CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Madison, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Madison%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Madison, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Madison%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Madison, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00273">arXiv:2409.00273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00273">pdf</a>, <a href="https://arxiv.org/format/2409.00273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Boundaries of universality of thermal collisions for atom-atom scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyang Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Krems%2C+R+V">Roman V. Krems</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00273v1-abstract-short" style="display: inline;"> Thermal rate coefficients for some atomic collisions have been observed to be remarkably independent of the details of interatomic interactions at short range. This makes these rate coefficients universal functions of the long-range interaction parameters and masses, which was previously exploited to develop a self-defining atomic sensor for ambient pressure. Here, we employ rigorous quantum scatt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00273v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00273v1-abstract-full" style="display: none;"> Thermal rate coefficients for some atomic collisions have been observed to be remarkably independent of the details of interatomic interactions at short range. This makes these rate coefficients universal functions of the long-range interaction parameters and masses, which was previously exploited to develop a self-defining atomic sensor for ambient pressure. Here, we employ rigorous quantum scattering calculations to examine the response of thermally averaged rate coefficients for atom-atom collisions to changes in the interaction potentials. We perform a comprehensive analysis of the universality, and the boundaries thereof, by treating the quantum scattering observables as probabilistic predictions determined by a distribution of interaction potentials. We show that there is a characteristic change of the resulting distributions of rate coefficients, separating light, few-electron atoms and heavy, polarizable atoms. We produce diagrams that illustrate the boundaries of the thermal collision universality at different temperatures and provide guidance for future experiments seeking to exploit the universality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00273v1-abstract-full').style.display = 'none'; document.getElementById('2409.00273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17065">arXiv:2406.17065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17065">pdf</a>, <a href="https://arxiv.org/format/2406.17065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Revising the Universality Hypothesis for Room-temperature Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17065v2-abstract-short" style="display: inline;"> Atoms constitute promising quantum sensors for a variety of scenarios including vacuum metrology. Key to this application is knowledge of the collision rate coefficient of the sensor atom with the particles being detected. Prior work demonstrated that, for room-temperature collisions, the total collision rate coefficient and the trap depth dependence of the sensor atom loss rate from shallow traps&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17065v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17065v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17065v2-abstract-full" style="display: none;"> Atoms constitute promising quantum sensors for a variety of scenarios including vacuum metrology. Key to this application is knowledge of the collision rate coefficient of the sensor atom with the particles being detected. Prior work demonstrated that, for room-temperature collisions, the total collision rate coefficient and the trap depth dependence of the sensor atom loss rate from shallow traps are both universal, independent of the interaction potential at short range. It was also shown that measurements of the energy transferred to the sensor atom by the collision can be used to estimate the total collision rate coefficient. However, discrepancies found when comparing the results of this and other methods of deducing the rate coefficient call into question its accuracy. Here the universality hypothesis is re-examined and an important correction is presented. We find that measurements of the post-collision recoil energy of sensor atoms held in shallow magnetic traps only provide information about the interaction potential at the very largest inter-atomic distances (e.g.~the value of $C_6$ for a leading order term of $C_6/r^6$). As other non-negligible terms exist at medium and long ranges, the total collision rate coefficient, even if universal, can differ from that computed solely from the value of $C_6$. By incorporating these other long-range terms into a simple semi-classical (SC) calculation, we find the SC prediction matches that of full, multi-channel, quantum mechanical scattering calculations using the complete potential. This work resolves the discrepancies, demonstrates the simplicity of estimating the rate coefficients for universal collision partners, and provides guidance for using atoms as a self-calibrating primary quantum pressure standard. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17065v2-abstract-full').style.display = 'none'; document.getElementById('2406.17065v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16017">arXiv:2406.16017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16017">pdf</a>, <a href="https://arxiv.org/format/2406.16017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Competing excitation quenching and charge exchange in ultracold Li-Ba$^+$ collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xing%2C+X">Xiaodong Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%B3n%C3%A1s%2C+T">Tibor J贸n谩s</a>, <a href="/search/physics?searchtype=author&amp;query=Vexiau%2C+R">Romain Vexiau</a>, <a href="/search/physics?searchtype=author&amp;query=Bouloufa-Maafa%2C+N">Nadia Bouloufa-Maafa</a>, <a href="/search/physics?searchtype=author&amp;query=Luc-Koenig%2C+E">Eliane Luc-Koenig</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Orb%C3%A1n%2C+A">Andrea Orb谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+T">Ting Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a>, <a href="/search/physics?searchtype=author&amp;query=Dulieu%2C+O">Olivier Dulieu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16017v1-abstract-short" style="display: inline;"> Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions, as they feature both excellent control over the electronic state preparation and readout as well as a versatile tunability over the scattering energy, ranging from the few-partial wave regime to the quantum regime. In this work, we make use of these excellent control knobs, and present a joint experimental an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16017v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16017v1-abstract-full" style="display: none;"> Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions, as they feature both excellent control over the electronic state preparation and readout as well as a versatile tunability over the scattering energy, ranging from the few-partial wave regime to the quantum regime. In this work, we make use of these excellent control knobs, and present a joint experimental and theoretical study of the collisions of a single $^{138}$Ba$^+$ ion prepared in the $5d\,^2D_{3/2,5/2}$ metastable states with a ground state $^6$Li gas near quantum degeneracy. We show that in contrast to previously reported atom-ion mixtures, several non-radiative processes, including charge exchange, excitation exchange and quenching, compete with each other due to the inherent complexity of the ion-atom molecular structure. We present a full quantum model based on high-level electronic structure calculations involving spin-orbit couplings. Results are in excellent agreement with observations, highlighting the strong coupling between the internal angular momenta and the mechanical rotation of the colliding pair, which is relevant in any other hybrid system composed of an alkali-metal atom and an alkaline-earth ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16017v1-abstract-full').style.display = 'none'; document.getElementById('2406.16017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08696">arXiv:2405.08696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08696">pdf</a>, <a href="https://arxiv.org/format/2405.08696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of magnetically silent optically pumped magnetometers for the TUCAN electric dipole moment experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klassen%2C+W">Wolfgang Klassen</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">Shomi Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Grehan%2C+K+P">Kiera Pond Grehan</a>, <a href="/search/physics?searchtype=author&amp;query=Hovde%2C+C">Chris Hovde</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Mammei%2C+R+R">Russel R. Mammei</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+J+W">Jeffery W. