CINXE.COM
A. Aligia | Universidad Nacional de Cuyo - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>A. Aligia | Universidad Nacional de Cuyo - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Aafc2ElwpDgCbkQWsG1FnHR8U0vqtYfDSeD8h58rn_0AI6Oxt12IIM_HBZ22mli_UCrKMXz0VKEOcC6HB08IYA" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia","sameAs":[]},"dateCreated":"2015-06-22T11:27:22-07:00","dateModified":"2024-11-13T04:53:35-08:00","name":"A. Aligia","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="a. aligia" /> <meta name="description" content="A. Aligia, Universidad Nacional de Cuyo: 28 Followers, 12 Following, 107 Research papers. Research interests: Semiconductor Nanostructures, Noise, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fc9704ab29969ace70ae5a7183a1ea87c53b7b1c'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13885,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286450408,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743944184000); window.Aedu.timeDifference = new Date().getTime() - 1743944184000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7a64a3c38a29bc41c7f849e23ebd5bcb2b2df1201e0997a11aeca732433c8f4f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-fcdc3d92f84da311a1719c39a9ce23e4fc404efc061db3295349654890f352b9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uncu.academia.edu/AAAligia" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-f7aa9c07f7280b761db42ad8596e5fda81657e2511386a62cbe852b9a6f8fa36.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":398952,"name":"Instituto Balseiro","url":"https://uncu.academia.edu/Departments/Instituto_Balseiro/Documents","university":{"id":2129,"name":"Universidad Nacional de Cuyo","url":"https://uncu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":4092,"name":"Semiconductor Nanostructures","url":"https://www.academia.edu/Documents/in/Semiconductor_Nanostructures"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":19284,"name":"Nanoscale heat transfer","url":"https://www.academia.edu/Documents/in/Nanoscale_heat_transfer"},{"id":104775,"name":"Pumps","url":"https://www.academia.edu/Documents/in/Pumps"},{"id":51754,"name":"Dualism","url":"https://www.academia.edu/Documents/in/Dualism"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uncu.academia.edu/AAAligia","location":"/AAAligia","scheme":"https","host":"uncu.academia.edu","port":null,"pathname":"/AAAligia","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-49668a0f-6617-4148-93ab-cb49504fa2b2"></div> <div id="ProfileCheckPaperUpdate-react-component-49668a0f-6617-4148-93ab-cb49504fa2b2"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">A. Aligia</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uncu.academia.edu/">Universidad Nacional de Cuyo</a>, <a class="u-tcGrayDarker" href="https://uncu.academia.edu/Departments/Instituto_Balseiro/Documents">Instituto Balseiro</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="A." data-follow-user-id="32436904" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32436904"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">28</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">12</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uba.academia.edu/LilianaArrachea"><img class="profile-avatar u-positionAbsolute" alt="Liliana Arrachea related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uba.academia.edu/LilianaArrachea">Liliana Arrachea</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad de Buenos Aires</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/ArmandoAligia"><img class="profile-avatar u-positionAbsolute" alt="Armando Aligia related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/32300278/17117267/17276633/s200_armando.aligia.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ArmandoAligia">Armando Aligia</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/KarenHallberg"><img class="profile-avatar u-positionAbsolute" alt="Karen Hallberg related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/30330504/8789118/9814122/s200_karen.hallberg.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/KarenHallberg">Karen Hallberg</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/francescabattista6"><img class="profile-avatar u-positionAbsolute" alt="francesca battista related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/126580107/42324289/33999545/s200_francesca.battista.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/francescabattista6">francesca battista</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/GeorgeJaparidze"><img class="profile-avatar u-positionAbsolute" alt="George Japaridze related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/53684936/71493802/59939485/s200_george.japaridze.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GeorgeJaparidze">George Japaridze</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/Dobry"><img class="profile-avatar u-positionAbsolute" alt="A. Dobry related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/32492810/94592955/83547937/s200_a..dobry.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/Dobry">A. Dobry</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://illinois.academia.edu/StephanieLaw"><img class="profile-avatar u-positionAbsolute" alt="Stephanie Law related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://illinois.academia.edu/StephanieLaw">Stephanie Law</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Illinois at Urbana-Champaign</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AlbertoAnfossi"><img class="profile-avatar u-positionAbsolute" alt="Alberto Anfossi related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AlbertoAnfossi">Alberto Anfossi</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/FOrtolani2"><img class="profile-avatar u-positionAbsolute" alt="F. Ortolani related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/FOrtolani2">F. Ortolani</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DaisyLuz"><img class="profile-avatar u-positionAbsolute" alt="Daisy Luz related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DaisyLuz">Daisy Luz</a></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32436904" href="https://www.academia.edu/Documents/in/Semiconductor_Nanostructures"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uncu.academia.edu/AAAligia","location":"/AAAligia","scheme":"https","host":"uncu.academia.edu","port":null,"pathname":"/AAAligia","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Semiconductor Nanostructures"]}" data-trace="false" data-dom-id="Pill-react-component-ad02022a-642f-4b8a-815e-846bf2e2b527"></div> <div id="Pill-react-component-ad02022a-642f-4b8a-815e-846bf2e2b527"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32436904" href="https://www.academia.edu/Documents/in/Nanoscale_heat_transfer"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Nanoscale heat transfer"]}" data-trace="false" data-dom-id="Pill-react-component-d7b0b0a2-c86b-449d-ac2c-e4539899cda1"></div> <div id="Pill-react-component-d7b0b0a2-c86b-449d-ac2c-e4539899cda1"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by A. Aligia</h3></div><div class="js-work-strip profile--work_container" data-work-id="112234015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model"><img alt="Research paper thumbnail of Superconductivity in a generalized Hubbard model" class="work-thumbnail" src="https://attachments.academia-assets.com/109526632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model">Superconductivity in a generalized Hubbard model</a></div><div class="wp-workCard_item"><span>Physica C: Superconductivity</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-nei...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB > tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32e67e4e61e97cbfc747359a28a2c0ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":109526632,"asset_id":112234015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/109526632/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112234015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112234015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112234015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112234015]").text(description); $(".js-view-count[data-work-id=112234015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112234015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112234015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32e67e4e61e97cbfc747359a28a2c0ca" } } $('.js-work-strip[data-work-id=112234015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112234015,"title":"Superconductivity in a generalized Hubbard model","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB \u003e tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physica C: Superconductivity","grobid_abstract_attachment_id":109526632},"translated_abstract":null,"internal_url":"https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model","translated_internal_url":"","created_at":"2023-12-24T18:22:00.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109526632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109526632/thumbnails/1.jpg","file_name":"s0921-453428972901582-720231225-1-ak049s.pdf","download_url":"https://www.academia.edu/attachments/109526632/download_file","bulk_download_file_name":"Superconductivity_in_a_generalized_Hubba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109526632/s0921-453428972901582-720231225-1-ak049s-libre.pdf?1703472976=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_in_a_generalized_Hubba.pdf\u0026Expires=1743936385\u0026Signature=FSFOZpn1e0xaP7zFI3EWs4Eup4vEaNJYV4zh03pVYAfK-tblzB0YztYuy9MJIhUUraFirh0zhGW20Ab8mIyJfxFapEx8VK-snYV2GxI9gMR78yx-MrNnRwD35zXoZxrx9cuSH1hhUsEAj~vNINfRroyoMiAd1GfWVJst12eulJiPTHvow0H0-QvOqWj1-vNR9cP4Fcgd0EaS~F3ijjmvwQJ9V~R8PCMr7xvq9DlX2dk1vQfxUfjyW37q64sSej5Hxg3hLoqoF~G-zYI7ZGaTtk9~2Ckjywu6P~zbTHKluRxvKON0LYoOqMkK2wGliGwtmXFWSYhQq5aX-iyiCpe1tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Superconductivity_in_a_generalized_Hubbard_model","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB \u003e tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":109526632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109526632/thumbnails/1.jpg","file_name":"s0921-453428972901582-720231225-1-ak049s.pdf","download_url":"https://www.academia.edu/attachments/109526632/download_file","bulk_download_file_name":"Superconductivity_in_a_generalized_Hubba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109526632/s0921-453428972901582-720231225-1-ak049s-libre.pdf?1703472976=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_in_a_generalized_Hubba.pdf\u0026Expires=1743936385\u0026Signature=FSFOZpn1e0xaP7zFI3EWs4Eup4vEaNJYV4zh03pVYAfK-tblzB0YztYuy9MJIhUUraFirh0zhGW20Ab8mIyJfxFapEx8VK-snYV2GxI9gMR78yx-MrNnRwD35zXoZxrx9cuSH1hhUsEAj~vNINfRroyoMiAd1GfWVJst12eulJiPTHvow0H0-QvOqWj1-vNR9cP4Fcgd0EaS~F3ijjmvwQJ9V~R8PCMr7xvq9DlX2dk1vQfxUfjyW37q64sSej5Hxg3hLoqoF~G-zYI7ZGaTtk9~2Ckjywu6P~zbTHKluRxvKON0LYoOqMkK2wGliGwtmXFWSYhQq5aX-iyiCpe1tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":732601,"name":"Square Lattice","url":"https://www.academia.edu/Documents/in/Square_Lattice"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":1151194,"name":"Mean Field Theory","url":"https://www.academia.edu/Documents/in/Mean_Field_Theory"},{"id":1220891,"name":"Antiferromagnetism","url":"https://www.academia.edu/Documents/in/Antiferromagnetism"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-112234015-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="83666860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity"><img alt="Research paper thumbnail of Does long-range antiferromagnetism help or inhibit superconductivity?" class="work-thumbnail" src="https://attachments.academia-assets.com/88936346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity">Does long-range antiferromagnetism help or inhibit superconductivity?</a></div><div class="wp-workCard_item"><span>Physica C: Superconductivity</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the possible existence of a superconducting state in a background with long-range anti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f43e645f22c08b06d3a313c0bf5df5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88936346,"asset_id":83666860,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88936346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83666860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83666860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83666860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83666860]").text(description); $(".js-view-count[data-work-id=83666860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83666860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83666860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f43e645f22c08b06d3a313c0bf5df5b" } } $('.js-work-strip[data-work-id=83666860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83666860,"title":"Does long-range antiferromagnetism help or inhibit superconductivity?","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Antiferromagnetism's Impact on Superconductivity","grobid_abstract":"We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physica C: Superconductivity","grobid_abstract_attachment_id":88936346},"translated_abstract":null,"internal_url":"https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity","translated_internal_url":"","created_at":"2022-07-24T14:20:15.864-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88936346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88936346/thumbnails/1.jpg","file_name":"9805198.pdf","download_url":"https://www.academia.edu/attachments/88936346/download_file","bulk_download_file_name":"Does_long_range_antiferromagnetism_help.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88936346/9805198-libre.pdf?1658697718=\u0026response-content-disposition=attachment%3B+filename%3DDoes_long_range_antiferromagnetism_help.pdf\u0026Expires=1743936385\u0026Signature=BRpOoYjymB4dG5uwfGFpjiqfFQno9tG6qyLOcAphb17oeWNd09vAeK6YjF9q9ysp34DWaaBY~-02iYnNDoyGmwpvH4KrA4~cFQq4yr1UYLhoVcTaxAAj0g-K2FbTonmbk2TS-GCjKHjy8ByQTV~9qcg47eXgtMUiksWmAEztE~sfnhNrAMrOJ3Z5k6zhDiQjGzEboMfxbY~JjcAQmeoNEaMq02S9cOr~HDLcMWGQHSma7sEmkaanncsgku81kI4PQT5ugwaapqqsWTEayDJgvmbdg2OxQj~YJDMDM-JFdS3BiaJeD5G83ymzJ26gvgpOT4XdXrRuCf2VAzhHd3Ga6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":88936346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88936346/thumbnails/1.jpg","file_name":"9805198.pdf","download_url":"https://www.academia.edu/attachments/88936346/download_file","bulk_download_file_name":"Does_long_range_antiferromagnetism_help.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88936346/9805198-libre.pdf?1658697718=\u0026response-content-disposition=attachment%3B+filename%3DDoes_long_range_antiferromagnetism_help.pdf\u0026Expires=1743936385\u0026Signature=BRpOoYjymB4dG5uwfGFpjiqfFQno9tG6qyLOcAphb17oeWNd09vAeK6YjF9q9ysp34DWaaBY~-02iYnNDoyGmwpvH4KrA4~cFQq4yr1UYLhoVcTaxAAj0g-K2FbTonmbk2TS-GCjKHjy8ByQTV~9qcg47eXgtMUiksWmAEztE~sfnhNrAMrOJ3Z5k6zhDiQjGzEboMfxbY~JjcAQmeoNEaMq02S9cOr~HDLcMWGQHSma7sEmkaanncsgku81kI4PQT5ugwaapqqsWTEayDJgvmbdg2OxQj~YJDMDM-JFdS3BiaJeD5G83ymzJ26gvgpOT4XdXrRuCf2VAzhHd3Ga6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":423660,"name":"PKS","url":"https://www.academia.edu/Documents/in/PKS"},{"id":1220891,"name":"Antiferromagnetism","url":"https://www.academia.edu/Documents/in/Antiferromagnetism"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-83666860-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="78456456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model"><img alt="Research paper thumbnail of Specific heat of magnetic Ce alloys within a two-component model" class="work-thumbnail" src="https://attachments.academia-assets.com/85497299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model">Specific heat of magnetic Ce alloys within a two-component model</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6facbf5bfbc65d54433e4d312cfea1ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85497299,"asset_id":78456456,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85497299/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78456456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78456456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78456456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78456456]").text(description); $(".js-view-count[data-work-id=78456456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78456456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78456456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6facbf5bfbc65d54433e4d312cfea1ce" } } $('.js-work-strip[data-work-id=78456456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78456456,"title":"Specific heat of magnetic Ce alloys within a two-component model","translated_title":"","metadata":{"publisher":"Springer Nature","ai_title_tag":"Specific Heat in Magnetic Ce Alloys Model","grobid_abstract":"We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":85497299},"translated_abstract":null,"internal_url":"https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model","translated_internal_url":"","created_at":"2022-05-04T12:39:31.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85497299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85497299/thumbnails/1.jpg","file_name":"epjb_2Fe2004-00319-220220504-1-1l55sl.pdf","download_url":"https://www.academia.edu/attachments/85497299/download_file","bulk_download_file_name":"Specific_heat_of_magnetic_Ce_alloys_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85497299/epjb_2Fe2004-00319-220220504-1-1l55sl-libre.pdf?1651693956=\u0026response-content-disposition=attachment%3B+filename%3DSpecific_heat_of_magnetic_Ce_alloys_with.pdf\u0026Expires=1743936385\u0026Signature=UCnr1ILBg7enrz4ONQG1MZLL1b-MaPzs5amkUBx9LYJQoXVQn68KjpMvn1XfPA~tWXgr8MTMb2O-vmDc25zhmXdeP90~yHZZj13-8SU75aN7P1cOnz0Xe4ynnZ3QVJN-V6CqN-YN8S-TLGJKYcYr6slQZd7NEbnvEelJswuBm7v8fquDd~pSiUu9sr1lBc-ZW0CoWaS4OqitQWwmQeQUCzlT2yOtC9C-lEjZgl26DLmfzrA~vbsZ8ovGUC5J9kKOx2rjgHMYp2~u4mUKk1MpiTgYrqaSsYauoxMpH79nzMrBaF-b7lkqNxO6gSoj3Nvj-LLKhq5CPDRwjDI7q7E8Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":85497299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85497299/thumbnails/1.jpg","file_name":"epjb_2Fe2004-00319-220220504-1-1l55sl.pdf","download_url":"https://www.academia.edu/attachments/85497299/download_file","bulk_download_file_name":"Specific_heat_of_magnetic_Ce_alloys_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85497299/epjb_2Fe2004-00319-220220504-1-1l55sl-libre.pdf?1651693956=\u0026response-content-disposition=attachment%3B+filename%3DSpecific_heat_of_magnetic_Ce_alloys_with.pdf\u0026Expires=1743936385\u0026Signature=UCnr1ILBg7enrz4ONQG1MZLL1b-MaPzs5amkUBx9LYJQoXVQn68KjpMvn1XfPA~tWXgr8MTMb2O-vmDc25zhmXdeP90~yHZZj13-8SU75aN7P1cOnz0Xe4ynnZ3QVJN-V6CqN-YN8S-TLGJKYcYr6slQZd7NEbnvEelJswuBm7v8fquDd~pSiUu9sr1lBc-ZW0CoWaS4OqitQWwmQeQUCzlT2yOtC9C-lEjZgl26DLmfzrA~vbsZ8ovGUC5J9kKOx2rjgHMYp2~u4mUKk1MpiTgYrqaSsYauoxMpH79nzMrBaF-b7lkqNxO6gSoj3Nvj-LLKhq5CPDRwjDI7q7E8Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99372,"name":"Theoretical Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Condensed_Matter_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-78456456-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77769708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping"><img alt="Research paper thumbnail of Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping" class="work-thumbnail" src="https://attachments.academia-assets.com/85047097/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping">Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V res...