infinity-stack homotopically</a>.</p> <p>In more illustrative language this means that a simplicial presheaf on <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> can be regarded as an <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/infinity-groupoid'>groupoid</a> (in particular a <a class='existingWikiWord' href='/nlab/show/diff/Kan+complex'>Kan complex</a>) whose space of <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-morphisms is modeled on the objects of <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> in the sense described at <a class='existingWikiWord' href='/nlab/show/diff/space+and+quantity'>space and quantity</a>.</p> <h2 id='examples'>Examples</h2> <ul> <li> <p>Notice that most definitions of <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/infinity-category'>category</a> the <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-category is itself defined to be a <a class='existingWikiWord' href='/nlab/show/diff/simplicial+set'>simplicial set</a> with extra structure (in a <a class='existingWikiWord' href='/nlab/show/diff/geometric+definition+of+higher+categories'>geometric definition of higher category</a>) or gives rise to a simplicial set under taking its <a class='existingWikiWord' href='/nlab/show/diff/nerve'>nerve</a> (in an <a class='existingWikiWord' href='/nlab/show/diff/algebraic+definition+of+higher+categories'>algebraic definition of higher category</a>). So most notions of presheaves of higher categories will naturally induce presheaves of simplicial sets.</p> </li> <li> <p>In particular, regarding a <a class='existingWikiWord' href='/nlab/show/diff/group'>group</a> <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> as a one object category <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}G</annotation></semantics></math> and then taking the nerve <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi><mo stretchy='false'>)</mo><mo>∈</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>N(\mathbf{B}G) \in \Simp\Set</annotation></semantics></math> of these (the “classifying simplicial set of the group whose <a class='existingWikiWord' href='/nlab/show/diff/geometric+realization'>geometric realization</a> is the <a class='existingWikiWord' href='/nlab/show/diff/classifying+space'>classifying space</a> <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℬ</mi><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathcal{B}G</annotation></semantics></math>), which is clearly a functorial operation, turns any presheaf with values in groups into a simplicial presheaf.</p> </li> </ul> <h2 id='remarks'>Remarks</h2> <ul> <li>There are various useful <a class='existingWikiWord' href='/nlab/show/diff/model+category'>model category</a> structures on the category of simplicial presheaves. See <a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a>.</li> </ul> <h2 id='properties'>Properties</h2> <p>Here are some basic but useful facts about simplicial presheaves.</p> <div class='un_prop'> <h6 id='proposition'>Proposition</h6> <p>Every simplicial presheaf <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/diff/homotopy+limit'>homotopy colimit</a> over a <a class='existingWikiWord' href='/nlab/show/diff/diagram'>diagram</a> of <a class='existingWikiWord' href='/nlab/show/diff/Set'>Set</a>-valued sheaves regarded as discrete simplicial sheaves.</p> <p>More precisely, for <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>:</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>X : S^{op} \to SSet</annotation></semantics></math> a simplicial presheaf, let <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo><mo>↪</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>SSet</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>D_X : \Delta^{op} \to [S^{op},Set] \hookrightarrow [S^{op},SSet]</annotation></semantics></math> be given by <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>↦</mo><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>D_X : [n] \mapsto X_n</annotation></semantics></math>. Then there is a weak equivalence</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>D</mi> <mi>X</mi></msub><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo><mover><mo>→</mo><mo>≃</mo></mover><mi>X</mi><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> hocolim_{[n] \in \Delta} D_X([n]) \stackrel{\simeq}{\to} X \,. </annotation></semantics></math></div></div> <div class='proof'> <h6 id='proof'>Proof</h6> <p>See for instance <a href='http://www.math.uiuc.edu/K-theory/0563/spre.pdf#page=6'>remark 2.1, p. 6</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Daniel+Dugger'>Daniel Dugger</a>, <a class='existingWikiWord' href='/nlab/show/diff/Sharon+Hollander'>Sharon Hollander</a>, <a class='existingWikiWord' href='/nlab/show/diff/Daniel+Isaksen'>Daniel Isaksen</a>, <em>Hypercovers and simplicial presheaves</em>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 136 Issue 1, 2004 (<a href='https://arxiv.org/abs/math/0205027'>arXiv:math/0205027</a>, <a href='http://www.math.uiuc.edu/K-theory/0563'>K-theory:0563</a>, <a href='https://doi.org/10.1017/S0305004103007175'>doi:10.1017/S0305004103007175</a>)</li> </ul> <p>(which is otherwise about <a class='existingWikiWord' href='/nlab/show/diff/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>).