CINXE.COM

Search results for: Dynamic Mode Decomposition (DMD)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Dynamic Mode Decomposition (DMD)</title> <meta name="description" content="Search results for: Dynamic Mode Decomposition (DMD)"> <meta name="keywords" content="Dynamic Mode Decomposition (DMD)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Dynamic Mode Decomposition (DMD)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Dynamic Mode Decomposition (DMD)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6286</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Dynamic Mode Decomposition (DMD)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6286</span> Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Al-Baddai">Saad Al-Baddai</a>, <a href="https://publications.waset.org/abstracts/search?q=Karema%20Al-Subari"> Karema Al-Subari</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmar%20Lang"> Elmar Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Ludwig"> Bernd Ludwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition%20%28EMD%29" title="empirical mode decomposition (EMD)">empirical mode decomposition (EMD)</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20mixing" title=" mode mixing"> mode mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=sifting%20process" title=" sifting process"> sifting process</a>, <a href="https://publications.waset.org/abstracts/search?q=over-sifting" title=" over-sifting"> over-sifting</a> </p> <a href="https://publications.waset.org/abstracts/73126/optimizing-approach-for-sifting-process-to-solve-a-common-type-of-empirical-mode-decomposition-mode-mixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6285</span> Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Mazlin%20Zahari">Nor Mazlin Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Gan"> Lian Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuerui%20Mao"> Xuerui Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20structure" title="coherent structure">coherent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Direct%20Numerical%20Simulation%20%28DNS%29" title=" Direct Numerical Simulation (DNS)"> Direct Numerical Simulation (DNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29" title=" Dynamic Mode Decomposition (DMD)"> Dynamic Mode Decomposition (DMD)</a> </p> <a href="https://publications.waset.org/abstracts/72480/dynamic-mode-decomposition-and-wake-flow-modelling-of-a-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6284</span> Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Rabbouch">Hana Rabbouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20local%20means" title=" non local means"> non local means</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscaled%20analysis" title=" multiscaled analysis"> multiscaled analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/115243/multi-scaled-non-local-means-filter-for-medical-images-denoising-empirical-mode-decomposition-vs-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6283</span> Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangyong%20Liu">Jiangyong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangxiang%20Xu"> Xiangxiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bote%20Luo"> Bote Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxue%20Luo"> Xiaoxue Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Zhu"> Jiang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingzhi%20Yi"> Lingzhi Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title="load forecasting">load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20mode%20decomposition" title=" variational mode decomposition"> variational mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20sparrow%20search%20algorithm" title=" improved sparrow search algorithm"> improved sparrow search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20support%20vector%20machine" title=" least square support vector machine"> least square support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/170283/short-term-load-forecasting-based-on-variational-mode-decomposition-and-least-square-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6282</span> Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyoung%20Kim">Doyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20assurance%20criterion" title="modal assurance criterion">modal assurance criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20deflection%20shape" title=" operating deflection shape"> operating deflection shape</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/52251/pseudo-modal-operating-deflection-shape-based-estimation-technique-of-mode-shape-using-time-history-modal-assurance-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6281</span> System Identification of Timber Masonry Walls Using Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timir%20Baran%20Roy">Timir Baran Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Guerreiro"> Luis Guerreiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition%20%28fdd%29" title="frequency domain decomposition (fdd)">frequency domain decomposition (fdd)</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20parameters" title=" modal parameters"> modal parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification%20%28ssi%29" title=" stochastic subspace identification (ssi)"> stochastic subspace identification (ssi)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20decomposition" title=" time domain decomposition "> time domain decomposition </a> </p> <a href="https://publications.waset.org/abstracts/53765/system-identification-of-timber-masonry-walls-using-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6280</span> Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Delage">Olivier Delage</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Bencherif"> Hassan Bencherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Bourdier"> Alain Bourdier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denoising" title="denoising">denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20spectrum%20analysis" title=" singular spectrum analysis"> singular spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=underlying%20dynamics" title=" underlying dynamics"> underlying dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20analysis" title=" wavelet analysis"> wavelet analysis</a> </p> <a href="https://publications.waset.org/abstracts/165886/performance-evaluation-and-comparison-between-the-empirical-mode-decomposition-wavelet-analysis-and-singular-spectrum-analysis-applied-to-the-time-series-analysis-in-atmospheric-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6279</span> Modal Density Influence on Modal Complexity Quantification in Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Iezzi">Fabrizio Iezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Valente"> Claudio Valente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20mode%20shapes" title="complex mode shapes">complex mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems%20identification" title=" dynamic systems identification"> dynamic systems identification</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20density" title=" modal density"> modal density</a>, <a href="https://publications.waset.org/abstracts/search?q=non-proportional%20damping" title=" non-proportional damping"> non-proportional damping</a> </p> <a href="https://publications.waset.org/abstracts/52803/modal-density-influence-on-modal-complexity-quantification-in-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6278</span> Forecasting Amman Stock Market Data Using a Hybrid Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Awajan">Ahmad Awajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadam%20Al%20Wadi"> Sadam Al Wadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holt-Winter%20method" title="Holt-Winter method">Holt-Winter method</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/122857/forecasting-amman-stock-market-data-using-a-hybrid-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6277</span> Empirical Mode Decomposition Based Denoising by Customized Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahiba%20Mohguen">Wahiba Mohguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%AFs%20El%E2%80%99hadi%20Bekka"> Raïs El’hadi Bekka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customized%20thresholding" title="customized thresholding">customized thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20signal" title=" ECG signal"> ECG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=EMD" title=" EMD"> EMD</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20thresholding" title=" hard thresholding"> hard thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-thresholding" title=" soft-thresholding"> soft-thresholding</a> </p> <a href="https://publications.waset.org/abstracts/67421/empirical-mode-decomposition-based-denoising-by-customized-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6276</span> Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Mohammadijoo">Abolfazl Mohammadijoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20manipulator" title="mobile manipulator">mobile manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robotics" title=" mobile robotics"> mobile robotics</a> </p> <a href="https://publications.waset.org/abstracts/128498/trajectory-tracking-of-a-2-link-mobile-manipulator-using-sliding-mode-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6275</span> Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Paithane">A. N. Paithane</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Bormane"> D. S. Bormane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Shirbahadurkar"> S. D. Shirbahadurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20mode%20function%20%28IMF%29" title="intrinsic mode function (IMF)">intrinsic mode function (IMF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilbert-Huang%20transform%20%28HHT%29" title=" Hilbert-Huang transform (HHT)"> Hilbert-Huang transform (HHT)</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition%20%28EMD%29" title=" empirical mode decomposition (EMD)"> empirical mode decomposition (EMD)</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20detection" title=" emotion detection"> emotion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram%20%28ECG%29" title=" electrocardiogram (ECG)"> electrocardiogram (ECG)</a> </p> <a href="https://publications.waset.org/abstracts/19551/analysis-of-nonlinear-and-non-stationary-signal-to-extract-the-features-using-hilbert-huang-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6274</span> Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Swami">Piyush Swami</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijaya%20Ketan%20Panigrahi"> Bijaya Ketan Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Anand"> Sneh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Manvir%20Bhatia"> Manvir Bhatia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20Gandhi"> Tapan Gandhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=ictal%20patterns" title=" ictal patterns"> ictal patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a> </p> <a href="https://publications.waset.org/abstracts/64484/fast-and-accurate-model-to-detect-ictal-waveforms-in-electroencephalogram-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6273</span> Uni-Mode Uniqueness Conditions for Candecomp/Parafac of N-Way Arrays with Linearly Dependent Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling%20Zhang">Ling Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weikai%20Li"> Weikai Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently three sufficient conditions for the three-way Candecomp/Parafac (CP) model which ensure uniqueness in one of the three modes(“uni-mode uniqueness”) are given. In this paper, we generalize these uniqueness conditions to n ≤ 3 and give a sufficient conditions for the n-way Candecomp/Parafac (CP) model, which ensure uniqueness in one of the n modes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uni-mode%20uniqueness" title="uni-mode uniqueness">uni-mode uniqueness</a>, <a href="https://publications.waset.org/abstracts/search?q=candecomp%2Fparafac" title=" candecomp/parafac"> candecomp/parafac</a>, <a href="https://publications.waset.org/abstracts/search?q=n-way%20arrays" title=" n-way arrays"> n-way arrays</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition" title=" decomposition"> decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor" title=" tensor"> tensor</a> </p> <a href="https://publications.waset.org/abstracts/39337/uni-mode-uniqueness-conditions-for-candecompparafac-of-n-way-arrays-with-linearly-dependent-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6272</span> The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chusak%20Thanawattano">Chusak Thanawattano</a>, <a href="https://publications.waset.org/abstracts/search?q=Roongroj%20Bhidayasiri"> Roongroj Bhidayasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tremor" title="tremor">tremor</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson" title=" Parkinson"> Parkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20tremor" title=" essential tremor"> essential tremor</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20discriminant" title=" quadratic discriminant"> quadratic discriminant</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20frequency" title=" peak frequency"> peak frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-regressive" title=" auto-regressive"> auto-regressive</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20estimation" title=" spectrum estimation "> spectrum estimation </a> </p> <a href="https://publications.waset.org/abstracts/12449/the-classification-of-parkinson-tremor-and-essential-tremor-based-on-frequency-alteration-of-different-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6271</span> Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Seok%20Hong">Ji-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Jang%20Moon"> Hee-Jang Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gye%20Sung"> Hong-Gye Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title="large eddy simulation">large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20orthogonal%20decomposition" title=" proper orthogonal decomposition"> proper orthogonal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=SRM%20instability" title=" SRM instability"> SRM instability</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-acoustic%20coupling" title=" flow-acoustic coupling"> flow-acoustic coupling</a> </p> <a href="https://publications.waset.org/abstracts/1480/numerical-study-on-vortex-driven-pressure-oscillation-and-roll-torque-characteristics-in-a-srm-with-two-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6270</span> Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravneil%20Nand">Ravneil Nand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperative%20coevaluation" title="cooperative coevaluation">cooperative coevaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20forward%20network" title=" feed forward network"> feed forward network</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20decomposition" title=" problem decomposition"> problem decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron" title=" neuron"> neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=synapse" title=" synapse"> synapse</a> </p> <a href="https://publications.waset.org/abstracts/29237/cooperative-coevolution-for-neuro-evolution-of-feed-forward-networks-for-time-series-prediction-using-hidden-neuron-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6269</span> Sliding Mode Control and Its Application in Custom Power Device: A Comprehensive Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Negi">Pankaj Negi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the demand for receiving the high quality electrical energy is being increasing as consumer wants not only reliable but also quality power. Custom power instruments are of the most well-known compensators of power quality in distributed network. This paper present a comprehensive review of compensating custom power devices mainly DSTATCOM (distribution static compensator),DVR (dynamic voltage restorer), and UPQC (unified power quality compensator) and also deals with sliding mode control and its applications to custom power devices. The sliding mode control strategy provides robustness to custom power device and enhances the dynamic response for compensating voltage sag, swell, voltage flicker, and voltage harmonics. The aim of this paper is to provide a broad perspective on the status of compensating devices in electric power distribution system and sliding mode control strategies to researchers and application engineers who are dealing with power quality and stability issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20filters%28APF%29" title="active power filters(APF)">active power filters(APF)</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20power%20device%28CPD%29" title=" custom power device(CPD)"> custom power device(CPD)</a>, <a href="https://publications.waset.org/abstracts/search?q=DSTATCOM" title=" DSTATCOM"> DSTATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=DVR" title=" DVR"> DVR</a>, <a href="https://publications.waset.org/abstracts/search?q=UPQC" title=" UPQC"> UPQC</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control%20%28SMC%29" title=" sliding