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB < tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d434e13fd6f8f7ab830e99daad50b12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85047097,"asset_id":77769708,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85047097/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77769708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77769708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77769708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77769708]").text(description); $(".js-view-count[data-work-id=77769708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77769708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77769708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d434e13fd6f8f7ab830e99daad50b12" } } $('.js-work-strip[data-work-id=77769708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77769708,"title":"Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB \u003c tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":85047097},"translated_abstract":null,"internal_url":"https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping","translated_internal_url":"","created_at":"2022-04-27T04:19:57.614-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85047097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85047097/thumbnails/1.jpg","file_name":"9803034.pdf","download_url":"https://www.academia.edu/attachments/85047097/download_file","bulk_download_file_name":"Superconductivity_with_s_and_p_symmetrie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85047097/9803034-libre.pdf?1651059008=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_with_s_and_p_symmetrie.pdf\u0026Expires=1743936385\u0026Signature=IP3ssK9BJUNYbJyIjEmhk6MEzKyIN8pQ~nXmwNt5NGV-a9yD0q634TS9z6xwNc5KQ78Di6KY1E8JBK7WuhG~Iu3ktgQo1T-a9IkYSInOT5omO6JlfSpz94HqSJpJ3v5-Ic4WSvpyOjSYXj5oCa1VxU6LOmOmtJ44fwOw4QM79n-AHaewDd0P9RCg7P2iRKRiBqdna1JYdlnlqLsx0~BOws9BWuGuo92OSgSR8s525TlqqYckv834nbjdl2EpJAlnN20IIFCHpOWCCVy0zuug73uPxPWQCf0ebVl2XbOD5fgMPRH3~bby67E~MJtRvm43GzptWhEzz49KzVSOpZJfNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB \u003c tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":85047097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85047097/thumbnails/1.jpg","file_name":"9803034.pdf","download_url":"https://www.academia.edu/attachments/85047097/download_file","bulk_download_file_name":"Superconductivity_with_s_and_p_symmetrie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85047097/9803034-libre.pdf?1651059008=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_with_s_and_p_symmetrie.pdf\u0026Expires=1743936385\u0026Signature=IP3ssK9BJUNYbJyIjEmhk6MEzKyIN8pQ~nXmwNt5NGV-a9yD0q634TS9z6xwNc5KQ78Di6KY1E8JBK7WuhG~Iu3ktgQo1T-a9IkYSInOT5omO6JlfSpz94HqSJpJ3v5-Ic4WSvpyOjSYXj5oCa1VxU6LOmOmtJ44fwOw4QM79n-AHaewDd0P9RCg7P2iRKRiBqdna1JYdlnlqLsx0~BOws9BWuGuo92OSgSR8s525TlqqYckv834nbjdl2EpJAlnN20IIFCHpOWCCVy0zuug73uPxPWQCf0ebVl2XbOD5fgMPRH3~bby67E~MJtRvm43GzptWhEzz49KzVSOpZJfNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":289371,"name":"Learning Theory and Modeling","url":"https://www.academia.edu/Documents/in/Learning_Theory_and_Modeling"},{"id":398719,"name":"Hartree fock method","url":"https://www.academia.edu/Documents/in/Hartree_fock_method"},{"id":403192,"name":"Berry phase","url":"https://www.academia.edu/Documents/in/Berry_phase"},{"id":491137,"name":"Heavy Fermion","url":"https://www.academia.edu/Documents/in/Heavy_Fermion"},{"id":629732,"name":"Nearest Neighbour","url":"https://www.academia.edu/Documents/in/Nearest_Neighbour"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":2797475,"name":" Simple cubic","url":"https://www.academia.edu/Documents/in/Simple_cubic"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77769708-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76993036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction"><img alt="Research paper thumbnail of Exact Solution of a Hubbard Chain with Bond-Charge Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/84927596/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction">Exact Solution of a Hubbard Chain with Bond-Charge Interaction</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge intera...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a93988f661c42f1cd221924ac6717614" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84927596,"asset_id":76993036,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84927596/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76993036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76993036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76993036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76993036]").text(description); $(".js-view-count[data-work-id=76993036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76993036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76993036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a93988f661c42f1cd221924ac6717614" } } $('.js-work-strip[data-work-id=76993036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76993036,"title":"Exact Solution of a Hubbard Chain with Bond-Charge Interaction","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Hubbard Chain Solution with Bond-Charge Interactions","grobid_abstract":"We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":84927596},"translated_abstract":null,"internal_url":"https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction","translated_internal_url":"","created_at":"2022-04-19T13:44:16.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84927596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84927596/thumbnails/1.jpg","file_name":"9406122v1.pdf","download_url":"https://www.academia.edu/attachments/84927596/download_file","bulk_download_file_name":"Exact_Solution_of_a_Hubbard_Chain_with_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84927596/9406122v1-libre.pdf?1650938983=\u0026response-content-disposition=attachment%3B+filename%3DExact_Solution_of_a_Hubbard_Chain_with_B.pdf\u0026Expires=1743936385\u0026Signature=cW3-lwR-Ukh3mj7r5YSTVk2MTlrlJY4pBnxdLMTdADBcr0Bz1XYmIgU2g40Ag3HXgorT5Y0cadLVxtBaZGC7lrPwvpQqlkUx2ytLTP30eNp9kM3mGe5btps9Yk870y2qKxnSFEyr1oLXpKmiRtZQ2ui9kmXlw4I3kweN9-0xm5BPvTFojm28XTaqA4R7LgmvY9kWkuTx0DNCt-TI4mfpsWbxR9cS80Y3mCozndAoOnS5GWttDMyFeMoSEIfadBswdePJ3kD8zjekp0BNPK8Tu1L7NaFSgQnQolCCtnl~Ah-972HBYGwCLG6OwsR0RknO13p7vShzFLJHdM63PSgapg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":84927596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84927596/thumbnails/1.jpg","file_name":"9406122v1.pdf","download_url":"https://www.academia.edu/attachments/84927596/download_file","bulk_download_file_name":"Exact_Solution_of_a_Hubbard_Chain_with_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84927596/9406122v1-libre.pdf?1650938983=\u0026response-content-disposition=attachment%3B+filename%3DExact_Solution_of_a_Hubbard_Chain_with_B.pdf\u0026Expires=1743936385\u0026Signature=cW3-lwR-Ukh3mj7r5YSTVk2MTlrlJY4pBnxdLMTdADBcr0Bz1XYmIgU2g40Ag3HXgorT5Y0cadLVxtBaZGC7lrPwvpQqlkUx2ytLTP30eNp9kM3mGe5btps9Yk870y2qKxnSFEyr1oLXpKmiRtZQ2ui9kmXlw4I3kweN9-0xm5BPvTFojm28XTaqA4R7LgmvY9kWkuTx0DNCt-TI4mfpsWbxR9cS80Y3mCozndAoOnS5GWttDMyFeMoSEIfadBswdePJ3kD8zjekp0BNPK8Tu1L7NaFSgQnQolCCtnl~Ah-972HBYGwCLG6OwsR0RknO13p7vShzFLJHdM63PSgapg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":88255,"name":"Mott metal-insulator transition","url":"https://www.academia.edu/Documents/in/Mott_metal-insulator_transition"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":289371,"name":"Learning Theory and Modeling","url":"https://www.academia.edu/Documents/in/Learning_Theory_and_Modeling"},{"id":354685,"name":"Mott Transition","url":"https://www.academia.edu/Documents/in/Mott_Transition"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":436755,"name":"Degeneration","url":"https://www.academia.edu/Documents/in/Degeneration"},{"id":491137,"name":"Heavy Fermion","url":"https://www.academia.edu/Documents/in/Heavy_Fermion"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":1868639,"name":"Exact solution methods","url":"https://www.academia.edu/Documents/in/Exact_solution_methods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76993036-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76993035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction"><img alt="Research paper thumbnail of Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/84631506/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction">Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge inte...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U > 0 at half-filling. For large enough X < t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bd810f5160e3b41acf2eacd729593039" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84631506,"asset_id":76993035,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84631506/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76993035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76993035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76993035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76993035]").text(description); $(".js-view-count[data-work-id=76993035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76993035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76993035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bd810f5160e3b41acf2eacd729593039" } } $('.js-work-strip[data-work-id=76993035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76993035,"title":"Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U \u003e 0 at half-filling. For large enough X \u003c t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":84631506},"translated_abstract":null,"internal_url":"https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction","translated_internal_url":"","created_at":"2022-04-19T13:44:16.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84631506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84631506/thumbnails/1.jpg","file_name":"PRL_202007.pdf","download_url":"https://www.academia.edu/attachments/84631506/download_file","bulk_download_file_name":"Incommmensurability_and_Unconventional_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84631506/PRL_202007-libre.pdf?1650563609=\u0026response-content-disposition=attachment%3B+filename%3DIncommmensurability_and_Unconventional_S.pdf\u0026Expires=1743936386\u0026Signature=d1Eir7IGo2p~YnK0zc4wLvepV4qZvi5hAbI5YBz5xliBCV016MzdS9ZYSjPoSj5K8zAeRlRZj5wXTZOyptn0bm7TXPe0JCewj~aCIiodX-dPDr3wpFU~Bhnjn36EQy--My1jm8dkk2WlYUEww4-~xiR1DBJcgskzsZWTbyVHqb5PHKtGSKZUTObSxpk6awi8jtTRDJYUrptPvoKZnShhrshHBEgx6zQkeGu7XRlJE5FBV0uXufPwmDQ3uFWMBW3qZCyHX9ZkhQkynfZXRgIeYdAiogAqcFIOH-PUYTsvJm-dk0k4gXuhrX-z0Q6Wric14V6lINOIeP0b5GEERHaweQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U \u003e 0 at half-filling. For large enough X \u003c t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":84631506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84631506/thumbnails/1.jpg","file_name":"PRL_202007.pdf","download_url":"https://www.academia.edu/attachments/84631506/download_file","bulk_download_file_name":"Incommmensurability_and_Unconventional_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84631506/PRL_202007-libre.pdf?1650563609=\u0026response-content-disposition=attachment%3B+filename%3DIncommmensurability_and_Unconventional_S.pdf\u0026Expires=1743936386\u0026Signature=d1Eir7IGo2p~YnK0zc4wLvepV4qZvi5hAbI5YBz5xliBCV016MzdS9ZYSjPoSj5K8zAeRlRZj5wXTZOyptn0bm7TXPe0JCewj~aCIiodX-dPDr3wpFU~Bhnjn36EQy--My1jm8dkk2WlYUEww4-~xiR1DBJcgskzsZWTbyVHqb5PHKtGSKZUTObSxpk6awi8jtTRDJYUrptPvoKZnShhrshHBEgx6zQkeGu7XRlJE5FBV0uXufPwmDQ3uFWMBW3qZCyHX9ZkhQkynfZXRgIeYdAiogAqcFIOH-PUYTsvJm-dk0k4gXuhrX-z0Q6Wric14V6lINOIeP0b5GEERHaweQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":88255,"name":"Mott metal-insulator transition","url":"https://www.academia.edu/Documents/in/Mott_metal-insulator_transition"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125513,"name":"Superconductors","url":"https://www.academia.edu/Documents/in/Superconductors"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76993035-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73094727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73094727/Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates"><img alt="Research paper thumbnail of Pairing Correlations in a Generalized Hubbard Model for the Cuprates" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pairing Correlations in a Generalized Hubbard Model for the Cuprates</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t&#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t&#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73094727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73094727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73094727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73094727]").text(description); $(".js-view-count[data-work-id=73094727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73094727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73094727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73094727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73094727,"title":"Pairing Correlations in a Generalized Hubbard Model for the Cuprates","translated_title":"","metadata":{"abstract":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","publication_date":{"day":1,"month":10,"year":1999,"errors":{}}},"translated_abstract":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","internal_url":"https://www.academia.edu/73094727/Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates","translated_internal_url":"","created_at":"2022-03-05T03:14:39.986-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"}],"urls":[{"id":18263353,"url":"https://core.ac.uk/download/pdf/2415710.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73094727-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="65463052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates"><img alt="Research paper thumbnail of Pairing correlations in a generalized Hubbard model for the cuprates" class="work-thumbnail" src="https://attachments.academia-assets.com/77048911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates">Pairing correlations in a generalized Hubbard model for the cuprates</a></div><div class="wp-workCard_item"><span>Physical Review B - PHYS REV B</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF&#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t&#x27;. The vertex contributions to the PCF&#x27;s are significantly enhanced, relative to the t-t&#x27;-U model. The behavior of the PCF&#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ccb421edec686e95208b9e1bfbc8f0c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":77048911,"asset_id":65463052,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/77048911/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65463052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65463052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65463052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65463052]").text(description); $(".js-view-count[data-work-id=65463052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65463052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65463052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ccb421edec686e95208b9e1bfbc8f0c" } } $('.js-work-strip[data-work-id=65463052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65463052,"title":"Pairing correlations in a generalized Hubbard model for the cuprates","translated_title":"","metadata":{"abstract":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physical Review B - PHYS REV B"},"translated_abstract":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","internal_url":"https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates","translated_internal_url":"","created_at":"2021-12-22T02:41:19.840-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77048911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77048911/thumbnails/1.jpg","file_name":"9910012.pdf","download_url":"https://www.academia.edu/attachments/77048911/download_file","bulk_download_file_name":"Pairing_correlations_in_a_generalized_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77048911/9910012-libre.pdf?1640180348=\u0026response-content-disposition=attachment%3B+filename%3DPairing_correlations_in_a_generalized_Hu.pdf\u0026Expires=1743936386\u0026Signature=HtY-kVSa4cd2lKSPzZOI1OwnU67~RQnX7DljNHd4lta1WxruVN-EMlQnAL0r-mxMQxAHza2RmpFJgCqIagyuf21XJ5pRAq1rKnyK-CQzebRbxhJfhMjXbUeEa0C1ufYOVuylN-F-4uvIZhIezgu7XPCuofHbu-L-Ke3omLOlP13bc4d9XFSB8MWyNwNvFr87f2y~at32gRz4c397ubSmsPCdiWIPh86ZwhkHQxw4slH3r4nrHiD18CpQ~0Gjvy~VMkeO-~R3l3mX1NlKIjIha2WQvJMg9zEm2qI7NkiJhx~90VJDEmh1SFhiJj10KPBtxdTLP~J7R0e3Fqgnf1tdQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":77048911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77048911/thumbnails/1.jpg","file_name":"9910012.pdf","download_url":"https://www.academia.edu/attachments/77048911/download_file","bulk_download_file_name":"Pairing_correlations_in_a_generalized_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77048911/9910012-libre.pdf?1640180348=\u0026response-content-disposition=attachment%3B+filename%3DPairing_correlations_in_a_generalized_Hu.pdf\u0026Expires=1743936386\u0026Signature=HtY-kVSa4cd2lKSPzZOI1OwnU67~RQnX7DljNHd4lta1WxruVN-EMlQnAL0r-mxMQxAHza2RmpFJgCqIagyuf21XJ5pRAq1rKnyK-CQzebRbxhJfhMjXbUeEa0C1ufYOVuylN-F-4uvIZhIezgu7XPCuofHbu-L-Ke3omLOlP13bc4d9XFSB8MWyNwNvFr87f2y~at32gRz4c397ubSmsPCdiWIPh86ZwhkHQxw4slH3r4nrHiD18CpQ~0Gjvy~VMkeO-~R3l3mX1NlKIjIha2WQvJMg9zEm2qI7NkiJhx~90VJDEmh1SFhiJj10KPBtxdTLP~J7R0e3Fqgnf1tdQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"}],"urls":[{"id":15519625,"url":"http://adsabs.harvard.edu/abs/1999cond.mat.10012A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-65463052-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire"><img alt="Research paper thumbnail of Exact analytical solution of a time-reversal-invariant topological superconducting wire" class="work-thumbnail" src="https://attachments.academia-assets.com/68034569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire">Exact analytical solution of a time-reversal-invariant topological superconducting wire</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model proposed before for a time-reversal-invariant topological superconductor (TRI...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called "time-reversal anomaly". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d62043adeb93b5a8670d9cffe6a20fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034569,"asset_id":49813650,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813650]").text(description); $(".js-view-count[data-work-id=49813650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d62043adeb93b5a8670d9cffe6a20fc" } } $('.js-work-strip[data-work-id=49813650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813650,"title":"Exact analytical solution of a time-reversal-invariant topological superconducting wire","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Analytical Solution of Topological Superconducting Wire","grobid_abstract":"We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called \"time-reversal anomaly\". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034569},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire","translated_internal_url":"","created_at":"2021-07-12T10:30:46.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034569/thumbnails/1.jpg","file_name":"1905.pdf","download_url":"https://www.academia.edu/attachments/68034569/download_file","bulk_download_file_name":"Exact_analytical_solution_of_a_time_reve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034569/1905-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DExact_analytical_solution_of_a_time_reve.pdf\u0026Expires=1743936386\u0026Signature=YhquFy8meP~ZbH94TfjmJNiUVPT0Xx3tN7nll5BWM74l4okh~4aRzo7Jpn1DGcFhSyageXyQeR4b280Lj2KFya47JxcqZVbnduiISqh~Qrclyz4BH~WOBAa4S6BIO6CZ-Q5czUTapsnYACB0nT-u~0MdOvfcO8gJFBkQvyVlW9FU0yODq7JtUyXgBOb4YEmhEiFdf4X08VcVcT5PHlIh4iwNFX-CEKa7sjACCwlivecQZYyow4EnSuYB-LAgtfWShOUMEdpr2WPEQs2eb014blcAeB2ahP1Sx-nUvr0fyx9jxu4LosTaRyz8XWy6Go1zMVcic~iDTt6oAyjVoJn58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called \"time-reversal anomaly\". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034569/thumbnails/1.jpg","file_name":"1905.pdf","download_url":"https://www.academia.edu/attachments/68034569/download_file","bulk_download_file_name":"Exact_analytical_solution_of_a_time_reve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034569/1905-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DExact_analytical_solution_of_a_time_reve.pdf\u0026Expires=1743936386\u0026Signature=YhquFy8meP~ZbH94TfjmJNiUVPT0Xx3tN7nll5BWM74l4okh~4aRzo7Jpn1DGcFhSyageXyQeR4b280Lj2KFya47JxcqZVbnduiISqh~Qrclyz4BH~WOBAa4S6BIO6CZ-Q5czUTapsnYACB0nT-u~0MdOvfcO8gJFBkQvyVlW9FU0yODq7JtUyXgBOb4YEmhEiFdf4X08VcVcT5PHlIh4iwNFX-CEKa7sjACCwlivecQZYyow4EnSuYB-LAgtfWShOUMEdpr2WPEQs2eb014blcAeB2ahP1Sx-nUvr0fyx9jxu4LosTaRyz8XWy6Go1zMVcic~iDTt6oAyjVoJn58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422596,"url":"https://link.aps.org/article/10.1103/PhysRevB.100.115413"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813650-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions"><img alt="Research paper thumbnail of Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/68034579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions">Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions</a></div><div class="wp-workCard_item"><span>Journal of Physics: Condensed Matter</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the transport through a molecular junction exhibiting interference effects. We show that...