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=McCrea%2C+M">Mark McCrea</a>, <a href="/search/physics?searchtype=author&amp;query=Mohammadi%2C+T">Tahereh Mohammadi</a>, <a href="/search/physics?searchtype=author&amp;query=Momose%2C+T">Takamasa Momose</a>, <a href="/search/physics?searchtype=author&amp;query=Opsahl%2C+P">Patrick Opsahl</a>, <a href="/search/physics?searchtype=author&amp;query=Ostapchuk%2C+D+C+M">David C. M. Ostapchuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08696v2-abstract-short" style="display: inline;"> We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/rtHz at 1~Hz and a stability of 90 fT over 150 seconds of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08696v2-abstract-full').style.display = 'inline'; document.getElementById('2405.08696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08696v2-abstract-full" style="display: none;"> We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/rtHz at 1~Hz and a stability of 90 fT over 150 seconds of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at its Larmor frequency in the magnetic field to be measured. Nonlinear magneto-optical rotation then leads to the rotation of the plane of polarization of a linearly polarized probe laser beam. The rotation angle is modulated at twice the Larmor frequency. A measurement of this frequency constitutes an absolute measurement of the magnetic field magnitude. Featuring purely optical operation, non-magnetic construction, low noise floor, and high stability, this sensor will be used for the upcoming TUCAN electric dipole moment experiment and other highly sensitive magnetic applications. Novel aspects of the system include commercial construction and the ability to operate up to 24 sensors on a single probe laser diode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08696v2-abstract-full').style.display = 'none'; document.getElementById('2405.08696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures. Submitted to The European Physical Journal C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15446">arXiv:2312.15446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15446">pdf</a>, <a href="https://arxiv.org/format/2312.15446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Cross-calibration of atomic sensors for pressure metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Frieling%2C+E">Erik Frieling</a>, <a href="/search/physics?searchtype=author&amp;query=Stewart%2C+R+A">Riley A. Stewart</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15446v2-abstract-short" style="display: inline;"> Atomic sensors have shown great promise for density and pressure metrology in the high, ultra-high, and extremely-high vacuum regimes. Specifically, the density of background gas particles in vacuum can be determined by measuring the collision rate between the particles and an ensemble of sensor atoms. This requires preparing the sensor atoms in a particular quantum state, observing the rate of ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15446v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15446v2-abstract-full" style="display: none;"> Atomic sensors have shown great promise for density and pressure metrology in the high, ultra-high, and extremely-high vacuum regimes. Specifically, the density of background gas particles in vacuum can be determined by measuring the collision rate between the particles and an ensemble of sensor atoms. This requires preparing the sensor atoms in a particular quantum state, observing the rate of changes of that state, and using the cross section coefficient for state-changing collisions to convert the rate into a corresponding density. The cross section can be known by various methods including by quantum scattering calculations using an ansatz for the interaction potential between the collision pair, by measurements of the post-collision sensor-atom momentum recoil distribution, or by empirical calibration of the sensor atom at a known density. Identifying systematic errors in the results of these methods can be aided by direct comparisons between them. Alternatively, measurements of different sensor atoms exposed to the same background gas offers another point of comparison free of the systematic errors inherent in creating a background gas at a known density. Here, we present such measurements for two sensor atoms, $^{87}$Rb and $^6$Li, and a variety of atomic and molecular background gases including H$_2$, N$_2$, Ar, Ne, Kr, and Xe. We find results consistent with, yet statistically different at the level of 3.5(5)%, from recent theoretical and experiment measurements. This work demonstrates a model-free method for transferring the primacy of one atomic standard to another sensor atom and highlights the utility of sensor-atom cross-calibration experiments to check the validity of direct measurements and theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15446v2-abstract-full').style.display = 'none'; document.getElementById('2312.15446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04583">arXiv:2310.04583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04583">pdf</a>, <a href="https://arxiv.org/format/2310.04583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.032818">10.1103/PhysRevA.109.032818 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped particle evolution driven by residual gas collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deshmukh%2C+A">Avinash Deshmukh</a>, <a href="/search/physics?searchtype=author&amp;query=Stewart%2C+R+A">Riley A. Stewart</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+P">Pinrui Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04583v2-abstract-short" style="display: inline;"> We present a comprehensive mathematical model and experimental measurements for the evolution of a trapped particle ensemble driven by collisions with a room-temperature background vapor. The model accommodates any trap geometry, confining potential, initial trapped distribution, and other experimental details; it only depends on the the probability distribution function $P_t(E)$ for the collision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04583v2-abstract-full').style.display = 'inline'; document.getElementById('2310.04583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04583v2-abstract-full" style="display: none;"> We present a comprehensive mathematical model and experimental measurements for the evolution of a trapped particle ensemble driven by collisions with a room-temperature background vapor. The model accommodates any trap geometry, confining potential, initial trapped distribution, and other experimental details; it only depends on the the probability distribution function $P_t(E)$ for the collision-induced energy transfer to the trapped ensemble. We describe how to find $P_t(E)$ using quantum scattering calculations and how it can be approximated using quantum diffractive universality. We then compare our model to experimental measurements of a $^{87}$Rb ensemble energy evolution exposed to a room temperature background gas of Ar by means of a single parameter fit for the total collision rate $螕$. We extracted a collision rate of $螕= 0.646(1)\ \text{s}^{-1}$. This is compared to a value of $0.664(4)\ \text{s}^{-1}$ found by the commonly used method of zero-trap depth extrapolation, a $2.8\%$ correction that is a result of our model fully taking ensemble loss and heating into account. Finally, we report a five-fold increase in the precision of our