mode control (SMC)"> sliding mode control (SMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality "> power quality </a> </p> <a href="https://publications.waset.org/abstracts/47945/sliding-mode-control-and-its-application-in-custom-power-device-a-comprehensive-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6268</span> Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Cheng">Yao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihua%20Zhang"> Weihua Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=complete%20ensemble%20empirical%20mode%20decomposition%20with%20adaptive%20noise" title=" complete ensemble empirical mode decomposition with adaptive noise"> complete ensemble empirical mode decomposition with adaptive noise</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=multipoint%20optimal%20minimum%20entropy%20deconvolution" title=" multipoint optimal minimum entropy deconvolution"> multipoint optimal minimum entropy deconvolution</a> </p> <a href="https://publications.waset.org/abstracts/80335/application-of-complete-ensemble-empirical-mode-decomposition-with-adaptive-noise-and-multipoint-optimal-minimum-entropy-deconvolution-in-railway-bearings-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6267</span> Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20R">Ajay R</a>, <a href="https://publications.waset.org/abstracts/search?q=Rammohan%20B"> Rammohan B</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20K%20S%20S"> Sridhar K S S</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurusharan%20%20N"> Gurusharan N</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cross-sectional%20area" title="Cross-sectional area">Cross-sectional area</a>, <a href="https://publications.waset.org/abstracts/search?q=Humerus%20bone" title=" Humerus bone"> Humerus bone</a>, <a href="https://publications.waset.org/abstracts/search?q=Inverse%20mode%20shape%20problem" title=" Inverse mode shape problem"> Inverse mode shape problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mode%20shape" title=" Mode shape"> Mode shape</a> </p> <a href="https://publications.waset.org/abstracts/125654/inverse-mode-shape-problem-of-hand-arm-vibration-humerus-bone-for-bio-dynamic-response-using-varying-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6266</span> Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artiya%20Sopharak">Artiya Sopharak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=coasting%20mode" title=" coasting mode"> coasting mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20rapid%20transit" title=" mass rapid transit"> mass rapid transit</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20search%20method" title=" quadratic search method"> quadratic search method</a> </p> <a href="https://publications.waset.org/abstracts/122572/energy-saving-study-of-mass-rapid-transit-by-optimal-train-coasting-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6265</span> Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhao">Jing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayong%20Liu"> Dayong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihao%20Wang"> Shihao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghua%20Zhu"> Xinghua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Delong%20Li"> Delong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title="lithium-ion battery">lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=remaining%20useful%20life" title=" remaining useful life"> remaining useful life</a>, <a href="https://publications.waset.org/abstracts/search?q=complete%20EEMD%20with%20adaptive%20noise" title=" complete EEMD with adaptive noise"> complete EEMD with adaptive noise</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20convolutional%20net" title=" temporal convolutional net"> temporal convolutional net</a> </p> <a href="https://publications.waset.org/abstracts/157453/complete-ensemble-empirical-mode-decomposition-with-adaptive-noise-temporal-convolutional-network-for-remaining-useful-life-prediction-of-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6264</span> Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latha%20Subbiah">Latha Subbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhanalakshmi%20Samiappan"> Dhanalakshmi Samiappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvelet" title="curvelet">curvelet</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition" title=" decomposition"> decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=levelset" title=" levelset"> levelset</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/56351/automated-ultrasound-carotid-artery-image-segmentation-using-curvelet-threshold-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6263</span> Labview-Based System for Fiber Links Events Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Liu">Bo Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingshan%20Kong"> Qingshan Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiqing%20Huang"> Weiqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title="empirical mode decomposition">empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=events%20detection" title=" events detection"> events detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor%20transform" title=" Gabor transform"> Gabor transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20time%20domain%20reflectometer" title=" optical time domain reflectometer"> optical time domain reflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20threshold%20denoising" title=" wavelet threshold denoising"> wavelet threshold denoising</a> </p> <a href="https://publications.waset.org/abstracts/105512/labview-based-system-for-fiber-links-events-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6262</span> Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmadi">M. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kafil"> M. Kafil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ebrahimi"> H. Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broken%20bar" title="broken bar">broken bar</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/98730/fault-detection-and-diagnosis-of-broken-bar-problem-in-induction-motors-base-wavelet-analysis-and-emd-method-case-study-of-mobarakeh-steel-company-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6261</span> Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Delage">O. Delage</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bencherif"> H. Bencherif</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Portafaix"> T. Portafaix</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bourdier"> A. Bourdier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title="time series analysis">time series analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20time%20series%20decomposition" title=" adaptive time series decomposition"> adaptive time series decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20space%20reconstruction" title=" phase space reconstruction"> phase space reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20spectrum%20analysis" title=" singular spectrum analysis"> singular spectrum analysis</a> </p> <a href="https://publications.waset.org/abstracts/147886/analysis-of-dynamics-underlying-the-observation-time-series-by-using-a-singular-spectrum-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6260</span> Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rogelio%20Luck">Rogelio Luck</a>, <a href="https://publications.waset.org/abstracts/search?q=Yucheng%20Liu"> Yucheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title="singular value decomposition">singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20response%20function" title=" impulse response function"> impulse response function</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function "> Green’s function </a>, <a href="https://publications.waset.org/abstracts/search?q=Toeplitz%20matrix" title=" Toeplitz matrix "> Toeplitz matrix </a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20matrix" title=" Hankel matrix"> Hankel matrix</a> </p> <a href="https://publications.waset.org/abstracts/127083/continuous-time-and-discrete-time-singular-value-decomposition-of-an-impulse-response-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6259</span> Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourour%20Khouaja">Sourour Khouaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Hejer%20Jlassi"> Hejer Jlassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Feddaoui"> Nadia Feddaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hamrouni"> Kamel Hamrouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEMD" title="BEMD">BEMD</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20density" title=" breast density"> breast density</a>, <a href="https://publications.waset.org/abstracts/search?q=contend-based" title=" contend-based"> contend-based</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a> </p> <a href="https://publications.waset.org/abstracts/59187/content-based-mammograms-retrieval-based-on-breast-density-criteria-using-bidimensional-empirical-mode-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6258</span> An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Delage">Olivier Delage</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Portafaix"> Thierry Portafaix</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Bencherif"> Hassan Bencherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Guimbretiere"> Guillaume Guimbretiere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciences <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filtering" title="adaptive filtering">adaptive filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20wavelet%20transform" title=" empirical wavelet transform"> empirical wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20banks" title=" filter banks"> filter banks</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-mixing" title=" mode-mixing"> mode-mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20and%20non-stationary%20time%20series" title=" non-linear and non-stationary time series"> non-linear and non-stationary time series</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a> </p> <a href="https://publications.waset.org/abstracts/128255/an-adaptive-decomposition-for-the-variability-analysis-of-observation-time-series-in-geophysics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6257</span> Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lili%20Yang">Lili Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirui%20Gong"> Jirui Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinpu%20Luo"> Qinpu Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20%20Liu"> Min Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20%20Yang"> Bo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihe%20Zhang"> Zihe Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%3A%20N%3A%20P%20stoichiometry" title="C: N: P stoichiometry">C: N: P stoichiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20decomposition" title=" litter decomposition"> litter decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20addition" title=" nitrogen addition"> nitrogen addition</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20release" title=" nutrient release"> nutrient release</a> </p> <a href="https://publications.waset.org/abstracts/71375/effects-of-nitrogen-addition-on-litter-decomposition-and-nutrient-release-in-a-temperate-grassland-in-northern-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=209">209</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=210">210</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10