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813649-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813649-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864224/figure-1-color-online-differential-conductance-as-function"><img alt="FIG. 1: (Color online) Differential conductance as a function of level splitting for \ = 0 and AX = V6 x 1077. Other param- eters are D = 1, 0 = 0.1, A; = 0.075 and T = 0.1Tx, being Te ~ 4x 10~%. Triangles correspond to \ = 0 displaced in dres = 0.005. Go = 2e? /h. (details in text below) The inset shows a scheme of the electronic levels and their coupling to the leads. Renormalization of 6 by the EVI " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864232/figure-2-color-online-spectral-density-of-the-two-levels-for"><img alt="FIG. 2: (Color online) Spectral density of the two levels for X= V10 x 10-7, A = 0.05, 6 = dres = 0.00903 and T = 0.177 with Te) = 7.5 x 10-*. Other parameters as in Fig. 1. The left inset includes in dashed-dot-dot line the case 4 = 6 = 0 for comparison. The right inset shows the temperature dependence of the occupations (nic). " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864240/figure-3-color-online-conductance-as-function-of-bias"><img alt="FIG. 3: (Color online) Conductance as a function of bias voltage for \ = 0, Eq = —0.4 Az = 0.05 and Ai = 0.941Az2, 6 = 0.001499 and several temperatures. The resulting Kondo temperature is Tx = 8 x 10-*. Blue circles indicate the non- interacting result at T = 0 for Eg = Ag and 6 = A; — Ag as a function of Vp/Az. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864249/figure-3-where-jr-pl-and-fw-is-the-perm-function-the"><img alt="where Jr\W) = J\Y— PL) and fw) is the Perm function. The transport properties for the non-interacting and Kondo cases are compared in Fig. 3. The conductance at low temperatures in the interacting case (black thick) and the non-interacting case (blue circles) is shown as a function of the bias voltage scaled with the relevant scale in each case: the Kondo temperature Tx in the situations is the following: we consider the interacting case for A = 0 with the same parameters of Fig. 2 but include the non-trivial renormalization of the hy- bridization A; = 0.941A. The 6 is adjusted, as for Fig. 2, to get identical occupations of both levels at ow temperatures. The situation we want to compare is for the non-interacting case with the same A;. In this case, for A; # Ag, tuning both E; one can also fix the two mean occupations (nic) = 1/4 and obtain at Vo = T = 0 perfect DESINT. Since the non-interacting spectral densities are just Lorentzian functions it turns out that (njz) = 1/4 implies E; = A;. Following known equations for the non-interacting case°*, we obtain " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864258/figure-4-kondo-temperature-as-function-of-other-param-eters"><img alt="FIG. 4: Kondo temperature as a function of 6. Other param- eters as in Fig. 2. former and the hybridization A» in the latter. In the non-interacting case, with this tuning of both energies, we realize a situation w here the device can be operated as a QuIET: changing E2 — EF; by a quantity larger than A;, a conductance of t However, since the spec jute interacting Kondo case, 1, more robust under Vj. shown in Fig. 2. he order of Go can be reached. tral densities are different, there s no emergent symmetry, perfect DESINT is rapidly lost for small V, ~ A» as shown in Fig. 2. Instead, in the the regime to operate the “many- body QulET ” is found tuning just one energy E; and perfect DESINT is obtained with a total occupancy near The conductance remains small even for V, ~ Tx and T ~ 57x. This is expected because the spectral densities of both levels are very similar, as " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864267/figure-5-color-online-zero-bias-differential-conductance-as"><img alt="FIG. 5: (Color online) Zero-bias differential conductance as a function of level splitting for strongly different lead couplings A? = 0.075, AP = 0.0025. Other parameters are Q = 0.1, d = V10 x 107? and T = TR” /20 with TR ~ 6 x 1073. The inset shows the differential conductance as a function of bias voltage for \ = 0 and two values of 6. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864276/figure-6-color-online-of-the-hamiltonian-eq-we-assume"><img alt="FIG. 6: (Color online) Scheme of the Hamiltonian Eq. (A1) We assume identical left and right leads with equal cou- pling to the two levels, and one symmetric and one an- tisymmetric molecular level with splitting 6. Specifically Vi = Ve, and V4 = —V.f?. A schematic representation of the model is in Fig. 6. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864284/figure-8-destructive-quantum-interference-in-transport"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864294/figure-7-color-online-of-the-hamiltonian-eq-then-the-model"><img alt="FIG. 7: (Color online) Scheme of the Hamiltonian Eq. (A2) Then, the model Eq. (A2) reduces to " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_009.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813649-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b59d41f4b03f5f13034f723ca1ed6998" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034579,"asset_id":49813649,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034579/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813649]").text(description); $(".js-view-count[data-work-id=49813649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b59d41f4b03f5f13034f723ca1ed6998" } } $('.js-work-strip[data-work-id=49813649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813649,"title":"Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions","translated_title":"","metadata":{"publisher":"IOP Publishing","ai_title_tag":"Quantum Interference in Molecular Juction Transport Dynamics","grobid_abstract":"We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.","publication_name":"Journal of Physics: Condensed Matter","grobid_abstract_attachment_id":68034579},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions","translated_internal_url":"","created_at":"2021-07-12T10:30:46.369-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034579/thumbnails/1.jpg","file_name":"1908.pdf","download_url":"https://www.academia.edu/attachments/68034579/download_file","bulk_download_file_name":"Destructive_quantum_interference_in_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034579/1908-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DDestructive_quantum_interference_in_tran.pdf\u0026Expires=1743936386\u0026Signature=WLBbeGbSrxRj-ym6s2E14eV9gmgkuDnGiqLRSi2FF1npcivg2cXqHRwi95LzBfnx-i4HiWB5m08-TZqfj~xf5xqkynfq4U~cgysVc18Bz3Sn1F3~Gd7dD~JArEN4hd1ov-See7G8bDM4Qcxm05aNq0cqVZoIJmWJ8VavNy40EU7mN22oslaWhb5lQ5kolqf1~bTkaii4nO-ikkiSelzdomfnvdinorDQGQiRdT-Xo4eLQUa8miqbdp18U~88OcmONqRxYHlaJ4DhKahG-aUkhTzmsW-udJfQZc3yGoyU3aJtgt2pbew4fa0kX9XdVezfEpGzH4kMi~5UbvtQGBQO4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034579/thumbnails/1.jpg","file_name":"1908.pdf","download_url":"https://www.academia.edu/attachments/68034579/download_file","bulk_download_file_name":"Destructive_quantum_interference_in_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034579/1908-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DDestructive_quantum_interference_in_tran.pdf\u0026Expires=1743936386\u0026Signature=WLBbeGbSrxRj-ym6s2E14eV9gmgkuDnGiqLRSi2FF1npcivg2cXqHRwi95LzBfnx-i4HiWB5m08-TZqfj~xf5xqkynfq4U~cgysVc18Bz3Sn1F3~Gd7dD~JArEN4hd1ov-See7G8bDM4Qcxm05aNq0cqVZoIJmWJ8VavNy40EU7mN22oslaWhb5lQ5kolqf1~bTkaii4nO-ikkiSelzdomfnvdinorDQGQiRdT-Xo4eLQUa8miqbdp18U~88OcmONqRxYHlaJ4DhKahG-aUkhTzmsW-udJfQZc3yGoyU3aJtgt2pbew4fa0kX9XdVezfEpGzH4kMi~5UbvtQGBQO4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[{"id":10422595,"url":"http://iopscience.iop.org/article/10.1088/1361-648X/ab3684"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813649-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7"><img alt="Research paper thumbnail of Spin and orbital ordering in bilayer Sr3Cr2O7" class="work-thumbnail" src="https://attachments.academia-assets.com/68034567/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7">Spin and orbital ordering in bilayer Sr3Cr2O7</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using maximally localized Wannier functions obtained from DFT calculations, we derive an effectiv...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813648-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813648-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787555/figure-1-color-online-tetragonal-structure-of-srcr-the"><img alt="FIG. 1: (Color online) Tetragonal structure of Sr3Cr207. The stacking is made of three types of layers. The unit cell (shown at the right) contains two blocks of five layers shown at the left, the second displaced in the x,y direction by (a/2,a/2) with respect to the first one. dz and d3 denote the distances Cr-Oz and Cr-O3, respectively. The ratio d3/d2 = 1.016.7! " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787563/figure-2-color-online-spin-unpolarized-band-structure-of"><img alt="FIG. 2: (Color online) Spin unpolarized band structure of Sr3Cr2O7 (left panel) along with atom-projected density of states (right panel). The bands are plotted with character in order to show the strong hybridization between Cr and O close to the Fermi energy. Red means mainly d-Cr character and blue p-O character. Also shown are the DOS projected on each non-equivalent O atom and each Cr orbital. The two horizontal dashed lines delimit the energy window where the wannierization process takes place. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787569/figure-3-color-online-isosurface-plot-of-two-maximally-lo"><img alt="FIG. 3: (Color online) Isosurface plot of two maximally lo- calized Wannier wave functions center at the Cr atom (blue circle). a) and b) shows two views of the wave function with zy symmetry, showing strong hybridization with in plane oxy- gens (O1). c) and d) shows two views of the wave function with symmetry near xz + yz. Note in d) the different hy- bridization between oxygen on top of chromium (Oz) and the one at the bottom (O3). The Sr atoms are not shown. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787576/figure-4-where-is-vector-connecting-two-nearest-cr-atoms-in"><img alt="where a is a vector connecting two nearest Cr atoms in the +z or +y direction. The hopping between tz, orbitals is mediated by Cr- O hopping through O 2p orbitals and the symmetry of the orbitals imposes restrictions on the allowed processes. As a consequence, the xy orbitals cannot hop in the z direction. Similarly the xz (yz) orbitals cannot hop in the y (a) direction. Then, the hopping term of the multiband model has the form The crystal-field splitting 6 and the hopping parame- ters tz, tp and tz, were determined from the MLWFs, as described in Section III. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787584/figure-5-up-is-the-energy-necessary-to-take-dyz-electron"><img alt="Up is the energy necessary to take a d,z (dyz) electron from the ground state of the d!,d!, (d1,d',) configu- wy xz wy “yz ration and add it to the dj,d,, (di,di.) configuration where the factor 1/4 in the first term is introduced to compensate for factors +1/4 that come from Ti, - Ta, in classical orderings and render easier the qualitative discussion below. The coefficients are " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787591/figure-6-at-this-point-we-discuss-qualitatively-the-meaning"><img alt="At this point we discuss qualitatively the meaning of Axx and the expected physics. We begin discussing the two-site vertical interactions H; [Eq. (6)]. For J = 0, all interactions are equal [see Eq. (7)]: Ig = Ip = Isr =I 2t2/Up. This means that without the spin-pseudospin interaction [gr both spins and pseudospin minimize the energy for an antiferromagmetic (AF) alignment, but the term in [gr is minimized for one ferromagnetic (FM) and the other AF alignment. As a consequence from the four classical possibilities of orienting the spin and pseudospin FM or AF, all of them are part of the degenerate ground state with energy -I/2 except the FM-FM one. This re- sult is easy to understand: the second order correction to the energy of these states contains virtual processes in which one electron in the xz (pseudospin |) or yz (pseu- dospin +) orbital and spin t or | jumps to the other site and comes back. The corresponding gain in energy is the same for any alignment of spin and pseudospin except in the case in which the same orbital with the same spin is occupied at both sites because of Pauli principle. If the xy orbitals were absent, leaving spins 1/2, this picture would not be modified by quantum fluctuations. Actu- ally in this case the model would have SU(4) symmetry with spin and pseudospin playing a similar role.!° In our actual case with S = 1, the pseudospins 1/2 are more quantum than the spins 1 and the ground state of the dimer is a pseudospin singlet and spin triplet with en- ergy (Is — 3Ip — 3Igr)/4 = —5I/4. The first excited state is a pseudospin triplet and spin singlet with energy (—2Ig + Ip — 2Igr)/4 = —31/4. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787598/figure-7-note-that-when-the-system-becomes-unsagainst"><img alt="Note that when 2B, > A,, the system becomes unstable against creation of triplet excitations of long wavelength kz, ky — 0 and Eq. (13) becomes meaningless. In general if for some parameters the assumed pseudospin or spin arrangements become unstable, the situation is detected in the numerical algorithm used to calculate the two- dimensional integral over (kz, k,) by the non-analyticity of some expression for small (kz, k,). In fact, as we show below, phase I becomes unstable near the transition to phase IT (as it might be expected). Diagonalizing the Hamiltonian by means of a standard Bogoliubov transformation, The ground-state energy be- comes " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787604/figure-8-where-is-the-number-of-sites-in-plane-and-bi"><img alt="where N is the number of sites in a plane and bi creates a spin excitation at two-dimensional position r of plane " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787610/figure-4-color-online-factor-in-which-the-vertical-hopping"><img alt="FIG. 4: (Color online) Factor in which the vertical hopping tz has to be reduced to destabilize the dimerized pseudospin singlet phase I for J = 0.7 eV. Full line denotes the crossing of the energies FE(II) = E(I) and dashed line is the limit of stability of phase I (see text) As a test of our procedure we have compared the en- ergy of the two phases when all interactions involving spin are zero (this is equivalent to take S = 0) leaving only Ip and I?. We obtain a transition between the long-range ordered phase II for small [7 to the phase of vertical dimers I for large Ip at Ip/I?, = 2.947, 17% larger than the value near 2.522 obtained by Monte Carlo calculations.?°:?9 Thus, our approach underestimates the stability of phase I. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787616/figure-10-spin-and-orbital-ordering-in-bilayer-srcro"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787620/figure-5-color-online-same-as-for-ev"><img alt="FIG. 5: (Color online) Same as Fig. 4 for J = 0.4 eV. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787623/table-1-parameters-of-hxx-in-mev-for-ev-ev-and-other"><img alt="TABLE I: Parameters of Hxx in meV for U = 4.1 eV, J = 0.7 eV, and other parameters determined by the ab initio calculations " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813648-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fc5cc4313833a48574f9c0151898413e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034567,"asset_id":49813648,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034567/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813648]").text(description); $(".js-view-count[data-work-id=49813648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fc5cc4313833a48574f9c0151898413e" } } $('.js-work-strip[data-work-id=49813648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813648,"title":"Spin and orbital ordering in bilayer Sr3Cr2O7","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034567},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7","translated_internal_url":"","created_at":"2021-07-12T10:30:46.235-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034567/thumbnails/1.jpg","file_name":"1811.pdf","download_url":"https://www.academia.edu/attachments/68034567/download_file","bulk_download_file_name":"Spin_and_orbital_ordering_in_bilayer_Sr3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034567/1811-libre.pdf?1626111616=\u0026response-content-disposition=attachment%3B+filename%3DSpin_and_orbital_ordering_in_bilayer_Sr3.pdf\u0026Expires=1743936386\u0026Signature=TeYvupAax-7WWecwqOmmKS89bZJ9Xk-HNdr13xUjYUU1sTI35KWgE056Ehf7~6Tdx6mM8LScVkDnJWxhUuqh8HZ8cVYrW4vzWM7br4PBaCfx4AAiBC5gG3cjYoVykW6KF0dc6a11V~Rwrm39UZSr6pE7zu8NiH7oYv-nmEYFbVca4TX3DnHTDDq4WAdsAyaB40K4Q9grygNlV5tysOs5J~yThYNccaAKmMRXTxz9kxOs7mkuFaioR6ejQh8IQDOVpY5rvtGHLRcxHyTlUXnkAGh4Jk5hVkFdTNAwsHo1kHkLKJdnMEXiiQdgU8jF9E7i12fI82HhCipquvMwXpR-7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034567/thumbnails/1.jpg","file_name":"1811.pdf","download_url":"https://www.academia.edu/attachments/68034567/download_file","bulk_download_file_name":"Spin_and_orbital_ordering_in_bilayer_Sr3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034567/1811-libre.pdf?1626111616=\u0026response-content-disposition=attachment%3B+filename%3DSpin_and_orbital_ordering_in_bilayer_Sr3.pdf\u0026Expires=1743936386\u0026Signature=TeYvupAax-7WWecwqOmmKS89bZJ9Xk-HNdr13xUjYUU1sTI35KWgE056Ehf7~6Tdx6mM8LScVkDnJWxhUuqh8HZ8cVYrW4vzWM7br4PBaCfx4AAiBC5gG3cjYoVykW6KF0dc6a11V~Rwrm39UZSr6pE7zu8NiH7oYv-nmEYFbVca4TX3DnHTDDq4WAdsAyaB40K4Q9grygNlV5tysOs5J~yThYNccaAKmMRXTxz9kxOs7mkuFaioR6ejQh8IQDOVpY5rvtGHLRcxHyTlUXnkAGh4Jk5hVkFdTNAwsHo1kHkLKJdnMEXiiQdgU8jF9E7i12fI82HhCipquvMwXpR-7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422594,"url":"https://link.aps.org/article/10.1103/PhysRevB.99.195150"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813648-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires"><img alt="Research paper thumbnail of Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires" class="work-thumbnail" src="https://attachments.academia-assets.com/68034570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires">Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study all the possible different two terminal configurations of Josephson junctions containing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20e10eb6859748264ebfa4143154e5c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034570,"asset_id":49813647,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034570/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813647]").text(description); $(".js-view-count[data-work-id=49813647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20e10eb6859748264ebfa4143154e5c7" } } $('.js-work-strip[data-work-id=49813647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813647,"title":"Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Andreev Spectra in Topological Josephson Junctions","grobid_abstract":"We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034570},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires","translated_internal_url":"","created_at":"2021-07-12T10:30:46.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034570/thumbnails/1.jpg","file_name":"1812.pdf","download_url":"https://www.academia.edu/attachments/68034570/download_file","bulk_download_file_name":"Catalog_of_Andreev_spectra_and_Josephson.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034570/1812-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DCatalog_of_Andreev_spectra_and_Josephson.pdf\u0026Expires=1743936387\u0026Signature=SIwhQUWUD2PZFXwTQs67J3Fzq2Fgp6lTJK9kkIEaNSZ09zyJtwGxsE-bumkfXGdBjN2CHN4CRMy54PRRd8ORg1W4cnX5BDEuwxBjR2UycwEPU8u2fcKZfjIjmOEQRmtByLttCDy7QDeRJ~QHO9mSCdTriVU0gVeLqKX8~MogeBt-BG7v8e2FnJZAkvO6-PTjM1ceoQOj~BsdO-akb7fXa-S9~dqHo9xp5akzqD0yCl1W1rRsk7SttYg-p9OVTYEt6z733LMjYpcWi~1b9rQlYNcemBlUW-M3mC5JuHj~QyUbLqj1xl5dI3rQUssANw31gq73DL4LmSA9Mmcoxbq2Uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034570/thumbnails/1.jpg","file_name":"1812.pdf","download_url":"https://www.academia.edu/attachments/68034570/download_file","bulk_download_file_name":"Catalog_of_Andreev_spectra_and_Josephson.