collision rate extraction from the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04583v2-abstract-full').style.display = 'none'; document.getElementById('2310.04583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A Vol. 109, Iss. 3 March 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02165">arXiv:2302.02165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02165">pdf</a>, <a href="https://arxiv.org/format/2302.02165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ad1e39">10.1088/1361-6633/ad1e39 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Opportunities for Fundamental Physics Research with Radioactive Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arrowsmith-Kron%2C+G">Gordon Arrowsmith-Kron</a>, <a href="/search/physics?searchtype=author&amp;query=Athanasakis-Kaklamanakis%2C+M">Michail Athanasakis-Kaklamanakis</a>, <a href="/search/physics?searchtype=author&amp;query=Au%2C+M">Mia Au</a>, <a href="/search/physics?searchtype=author&amp;query=Ballof%2C+J">Jochen Ballof</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">Robert Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Borschevsky%2C+A">Anastasia Borschevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Breier%2C+A+A">Alexander A. Breier</a>, <a href="/search/physics?searchtype=author&amp;query=Buchinger%2C+F">Fritz Buchinger</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+L">Luke Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Charles%2C+C">Christopher Charles</a>, <a href="/search/physics?searchtype=author&amp;query=Dattani%2C+N">Nike Dattani</a>, <a href="/search/physics?searchtype=author&amp;query=de+Groote%2C+R+P">Ruben P. de Groote</a>, <a href="/search/physics?searchtype=author&amp;query=DeMille%2C+D">David DeMille</a>, <a href="/search/physics?searchtype=author&amp;query=Dickel%2C+T">Timo Dickel</a>, <a href="/search/physics?searchtype=author&amp;query=Dobaczewski%2C+J">Jacek Dobaczewski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%BCllmann%2C+C+E">Christoph E. D眉llmann</a>, <a href="/search/physics?searchtype=author&amp;query=Eliav%2C+E">Ephraim Eliav</a>, <a href="/search/physics?searchtype=author&amp;query=Engel%2C+J">Jon Engel</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+M">Mingyu Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Flambaum%2C+V">Victor Flambaum</a>, <a href="/search/physics?searchtype=author&amp;query=Flanagan%2C+K+T">Kieran T. Flanagan</a>, <a href="/search/physics?searchtype=author&amp;query=Gaiser%2C+A">Alyssa Gaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Ruiz%2C+R+G">Ronald Garcia Ruiz</a>, <a href="/search/physics?searchtype=author&amp;query=Gaul%2C+K">Konstantin Gaul</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02165v1-abstract-short" style="display: inline;"> Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at seve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02165v1-abstract-full').style.display = 'inline'; document.getElementById('2302.02165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02165v1-abstract-full" style="display: none;"> Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02165v1-abstract-full').style.display = 'none'; document.getElementById('2302.02165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 87 084301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02900">arXiv:2209.02900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02900">pdf</a>, <a href="https://arxiv.org/format/2209.02900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acd46e">10.1088/1367-2630/acd46e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-calibration of atomic pressure sensors and deviation from quantum diffractive collision universality for light particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+P">Pinrui Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Frieling%2C+E">Erik Frieling</a>, <a href="/search/physics?searchtype=author&amp;query=Herperger%2C+K+R">Katherine R. Herperger</a>, <a href="/search/physics?searchtype=author&amp;query=Uhland%2C+D">Denis Uhland</a>, <a href="/search/physics?searchtype=author&amp;query=Stewart%2C+R+A">Riley A. Stewart</a>, <a href="/search/physics?searchtype=author&amp;query=Deshmukh%2C+A">Avinash Deshmukh</a>, <a href="/search/physics?searchtype=author&amp;query=Krems%2C+R+V">Roman V. Krems</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02900v2-abstract-short" style="display: inline;"> The total room-temperature, velocity-averaged cross section for atom-atom and atom-molecule collisions is well approximated by a universal function depending only on the magnitude of the leading order dispersion coefficient, $C_6$. This feature of the total cross section together with the universal function for the energy distribution transferred by glancing angle collisions ($P_{\rm{QDU}6}$) can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02900v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02900v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02900v2-abstract-full" style="display: none;"> The total room-temperature, velocity-averaged cross section for atom-atom and atom-molecule collisions is well approximated by a universal function depending only on the magnitude of the leading order dispersion coefficient, $C_6$. This feature of the total cross section together with the universal function for the energy distribution transferred by glancing angle collisions ($P_{\rm{QDU}6}$) can be used to empirically determine the total collision cross section and realize a self-calibrating, vacuum pressure standard. This was previously validated for Rb+N$_2$ and Rb+Rb collisions. However, the post-collision energy distribution is expected to deviate from $P_{\rm{QDU}6}$ in the limit of small $C_6$ and small reduced mass. Here we observe this deviation experimentally by performing a direct cross-species loss rate comparison between Rb+H$_2$ and Li+H$_2$ and using the \textit{ab initio} value of $\langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2}$. We find a velocity averaged total collision cross section ratio, $R = \langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2} : \langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 0.83(5)$. Based on an \textit{ab initio} computation of $\langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2} = 3.13(6)\times 10^{-15}$ m$^3$/s, we deduce $\langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 3.8(2) \times 10^{-15}$ m$^3$/s, in agreement with a Rb+H$_2$ \textit{ab initio} value of $\langle 蟽_{\mathrm{tot}} v \rangle_{\mathrm{Rb+H_2}} = 3.57 \times 10^{-15} \mathrm{m}^3/\mathrm{s}$.By contrast, fitting the Rb+H$_2$ loss rate as a function of trap depth to the universal function we find $\langle 蟽_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 5.52(9) \times 10^{-15}$ m$^3$/s. Finally, this work demonstrates how to perform a cross-calibration of sensor atoms to extend and enhance the cold atom based pressure sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02900v2-abstract-full').style.display = 'none'; document.getElementById('2209.02900v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12805">arXiv:2208.12805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12805">pdf</a>, <a href="https://arxiv.org/format/2208.12805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.052812">10.1103/PhysRevA.106.052812 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Rb-Rb van der Waals coefficient via Quantum Diffractive Universality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stewart%2C+R+A">Riley A. Stewart</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+P">Pinrui Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12805v1-abstract-short" style="display: inline;"> Collisions between trapped atoms or trapped molecules with room temperature particles in the surrounding vacuum induce loss of the trapped population at a rate proportional to the density of the background gas particles. The total velocity-averaged loss rate coefficient $\langle 蟽_\mathrm{tot} v \rangle$ for such collisions and the variation of the loss rate with trap depth has been shown to depen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12805v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12805v1-abstract-full" style="display: none;"> Collisions between trapped atoms or trapped molecules with room temperature particles in the surrounding vacuum induce loss of the trapped population at a rate proportional