</p> </div> <div class='un_cor'> <h6 id='corollary'>Corollary</h6> <p>Let <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mo>:</mo><mo stretchy='false'>(</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><msup><mo stretchy='false'>)</mo> <mi>op</mi></msup><mo>×</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>[-,-] : (SSet^{S^{op}})^{op} \times SSet^{S^{op}} \to SSet</annotation></semantics></math> be the canonical <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>SSet</annotation></semantics></math>-enrichment of the category of simplicial presheaves (i.e. the assignment of <a class='existingWikiWord' href='/nlab/show/diff/SimpSet'>SSet</a>-<a class='existingWikiWord' href='/nlab/show/diff/enriched+functor+category'>enriched functor categories</a>).</p> <p>It follows in particular from the above that every such <a class='existingWikiWord' href='/nlab/show/diff/hom-object'>hom-object</a> <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[X,A]</annotation></semantics></math> of simplical presheaves can be written as a <a class='existingWikiWord' href='/nlab/show/diff/homotopy+limit'>homotopy limit</a> (in <a class='existingWikiWord' href='/nlab/show/diff/SimpSet'>SSet</a> for instance realized as a <a class='existingWikiWord' href='/nlab/show/diff/weighted+limit'>weighted limit</a>, as described there) over evaluations of <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> </div> <div class='proof'> <h6 id='proof_2'>Proof</h6> <p>First the above yields</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd> <mtd><mo>≃</mo><mo stretchy='false'>[</mo><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd /> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> \begin{aligned} [X, A ] & \simeq [ hocolim_{[n] \in \Delta} X_n , A ] \\ & holim_{[n] \in \Delta} [X_n, A] \end{aligned} \,. </annotation></semantics></math></div> <p>Next from the <a class='existingWikiWord' href='/nlab/show/diff/co-Yoneda+lemma'>co-Yoneda lemma</a> we know that the <a class='existingWikiWord' href='/nlab/show/diff/Set'>Set</a>-valued presheaves <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>X_n</annotation></semantics></math> are in turn colimits over representables in <math class='maruku-mathml' display='inline' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math>, so that</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>colim</mi> <mi>i</mi></msub><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd /> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mo stretchy='false'>[</mo><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> \begin{aligned} \cdots & \simeq holim_{[n] \in \Delta} [ colim_i U_{i}, A] \\ & \simeq holim_{[n] \in \Delta} lim_i [ U_{i}, A] \end{aligned} \,. </annotation></semantics></math></div> <p>And finally the <a class='existingWikiWord' href='/nlab/show/diff/Yoneda+lemma'>Yoneda lemma</a> reduces this to</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_0763f6d99838e3bf8649ccba2abf9a613d17651a_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>U</mi> <mi>i</mi></msub><mo stretchy='false'>)</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> \begin{aligned} \cdots & holim_{[n] \in \Delta} lim_i A(U_i) \end{aligned} \,. </annotation></semantics></math></div></div> <p>Notice that these kinds of computations are in particular often used when checking/computing <a class='existingWikiWord' href='/nlab/show/diff/descent'>descent and codescent</a> along a <a class='existingWikiWord' href='/nlab/show/diff/cover'>cover</a> or <a class='existingWikiWord' href='/nlab/show/diff/hypercover'>hypercover</a>. For more on that in the context of simplicial presheaves see <a class='existingWikiWord' href='/nlab/show/diff/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>.</p> <h2 id='related_entries'>Related entries</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sheaf+of+spectra'>presheaf of spectra</a></p> </li> </ul> <p>Applications appear for instance at</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/geometric+infinity-function+theory'>geometric infinity-function theory</a></li> </ul> <h2 id='references'>References</h2> <p>The original articles are</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Kenneth+Brown'>Kenneth S. Brown</a>, <em>Abstract homotopy theory and generalized sheaf cohomology</em>. Transactions of the American Mathematical Society 186 (1973), 419-419. <a href='http://dx.doi.org/10.1090/s0002-9947-1973-0341469-9'>doi</a>.