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034570/1812-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DCatalog_of_Andreev_spectra_and_Josephson.pdf\u0026Expires=1743936387\u0026Signature=SIwhQUWUD2PZFXwTQs67J3Fzq2Fgp6lTJK9kkIEaNSZ09zyJtwGxsE-bumkfXGdBjN2CHN4CRMy54PRRd8ORg1W4cnX5BDEuwxBjR2UycwEPU8u2fcKZfjIjmOEQRmtByLttCDy7QDeRJ~QHO9mSCdTriVU0gVeLqKX8~MogeBt-BG7v8e2FnJZAkvO6-PTjM1ceoQOj~BsdO-akb7fXa-S9~dqHo9xp5akzqD0yCl1W1rRsk7SttYg-p9OVTYEt6z733LMjYpcWi~1b9rQlYNcemBlUW-M3mC5JuHj~QyUbLqj1xl5dI3rQUssANw31gq73DL4LmSA9Mmcoxbq2Uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422593,"url":"https://link.aps.org/article/10.1103/PhysRevB.99.085431"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813647-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813646"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads"><img alt="Research paper thumbnail of Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads" class="work-thumbnail" src="https://attachments.academia-assets.com/68034577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads">Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the low-temperature properties of the differential response of the current to a temperat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f731028f75a2ecef421e9b5616733901" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034577,"asset_id":49813646,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034577/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813646"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813646"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813646; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813646]").text(description); $(".js-view-count[data-work-id=49813646]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813646; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813646']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f731028f75a2ecef421e9b5616733901" } } $('.js-work-strip[data-work-id=49813646]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813646,"title":"Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034577},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads","translated_internal_url":"","created_at":"2021-07-12T10:30:45.949-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034577/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034577/download_file","bulk_download_file_name":"Enhancing_the_nonlinear_thermoelectric_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034577/fulltext-libre.pdf?1626111615=\u0026response-content-disposition=attachment%3B+filename%3DEnhancing_the_nonlinear_thermoelectric_r.pdf\u0026Expires=1743936387\u0026Signature=KotI8KYphkFteP~dcjOEHsZnyq~-0-jW1~qc-GCF8JNDMsXviumd7aX4qz30AxzU~FNHSnTHTh4HFkt8UfPGlcLVvIpEdTDTM~j3KGKtJ3X1yTM1V8azXAPmzjz~~Vzdc7kqJ6ofZwfHBUVxXtHaBzrAw7NaMlHBUjlr0h42RJL28MZUm0vuQJE6~0PxEJe-EgerAI8UPBcy9YWlL1LOfVIwYbM7Je7qqJSNPmMiRb7NgZu7LmVz40fG7eZOcIi8-tb7QzdPAivznDBe71FJGTbVZg-joKedjafwLBDnCfjkMzoCW3ViRGZOaxnZeySds5dal~iyc2qXIKmhpAYM3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034577/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034577/download_file","bulk_download_file_name":"Enhancing_the_nonlinear_thermoelectric_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034577/fulltext-libre.pdf?1626111615=\u0026response-content-disposition=attachment%3B+filename%3DEnhancing_the_nonlinear_thermoelectric_r.pdf\u0026Expires=1743936387\u0026Signature=KotI8KYphkFteP~dcjOEHsZnyq~-0-jW1~qc-GCF8JNDMsXviumd7aX4qz30AxzU~FNHSnTHTh4HFkt8UfPGlcLVvIpEdTDTM~j3KGKtJ3X1yTM1V8azXAPmzjz~~Vzdc7kqJ6ofZwfHBUVxXtHaBzrAw7NaMlHBUjlr0h42RJL28MZUm0vuQJE6~0PxEJe-EgerAI8UPBcy9YWlL1LOfVIwYbM7Je7qqJSNPmMiRb7NgZu7LmVz40fG7eZOcIi8-tb7QzdPAivznDBe71FJGTbVZg-joKedjafwLBDnCfjkMzoCW3ViRGZOaxnZeySds5dal~iyc2qXIKmhpAYM3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422592,"url":"https://link.aps.org/article/10.1103/PhysRevB.97.165433"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813646-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/49813645/Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_"><img alt="Research paper thumbnail of Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)</div><div class="wp-workCard_item"><span>Journal of Physics: Condensed Matter</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813645]").text(description); $(".js-view-count[data-work-id=49813645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=49813645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813645,"title":"Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_name":"Journal of Physics: Condensed Matter"},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813645/Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.801-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[{"id":10422591,"url":"http://iopscience.iop.org/article/10.1088/1361-648X/aaf2f2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813645-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813644"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire"><img alt="Research paper thumbnail of Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire" class="work-thumbnail" src="https://attachments.academia-assets.com/68034572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire">Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z < E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e3b7a547115f24711401824644ede3c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034572,"asset_id":49813644,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034572/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813644"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813644"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813644; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813644]").text(description); $(".js-view-count[data-work-id=49813644]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813644; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813644']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e3b7a547115f24711401824644ede3c" } } $('.js-work-strip[data-work-id=49813644]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813644,"title":"Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Fractional Spin Projections in TRITOPS Wires","grobid_abstract":"We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z \u003c E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034572},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire","translated_internal_url":"","created_at":"2021-07-12T10:30:45.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034572/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/68034572/download_file","bulk_download_file_name":"Entangled_end_states_with_fractionalized.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034572/1806-libre.pdf?1626111619=\u0026response-content-disposition=attachment%3B+filename%3DEntangled_end_states_with_fractionalized.pdf\u0026Expires=1743936387\u0026Signature=gJ6mQaIoo9~kne-D7nQXMBmb4KO2gABy~VYc7jDOaJ4IkrOssfxvoVqmLnUX3owSPnJQ5Ck8GJq-0vLr-uVyobv2PzwPfW7EwRny7cx7wmR9nndIh1Gvw-iU8U9zrKLVJeco-R61v4TN2p6gvWCU43YyL0womrrkOEg2DnYHROKksUJvsxPQlxTFbTPfWU5pKabUBRDe802-r-UCTT0jnUN5rZK3kC~7NnAZUcoBK6H13DSw4RC5SGEj2rdAxRLm3ndoA6S2Ei7IxqHOHvQ5iDp~bym6sUiSvv5-0seTAWxZzw7zK3NG9Jvr07InCH0udnw9ynkIILKKPlkhHNEc3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z \u003c E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034572/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/68034572/download_file","bulk_download_file_name":"Entangled_end_states_with_fractionalized.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034572/1806-libre.pdf?1626111619=\u0026response-content-disposition=attachment%3B+filename%3DEntangled_end_states_with_fractionalized.pdf\u0026Expires=1743936387\u0026Signature=gJ6mQaIoo9~kne-D7nQXMBmb4KO2gABy~VYc7jDOaJ4IkrOssfxvoVqmLnUX3owSPnJQ5Ck8GJq-0vLr-uVyobv2PzwPfW7EwRny7cx7wmR9nndIh1Gvw-iU8U9zrKLVJeco-R61v4TN2p6gvWCU43YyL0womrrkOEg2DnYHROKksUJvsxPQlxTFbTPfWU5pKabUBRDe802-r-UCTT0jnUN5rZK3kC~7NnAZUcoBK6H13DSw4RC5SGEj2rdAxRLm3ndoA6S2Ei7IxqHOHvQ5iDp~bym6sUiSvv5-0seTAWxZzw7zK3NG9Jvr07InCH0udnw9ynkIILKKPlkhHNEc3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422590,"url":"https://link.aps.org/article/10.1103/PhysRevB.98.174507"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813644-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813643"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors"><img alt="Research paper thumbnail of Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors" class="work-thumbnail" src="https://attachments.academia-assets.com/68034574/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors">Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractiona...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a036ad1a3aed00478f489cda00d3450" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034574,"asset_id":49813643,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034574/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813643"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813643"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813643; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813643]").text(description); $(".js-view-count[data-work-id=49813643]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813643; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813643']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a036ad1a3aed00478f489cda00d3450" } } $('.js-work-strip[data-work-id=49813643]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813643,"title":"Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Fractional Spin Influence on Josephson Effect in TRITOPS","grobid_abstract":"Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.","publication_name":"Physical Review Letters","grobid_abstract_attachment_id":68034574},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors","translated_internal_url":"","created_at":"2021-07-12T10:30:45.481-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034574/thumbnails/1.jpg","file_name":"1612.07410.pdf","download_url":"https://www.academia.edu/attachments/68034574/download_file","bulk_download_file_name":"Fractional_Spin_and_Josephson_Effect_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034574/1612.07410-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DFractional_Spin_and_Josephson_Effect_in.pdf\u0026Expires=1743936387\u0026Signature=JEf5NCYv2O9q-fQX4u2Kq4V5ev3961ssGH2kNWG7d5-0-f8UsocWUT6UTQV73vREfMCf8PrARv69ih3lOd4pGHxT7I~zOLwJo1glD0pnCchqutBcG1pSyJp0Sxld8PppRjR~sXRPsFpE9XbzDddmU9lM--hGutW~QEmQZUY6p~S3311EcAIYqWPGBj2IWKq91Y1UaCWeeP3o3CiK4Mcqdm4NxTUxW-A0CYxl1kWfI8qoNBW513CvdYGWtyct7tch0QIhs3k2SHeplwSc59bFBrSjSBaHM9ZKTwvMiTSojqR9W0Dih5x41KDwPGiqaEuXlCAHE1vxMq9eDKN3alsImg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034574/thumbnails/1.jpg","file_name":"1612.07410.pdf","download_url":"https://www.academia.edu/attachments/68034574/download_file","bulk_download_file_name":"Fractional_Spin_and_Josephson_Effect_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034574/1612.07410-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DFractional_Spin_and_Josephson_Effect_in.pdf\u0026Expires=1743936387\u0026Signature=JEf5NCYv2O9q-fQX4u2Kq4V5ev3961ssGH2kNWG7d5-0-f8UsocWUT6UTQV73vREfMCf8PrARv69ih3lOd4pGHxT7I~zOLwJo1glD0pnCchqutBcG1pSyJp0Sxld8PppRjR~sXRPsFpE9XbzDddmU9lM--hGutW~QEmQZUY6p~S3311EcAIYqWPGBj2IWKq91Y1UaCWeeP3o3CiK4Mcqdm4NxTUxW-A0CYxl1kWfI8qoNBW513CvdYGWtyct7tch0QIhs3k2SHeplwSc59bFBrSjSBaHM9ZKTwvMiTSojqR9W0Dih5x41KDwPGiqaEuXlCAHE1vxMq9eDKN3alsImg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":10422589,"url":"http://link.aps.org/article/10.1103/PhysRevLett.119.046801"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813643-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813642"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot"><img alt="Research paper thumbnail of Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot" class="work-thumbnail" src="https://attachments.academia-assets.com/68034576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot">Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We formulate a general theory to study the time-dependent charge and energy transport of an adiab...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813642-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813642-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780581/figure-1-sketch-of-the-setup-quantum-dot-described-by-single"><img alt="FIG. 1. Sketch of the setup. A quantum dot described by a single electron level with Coulomb interaction U and is driven by an ac gate voltage V,(t) = Vo sin(&2r) and is connected to a normal lead. Top: representation of the setup in terms of a resistance connected in series with a capacitor. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780584/figure-2-sketch-of-the-circuit-upper-and-lower-branch"><img alt="FIG. 2. Sketch of the circuit. Upper and lower branch corresponds to ¢ and | spin channels. The paper is organized as follows. We present the theoreti- cal treatment in Sec. II. In Sec. HI we discuss the case where the quantum dot is noninteracting. We show that the exact description of the adiabatic dynamics is fully determined by the behavior of the charge susceptibility of the frozen system described by the equilibrium Hamiltonian frozen at a given time. The effect of many-body interactions is discussed in " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780587/figure-3-imaginary-part-of-the-dynamic-susceptibility-as"><img alt="FIG. 3. Imaginary part of the dynamic susceptibility as a func- tion of frequency for Qt = 7/2, A= 8x10*D, 9 = w=0,U= 0.05D, Vo = 0.024D, and T = 0. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780589/figure-5-occupancy-of-the-quantum-dot-as-function-of-time"><img alt="FIG. 5. Occupancy of the quantum dot as a function of time for different values of the Coulomb interaction (indicated in the figure). Other parameters as in Fig. 3. the Coulomb repulsion. To analyze these results, let us start by focusing on the plot with dashed-dot lines, corresponding to the smallest U. Att = 0 the dot is at the half-filling configuration, corresponding to a mean charge n (0) = 1. As a function of t, Vz increases and the occupancy of the dot decreases. In " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780593/figure-4-capacitance-dissipation-coefficient-and-dissipated"><img alt="FIG. 4. (a) Capacitance C(t), (b) dissipation coefficient A‘(t), and (c) dissipated power Pyiss(f) in the interacting nonlinear regime, as a function of time, calculated with two techniques. Other parameters as in Fig. 3. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780598/figure-6-nonlinear-charge-and-energy-dynamics-of-an"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780602/figure-7-frozen-occupancies-and-ny-for-zeeman-splitting-and"><img alt="FIG. 7. Frozen occupancies n,+(t) and ny (t) for a Zeeman splitting 5; = 10-7D and different values of U. Other parameters are the same as in the previous figures. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780604/figure-8-analysis-of-the-korringa-shiba-laws-of-eqs-and-the"><img alt="FIG. 8. Analysis of the Korringa-Shiba laws of Eqs. (18) and (19). The functions At(t) and A‘(t) are compared with [x,'' (0)? and [ xO)? for U = 0.05D. Other parameters are the same as in Fig. 7. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780607/figure-9-top-panels-functions-middle-panels-power-developed"><img alt="FIG. 9. Top panels: Functions A°(t). Middle panels: Power developed by the forces induced by electrons with spin o, P,(t). Lower panels: Joule power Phoute,«(t) (see text). Solid and dashed lines correspond to o = |,*, respectively. Left (right) panels correspond to U = 0.01D (U = 0.05D), respectively. Other parameters are the same as in Fig. 7. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780609/figure-10-power-developed-by-the-forces-induced-by-electrons"><img alt="FIG. 10. Power developed by the forces induced by electrons with spin o averaged over the cycle as a function of U. The inset denotes the different components (see text) for small U. Other parameters are the same as in Fig. 7. In Fig. 10 we represent the average power over the cycle for a given spin P,. As a consequence of the symmetry transformation Eq. (27) for the chosen parameters, P, a P,. We also represent in the figure the components Py; and Py), which correspond to the contributions of the same and opposite spin to the average total power for spin up, according to Eqs. (9), (10), and (11). One can see that the crossed component P,, which vanishes for U = 0, decreases rapidly as U is turned on and saturates when U reaches values much larger than both A and the Zeeman splitting 67. Instead, for small U, Pry. increases but not so fast as the decrease in P, 1» So that the sum P; decreases for small U. For larger values of U after a modest increase, P, decreases because the charge-transfer peaks in the spectral density (separated by U) cross the Fermi level with a smaller speed, so that the factor Ve (t)” is smaller " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780610/figure-11-with-the-matrix-elements-of-the-relevant"><img alt="(3) With the matrix elements of the relevant quantities at each iteration, we can calculate the thermodynamic and dynamic quantities, such as the static and dynamic suscepti- bilities. For the dynamic quantities we have employed the full density matrix (FDM) version of the NRG, which is known to provide a better resolution of the spectral quantities. The energy delta peaks appearing in the dynamic susceptibilities are usually broadened by using various smooth distribution functions [37]. In our case we use a modified broadening kernel K(€,e;) defined piecewise by [40] where a defines the broadening parameter, y = a/4, and wp is an energy threshold that changes the broadening distribution function from a log Gaussian to a Gaussian at low energies. In practice, smaller a diminishes NRG over broadening but leads to nonphysical oscillations in the dynamic susceptibilities, which can be reduced by averaging over a convenient number of discretization meshes of the conduction band. The broad- ening parameter is chosen to be a = 0.02 and €) = 10-*’D. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_011.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813642-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9bc9ae9fa2e1f97c81bf32d1bda95e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034576,"asset_id":49813642,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034576/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813642"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813642"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813642; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813642]").text(description); $(".js-view-count[data-work-id=49813642]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813642; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813642']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9bc9ae9fa2e1f97c81bf32d1bda95e0" } } $('.js-work-strip[data-work-id=49813642]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813642,"title":"Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Adiabatic Charge Dynamics in Interacting Quantum Dots","grobid_abstract":"We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034576},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot","translated_internal_url":"","created_at":"2021-07-12T10:30:45.319-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034576/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034576/download_file","bulk_download_file_name":"Nonlinear_charge_and_energy_dynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034576/fulltext-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DNonlinear_charge_and_energy_dynamics_of.pdf\u0026Expires=1743936387\u0026Signature=Baka2JCXfiIOFcpI620ypYKKyni4uBL2y~8gm6cH0FgSjH6m-o3HwxhbsMhoUJtxsuoQ~9gJIm-w5M2mKR3~gcV8ixXni3p2WwQnlIM~vZlCd7Pcp0L2vLOfi1ESxO2NNl3L-ddWgUH0jAgzVTIe2aQi~X8xUB7VwVtagx9V3JICcS-zhdMClu~lY-IdFo8Gn5lRscwmv7njkJpmJ3HBQUgL6VMzpX~qqCOErCY1NT0wj0pgAGNabEuj0mj1PZeVRA2b5E6ao~IzgnmzEUcr01MiK1Zbva4vvzDJUVXYV~ykLDxv6DP4XFKMPo0NvcNhuteCTJ3O3DAPZ~3gDDEnAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034576/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034576/download_file","bulk_download_file_name":"Nonlinear_charge_and_energy_dynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034576/fulltext-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DNonlinear_charge_and_energy_dynamics_of.pdf\u0026Expires=1743936387\u0026Signature=Baka2JCXfiIOFcpI620ypYKKyni4uBL2y~8gm6cH0FgSjH6m-o3HwxhbsMhoUJtxsuoQ~9gJIm-w5M2mKR3~gcV8ixXni3p2WwQnlIM~vZlCd7Pcp0L2vLOfi1ESxO2NNl3L-ddWgUH0jAgzVTIe2aQi~X8xUB7VwVtagx9V3JICcS-zhdMClu~lY-IdFo8Gn5lRscwmv7njkJpmJ3HBQUgL6VMzpX~qqCOErCY1NT0wj0pgAGNabEuj0mj1PZeVRA2b5E6ao~IzgnmzEUcr01MiK1Zbva4vvzDJUVXYV~ykLDxv6DP4XFKMPo0NvcNhuteCTJ3O3DAPZ~3gDDEnAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422588,"url":"http://link.aps.org/article/10.1103/PhysRevB.95.235117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813642-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813641"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_"><img alt="Research paper thumbnail of Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}" class="work-thumbnail" src="https://attachments.academia-assets.com/68034573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_">Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 19, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="69fdc82264295f2e667c7e4026f7be23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034573,"asset_id":49813641,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034573/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813641"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813641"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813641; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813641]").text(description); $(".js-view-count[data-work-id=49813641]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813641; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813641']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "69fdc82264295f2e667c7e4026f7be23" } } $('.js-work-strip[data-work-id=49813641]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813641,"title":"Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}","translated_title":"","metadata":{"abstract":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","publication_date":{"day":19,"month":1,"year":2017,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","internal_url":"https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.211-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034573/thumbnails/1.jpg","file_name":"60f7570cf9aa782bc20db654ded5b75cce7b.pdf","download_url":"https://www.academia.edu/attachments/68034573/download_file","bulk_download_file_name":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034573/60f7570cf9aa782bc20db654ded5b75cce7b-libre.pdf?1626111611=\u0026response-content-disposition=attachment%3B+filename%3DSinglet_Orbital_Ordering_in_Bilayer_Sr_3.pdf\u0026Expires=1743936388\u0026Signature=U2J4DFlvdZ3hz1n~DSKahYPUrmZTzPvC~bRvMqQnbaYJB9JAhOMtRTiG1QJ0h0qtNZ5hIqCtZlqMGu0DiESxNZIGsws~kvBwt7eorNF0wh4DxibfYzh-XtI~eF5F~gGv6XmYxhOHFwzx~0UULJZ0dct6DksOV3xGhvZyaPVyV0u62PfVwRj4XbkTCtBKS3lEhGSrP6LlucyPVCV1wf4M0kTZW~Ad9yb0BKUXoYRff0TLIBlJIjXbARz-9RUUKepm1mMq8gYmu~ChgrKYpgJROnKIefzoLyOd9kNZH8qYaWA~u4hE2gOnSSFx1wHpsNlN0Hc4R9Cw2IXXDwVUCTSRMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034573/thumbnails/1.jpg","file_name":"60f7570cf9aa782bc20db654ded5b75cce7b.pdf","download_url":"https://www.academia.edu/attachments/68034573/download_file","bulk_download_file_name":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034573/60f7570cf9aa782bc20db654ded5b75cce7b-libre.pdf?1626111611=\u0026response-content-disposition=attachment%3B+filename%3DSinglet_Orbital_Ordering_in_Bilayer_Sr_3.pdf\u0026Expires=1743936388\u0026Signature=U2J4DFlvdZ3hz1n~DSKahYPUrmZTzPvC~bRvMqQnbaYJB9JAhOMtRTiG1QJ0h0qtNZ5hIqCtZlqMGu0DiESxNZIGsws~kvBwt7eorNF0wh4DxibfYzh-XtI~eF5F~gGv6XmYxhOHFwzx~0UULJZ0dct6DksOV3xGhvZyaPVyV0u62PfVwRj4XbkTCtBKS3lEhGSrP6LlucyPVCV1wf4M0kTZW~Ad9yb0BKUXoYRff0TLIBlJIjXbARz-9RUUKepm1mMq8gYmu~ChgrKYpgJROnKIefzoLyOd9kNZH8qYaWA~u4hE2gOnSSFx1wHpsNlN0Hc4R9Cw2IXXDwVUCTSRMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813641-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813640"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_"><img alt="Research paper thumbnail of Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/" class="work-thumbnail" src="https://attachments.academia-assets.com/68034538/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_">Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-sit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e23c6e3cf0f3391c484c94420f4356a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034538,"asset_id":49813640,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034538/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813640"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813640"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813640; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813640]").text(description); $(".js-view-count[data-work-id=49813640]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813640; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813640']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e23c6e3cf0f3391c484c94420f4356a3" } } $('.js-work-strip[data-work-id=49813640]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813640,"title":"Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/","translated_title":"","metadata":{"ai_title_tag":"Magnetic and Orbital Orderings in RuSr2(Eu,Gd)Cu2O8","grobid_abstract":"We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":68034537},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.069-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034538/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034538/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034538/000504058-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=FJzs7gqQompndO25WCwh0M2yYwfsDWO6GAWj4dBfpTJf2qS8gVZfEywx79-fjkq0oH9RAwAJqsW1cLQqkqQ1JbLH-r6RpLeyLCwN5s6yFVR71Wo0EqY33hPkaizbKFsCom1UuCsCfpet20-HWSGGFqttTlRVNAX8pWQGyMYV0Fkeoumi~TbKDe06bLvtG6hmDpQBfsNPu-kuFD1cGVw50iGkFAG9eTzhAqMdS5RKLJIcJz38-MxbiwxQptazss8rVJkWCHN3u7ijdN-IToqPrdV3FKqYaqcqZuu-kIaXFxz~LKORFygXsOiUDus~OGzLmR-GVgDl7OHWyO8iJzxd4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034538/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034538/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034538/000504058-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=FJzs7gqQompndO25WCwh0M2yYwfsDWO6GAWj4dBfpTJf2qS8gVZfEywx79-fjkq0oH9RAwAJqsW1cLQqkqQ1JbLH-r6RpLeyLCwN5s6yFVR71Wo0EqY33hPkaizbKFsCom1UuCsCfpet20-HWSGGFqttTlRVNAX8pWQGyMYV0Fkeoumi~TbKDe06bLvtG6hmDpQBfsNPu-kuFD1cGVw50iGkFAG9eTzhAqMdS5RKLJIcJz38-MxbiwxQptazss8rVJkWCHN3u7ijdN-IToqPrdV3FKqYaqcqZuu-kIaXFxz~LKORFygXsOiUDus~OGzLmR-GVgDl7OHWyO8iJzxd4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":68034537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034537/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034537/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034537/000504058-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=hC8Hcl1kl4hGnrpa3rnOu3SmQ2Kh5SRKvnOOKZKImq1i9NwhRClxKDqnU206DfUinbcy3hyQvAhQGOhplDTMLry2gJUGVMgOsnObqGSh5A5OX5Wcx~8fAxp8PSd3yYREqJuUNKw84F-7JqPFaRmQ~s-bHLiMrvMceCaipiqKY5pmRFUIcm~g052DBptPmkhJ9zXHhgWEAQ647IVvgCC8xe5lUy3hBXc7193uIMnpUWLT7D0kR0HCYfoExv-xXjbooRUx-bFTXIESROp2SaQ09akSlV5ol9ogB48hg5tzbWm-ZU8T1z0imTpOcJydSybUIrUBiGXTznInNnPTN7hocg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422587,"url":"http://www.lume.ufrgs.br/bitstream/10183/104294/1/000504058.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813640-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813639"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/49813639/Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model"><img alt="Research paper thumbnail of Self-consistent hybridization expansions for static properties of the Anderson impurity model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Self-consistent hybridization expansions for static properties of the Anderson impurity model</div><div class="wp-workCard_item"><span>physica status solidi (b)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813639"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813639"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813639; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813639]").text(description); $(".js-view-count[data-work-id=49813639]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813639; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813639']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=49813639]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813639,"title":"Self-consistent hybridization expansions for static properties of the Anderson impurity model","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"physica status solidi (b)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813639/Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model","translated_internal_url":"","created_at":"2021-07-12T10:30:44.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813639-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3074772" id="papers"><div class="js-work-strip profile--work_container" data-work-id="112234015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model"><img alt="Research paper thumbnail of Superconductivity in a generalized Hubbard model" class="work-thumbnail" src="https://attachments.academia-assets.com/109526632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model">Superconductivity in a generalized Hubbard model</a></div><div class="wp-workCard_item"><span>Physica C: Superconductivity</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-nei...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB > tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32e67e4e61e97cbfc747359a28a2c0ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":109526632,"asset_id":112234015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/109526632/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112234015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112234015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112234015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112234015]").text(description); $(".js-view-count[data-work-id=112234015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112234015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112234015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32e67e4e61e97cbfc747359a28a2c0ca" } } $('.js-work-strip[data-work-id=112234015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112234015,"title":"Superconductivity in a generalized Hubbard model","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB \u003e tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physica C: Superconductivity","grobid_abstract_attachment_id":109526632},"translated_abstract":null,"internal_url":"https://www.academia.edu/112234015/Superconductivity_in_a_generalized_Hubbard_model","translated_internal_url":"","created_at":"2023-12-24T18:22:00.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109526632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109526632/thumbnails/1.jpg","file_name":"s0921-453428972901582-720231225-1-ak049s.pdf","download_url":"https://www.academia.edu/attachments/109526632/download_file","bulk_download_file_name":"Superconductivity_in_a_generalized_Hubba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109526632/s0921-453428972901582-720231225-1-ak049s-libre.pdf?1703472976=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_in_a_generalized_Hubba.pdf\u0026Expires=1743936385\u0026Signature=FSFOZpn1e0xaP7zFI3EWs4Eup4vEaNJYV4zh03pVYAfK-tblzB0YztYuy9MJIhUUraFirh0zhGW20Ab8mIyJfxFapEx8VK-snYV2GxI9gMR78yx-MrNnRwD35zXoZxrx9cuSH1hhUsEAj~vNINfRroyoMiAd1GfWVJst12eulJiPTHvow0H0-QvOqWj1-vNR9cP4Fcgd0EaS~F3ijjmvwQJ9V~R8PCMr7xvq9DlX2dk1vQfxUfjyW37q64sSej5Hxg3hLoqoF~G-zYI7ZGaTtk9~2Ckjywu6P~zbTHKluRxvKON0LYoOqMkK2wGliGwtmXFWSYhQq5aX-iyiCpe1tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Superconductivity_in_a_generalized_Hubbard_model","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation n b of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for n b = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB \u003e tAa = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":109526632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109526632/thumbnails/1.jpg","file_name":"s0921-453428972901582-720231225-1-ak049s.pdf","download_url":"https://www.academia.edu/attachments/109526632/download_file","bulk_download_file_name":"Superconductivity_in_a_generalized_Hubba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109526632/s0921-453428972901582-720231225-1-ak049s-libre.pdf?1703472976=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_in_a_generalized_Hubba.pdf\u0026Expires=1743936385\u0026Signature=FSFOZpn1e0xaP7zFI3EWs4Eup4vEaNJYV4zh03pVYAfK-tblzB0YztYuy9MJIhUUraFirh0zhGW20Ab8mIyJfxFapEx8VK-snYV2GxI9gMR78yx-MrNnRwD35zXoZxrx9cuSH1hhUsEAj~vNINfRroyoMiAd1GfWVJst12eulJiPTHvow0H0-QvOqWj1-vNR9cP4Fcgd0EaS~F3ijjmvwQJ9V~R8PCMr7xvq9DlX2dk1vQfxUfjyW37q64sSej5Hxg3hLoqoF~G-zYI7ZGaTtk9~2Ckjywu6P~zbTHKluRxvKON0LYoOqMkK2wGliGwtmXFWSYhQq5aX-iyiCpe1tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":732601,"name":"Square Lattice","url":"https://www.academia.edu/Documents/in/Square_Lattice"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":1151194,"name":"Mean Field Theory","url":"https://www.academia.edu/Documents/in/Mean_Field_Theory"},{"id":1220891,"name":"Antiferromagnetism","url":"https://www.academia.edu/Documents/in/Antiferromagnetism"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-112234015-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="83666860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity"><img alt="Research paper thumbnail of Does long-range antiferromagnetism help or inhibit superconductivity?" class="work-thumbnail" src="https://attachments.academia-assets.com/88936346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity">Does long-range antiferromagnetism help or inhibit superconductivity?</a></div><div class="wp-workCard_item"><span>Physica C: Superconductivity</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the possible existence of a superconducting state in a background with long-range anti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f43e645f22c08b06d3a313c0bf5df5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88936346,"asset_id":83666860,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88936346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83666860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83666860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83666860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83666860]").text(description); $(".js-view-count[data-work-id=83666860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83666860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83666860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f43e645f22c08b06d3a313c0bf5df5b" } } $('.js-work-strip[data-work-id=83666860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83666860,"title":"Does long-range antiferromagnetism help or inhibit superconductivity?","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Antiferromagnetism's Impact on Superconductivity","grobid_abstract":"We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physica C: Superconductivity","grobid_abstract_attachment_id":88936346},"translated_abstract":null,"internal_url":"https://www.academia.edu/83666860/Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity","translated_internal_url":"","created_at":"2022-07-24T14:20:15.864-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88936346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88936346/thumbnails/1.jpg","file_name":"9805198.pdf","download_url":"https://www.academia.edu/attachments/88936346/download_file","bulk_download_file_name":"Does_long_range_antiferromagnetism_help.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88936346/9805198-libre.pdf?1658697718=\u0026response-content-disposition=attachment%3B+filename%3DDoes_long_range_antiferromagnetism_help.pdf\u0026Expires=1743936385\u0026Signature=BRpOoYjymB4dG5uwfGFpjiqfFQno9tG6qyLOcAphb17oeWNd09vAeK6YjF9q9ysp34DWaaBY~-02iYnNDoyGmwpvH4KrA4~cFQq4yr1UYLhoVcTaxAAj0g-K2FbTonmbk2TS-GCjKHjy8ByQTV~9qcg47eXgtMUiksWmAEztE~sfnhNrAMrOJ3Z5k6zhDiQjGzEboMfxbY~JjcAQmeoNEaMq02S9cOr~HDLcMWGQHSma7sEmkaanncsgku81kI4PQT5ugwaapqqsWTEayDJgvmbdg2OxQj~YJDMDM-JFdS3BiaJeD5G83ymzJ26gvgpOT4XdXrRuCf2VAzhHd3Ga6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Does_long_range_antiferromagnetism_help_or_inhibit_superconductivity","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We analyze the possible existence of a superconducting state in a background with long-range antiferromagnetism. We consider a generalized Hubbard model with nearest-neighbor correlated hopping in a square lattice. Near half filling, the model exhibits a d-wave-Bardeen-Cooper-Schrieffer (BCS) solution in the paramagnetic state. The superconducting solution would be enhanced by the antiferromagnetic background if the contribution of triplet pairs with d-wave symmetry and total momentum (π, π) could be neglected. However, we find that due to their contribution, the coexistence of superconductivity and long-range antiferromagnetism is ruled out for large values of the Coulomb repulsion U. Spin-density wave fluctuations (SDWF) do not change this result.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":88936346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88936346/thumbnails/1.jpg","file_name":"9805198.pdf","download_url":"https://www.academia.edu/attachments/88936346/download_file","bulk_download_file_name":"Does_long_range_antiferromagnetism_help.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88936346/9805198-libre.pdf?1658697718=\u0026response-content-disposition=attachment%3B+filename%3DDoes_long_range_antiferromagnetism_help.pdf\u0026Expires=1743936385\u0026Signature=BRpOoYjymB4dG5uwfGFpjiqfFQno9tG6qyLOcAphb17oeWNd09vAeK6YjF9q9ysp34DWaaBY~-02iYnNDoyGmwpvH4KrA4~cFQq4yr1UYLhoVcTaxAAj0g-K2FbTonmbk2TS-GCjKHjy8ByQTV~9qcg47eXgtMUiksWmAEztE~sfnhNrAMrOJ3Z5k6zhDiQjGzEboMfxbY~JjcAQmeoNEaMq02S9cOr~HDLcMWGQHSma7sEmkaanncsgku81kI4PQT5ugwaapqqsWTEayDJgvmbdg2OxQj~YJDMDM-JFdS3BiaJeD5G83ymzJ26gvgpOT4XdXrRuCf2VAzhHd3Ga6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":423660,"name":"PKS","url":"https://www.academia.edu/Documents/in/PKS"},{"id":1220891,"name":"Antiferromagnetism","url":"https://www.academia.edu/Documents/in/Antiferromagnetism"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-83666860-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="78456456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model"><img alt="Research paper thumbnail of Specific heat of magnetic Ce alloys within a two-component model" class="work-thumbnail" src="https://attachments.academia-assets.com/85497299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model">Specific heat of magnetic Ce alloys within a two-component model</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6facbf5bfbc65d54433e4d312cfea1ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85497299,"asset_id":78456456,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85497299/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78456456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78456456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78456456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78456456]").text(description); $(".js-view-count[data-work-id=78456456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78456456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78456456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6facbf5bfbc65d54433e4d312cfea1ce" } } $('.js-work-strip[data-work-id=78456456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78456456,"title":"Specific heat of magnetic Ce alloys within a two-component model","translated_title":"","metadata":{"publisher":"Springer Nature","ai_title_tag":"Specific Heat in Magnetic Ce Alloys Model","grobid_abstract":"We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":85497299},"translated_abstract":null,"internal_url":"https://www.academia.edu/78456456/Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model","translated_internal_url":"","created_at":"2022-05-04T12:39:31.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85497299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85497299/thumbnails/1.jpg","file_name":"epjb_2Fe2004-00319-220220504-1-1l55sl.pdf","download_url":"https://www.academia.edu/attachments/85497299/download_file","bulk_download_file_name":"Specific_heat_of_magnetic_Ce_alloys_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85497299/epjb_2Fe2004-00319-220220504-1-1l55sl-libre.pdf?1651693956=\u0026response-content-disposition=attachment%3B+filename%3DSpecific_heat_of_magnetic_Ce_alloys_with.pdf\u0026Expires=1743936385\u0026Signature=UCnr1ILBg7enrz4ONQG1MZLL1b-MaPzs5amkUBx9LYJQoXVQn68KjpMvn1XfPA~tWXgr8MTMb2O-vmDc25zhmXdeP90~yHZZj13-8SU75aN7P1cOnz0Xe4ynnZ3QVJN-V6CqN-YN8S-TLGJKYcYr6slQZd7NEbnvEelJswuBm7v8fquDd~pSiUu9sr1lBc-ZW0CoWaS4OqitQWwmQeQUCzlT2yOtC9C-lEjZgl26DLmfzrA~vbsZ8ovGUC5J9kKOx2rjgHMYp2~u4mUKk1MpiTgYrqaSsYauoxMpH79nzMrBaF-b7lkqNxO6gSoj3Nvj-LLKhq5CPDRwjDI7q7E8Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Specific_heat_of_magnetic_Ce_alloys_within_a_two_component_model","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and the other described as a collection of Kondo impurities with exchange interaction JK. Both JH and JK are assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near to the expectation value of X), related to the experimental composition parameter x of the alloy. When the concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over a wide temperature range. The main qualitative features of C/T as a function of temperature T observed in several Ce alloys are reproduced using simple JH (X) and JK (X) dependences.