to the density of the background gas particles. The total velocity-averaged loss rate coefficient $\langle 蟽_\mathrm{tot} v \rangle$ for such collisions and the variation of the loss rate with trap depth has been shown to depend only on the long range interaction potential between the collision partners. This collision universality was previously used to realize a self-calibrating, atom-based, primary pressure standard and was validated by indirect comparison with an orifice flow standard. Here, we use collision universality to measure $\langle 蟽_\mathrm{tot} v \rangle = 6.44(11)(5) \times 10^{-15}~\rm{m^3/s}$ for Rb-Rb collisions and deduce the corresponding $C_6 = 4688(198)(95)~E_ha_0^6$, in excellent agreement with predictions based upon $\textit{ab initio}$ calculated and previously measured $C_6$ values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12805v1-abstract-full').style.display = 'none'; document.getElementById('2208.12805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09880">arXiv:2207.09880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.09880">pdf</a>, <a href="https://arxiv.org/ps/2207.09880">ps</a>, <a href="https://arxiv.org/format/2207.09880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSCP.37.020701">10.7566/JPSCP.37.020701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Precision nEDM Measurement with UltraCold Neutrons at TRIUMF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Matsumiya%2C+R">Ryohei Matsumiya</a>, <a href="/search/physics?searchtype=author&amp;query=Akatsuka%2C+H">Hiroaki Akatsuka</a>, <a href="/search/physics?searchtype=author&amp;query=Bidinosti%2C+C+P">Chris P. Bidinosti</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+C+A">Charles A. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Franke%2C+B">Beatrice Franke</a>, <a href="/search/physics?searchtype=author&amp;query=Fujimoto%2C+D">Derek Fujimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Gericke%2C+M+T+W">Michael T. W. Gericke</a>, <a href="/search/physics?searchtype=author&amp;query=Giampa%2C+P">Pietro Giampa</a>, <a href="/search/physics?searchtype=author&amp;query=Golub%2C+R">Robert Golub</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen-Romu%2C+S">Sean Hansen-Romu</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">Kichiji Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hayamizu%2C+T">Tomohiro Hayamizu</a>, <a href="/search/physics?searchtype=author&amp;query=Higuchi%2C+T">Takashi Higuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Ichikawa%2C+G">Go Ichikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Imajo%2C+S">Sohei Imajo</a>, <a href="/search/physics?searchtype=author&amp;query=Jamieson%2C+B">Blair Jamieson</a>, <a href="/search/physics?searchtype=author&amp;query=Kawasaki%2C+S">Shinsuke Kawasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Kitaguchi%2C+M">Masaaki Kitaguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Klassen%2C+W">Wolfgang Klassen</a>, <a href="/search/physics?searchtype=author&amp;query=Klemets%2C+E">Emma Klemets</a>, <a href="/search/physics?searchtype=author&amp;query=Konaka%2C+A">Akira Konaka</a>, <a href="/search/physics?searchtype=author&amp;query=Korkmaz%2C+E">Elie Korkmaz</a>, <a href="/search/physics?searchtype=author&amp;query=Korobkina%2C+E">Ekaterina Korobkina</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchler%2C+F">Florian Kuchler</a>, <a href="/search/physics?searchtype=author&amp;query=Lavvaf%2C+M">Maedeh Lavvaf</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09880v1-abstract-short" style="display: inline;"> The TRIUMF Ultra-Cold Advanced Neutron (TUCAN) collaboration aims at a precision neutron electric dipole moment (nEDM) measurement with an uncertainty of $10^{-27}\,e\cdot\mathrm{cm}$, which is an order-of-magnitude better than the current nEDM upper limit and enables us to test Supersymmetry. To achieve this precision, we are developing a new high-intensity ultracold neutron (UCN) source using su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09880v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09880v1-abstract-full" style="display: none;"> The TRIUMF Ultra-Cold Advanced Neutron (TUCAN) collaboration aims at a precision neutron electric dipole moment (nEDM) measurement with an uncertainty of $10^{-27}\,e\cdot\mathrm{cm}$, which is an order-of-magnitude better than the current nEDM upper limit and enables us to test Supersymmetry. To achieve this precision, we are developing a new high-intensity ultracold neutron (UCN) source using super-thermal UCN production in superfluid helium (He-II) and a nEDM spectrometer. The current development status of them is reported in this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09880v1-abstract-full').style.display = 'none'; document.getElementById('2207.09880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 24th International Spin Symposium (SPIN 2021), 18-22 October 2021, Matsue, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08857">arXiv:1905.08857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08857">pdf</a>, <a href="https://arxiv.org/format/1905.08857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.22.102401">10.1103/PhysRevAccelBeams.22.102401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A fast-switching magnet serving a spallation-driven ultracold neutron source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Altiere%2C+E">E. Altiere</a>, <a href="/search/physics?searchtype=author&amp;query=Andalib%2C+T">T. Andalib</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+M+J">M. J. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+B">B. Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Bidinosti%2C+C+P">C. P. Bidinosti</a>, <a href="/search/physics?searchtype=author&amp;query=Bylinsky%2C+Y">Y. Bylinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Chak%2C+J">J. Chak</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+M">M. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+C+A">C. A. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+F">F. Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Franke%2C+B">B. Franke</a>, <a href="/search/physics?searchtype=author&amp;query=Gericke%2C+M+T+W">M. T. W. Gericke</a>, <a href="/search/physics?searchtype=author&amp;query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+M">M. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen-Romu%2C+S">S. Hansen-Romu</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hayamizu%2C+T">T. Hayamizu</a>, <a href="/search/physics?searchtype=author&amp;query=Jamieson%2C+B">B. Jamieson</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Katsika%2C+K">K. Katsika</a>, <a href="/search/physics?searchtype=author&amp;query=Kawasaki%2C+S">S. Kawasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Kikawa%2C+T">T. Kikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Klassen%2C+W">W. Klassen</a>, <a href="/search/physics?searchtype=author&amp;query=Konaka%2C+A">A. Konaka</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08857v2-abstract-short" style="display: inline;"> A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40~$渭$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical oper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08857v2-abstract-full').style.display = 'inline'; document.getElementById('1905.08857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08857v2-abstract-full" style="display: none;"> A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40~$渭$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet which is ramped in 50~$渭$s to a current of 193~A, held there for approximately 1~ms, then ramped down in the same short period of time. This achieves a 12~mrad deflection which is sufficient to switch the proton beam between the two facilities. The kicker magnet relies on a high-current, low-inductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar transistors (IGBTs). The design and performance of the kicker magnet system and initial beam delivery results are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08857v2-abstract-full').style.display = 'none'; document.getElementById('1905.08857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02193">arXiv:1905.02193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02193">pdf</a>, <a href="https://arxiv.org/format/1905.02193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Universality of Diffractive Collisions and the Quantum