</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Kenneth+Brown'>Kenneth S. Brown</a>, <a class='existingWikiWord' href='/nlab/show/diff/Stephen+M.+Gersten'>Stephen M. Gersten</a>, <em>Algebraic K-theory as generalized sheaf cohomology</em>. In: Higher K-Theories. Lecture Notes in Mathematics (1973), 266–292. <a href='http://dx.doi.org/10.1007/bfb0067062'>doi</a>.</p> </li> </ul> <p>The Joyal model structure on <a class='existingWikiWord' href='/nlab/show/diff/simplicial+sheaf'>simplicial sheaves</a> was constructed in 1984 by <a class='existingWikiWord' href='/nlab/show/diff/Andr%C3%A9+Joyal'>Joyal</a> in</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Andr%C3%A9+Joyal'>André Joyal</a>, <em>Lettre d’André Joyal à Alexandre Grothendieck</em>, April 11, 1984, <a href='https://webusers.imj-prg.fr/~georges.maltsiniotis/ps/lettreJoyal.pdf'>PDF</a>.</li> </ul> <p>Simplicial sheaves were endowed with a structure of a <a class='existingWikiWord' href='/nlab/show/diff/category+of+fibrant+objects'>category of fibrant objects</a> in</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Simplicial objects in a Grothendieck topos</em>. In: Applications of algebraic K-theory to algebraic geometry and number theory. Contemporary Mathematics (1986), 193-239. <a href='http://dx.doi.org/10.1090/conm/055.1/862637'>doi</a></li> </ul> <p>The model structure on simplicial presheaves is due to <a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'>Jardine</a>:</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'><span><del class='diffmod'> J.</del><ins class='diffmod'> John</ins> F. Jardine</span></a>, <em>Simplical presheaves</em><span><del class='diffmod'> .</del><ins class='diffmod'> ,</ins> Journal of Pure and Applied Algebra<del class='diffdel'> 47:1</del><del class='diffdel'> (1987),</del><del class='diffdel'> 35-87.</del></span><del class='diffmod'><a href='http://dx.doi.org/10.1016/0022-4049(87)90100-9'>doi</a></del><ins class='diffmod'><strong>47</strong></ins><ins class='diffins'> 1 (1987) 35-87 []</ins></li> </ul> <p>A modern expository account is in</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'>John F. Jardine</a>, <em>Local Homotopy Theory</em>, Springer, 2015. <a href='http://dx.doi.org/10.1007/978-1-4939-2300-7'>doi</a>.</li> </ul> <p>The local <a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+functors'>projective model structure</a> (as opposed to the injective model structures used above) on <a class='existingWikiWord' href='/nlab/show/diff/simplicial+presheaf'>simplicial presheaves</a> and <a class='existingWikiWord' href='/nlab/show/diff/simplicial+sheaf'>simplicial sheaves</a> is due to</p> <ul> <li><span class='newWikiWord'>Benjamin A. Blander<a href='/nlab/new/Benjamin+A.+Blander'>?</a></span>, <em>Local Projective Model Structures on Simplicial Presheaves</em>, K-Theory 24:3, 283-301. <a href='http://dx.doi.org/10.1023/a:1013302313123'>doi</a>.</li> </ul> <p>Further articles:</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Stacks and the homotopy theory of simplicial sheaves</em>. Homology, Homotopy and Applications 3:2 (2001), 361-384. <a href='http://dx.doi.org/10.4310/hha.2001.v3.n2.a5'>doi</a>.</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Fields Lectures: Simplicial presheaves</em>. <a href='https://www.uwo.ca/math/faculty/jardine/courses/fields/fields-01.pdf'>PDF</a>.</p> </li> </ul> <p>For their interpretation in the more general context of <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(infinity,1)-sheaves</a> see Section 6.5.2 of</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Jacob+Lurie'>Jacob Lurie</a>, <a class='existingWikiWord' href='/nlab/show/diff/Higher+Topos+Theory'>Higher Topos Theory</a>.</li> </ul> <p> </p> <p> </p> <p> </p> </div> <div class="revisedby"> <p> Last revised on November 14, 2023 at 13:44:14. See the <a href="/nlab/history/simplicial+presheaf" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/simplicial+presheaf" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11068/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/simplicial+presheaf/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/simplicial+presheaf" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/simplicial+presheaf" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/simplicial+presheaf/cite" style="color: black">Cite</a> <a href="/nlab/print/simplicial+presheaf" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/simplicial+presheaf" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>