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":85497299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85497299/thumbnails/1.jpg","file_name":"epjb_2Fe2004-00319-220220504-1-1l55sl.pdf","download_url":"https://www.academia.edu/attachments/85497299/download_file","bulk_download_file_name":"Specific_heat_of_magnetic_Ce_alloys_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85497299/epjb_2Fe2004-00319-220220504-1-1l55sl-libre.pdf?1651693956=\u0026response-content-disposition=attachment%3B+filename%3DSpecific_heat_of_magnetic_Ce_alloys_with.pdf\u0026Expires=1743936385\u0026Signature=UCnr1ILBg7enrz4ONQG1MZLL1b-MaPzs5amkUBx9LYJQoXVQn68KjpMvn1XfPA~tWXgr8MTMb2O-vmDc25zhmXdeP90~yHZZj13-8SU75aN7P1cOnz0Xe4ynnZ3QVJN-V6CqN-YN8S-TLGJKYcYr6slQZd7NEbnvEelJswuBm7v8fquDd~pSiUu9sr1lBc-ZW0CoWaS4OqitQWwmQeQUCzlT2yOtC9C-lEjZgl26DLmfzrA~vbsZ8ovGUC5J9kKOx2rjgHMYp2~u4mUKk1MpiTgYrqaSsYauoxMpH79nzMrBaF-b7lkqNxO6gSoj3Nvj-LLKhq5CPDRwjDI7q7E8Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99372,"name":"Theoretical Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Condensed_Matter_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-78456456-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="77769708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping"><img alt="Research paper thumbnail of Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping" class="work-thumbnail" src="https://attachments.academia-assets.com/85047097/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping">Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V res...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB < tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d434e13fd6f8f7ab830e99daad50b12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85047097,"asset_id":77769708,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85047097/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77769708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77769708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77769708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77769708]").text(description); $(".js-view-count[data-work-id=77769708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77769708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77769708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d434e13fd6f8f7ab830e99daad50b12" } } $('.js-work-strip[data-work-id=77769708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77769708,"title":"Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB \u003c tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":85047097},"translated_abstract":null,"internal_url":"https://www.academia.edu/77769708/Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping","translated_internal_url":"","created_at":"2022-04-27T04:19:57.614-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85047097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85047097/thumbnails/1.jpg","file_name":"9803034.pdf","download_url":"https://www.academia.edu/attachments/85047097/download_file","bulk_download_file_name":"Superconductivity_with_s_and_p_symmetrie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85047097/9803034-libre.pdf?1651059008=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_with_s_and_p_symmetrie.pdf\u0026Expires=1743936385\u0026Signature=IP3ssK9BJUNYbJyIjEmhk6MEzKyIN8pQ~nXmwNt5NGV-a9yD0q634TS9z6xwNc5KQ78Di6KY1E8JBK7WuhG~Iu3ktgQo1T-a9IkYSInOT5omO6JlfSpz94HqSJpJ3v5-Ic4WSvpyOjSYXj5oCa1VxU6LOmOmtJ44fwOw4QM79n-AHaewDd0P9RCg7P2iRKRiBqdna1JYdlnlqLsx0~BOws9BWuGuo92OSgSR8s525TlqqYckv834nbjdl2EpJAlnN20IIFCHpOWCCVy0zuug73uPxPWQCf0ebVl2XbOD5fgMPRH3~bby67E~MJtRvm43GzptWhEzz49KzVSOpZJfNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Superconductivity_with_s_and_p_symmetries_in_an_extended_Hubbard_model_with_correlated_hopping","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n b of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB for n b = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for tAB \u003c tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":85047097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85047097/thumbnails/1.jpg","file_name":"9803034.pdf","download_url":"https://www.academia.edu/attachments/85047097/download_file","bulk_download_file_name":"Superconductivity_with_s_and_p_symmetrie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85047097/9803034-libre.pdf?1651059008=\u0026response-content-disposition=attachment%3B+filename%3DSuperconductivity_with_s_and_p_symmetrie.pdf\u0026Expires=1743936385\u0026Signature=IP3ssK9BJUNYbJyIjEmhk6MEzKyIN8pQ~nXmwNt5NGV-a9yD0q634TS9z6xwNc5KQ78Di6KY1E8JBK7WuhG~Iu3ktgQo1T-a9IkYSInOT5omO6JlfSpz94HqSJpJ3v5-Ic4WSvpyOjSYXj5oCa1VxU6LOmOmtJ44fwOw4QM79n-AHaewDd0P9RCg7P2iRKRiBqdna1JYdlnlqLsx0~BOws9BWuGuo92OSgSR8s525TlqqYckv834nbjdl2EpJAlnN20IIFCHpOWCCVy0zuug73uPxPWQCf0ebVl2XbOD5fgMPRH3~bby67E~MJtRvm43GzptWhEzz49KzVSOpZJfNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":289371,"name":"Learning Theory and Modeling","url":"https://www.academia.edu/Documents/in/Learning_Theory_and_Modeling"},{"id":398719,"name":"Hartree fock method","url":"https://www.academia.edu/Documents/in/Hartree_fock_method"},{"id":403192,"name":"Berry phase","url":"https://www.academia.edu/Documents/in/Berry_phase"},{"id":491137,"name":"Heavy Fermion","url":"https://www.academia.edu/Documents/in/Heavy_Fermion"},{"id":629732,"name":"Nearest Neighbour","url":"https://www.academia.edu/Documents/in/Nearest_Neighbour"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":2797475,"name":" Simple cubic","url":"https://www.academia.edu/Documents/in/Simple_cubic"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-77769708-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76993036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction"><img alt="Research paper thumbnail of Exact Solution of a Hubbard Chain with Bond-Charge Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/84927596/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction">Exact Solution of a Hubbard Chain with Bond-Charge Interaction</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge intera...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a93988f661c42f1cd221924ac6717614" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84927596,"asset_id":76993036,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84927596/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76993036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76993036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76993036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76993036]").text(description); $(".js-view-count[data-work-id=76993036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76993036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76993036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a93988f661c42f1cd221924ac6717614" } } $('.js-work-strip[data-work-id=76993036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76993036,"title":"Exact Solution of a Hubbard Chain with Bond-Charge Interaction","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Hubbard Chain Solution with Bond-Charge Interactions","grobid_abstract":"We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":84927596},"translated_abstract":null,"internal_url":"https://www.academia.edu/76993036/Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction","translated_internal_url":"","created_at":"2022-04-19T13:44:16.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84927596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84927596/thumbnails/1.jpg","file_name":"9406122v1.pdf","download_url":"https://www.academia.edu/attachments/84927596/download_file","bulk_download_file_name":"Exact_Solution_of_a_Hubbard_Chain_with_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84927596/9406122v1-libre.pdf?1650938983=\u0026response-content-disposition=attachment%3B+filename%3DExact_Solution_of_a_Hubbard_Chain_with_B.pdf\u0026Expires=1743936385\u0026Signature=cW3-lwR-Ukh3mj7r5YSTVk2MTlrlJY4pBnxdLMTdADBcr0Bz1XYmIgU2g40Ag3HXgorT5Y0cadLVxtBaZGC7lrPwvpQqlkUx2ytLTP30eNp9kM3mGe5btps9Yk870y2qKxnSFEyr1oLXpKmiRtZQ2ui9kmXlw4I3kweN9-0xm5BPvTFojm28XTaqA4R7LgmvY9kWkuTx0DNCt-TI4mfpsWbxR9cS80Y3mCozndAoOnS5GWttDMyFeMoSEIfadBswdePJ3kD8zjekp0BNPK8Tu1L7NaFSgQnQolCCtnl~Ah-972HBYGwCLG6OwsR0RknO13p7vShzFLJHdM63PSgapg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_Solution_of_a_Hubbard_Chain_with_Bond_Charge_Interaction","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X and on-site interaction U with the only restriction t = X. At zero temperature and half filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":84927596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84927596/thumbnails/1.jpg","file_name":"9406122v1.pdf","download_url":"https://www.academia.edu/attachments/84927596/download_file","bulk_download_file_name":"Exact_Solution_of_a_Hubbard_Chain_with_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84927596/9406122v1-libre.pdf?1650938983=\u0026response-content-disposition=attachment%3B+filename%3DExact_Solution_of_a_Hubbard_Chain_with_B.pdf\u0026Expires=1743936385\u0026Signature=cW3-lwR-Ukh3mj7r5YSTVk2MTlrlJY4pBnxdLMTdADBcr0Bz1XYmIgU2g40Ag3HXgorT5Y0cadLVxtBaZGC7lrPwvpQqlkUx2ytLTP30eNp9kM3mGe5btps9Yk870y2qKxnSFEyr1oLXpKmiRtZQ2ui9kmXlw4I3kweN9-0xm5BPvTFojm28XTaqA4R7LgmvY9kWkuTx0DNCt-TI4mfpsWbxR9cS80Y3mCozndAoOnS5GWttDMyFeMoSEIfadBswdePJ3kD8zjekp0BNPK8Tu1L7NaFSgQnQolCCtnl~Ah-972HBYGwCLG6OwsR0RknO13p7vShzFLJHdM63PSgapg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":88255,"name":"Mott metal-insulator transition","url":"https://www.academia.edu/Documents/in/Mott_metal-insulator_transition"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":289371,"name":"Learning Theory and Modeling","url":"https://www.academia.edu/Documents/in/Learning_Theory_and_Modeling"},{"id":354685,"name":"Mott Transition","url":"https://www.academia.edu/Documents/in/Mott_Transition"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":436755,"name":"Degeneration","url":"https://www.academia.edu/Documents/in/Degeneration"},{"id":491137,"name":"Heavy Fermion","url":"https://www.academia.edu/Documents/in/Heavy_Fermion"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":1868639,"name":"Exact solution methods","url":"https://www.academia.edu/Documents/in/Exact_solution_methods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76993036-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76993035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction"><img alt="Research paper thumbnail of Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/84631506/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction">Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge inte...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U > 0 at half-filling. For large enough X < t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bd810f5160e3b41acf2eacd729593039" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84631506,"asset_id":76993035,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84631506/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76993035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76993035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76993035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76993035]").text(description); $(".js-view-count[data-work-id=76993035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76993035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76993035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bd810f5160e3b41acf2eacd729593039" } } $('.js-work-strip[data-work-id=76993035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76993035,"title":"Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U \u003e 0 at half-filling. For large enough X \u003c t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":84631506},"translated_abstract":null,"internal_url":"https://www.academia.edu/76993035/Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction","translated_internal_url":"","created_at":"2022-04-19T13:44:16.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84631506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84631506/thumbnails/1.jpg","file_name":"PRL_202007.pdf","download_url":"https://www.academia.edu/attachments/84631506/download_file","bulk_download_file_name":"Incommmensurability_and_Unconventional_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84631506/PRL_202007-libre.pdf?1650563609=\u0026response-content-disposition=attachment%3B+filename%3DIncommmensurability_and_Unconventional_S.pdf\u0026Expires=1743936386\u0026Signature=d1Eir7IGo2p~YnK0zc4wLvepV4qZvi5hAbI5YBz5xliBCV016MzdS9ZYSjPoSj5K8zAeRlRZj5wXTZOyptn0bm7TXPe0JCewj~aCIiodX-dPDr3wpFU~Bhnjn36EQy--My1jm8dkk2WlYUEww4-~xiR1DBJcgskzsZWTbyVHqb5PHKtGSKZUTObSxpk6awi8jtTRDJYUrptPvoKZnShhrshHBEgx6zQkeGu7XRlJE5FBV0uXufPwmDQ3uFWMBW3qZCyHX9ZkhQkynfZXRgIeYdAiogAqcFIOH-PUYTsvJm-dk0k4gXuhrX-z0Q6Wric14V6lINOIeP0b5GEERHaweQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Incommmensurability_and_Unconventional_Superconductor_to_Insulator_Transition_in_the_Hubbard_Model_with_Bond_Charge_Interaction","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U \u003e 0 at half-filling. For large enough X \u003c t the model shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":84631506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84631506/thumbnails/1.jpg","file_name":"PRL_202007.pdf","download_url":"https://www.academia.edu/attachments/84631506/download_file","bulk_download_file_name":"Incommmensurability_and_Unconventional_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84631506/PRL_202007-libre.pdf?1650563609=\u0026response-content-disposition=attachment%3B+filename%3DIncommmensurability_and_Unconventional_S.pdf\u0026Expires=1743936386\u0026Signature=d1Eir7IGo2p~YnK0zc4wLvepV4qZvi5hAbI5YBz5xliBCV016MzdS9ZYSjPoSj5K8zAeRlRZj5wXTZOyptn0bm7TXPe0JCewj~aCIiodX-dPDr3wpFU~Bhnjn36EQy--My1jm8dkk2WlYUEww4-~xiR1DBJcgskzsZWTbyVHqb5PHKtGSKZUTObSxpk6awi8jtTRDJYUrptPvoKZnShhrshHBEgx6zQkeGu7XRlJE5FBV0uXufPwmDQ3uFWMBW3qZCyHX9ZkhQkynfZXRgIeYdAiogAqcFIOH-PUYTsvJm-dk0k4gXuhrX-z0Q6Wric14V6lINOIeP0b5GEERHaweQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":88255,"name":"Mott metal-insulator transition","url":"https://www.academia.edu/Documents/in/Mott_metal-insulator_transition"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125513,"name":"Superconductors","url":"https://www.academia.edu/Documents/in/Superconductors"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"},{"id":4108054,"name":"phase diagram","url":"https://www.academia.edu/Documents/in/phase_diagram"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76993035-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73094727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73094727/Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates"><img alt="Research paper thumbnail of Pairing Correlations in a Generalized Hubbard Model for the Cuprates" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pairing Correlations in a Generalized Hubbard Model for the Cuprates</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t&#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t&#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73094727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73094727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73094727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73094727]").text(description); $(".js-view-count[data-work-id=73094727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73094727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73094727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73094727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73094727,"title":"Pairing Correlations in a Generalized Hubbard Model for the Cuprates","translated_title":"","metadata":{"abstract":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","publication_date":{"day":1,"month":10,"year":1999,"errors":{}}},"translated_abstract":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","internal_url":"https://www.academia.edu/73094727/Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates","translated_internal_url":"","created_at":"2022-03-05T03:14:39.986-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pairing_Correlations_in_a_Generalized_Hubbard_Model_for_the_Cuprates","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t\u0026#39;. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t\u0026#39;-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"}],"urls":[{"id":18263353,"url":"https://core.ac.uk/download/pdf/2415710.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73094727-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="65463052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates"><img alt="Research paper thumbnail of Pairing correlations in a generalized Hubbard model for the cuprates" class="work-thumbnail" src="https://attachments.academia-assets.com/77048911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates">Pairing correlations in a generalized Hubbard model for the cuprates</a></div><div class="wp-workCard_item"><span>Physical Review B - PHYS REV B</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF&#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t&#x27;. The vertex contributions to the PCF&#x27;s are significantly enhanced, relative to the t-t&#x27;-U model. The behavior of the PCF&#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ccb421edec686e95208b9e1bfbc8f0c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":77048911,"asset_id":65463052,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/77048911/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65463052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65463052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65463052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65463052]").text(description); $(".js-view-count[data-work-id=65463052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65463052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65463052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ccb421edec686e95208b9e1bfbc8f0c" } } $('.js-work-strip[data-work-id=65463052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65463052,"title":"Pairing correlations in a generalized Hubbard model for the cuprates","translated_title":"","metadata":{"abstract":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physical Review B - PHYS REV B"},"translated_abstract":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","internal_url":"https://www.academia.edu/65463052/Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates","translated_internal_url":"","created_at":"2021-12-22T02:41:19.840-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77048911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77048911/thumbnails/1.jpg","file_name":"9910012.pdf","download_url":"https://www.academia.edu/attachments/77048911/download_file","bulk_download_file_name":"Pairing_correlations_in_a_generalized_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77048911/9910012-libre.pdf?1640180348=\u0026response-content-disposition=attachment%3B+filename%3DPairing_correlations_in_a_generalized_Hu.pdf\u0026Expires=1743936386\u0026Signature=HtY-kVSa4cd2lKSPzZOI1OwnU67~RQnX7DljNHd4lta1WxruVN-EMlQnAL0r-mxMQxAHza2RmpFJgCqIagyuf21XJ5pRAq1rKnyK-CQzebRbxhJfhMjXbUeEa0C1ufYOVuylN-F-4uvIZhIezgu7XPCuofHbu-L-Ke3omLOlP13bc4d9XFSB8MWyNwNvFr87f2y~at32gRz4c397ubSmsPCdiWIPh86ZwhkHQxw4slH3r4nrHiD18CpQ~0Gjvy~VMkeO-~R3l3mX1NlKIjIha2WQvJMg9zEm2qI7NkiJhx~90VJDEmh1SFhiJj10KPBtxdTLP~J7R0e3Fqgnf1tdQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pairing_correlations_in_a_generalized_Hubbard_model_for_the_cuprates","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF\u0026#x27;s) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t\u0026#x27;. The vertex contributions to the PCF\u0026#x27;s are significantly enhanced, relative to the t-t\u0026#x27;-U model. The behavior of the PCF\u0026#x27;s and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":77048911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77048911/thumbnails/1.jpg","file_name":"9910012.pdf","download_url":"https://www.academia.edu/attachments/77048911/download_file","bulk_download_file_name":"Pairing_correlations_in_a_generalized_Hu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77048911/9910012-libre.pdf?1640180348=\u0026response-content-disposition=attachment%3B+filename%3DPairing_correlations_in_a_generalized_Hu.pdf\u0026Expires=1743936386\u0026Signature=HtY-kVSa4cd2lKSPzZOI1OwnU67~RQnX7DljNHd4lta1WxruVN-EMlQnAL0r-mxMQxAHza2RmpFJgCqIagyuf21XJ5pRAq1rKnyK-CQzebRbxhJfhMjXbUeEa0C1ufYOVuylN-F-4uvIZhIezgu7XPCuofHbu-L-Ke3omLOlP13bc4d9XFSB8MWyNwNvFr87f2y~at32gRz4c397ubSmsPCdiWIPh86ZwhkHQxw4slH3r4nrHiD18CpQ~0Gjvy~VMkeO-~R3l3mX1NlKIjIha2WQvJMg9zEm2qI7NkiJhx~90VJDEmh1SFhiJj10KPBtxdTLP~J7R0e3Fqgnf1tdQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":239856,"name":"Bose Hubbard Model","url":"https://www.academia.edu/Documents/in/Bose_Hubbard_Model"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1102002,"name":"Fermionic Hubbard Model","url":"https://www.academia.edu/Documents/in/Fermionic_Hubbard_Model"}],"urls":[{"id":15519625,"url":"http://adsabs.harvard.edu/abs/1999cond.mat.10012A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-65463052-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire"><img alt="Research paper thumbnail of Exact analytical solution of a time-reversal-invariant topological superconducting wire" class="work-thumbnail" src="https://attachments.academia-assets.com/68034569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire">Exact analytical solution of a time-reversal-invariant topological superconducting wire</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model proposed before for a time-reversal-invariant topological superconductor (TRI...