Pressure Standard </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+P">Pinrui Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Krems%2C+R+V">Roman V. Krems</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02193v2-abstract-short" style="display: inline;"> This work demonstrates that quantum diffractive collisions, those that result in very small momentum and energy transfer, are universal. Specifically, the cumulative energy distribution transferred to an initially stationary sensor particle by a quantum diffractive collision follows a universal function that depends only on the sensor particle mass and the thermally-averaged, total collision cross&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02193v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02193v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02193v2-abstract-full" style="display: none;"> This work demonstrates that quantum diffractive collisions, those that result in very small momentum and energy transfer, are universal. Specifically, the cumulative energy distribution transferred to an initially stationary sensor particle by a quantum diffractive collision follows a universal function that depends only on the sensor particle mass and the thermally-averaged, total collision cross section. The characteristic energy scale corresponds to the localization length associated with the collision-induced quantum measurement, and the shape of the universal function is determined {\it only} by the analytic form of the interaction potential at long range. Using cold $^{87}$Rb sensor atoms confined in a magnetic trap, we observe experimentally the universal function specific to van der Waals collisions, and realize a \emph{self-defining} particle pressure sensor that can be used for any ambient gas. This provides the first primary and quantum definition of the Pascal, applicable to any species and therefore represents a key advance for vacuum and pressure metrology. The quantum pressure standard realized here was compared with a state-of-the-art orifice flow standard transferred by an ionization gauge calibrated for N$_2$. The pressure measurements agreed at the 0.5\% level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02193v2-abstract-full').style.display = 'none'; document.getElementById('1905.02193v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.01001">arXiv:1810.01001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.01001">pdf</a>, <a href="https://arxiv.org/format/1810.01001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.01.074">10.1016/j.nima.2019.01.074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A beamline for fundamental neutron physics at TRIUMF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Andalib%2C+T">T. Andalib</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+M+J">M. J. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Bidinosti%2C+C+B">C. B. Bidinosti</a>, <a href="/search/physics?searchtype=author&amp;query=Bylinsky%2C+Y">Y. Bylinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Chak%2C+J">J. Chak</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+M">M. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+C+A">C. A. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Franke%2C+B">B. Franke</a>, <a href="/search/physics?searchtype=author&amp;query=Gericke%2C+M+T+W">M. T. W. Gericke</a>, <a href="/search/physics?searchtype=author&amp;query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+M">M. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen-Romu%2C+S">S. Hansen-Romu</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Jamieson%2C+B">B. Jamieson</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Katsika%2C+K">K. Katsika</a>, <a href="/search/physics?searchtype=author&amp;query=Kawasaki%2C+S">S. Kawasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Klassen%2C+W">W. Klassen</a>, <a href="/search/physics?searchtype=author&amp;query=Konaka%2C+A">A. Konaka</a>, <a href="/search/physics?searchtype=author&amp;query=Korkmaz%2C+E">E. Korkmaz</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchler%2C+F">F. Kuchler</a>, <a href="/search/physics?searchtype=author&amp;query=Kurchaninov%2C+L">L. Kurchaninov</a>, <a href="/search/physics?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+L">L. Lee</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.01001v2-abstract-short" style="display: inline;"> This article describes the new primary proton beamline 1U at TRIUMF. The purpose of this beamline is to produce ultracold neutrons (UCN) for fundamental-physics experiments. It delivers up to 40 microA of 480 MeV protons from the TRIUMF cyclotron to a tungsten spallation target and uses a fast kicker to share the beam between the Center for Molecular and Materials Science and UCN. The beamline has&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01001v2-abstract-full').style.display = 'inline'; document.getElementById('1810.01001v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.01001v2-abstract-full" style="display: none;"> This article describes the new primary proton beamline 1U at TRIUMF. The purpose of this beamline is to produce ultracold neutrons (UCN) for fundamental-physics experiments. It delivers up to 40 microA of 480 MeV protons from the TRIUMF cyclotron to a tungsten spallation target and uses a fast kicker to share the beam between the Center for Molecular and Materials Science and UCN. The beamline has been successfully commissioned and operated with a beam current up to 10 microA, facilitating first large-scale UCN production in Canada. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01001v2-abstract-full').style.display = 'none'; document.getElementById('1810.01001v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.04071">arXiv:1809.04071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.04071">pdf</a>, <a href="https://arxiv.org/format/1809.04071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.025503">10.1103/PhysRevC.99.025503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First ultracold neutrons produced at TRIUMF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Altiere%2C+E">E. Altiere</a>, <a href="/search/physics?searchtype=author&amp;query=Andalib%2C+T">T. Andalib</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+B">B. Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Bidinosti%2C+C+P">C. P. Bidinosti</a>, <a href="/search/physics?searchtype=author&amp;query=Cudmore%2C+E">E. Cudmore</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+M">M. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+C+A">C. A. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Franke%2C+B">B. Franke</a>, <a href="/search/physics?searchtype=author&amp;query=Gericke%2C+M">M. Gericke</a>, <a href="/search/physics?searchtype=author&amp;query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&amp;query=Gnyp%2C+P">P. Gnyp</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen-Romu%2C+S">S. Hansen-Romu</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hayamizu%2C+T">T. Hayamizu</a>, <a href="/search/physics?searchtype=author&amp;query=Jamieson%2C+B">B. Jamieson</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Kawasaki%2C+S">S. Kawasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Kikawa%2C+T">T. Kikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Kitaguchi%2C+M">M. Kitaguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Klassen%2C+W">W. Klassen</a>, <a href="/search/physics?searchtype=author&amp;query=Konaka%2C+A">A. Konaka</a>, <a href="/search/physics?searchtype=author&amp;query=Korkmaz%2C+E">E. Korkmaz</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchler%2C+F">F. Kuchler</a>, <a href="/search/physics?searchtype=author&amp;query=Lang%2C+M">M. Lang</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.04071v3-abstract-short" style="display: inline;"> We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$\,$K. During an extensive test campaign in November 2017, we extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04071v3-abstract-full').style.display = 'inline'; document.getElementById('1809.04071v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.04071v3-abstract-full" style="display: none;"> We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$\,$K. During an extensive test campaign in November 2017, we extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3$\,$cm$^{-3}$. The storage lifetime of ultracold neutrons in the source was initially 37$\,$s and dropped to 24$\,$s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500$\,$s$^{-1}$. Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to $T^7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04071v3-abstract-full').style.display = 'none'; document.getElementById('1809.04071v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 025503 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05892">arXiv:1708.05892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.05892">pdf</a>, <a href="https://arxiv.org/format/1708.05892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5001312">10.1063/1.5001312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S+J">Shi Jing Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Fajeau%2C+E">Emma Fajeau</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L+Q">Lin Qiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05892v1-abstract-short" style="display: inline;"> In this work we address the advantages, limitations, and technical subtleties of employing FPGA-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05892v1-abstract-full').style.display = 'inline'; document.getElementById('1708.05892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05892v1-abstract-full" style="display: none;"> In this work we address the advantages, limitations, and technical subtleties of employing FPGA-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three pole filter and a two pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05892v1-abstract-full').style.display = 'none'; document.getElementById('1708.05892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.07460">arXiv:1509.07460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.07460">pdf</a>, <a href="https://arxiv.org/format/1509.07460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4945567">10.1063/1.4945567 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Adaptable Dual Species Effusive Source and Zeeman Slower Design Demonstrated with Rb and Li </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bowden%2C+W">William Bowden</a>, <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Dare%2C+K">Kahan Dare</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.07460v2-abstract-short" style="display: inline;"> We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of $^6$Li and $^{85}$Rb and achieve MOT loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07460v2-abstract-full').style.display = 'inline'; document.getElementById('1509.07460v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.07460v2-abstract-full" style="display: none;"> We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of $^6$Li and $^{85}$Rb and achieve MOT loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven temperatures. Key design choices, including thermally separating the effusive sources and using a segmented coil design to enable computer control of the magnetic field profile, ensure that the apparatus can be easily modified to slow other atomic species. By performing the final slowing using the quadruple magnetic field of the MOT, we are able to shorten our Zeeman slower length making for a more compact system without compromising performance. We outline the construction and analyze the emission properties of our effusive sources. We also verify the performance of the source and slower, and we observe sequential loading rates of $8 \times 10^8$ atoms/s for a Rb oven temperature of $120\,^{\circ}$C and $1.5 \times 10^8$ atoms/s for a Li reservoir at $450\,^{\circ}$C, corresponding to reservoir lifetimes for continuous operation of 10 and 4 years respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07460v2-abstract-full').style.display = 'none'; document.getElementById('1509.07460v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.04086">arXiv:1508.04086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.04086">pdf</a>, <a href="https://arxiv.org/format/1508.04086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4944411">10.1063/1.4944411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transparent Electrodes for High E-Field Production Using A Buried ITO Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Polovy%2C+G">Gene Polovy</a>, <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.04086v1-abstract-short" style="display: inline;"> We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an ITO coated dielec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04086v1-abstract-full').style.display = 'inline'; document.getElementById('1508.04086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.04086v1-abstract-full" style="display: none;"> We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an ITO coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production of electric fields up to 18~kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the $5^2S_{1/2} \rightarrow 5^2P_{3/2}$ transition for a cloud of laser cooled Rubidium atoms. We also report on the shielding of the electric field and residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04086v1-abstract-full').style.display = 'none'; document.getElementById('1508.04086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.00389">arXiv:1506.00389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.00389">pdf</a>, <a href="https://arxiv.org/format/1506.00389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.40.004372">10.1364/OL.40.004372 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A method for independent and continuous tuning of $N$ lasers phase-locked to the same frequency comb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.00389v2-abstract-short" style="display: inline;"> We present a method of phase-locking any number of continuous-wave lasers to an optical frequency comb (OFC) that enables independent frequency positioning and control of each laser while still maintaining lock to the OFC. The scheme employs an acousto-optic modulator (AOM) in a double pass configuration added to each laser before its light is compared by optical heterodyne with the comb. The only&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00389v2-abstract-full').style.display = 'inline'; document.getElementById('1506.00389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.00389v2-abstract-full" style="display: none;"> We present a method of phase-locking any number of continuous-wave lasers to an optical frequency comb (OFC) that enables independent frequency positioning and control of each laser while still maintaining lock to the OFC. The scheme employs an acousto-optic modulator (AOM) in a double pass configuration added to each laser before its light is compared by optical heterodyne with the comb. The only requirement is that the tuning bandwidth of the double pass AOM setup be larger than half the OFC repetition rate. We demonstrate this scheme and achieve an arbitrary frequency tuning precision, a tuning rate of 200~MHz/s and a readout precision at the 1~kHz level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00389v2-abstract-full').style.display = 'none'; document.getElementById('1506.00389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor changes like a brief discussion of the limitations of our method with respect to previous solutions (which is of no consequence to the claims made in the original submission). Added ref. 19</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.02208">arXiv:1502.02208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.02208">pdf</a>, <a href="https://arxiv.org/ps/1502.02208">ps</a>, <a href="https://arxiv.org/format/1502.02208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevSTPER.11.020108">10.1103/PhysRevSTPER.11.020108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transforming a 4th year Modern Optics Course Using a Deliberate Practice Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Wieman%2C+C+E">Carl E. Wieman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.02208v2-abstract-short" style="display: inline;"> We present a study of active learning pedagogies in an upper division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02208v2-abstract-full').style.display = 'inline'; document.getElementById('1502.02208v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.02208v2-abstract-full" style="display: none;"> We present a study of active learning pedagogies in an upper division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instructor notes into activities for such a course with active learning methods. Ninety percent of the same material was covered and scores on common exam problems showed a 15 % improvement with an effect size greater than 1 after the transformation. We observe that the improvement and the associated effect size is sustained after handing off the materials to a second instructor. Because the improvement on exam questions was independent of specific problem topics and because the material tested was so mathematically advanced and broad (including linear algebra, Fourier Transforms, partial differential equations, vector calculus), we expect the transformation process could be applied to most upper division physics courses having a similar mathematical base. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02208v2-abstract-full').style.display = 'none'; document.getElementById('1502.02208v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.6662">arXiv:1309.6662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.6662">pdf</a>, <a href="https://arxiv.org/format/1309.6662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.052505">10.1103/PhysRevA.87.052505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution photoassociation spectroscopy of the $^{6}$Li$_2$ $1^{3}危_{g}^{+}$ state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Haw%2C+M">Magnus Haw</a>, <a href="/search/physics?searchtype=author&amp;query=Dattani%2C+N+S">Nikesh S. Dattani</a>, <a href="/search/physics?searchtype=author&amp;query=Witz%2C+J">Julien Witz</a>, <a href="/search/physics?searchtype=author&amp;query=Mills%2C+A">Arthur Mills</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+D+J">David J. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.6662v1-abstract-short" style="display: inline;"> We present experimental observations of seven vibrational levels $v&#39;=20-26$ of the $1^{3}危_{g}^{+}$ excited state of Li$_2$ molecules by the photoassociation (PA) of a degenerate Fermi gas of $^6$Li atoms. For each vibrational level, we resolve the rotational structure using a Feshbach resonance to enhance the PA rates from p-wave collisions. We also, for the first time, determine the spin-spin an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.6662v1-abstract-full').style.display = 'inline'; document.getElementById('1309.6662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.6662v1-abstract-full" style="display: none;"> We present experimental observations of seven vibrational levels $v&#39;=20-26$ of the $1^{3}危_{g}^{+}$ excited state of Li$_2$ molecules by the photoassociation (PA) of a degenerate Fermi gas of $^6$Li atoms. For each vibrational level, we resolve the rotational structure using a Feshbach resonance to enhance the PA rates from p-wave collisions. We also, for the first time, determine the spin-spin and spin-rotation interaction constants for this state. The absolute uncertainty of our measurements is $\pm 0.00002$ cm$^{-1}$ ($\pm 600$ kHz). We use these new data to further refine an analytic potential for this state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.6662v1-abstract-full').style.display = 'none'; document.getElementById('1309.6662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.5870">arXiv:1309.5870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.5870">pdf</a>, <a href="https://arxiv.org/ps/1309.5870">ps</a>, <a href="https://arxiv.org/format/1309.5870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.88.062510">10.1103/PhysRevA.88.062510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution photoassociation spectroscopy of the $^{6}$Li$_2$ $A(1^1危_u^+)$ state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Dattani%2C+N+S">Nikesh S. Dattani</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.5870v1-abstract-short" style="display: inline;"> We present spectroscopic measurements of seven vibrational levels $v=29-35$ of the $A(1^1危_u^+)$ excited state of Li$_2$ molecules by the photoassociation of a degenerate Fermi gas of $^6$Li atoms. The absolute uncertainty of our measurements is $\pm 0.00002$ cm$^{-1}$ ($\pm 600$ kHz) and we use these new data to further refine an analytic potential for this state. This work provides high accuracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5870v1-abstract-full').style.display = 'inline'; document.getElementById('1309.5870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.5870v1-abstract-full" style="display: none;"> We present spectroscopic measurements of seven vibrational levels $v=29-35$ of the $A(1^1危_u^+)$ excited state of Li$_2$ molecules by the photoassociation of a degenerate Fermi gas of $^6$Li atoms. The absolute uncertainty of our measurements is $\pm 0.00002$ cm$^{-1}$ ($\pm 600$ kHz) and we use these new data to further refine an analytic potential for this state. This work provides high accuracy photo-association resonance locations essential for the eventual high resolution mapping of the $X(1^1危_g^+)$ state enabling further improvements to the s-wave scattering length determination of Li and enabling the eventual creation of ultra-cold ground state $^6$Li$_2$ molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5870v1-abstract-full').style.display = 'none'; document.getElementById('1309.5870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.4783">arXiv:1308.4783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.4783">pdf</a>, <a href="https://arxiv.org/ps/1308.4783">ps</a>, <a href="https://arxiv.org/format/1308.4783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.88.050701">10.1103/PhysRevA.88.050701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical reactions of ultracold alkali-metal dimers in the lowest-energy $^3危$ state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tomza%2C+M">Micha艂 Tomza</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Moszynski%2C+R">Robert Moszynski</a>, <a href="/search/physics?searchtype=author&amp;query=Krems%2C+R+V">Roman V. Krems</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.4783v2-abstract-short" style="display: inline;"> We show that the interaction of polar alkali dimers in the quintet spin state leads to the formation of a deeply bound reaction complex. The reaction complex can decompose adiabatically into homonuclear alkali dimers (for all molecules except KRb) and into alkali trimers (for all molecules). We show that there are no barriers for these chemical reactions. This means that all alkali dimers in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4783v2-abstract-full').style.display = 'inline'; document.getElementById('1308.4783v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.4783v2-abstract-full" style="display: none;"> We show that the interaction of polar alkali dimers in the quintet spin state leads to the formation of a deeply bound reaction complex. The reaction complex can decompose adiabatically into homonuclear alkali dimers (for all molecules except KRb) and into alkali trimers (for all molecules). We show that there are no barriers for these chemical reactions. This means that all alkali dimers in the $a^3危^+$ state are chemically unstable at ultracold temperature, and the use of an optical lattice to segregate the molecules and suppress losses may be necessary. In addition, we calculate the minimum energy path for the chemical reactions of alkali hydrides. We find that the reaction of two molecules is accelerated by a strong attraction between the alkali atoms, leading to a barrierless process that produces hydrogen atoms with large kinetic energy. We discuss the unique features of the chemical reactions of ultracold alkali dimers in the $a^3危^+$ electronic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4783v2-abstract-full').style.display = 'none'; document.getElementById('1308.4783v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 88, 050701(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.5445">arXiv:1307.5445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.5445">pdf</a>, <a href="https://arxiv.org/format/1307.5445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.88.023624">10.1103/PhysRevA.88.023624 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of BEC-BCS crossover physics in a compact oven-loaded magneto-optic trap apparatus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gunton%2C+W">Will Gunton</a>, <a href="/search/physics?searchtype=author&amp;query=Semczuk%2C+M">Mariusz Semczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.5445v3-abstract-short" style="display: inline;"> We report on a simple oven-loaded magneto-optical trap (MOT) apparatus for the creation of both molecular Bose-Einstein condensates (mBEC) and degenerate Fermi gases (DFGs) of lithium. The apparatus does not require a Zeeman slower or a 2D MOT nor does it require any separation or differential pumping between the effusive atom source and the science chamber. The result is an exceedingly simple, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5445v3-abstract-full').style.display = 'inline'; document.getElementById('1307.5445v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.5445v3-abstract-full" style="display: none;"> We report on a simple oven-loaded magneto-optical trap (MOT) apparatus for the creation of both molecular Bose-Einstein condensates (mBEC) and degenerate Fermi gases (DFGs) of lithium. The apparatus does not require a Zeeman slower or a 2D MOT nor does it require any separation or differential pumping between the effusive atom source and the science chamber. The result is an exceedingly simple, inexpensive, and compact vacuum system ideal for miniaturization. We discuss our work in the context of other realizations of quantum degenerate gases by evaporation in optical dipole traps and illustrate that our apparatus meets the key requirements of atom number and trap lifetime. We also demonstrate with this system the production of a mBEC, and we use it to observe the pairing gap of a strongly interacting two-component DFG in the BEC-BCS crossover regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5445v3-abstract-full').style.display = 'none'; document.getElementById('1307.5445v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.6212">arXiv:1212.6212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.6212">pdf</a>, <a href="https://arxiv.org/format/1212.6212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.223002">10.1103/PhysRevLett.110.223002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating polaron transitions with polar molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Herrera%2C+F">Felipe Herrera</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Krems%2C+R+V">Roman V. Krems</a>, <a href="/search/physics?searchtype=author&amp;query=Berciu%2C+M">Mona Berciu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.6212v2-abstract-short" style="display: inline;"> We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. Our results indicate that the physics of realistic mixed polaron models is much richer than that of simplified model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6212v2-abstract-full').style.display = 'inline'; document.getElementById('1212.6212v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.6212v2-abstract-full" style="display: none;"> We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. Our results indicate that the physics of realistic mixed polaron models is much richer than that of simplified models. We then show that ultracold molecules trapped in optical lattices can be used to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experimental set-ups place them in the region where one of the transitions occurs. We propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6212v2-abstract-full').style.display = 'none'; document.getElementById('1212.6212v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures (corrected imprecision in the title and added supplementary info section)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 223002 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.0506">arXiv:0907.0506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.0506">pdf</a>, <a href="https://arxiv.org/format/0907.0506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.80.022712">10.1103/PhysRevA.80.022712 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum diffractive collisions using shallow atomic traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fagnan%2C+D+E">David E. Fagnan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jicheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chenchong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Djuricanin%2C+P">Pavle Djuricanin</a>, <a href="/search/physics?searchtype=author&amp;query=Klappauf%2C+B+G">Bruce G. Klappauf</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+J+L">James L. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.0506v1-abstract-short" style="display: inline;"> We present measurements and calculations of the trap loss rate for laser cooled Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap when exposed to a room temperature background gas of Ar. We study the loss rate as a function of trap depth and find that copious glancing elastic collisions, which occur in the so-called quantum-diffractive regime and impart very little energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0506v1-abstract-full').style.display = 'inline'; document.getElementById('0907.0506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.0506v1-abstract-full" style="display: none;"> We present measurements and calculations of the trap loss rate for laser cooled Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap when exposed to a room temperature background gas of Ar. We study the loss rate as a function of trap depth and find that copious glancing elastic collisions, which occur in the so-called quantum-diffractive regime and impart very little energy to the trapped atoms, result in significant differences in the loss rate for the MOT compared to a pure magnetic trap due solely to the difference in potential depth. This finding highlights the importance of knowing the trap depth when attempting to infer the total collision cross section from measurements of trap loss rates. Moreover, this variation of trap loss rate with trap depth can be used to extract information about the differential cross section. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0506v1-abstract-full').style.display = 'none'; document.getElementById('0907.0506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.A. 80, 022712 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0103085">arXiv:physics/0103085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0103085">pdf</a>, <a href="https://arxiv.org/ps/physics/0103085">ps</a>, <a href="https://arxiv.org/format/physics/0103085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s100530170171">10.1007/s100530170171 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Atom Faucet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wohlleben%2C+W">W. Wohlleben</a>, <a href="/search/physics?searchtype=author&amp;query=Chevy%2C+F">F. Chevy</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K">K. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Dalibard%2C+J">J. Dalibard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0103085v1-abstract-short" style="display: inline;"> We have constructed and modeled a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap, a thin laser beam extracts a continuous jet of cold rubidium atoms. In this setup, the extraction column that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. For detailed analysis, we present a simple 3D nume&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0103085v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0103085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0103085v1-abstract-full" style="display: none;"> We have constructed and modeled a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap, a thin laser beam extracts a continuous jet of cold rubidium atoms. In this setup, the extraction column that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. For detailed analysis, we present a simple 3D numerical simulation of the atomic motion in the presence of multiple saturating laser fields combined with an inhomogeneous magnetic field. At a pressure of $P_{\rm Rb87}=1 \times 10^{-8}$ mbar, the moderate laser power of 10 mW per beam generates a jet of flux $桅=1.3\times 10^8$ atoms/s with a mean velocity of 14 m/s and a divergence of $&lt;20$ mrad. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0103085v1-abstract-full').style.display = 'none'; document.getElementById('physics/0103085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to EPJD. 1 TeX file (EPJ format), 7 pictures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10