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called "time-reversal anomaly". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d62043adeb93b5a8670d9cffe6a20fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034569,"asset_id":49813650,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813650]").text(description); $(".js-view-count[data-work-id=49813650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d62043adeb93b5a8670d9cffe6a20fc" } } $('.js-work-strip[data-work-id=49813650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813650,"title":"Exact analytical solution of a time-reversal-invariant topological superconducting wire","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Analytical Solution of Topological Superconducting Wire","grobid_abstract":"We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called \"time-reversal anomaly\". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034569},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813650/Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire","translated_internal_url":"","created_at":"2021-07-12T10:30:46.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034569/thumbnails/1.jpg","file_name":"1905.pdf","download_url":"https://www.academia.edu/attachments/68034569/download_file","bulk_download_file_name":"Exact_analytical_solution_of_a_time_reve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034569/1905-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DExact_analytical_solution_of_a_time_reve.pdf\u0026Expires=1743936386\u0026Signature=YhquFy8meP~ZbH94TfjmJNiUVPT0Xx3tN7nll5BWM74l4okh~4aRzo7Jpn1DGcFhSyageXyQeR4b280Lj2KFya47JxcqZVbnduiISqh~Qrclyz4BH~WOBAa4S6BIO6CZ-Q5czUTapsnYACB0nT-u~0MdOvfcO8gJFBkQvyVlW9FU0yODq7JtUyXgBOb4YEmhEiFdf4X08VcVcT5PHlIh4iwNFX-CEKa7sjACCwlivecQZYyow4EnSuYB-LAgtfWShOUMEdpr2WPEQs2eb014blcAeB2ahP1Sx-nUvr0fyx9jxu4LosTaRyz8XWy6Go1zMVcic~iDTt6oAyjVoJn58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_analytical_solution_of_a_time_reversal_invariant_topological_superconducting_wire","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term t, a chemical potential µ, an extended s-wave pairing ∆ and spin-orbit coupling λ. We show that for |∆| = |λ|, µ = t = 0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we discuss some statements related with the so called \"time-reversal anomaly\". Addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturabtions with numerical results in a short chain obtaining good agreement.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034569/thumbnails/1.jpg","file_name":"1905.pdf","download_url":"https://www.academia.edu/attachments/68034569/download_file","bulk_download_file_name":"Exact_analytical_solution_of_a_time_reve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034569/1905-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DExact_analytical_solution_of_a_time_reve.pdf\u0026Expires=1743936386\u0026Signature=YhquFy8meP~ZbH94TfjmJNiUVPT0Xx3tN7nll5BWM74l4okh~4aRzo7Jpn1DGcFhSyageXyQeR4b280Lj2KFya47JxcqZVbnduiISqh~Qrclyz4BH~WOBAa4S6BIO6CZ-Q5czUTapsnYACB0nT-u~0MdOvfcO8gJFBkQvyVlW9FU0yODq7JtUyXgBOb4YEmhEiFdf4X08VcVcT5PHlIh4iwNFX-CEKa7sjACCwlivecQZYyow4EnSuYB-LAgtfWShOUMEdpr2WPEQs2eb014blcAeB2ahP1Sx-nUvr0fyx9jxu4LosTaRyz8XWy6Go1zMVcic~iDTt6oAyjVoJn58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422596,"url":"https://link.aps.org/article/10.1103/PhysRevB.100.115413"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813650-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions"><img alt="Research paper thumbnail of Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/68034579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions">Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions</a></div><div class="wp-workCard_item"><span>Journal of Physics: Condensed Matter</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the transport through a molecular junction exhibiting interference effects. We show that...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813649-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813649-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864224/figure-1-color-online-differential-conductance-as-function"><img alt="FIG. 1: (Color online) Differential conductance as a function of level splitting for \ = 0 and AX = V6 x 1077. Other param- eters are D = 1, 0 = 0.1, A; = 0.075 and T = 0.1Tx, being Te ~ 4x 10~%. Triangles correspond to \ = 0 displaced in dres = 0.005. Go = 2e? /h. (details in text below) The inset shows a scheme of the electronic levels and their coupling to the leads. Renormalization of 6 by the EVI " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864232/figure-2-color-online-spectral-density-of-the-two-levels-for"><img alt="FIG. 2: (Color online) Spectral density of the two levels for X= V10 x 10-7, A = 0.05, 6 = dres = 0.00903 and T = 0.177 with Te) = 7.5 x 10-*. Other parameters as in Fig. 1. The left inset includes in dashed-dot-dot line the case 4 = 6 = 0 for comparison. The right inset shows the temperature dependence of the occupations (nic). " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864240/figure-3-color-online-conductance-as-function-of-bias"><img alt="FIG. 3: (Color online) Conductance as a function of bias voltage for \ = 0, Eq = —0.4 Az = 0.05 and Ai = 0.941Az2, 6 = 0.001499 and several temperatures. The resulting Kondo temperature is Tx = 8 x 10-*. Blue circles indicate the non- interacting result at T = 0 for Eg = Ag and 6 = A; — Ag as a function of Vp/Az. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864249/figure-3-where-jr-pl-and-fw-is-the-perm-function-the"><img alt="where Jr\W) = J\Y— PL) and fw) is the Perm function. The transport properties for the non-interacting and Kondo cases are compared in Fig. 3. The conductance at low temperatures in the interacting case (black thick) and the non-interacting case (blue circles) is shown as a function of the bias voltage scaled with the relevant scale in each case: the Kondo temperature Tx in the situations is the following: we consider the interacting case for A = 0 with the same parameters of Fig. 2 but include the non-trivial renormalization of the hy- bridization A; = 0.941A. The 6 is adjusted, as for Fig. 2, to get identical occupations of both levels at ow temperatures. The situation we want to compare is for the non-interacting case with the same A;. In this case, for A; # Ag, tuning both E; one can also fix the two mean occupations (nic) = 1/4 and obtain at Vo = T = 0 perfect DESINT. Since the non-interacting spectral densities are just Lorentzian functions it turns out that (njz) = 1/4 implies E; = A;. Following known equations for the non-interacting case°*, we obtain " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864258/figure-4-kondo-temperature-as-function-of-other-param-eters"><img alt="FIG. 4: Kondo temperature as a function of 6. Other param- eters as in Fig. 2. former and the hybridization A» in the latter. In the non-interacting case, with this tuning of both energies, we realize a situation w here the device can be operated as a QuIET: changing E2 — EF; by a quantity larger than A;, a conductance of t However, since the spec jute interacting Kondo case, 1, more robust under Vj. shown in Fig. 2. he order of Go can be reached. tral densities are different, there s no emergent symmetry, perfect DESINT is rapidly lost for small V, ~ A» as shown in Fig. 2. Instead, in the the regime to operate the “many- body QulET ” is found tuning just one energy E; and perfect DESINT is obtained with a total occupancy near The conductance remains small even for V, ~ Tx and T ~ 57x. This is expected because the spectral densities of both levels are very similar, as " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864267/figure-5-color-online-zero-bias-differential-conductance-as"><img alt="FIG. 5: (Color online) Zero-bias differential conductance as a function of level splitting for strongly different lead couplings A? = 0.075, AP = 0.0025. Other parameters are Q = 0.1, d = V10 x 107? and T = TR” /20 with TR ~ 6 x 1073. The inset shows the differential conductance as a function of bias voltage for \ = 0 and two values of 6. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864276/figure-6-color-online-of-the-hamiltonian-eq-we-assume"><img alt="FIG. 6: (Color online) Scheme of the Hamiltonian Eq. (A1) We assume identical left and right leads with equal cou- pling to the two levels, and one symmetric and one an- tisymmetric molecular level with splitting 6. Specifically Vi = Ve, and V4 = —V.f?. A schematic representation of the model is in Fig. 6. " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864284/figure-8-destructive-quantum-interference-in-transport"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/52864294/figure-7-color-online-of-the-hamiltonian-eq-then-the-model"><img alt="FIG. 7: (Color online) Scheme of the Hamiltonian Eq. (A2) Then, the model Eq. (A2) reduces to " class="figure-slide-image" src="https://figures.academia-assets.com/68034579/figure_009.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813649-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b59d41f4b03f5f13034f723ca1ed6998" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034579,"asset_id":49813649,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034579/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813649]").text(description); $(".js-view-count[data-work-id=49813649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b59d41f4b03f5f13034f723ca1ed6998" } } $('.js-work-strip[data-work-id=49813649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813649,"title":"Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions","translated_title":"","metadata":{"publisher":"IOP Publishing","ai_title_tag":"Quantum Interference in Molecular Juction Transport Dynamics","grobid_abstract":"We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.","publication_name":"Journal of Physics: Condensed Matter","grobid_abstract_attachment_id":68034579},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813649/Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions","translated_internal_url":"","created_at":"2021-07-12T10:30:46.369-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034579/thumbnails/1.jpg","file_name":"1908.pdf","download_url":"https://www.academia.edu/attachments/68034579/download_file","bulk_download_file_name":"Destructive_quantum_interference_in_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034579/1908-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DDestructive_quantum_interference_in_tran.pdf\u0026Expires=1743936386\u0026Signature=WLBbeGbSrxRj-ym6s2E14eV9gmgkuDnGiqLRSi2FF1npcivg2cXqHRwi95LzBfnx-i4HiWB5m08-TZqfj~xf5xqkynfq4U~cgysVc18Bz3Sn1F3~Gd7dD~JArEN4hd1ov-See7G8bDM4Qcxm05aNq0cqVZoIJmWJ8VavNy40EU7mN22oslaWhb5lQ5kolqf1~bTkaii4nO-ikkiSelzdomfnvdinorDQGQiRdT-Xo4eLQUa8miqbdp18U~88OcmONqRxYHlaJ4DhKahG-aUkhTzmsW-udJfQZc3yGoyU3aJtgt2pbew4fa0kX9XdVezfEpGzH4kMi~5UbvtQGBQO4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Destructive_quantum_interference_in_transport_through_molecules_with_electron_electron_and_electron_vibration_interactions","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034579/thumbnails/1.jpg","file_name":"1908.pdf","download_url":"https://www.academia.edu/attachments/68034579/download_file","bulk_download_file_name":"Destructive_quantum_interference_in_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034579/1908-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DDestructive_quantum_interference_in_tran.pdf\u0026Expires=1743936386\u0026Signature=WLBbeGbSrxRj-ym6s2E14eV9gmgkuDnGiqLRSi2FF1npcivg2cXqHRwi95LzBfnx-i4HiWB5m08-TZqfj~xf5xqkynfq4U~cgysVc18Bz3Sn1F3~Gd7dD~JArEN4hd1ov-See7G8bDM4Qcxm05aNq0cqVZoIJmWJ8VavNy40EU7mN22oslaWhb5lQ5kolqf1~bTkaii4nO-ikkiSelzdomfnvdinorDQGQiRdT-Xo4eLQUa8miqbdp18U~88OcmONqRxYHlaJ4DhKahG-aUkhTzmsW-udJfQZc3yGoyU3aJtgt2pbew4fa0kX9XdVezfEpGzH4kMi~5UbvtQGBQO4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[{"id":10422595,"url":"http://iopscience.iop.org/article/10.1088/1361-648X/ab3684"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813649-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7"><img alt="Research paper thumbnail of Spin and orbital ordering in bilayer Sr3Cr2O7" class="work-thumbnail" src="https://attachments.academia-assets.com/68034567/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7">Spin and orbital ordering in bilayer Sr3Cr2O7</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using maximally localized Wannier functions obtained from DFT calculations, we derive an effectiv...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813648-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813648-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787555/figure-1-color-online-tetragonal-structure-of-srcr-the"><img alt="FIG. 1: (Color online) Tetragonal structure of Sr3Cr207. The stacking is made of three types of layers. The unit cell (shown at the right) contains two blocks of five layers shown at the left, the second displaced in the x,y direction by (a/2,a/2) with respect to the first one. dz and d3 denote the distances Cr-Oz and Cr-O3, respectively. The ratio d3/d2 = 1.016.7! " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787563/figure-2-color-online-spin-unpolarized-band-structure-of"><img alt="FIG. 2: (Color online) Spin unpolarized band structure of Sr3Cr2O7 (left panel) along with atom-projected density of states (right panel). The bands are plotted with character in order to show the strong hybridization between Cr and O close to the Fermi energy. Red means mainly d-Cr character and blue p-O character. Also shown are the DOS projected on each non-equivalent O atom and each Cr orbital. The two horizontal dashed lines delimit the energy window where the wannierization process takes place. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787569/figure-3-color-online-isosurface-plot-of-two-maximally-lo"><img alt="FIG. 3: (Color online) Isosurface plot of two maximally lo- calized Wannier wave functions center at the Cr atom (blue circle). a) and b) shows two views of the wave function with zy symmetry, showing strong hybridization with in plane oxy- gens (O1). c) and d) shows two views of the wave function with symmetry near xz + yz. Note in d) the different hy- bridization between oxygen on top of chromium (Oz) and the one at the bottom (O3). The Sr atoms are not shown. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787576/figure-4-where-is-vector-connecting-two-nearest-cr-atoms-in"><img alt="where a is a vector connecting two nearest Cr atoms in the +z or +y direction. The hopping between tz, orbitals is mediated by Cr- O hopping through O 2p orbitals and the symmetry of the orbitals imposes restrictions on the allowed processes. As a consequence, the xy orbitals cannot hop in the z direction. Similarly the xz (yz) orbitals cannot hop in the y (a) direction. Then, the hopping term of the multiband model has the form The crystal-field splitting 6 and the hopping parame- ters tz, tp and tz, were determined from the MLWFs, as described in Section III. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787584/figure-5-up-is-the-energy-necessary-to-take-dyz-electron"><img alt="Up is the energy necessary to take a d,z (dyz) electron from the ground state of the d!,d!, (d1,d',) configu- wy xz wy “yz ration and add it to the dj,d,, (di,di.) configuration where the factor 1/4 in the first term is introduced to compensate for factors +1/4 that come from Ti, - Ta, in classical orderings and render easier the qualitative discussion below. The coefficients are " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787591/figure-6-at-this-point-we-discuss-qualitatively-the-meaning"><img alt="At this point we discuss qualitatively the meaning of Axx and the expected physics. We begin discussing the two-site vertical interactions H; [Eq. (6)]. For J = 0, all interactions are equal [see Eq. (7)]: Ig = Ip = Isr =I 2t2/Up. This means that without the spin-pseudospin interaction [gr both spins and pseudospin minimize the energy for an antiferromagmetic (AF) alignment, but the term in [gr is minimized for one ferromagnetic (FM) and the other AF alignment. As a consequence from the four classical possibilities of orienting the spin and pseudospin FM or AF, all of them are part of the degenerate ground state with energy -I/2 except the FM-FM one. This re- sult is easy to understand: the second order correction to the energy of these states contains virtual processes in which one electron in the xz (pseudospin |) or yz (pseu- dospin +) orbital and spin t or | jumps to the other site and comes back. The corresponding gain in energy is the same for any alignment of spin and pseudospin except in the case in which the same orbital with the same spin is occupied at both sites because of Pauli principle. If the xy orbitals were absent, leaving spins 1/2, this picture would not be modified by quantum fluctuations. Actu- ally in this case the model would have SU(4) symmetry with spin and pseudospin playing a similar role.!° In our actual case with S = 1, the pseudospins 1/2 are more quantum than the spins 1 and the ground state of the dimer is a pseudospin singlet and spin triplet with en- ergy (Is — 3Ip — 3Igr)/4 = —5I/4. The first excited state is a pseudospin triplet and spin singlet with energy (—2Ig + Ip — 2Igr)/4 = —31/4. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787598/figure-7-note-that-when-the-system-becomes-unsagainst"><img alt="Note that when 2B, > A,, the system becomes unstable against creation of triplet excitations of long wavelength kz, ky — 0 and Eq. (13) becomes meaningless. In general if for some parameters the assumed pseudospin or spin arrangements become unstable, the situation is detected in the numerical algorithm used to calculate the two- dimensional integral over (kz, k,) by the non-analyticity of some expression for small (kz, k,). In fact, as we show below, phase I becomes unstable near the transition to phase IT (as it might be expected). Diagonalizing the Hamiltonian by means of a standard Bogoliubov transformation, The ground-state energy be- comes " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787604/figure-8-where-is-the-number-of-sites-in-plane-and-bi"><img alt="where N is the number of sites in a plane and bi creates a spin excitation at two-dimensional position r of plane " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787610/figure-4-color-online-factor-in-which-the-vertical-hopping"><img alt="FIG. 4: (Color online) Factor in which the vertical hopping tz has to be reduced to destabilize the dimerized pseudospin singlet phase I for J = 0.7 eV. Full line denotes the crossing of the energies FE(II) = E(I) and dashed line is the limit of stability of phase I (see text) As a test of our procedure we have compared the en- ergy of the two phases when all interactions involving spin are zero (this is equivalent to take S = 0) leaving only Ip and I?. We obtain a transition between the long-range ordered phase II for small [7 to the phase of vertical dimers I for large Ip at Ip/I?, = 2.947, 17% larger than the value near 2.522 obtained by Monte Carlo calculations.?°:?9 Thus, our approach underestimates the stability of phase I. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787616/figure-10-spin-and-orbital-ordering-in-bilayer-srcro"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787620/figure-5-color-online-same-as-for-ev"><img alt="FIG. 5: (Color online) Same as Fig. 4 for J = 0.4 eV. " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/16787623/table-1-parameters-of-hxx-in-mev-for-ev-ev-and-other"><img alt="TABLE I: Parameters of Hxx in meV for U = 4.1 eV, J = 0.7 eV, and other parameters determined by the ab initio calculations " class="figure-slide-image" src="https://figures.academia-assets.com/68034567/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813648-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fc5cc4313833a48574f9c0151898413e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034567,"asset_id":49813648,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034567/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813648]").text(description); $(".js-view-count[data-work-id=49813648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fc5cc4313833a48574f9c0151898413e" } } $('.js-work-strip[data-work-id=49813648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813648,"title":"Spin and orbital ordering in bilayer Sr3Cr2O7","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034567},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813648/Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7","translated_internal_url":"","created_at":"2021-07-12T10:30:46.235-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034567/thumbnails/1.jpg","file_name":"1811.pdf","download_url":"https://www.academia.edu/attachments/68034567/download_file","bulk_download_file_name":"Spin_and_orbital_ordering_in_bilayer_Sr3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034567/1811-libre.pdf?1626111616=\u0026response-content-disposition=attachment%3B+filename%3DSpin_and_orbital_ordering_in_bilayer_Sr3.pdf\u0026Expires=1743936386\u0026Signature=TeYvupAax-7WWecwqOmmKS89bZJ9Xk-HNdr13xUjYUU1sTI35KWgE056Ehf7~6Tdx6mM8LScVkDnJWxhUuqh8HZ8cVYrW4vzWM7br4PBaCfx4AAiBC5gG3cjYoVykW6KF0dc6a11V~Rwrm39UZSr6pE7zu8NiH7oYv-nmEYFbVca4TX3DnHTDDq4WAdsAyaB40K4Q9grygNlV5tysOs5J~yThYNccaAKmMRXTxz9kxOs7mkuFaioR6ejQh8IQDOVpY5rvtGHLRcxHyTlUXnkAGh4Jk5hVkFdTNAwsHo1kHkLKJdnMEXiiQdgU8jF9E7i12fI82HhCipquvMwXpR-7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spin_and_orbital_ordering_in_bilayer_Sr3Cr2O7","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034567/thumbnails/1.jpg","file_name":"1811.pdf","download_url":"https://www.academia.edu/attachments/68034567/download_file","bulk_download_file_name":"Spin_and_orbital_ordering_in_bilayer_Sr3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034567/1811-libre.pdf?1626111616=\u0026response-content-disposition=attachment%3B+filename%3DSpin_and_orbital_ordering_in_bilayer_Sr3.pdf\u0026Expires=1743936386\u0026Signature=TeYvupAax-7WWecwqOmmKS89bZJ9Xk-HNdr13xUjYUU1sTI35KWgE056Ehf7~6Tdx6mM8LScVkDnJWxhUuqh8HZ8cVYrW4vzWM7br4PBaCfx4AAiBC5gG3cjYoVykW6KF0dc6a11V~Rwrm39UZSr6pE7zu8NiH7oYv-nmEYFbVca4TX3DnHTDDq4WAdsAyaB40K4Q9grygNlV5tysOs5J~yThYNccaAKmMRXTxz9kxOs7mkuFaioR6ejQh8IQDOVpY5rvtGHLRcxHyTlUXnkAGh4Jk5hVkFdTNAwsHo1kHkLKJdnMEXiiQdgU8jF9E7i12fI82HhCipquvMwXpR-7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422594,"url":"https://link.aps.org/article/10.1103/PhysRevB.99.195150"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813648-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires"><img alt="Research paper thumbnail of Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires" class="work-thumbnail" src="https://attachments.academia-assets.com/68034570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires">Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study all the possible different two terminal configurations of Josephson junctions containing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20e10eb6859748264ebfa4143154e5c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034570,"asset_id":49813647,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034570/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813647]").text(description); $(".js-view-count[data-work-id=49813647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20e10eb6859748264ebfa4143154e5c7" } } $('.js-work-strip[data-work-id=49813647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813647,"title":"Catalog of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Andreev Spectra in Topological Josephson Junctions","grobid_abstract":"We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034570},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813647/Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires","translated_internal_url":"","created_at":"2021-07-12T10:30:46.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034570/thumbnails/1.jpg","file_name":"1812.pdf","download_url":"https://www.academia.edu/attachments/68034570/download_file","bulk_download_file_name":"Catalog_of_Andreev_spectra_and_Josephson.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034570/1812-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DCatalog_of_Andreev_spectra_and_Josephson.pdf\u0026Expires=1743936387\u0026Signature=SIwhQUWUD2PZFXwTQs67J3Fzq2Fgp6lTJK9kkIEaNSZ09zyJtwGxsE-bumkfXGdBjN2CHN4CRMy54PRRd8ORg1W4cnX5BDEuwxBjR2UycwEPU8u2fcKZfjIjmOEQRmtByLttCDy7QDeRJ~QHO9mSCdTriVU0gVeLqKX8~MogeBt-BG7v8e2FnJZAkvO6-PTjM1ceoQOj~BsdO-akb7fXa-S9~dqHo9xp5akzqD0yCl1W1rRsk7SttYg-p9OVTYEt6z733LMjYpcWi~1b9rQlYNcemBlUW-M3mC5JuHj~QyUbLqj1xl5dI3rQUssANw31gq73DL4LmSA9Mmcoxbq2Uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Catalog_of_Andreev_spectra_and_Josephson_effects_in_structures_with_time_reversal_invariant_topological_superconductor_wires","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called 0 − π transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034570/thumbnails/1.jpg","file_name":"1812.pdf","download_url":"https://www.academia.edu/attachments/68034570/download_file","bulk_download_file_name":"Catalog_of_Andreev_spectra_and_Josephson.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034570/1812-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DCatalog_of_Andreev_spectra_and_Josephson.pdf\u0026Expires=1743936387\u0026Signature=SIwhQUWUD2PZFXwTQs67J3Fzq2Fgp6lTJK9kkIEaNSZ09zyJtwGxsE-bumkfXGdBjN2CHN4CRMy54PRRd8ORg1W4cnX5BDEuwxBjR2UycwEPU8u2fcKZfjIjmOEQRmtByLttCDy7QDeRJ~QHO9mSCdTriVU0gVeLqKX8~MogeBt-BG7v8e2FnJZAkvO6-PTjM1ceoQOj~BsdO-akb7fXa-S9~dqHo9xp5akzqD0yCl1W1rRsk7SttYg-p9OVTYEt6z733LMjYpcWi~1b9rQlYNcemBlUW-M3mC5JuHj~QyUbLqj1xl5dI3rQUssANw31gq73DL4LmSA9Mmcoxbq2Uw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422593,"url":"https://link.aps.org/article/10.1103/PhysRevB.99.085431"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813647-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813646"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads"><img alt="Research paper thumbnail of Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads" class="work-thumbnail" src="https://attachments.academia-assets.com/68034577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads">Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the low-temperature properties of the differential response of the current to a temperat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f731028f75a2ecef421e9b5616733901" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034577,"asset_id":49813646,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034577/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813646"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813646"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813646; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813646]").text(description); $(".js-view-count[data-work-id=49813646]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813646; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813646']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f731028f75a2ecef421e9b5616733901" } } $('.js-work-strip[data-work-id=49813646]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813646,"title":"Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034577},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813646/Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads","translated_internal_url":"","created_at":"2021-07-12T10:30:45.949-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034577/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034577/download_file","bulk_download_file_name":"Enhancing_the_nonlinear_thermoelectric_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034577/fulltext-libre.pdf?1626111615=\u0026response-content-disposition=attachment%3B+filename%3DEnhancing_the_nonlinear_thermoelectric_r.pdf\u0026Expires=1743936387\u0026Signature=KotI8KYphkFteP~dcjOEHsZnyq~-0-jW1~qc-GCF8JNDMsXviumd7aX4qz30AxzU~FNHSnTHTh4HFkt8UfPGlcLVvIpEdTDTM~j3KGKtJ3X1yTM1V8azXAPmzjz~~Vzdc7kqJ6ofZwfHBUVxXtHaBzrAw7NaMlHBUjlr0h42RJL28MZUm0vuQJE6~0PxEJe-EgerAI8UPBcy9YWlL1LOfVIwYbM7Je7qqJSNPmMiRb7NgZu7LmVz40fG7eZOcIi8-tb7QzdPAivznDBe71FJGTbVZg-joKedjafwLBDnCfjkMzoCW3ViRGZOaxnZeySds5dal~iyc2qXIKmhpAYM3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Enhancing_the_nonlinear_thermoelectric_response_of_a_correlated_quantum_dot_in_the_Kondo_regime_by_asymmetrical_coupling_to_the_leads","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034577/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034577/download_file","bulk_download_file_name":"Enhancing_the_nonlinear_thermoelectric_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034577/fulltext-libre.pdf?1626111615=\u0026response-content-disposition=attachment%3B+filename%3DEnhancing_the_nonlinear_thermoelectric_r.pdf\u0026Expires=1743936387\u0026Signature=KotI8KYphkFteP~dcjOEHsZnyq~-0-jW1~qc-GCF8JNDMsXviumd7aX4qz30AxzU~FNHSnTHTh4HFkt8UfPGlcLVvIpEdTDTM~j3KGKtJ3X1yTM1V8azXAPmzjz~~Vzdc7kqJ6ofZwfHBUVxXtHaBzrAw7NaMlHBUjlr0h42RJL28MZUm0vuQJE6~0PxEJe-EgerAI8UPBcy9YWlL1LOfVIwYbM7Je7qqJSNPmMiRb7NgZu7LmVz40fG7eZOcIi8-tb7QzdPAivznDBe71FJGTbVZg-joKedjafwLBDnCfjkMzoCW3ViRGZOaxnZeySds5dal~iyc2qXIKmhpAYM3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422592,"url":"https://link.aps.org/article/10.1103/PhysRevB.97.165433"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813646-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/49813645/Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_"><img alt="Research paper thumbnail of Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)</div><div class="wp-workCard_item"><span>Journal of Physics: Condensed Matter</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813645]").text(description); $(".js-view-count[data-work-id=49813645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=49813645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813645,"title":"Corrigendum: ”Two-stage three-channel Kondo physics for an FePc molecule on the Au(111) surface” (2018 J. Phys.: Condens. Matter 30, 374003)","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_name":"Journal of Physics: Condensed Matter"},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813645/Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.801-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Corrigendum_Two_stage_three_channel_Kondo_physics_for_an_FePc_molecule_on_the_Au_111_surface_2018_J_Phys_Condens_Matter_30_374003_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[{"id":10422591,"url":"http://iopscience.iop.org/article/10.1088/1361-648X/aaf2f2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813645-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813644"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire"><img alt="Research paper thumbnail of Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire" class="work-thumbnail" src="https://attachments.academia-assets.com/68034572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire">Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z < E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e3b7a547115f24711401824644ede3c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034572,"asset_id":49813644,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034572/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813644"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813644"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813644; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813644]").text(description); $(".js-view-count[data-work-id=49813644]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813644; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813644']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e3b7a547115f24711401824644ede3c" } } $('.js-work-strip[data-work-id=49813644]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813644,"title":"Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Fractional Spin Projections in TRITOPS Wires","grobid_abstract":"We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z \u003c E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034572},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813644/Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire","translated_internal_url":"","created_at":"2021-07-12T10:30:45.645-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034572/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/68034572/download_file","bulk_download_file_name":"Entangled_end_states_with_fractionalized.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034572/1806-libre.pdf?1626111619=\u0026response-content-disposition=attachment%3B+filename%3DEntangled_end_states_with_fractionalized.pdf\u0026Expires=1743936387\u0026Signature=gJ6mQaIoo9~kne-D7nQXMBmb4KO2gABy~VYc7jDOaJ4IkrOssfxvoVqmLnUX3owSPnJQ5Ck8GJq-0vLr-uVyobv2PzwPfW7EwRny7cx7wmR9nndIh1Gvw-iU8U9zrKLVJeco-R61v4TN2p6gvWCU43YyL0womrrkOEg2DnYHROKksUJvsxPQlxTFbTPfWU5pKabUBRDe802-r-UCTT0jnUN5rZK3kC~7NnAZUcoBK6H13DSw4RC5SGEj2rdAxRLm3ndoA6S2Ei7IxqHOHvQ5iDp~bym6sUiSvv5-0seTAWxZzw7zK3NG9Jvr07InCH0udnw9ynkIILKKPlkhHNEc3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entangled_end_states_with_fractionalized_spin_projection_in_a_time_reversal_invariant_topological_superconducting_wire","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"We study the ground state and low-energy subgap excitations of a finite wire of a time-reversalinvariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling Sz = ±1/2 is distributed with fractions ±1/4 localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling ∆Z on one of the ends of the chain only. For ∆Z \u003c E, the energy difference of excitations with opposite spin orientation is ∆Z /2, consistent with a spin projection ±1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034572/thumbnails/1.jpg","file_name":"1806.pdf","download_url":"https://www.academia.edu/attachments/68034572/download_file","bulk_download_file_name":"Entangled_end_states_with_fractionalized.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034572/1806-libre.pdf?1626111619=\u0026response-content-disposition=attachment%3B+filename%3DEntangled_end_states_with_fractionalized.pdf\u0026Expires=1743936387\u0026Signature=gJ6mQaIoo9~kne-D7nQXMBmb4KO2gABy~VYc7jDOaJ4IkrOssfxvoVqmLnUX3owSPnJQ5Ck8GJq-0vLr-uVyobv2PzwPfW7EwRny7cx7wmR9nndIh1Gvw-iU8U9zrKLVJeco-R61v4TN2p6gvWCU43YyL0womrrkOEg2DnYHROKksUJvsxPQlxTFbTPfWU5pKabUBRDe802-r-UCTT0jnUN5rZK3kC~7NnAZUcoBK6H13DSw4RC5SGEj2rdAxRLm3ndoA6S2Ei7IxqHOHvQ5iDp~bym6sUiSvv5-0seTAWxZzw7zK3NG9Jvr07InCH0udnw9ynkIILKKPlkhHNEc3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422590,"url":"https://link.aps.org/article/10.1103/PhysRevB.98.174507"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813644-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813643"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors"><img alt="Research paper thumbnail of Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors" class="work-thumbnail" src="https://attachments.academia-assets.com/68034574/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors">Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractiona...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a036ad1a3aed00478f489cda00d3450" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034574,"asset_id":49813643,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034574/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813643"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813643"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813643; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813643]").text(description); $(".js-view-count[data-work-id=49813643]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813643; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813643']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a036ad1a3aed00478f489cda00d3450" } } $('.js-work-strip[data-work-id=49813643]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813643,"title":"Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Fractional Spin Influence on Josephson Effect in TRITOPS","grobid_abstract":"Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.","publication_name":"Physical Review Letters","grobid_abstract_attachment_id":68034574},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813643/Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors","translated_internal_url":"","created_at":"2021-07-12T10:30:45.481-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034574/thumbnails/1.jpg","file_name":"1612.07410.pdf","download_url":"https://www.academia.edu/attachments/68034574/download_file","bulk_download_file_name":"Fractional_Spin_and_Josephson_Effect_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034574/1612.07410-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DFractional_Spin_and_Josephson_Effect_in.pdf\u0026Expires=1743936387\u0026Signature=JEf5NCYv2O9q-fQX4u2Kq4V5ev3961ssGH2kNWG7d5-0-f8UsocWUT6UTQV73vREfMCf8PrARv69ih3lOd4pGHxT7I~zOLwJo1glD0pnCchqutBcG1pSyJp0Sxld8PppRjR~sXRPsFpE9XbzDddmU9lM--hGutW~QEmQZUY6p~S3311EcAIYqWPGBj2IWKq91Y1UaCWeeP3o3CiK4Mcqdm4NxTUxW-A0CYxl1kWfI8qoNBW513CvdYGWtyct7tch0QIhs3k2SHeplwSc59bFBrSjSBaHM9ZKTwvMiTSojqR9W0Dih5x41KDwPGiqaEuXlCAHE1vxMq9eDKN3alsImg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fractional_Spin_and_Josephson_Effect_in_Time_Reversal_Invariant_Topological_Superconductors","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin /4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034574/thumbnails/1.jpg","file_name":"1612.07410.pdf","download_url":"https://www.academia.edu/attachments/68034574/download_file","bulk_download_file_name":"Fractional_Spin_and_Josephson_Effect_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034574/1612.07410-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DFractional_Spin_and_Josephson_Effect_in.pdf\u0026Expires=1743936387\u0026Signature=JEf5NCYv2O9q-fQX4u2Kq4V5ev3961ssGH2kNWG7d5-0-f8UsocWUT6UTQV73vREfMCf8PrARv69ih3lOd4pGHxT7I~zOLwJo1glD0pnCchqutBcG1pSyJp0Sxld8PppRjR~sXRPsFpE9XbzDddmU9lM--hGutW~QEmQZUY6p~S3311EcAIYqWPGBj2IWKq91Y1UaCWeeP3o3CiK4Mcqdm4NxTUxW-A0CYxl1kWfI8qoNBW513CvdYGWtyct7tch0QIhs3k2SHeplwSc59bFBrSjSBaHM9ZKTwvMiTSojqR9W0Dih5x41KDwPGiqaEuXlCAHE1vxMq9eDKN3alsImg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":10422589,"url":"http://link.aps.org/article/10.1103/PhysRevLett.119.046801"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813643-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813642"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot"><img alt="Research paper thumbnail of Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot" class="work-thumbnail" src="https://attachments.academia-assets.com/68034576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot">Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot</a></div><div class="wp-workCard_item"><span>Physical Review B</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We formulate a general theory to study the time-dependent charge and energy transport of an adiab...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-49813642-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-49813642-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780581/figure-1-sketch-of-the-setup-quantum-dot-described-by-single"><img alt="FIG. 1. Sketch of the setup. A quantum dot described by a single electron level with Coulomb interaction U and is driven by an ac gate voltage V,(t) = Vo sin(&2r) and is connected to a normal lead. Top: representation of the setup in terms of a resistance connected in series with a capacitor. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780584/figure-2-sketch-of-the-circuit-upper-and-lower-branch"><img alt="FIG. 2. Sketch of the circuit. Upper and lower branch corresponds to ¢ and | spin channels. The paper is organized as follows. We present the theoreti- cal treatment in Sec. II. In Sec. HI we discuss the case where the quantum dot is noninteracting. We show that the exact description of the adiabatic dynamics is fully determined by the behavior of the charge susceptibility of the frozen system described by the equilibrium Hamiltonian frozen at a given time. The effect of many-body interactions is discussed in " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780587/figure-3-imaginary-part-of-the-dynamic-susceptibility-as"><img alt="FIG. 3. Imaginary part of the dynamic susceptibility as a func- tion of frequency for Qt = 7/2, A= 8x10*D, 9 = w=0,U= 0.05D, Vo = 0.024D, and T = 0. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780589/figure-5-occupancy-of-the-quantum-dot-as-function-of-time"><img alt="FIG. 5. Occupancy of the quantum dot as a function of time for different values of the Coulomb interaction (indicated in the figure). Other parameters as in Fig. 3. the Coulomb repulsion. To analyze these results, let us start by focusing on the plot with dashed-dot lines, corresponding to the smallest U. Att = 0 the dot is at the half-filling configuration, corresponding to a mean charge n (0) = 1. As a function of t, Vz increases and the occupancy of the dot decreases. In " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780593/figure-4-capacitance-dissipation-coefficient-and-dissipated"><img alt="FIG. 4. (a) Capacitance C(t), (b) dissipation coefficient A‘(t), and (c) dissipated power Pyiss(f) in the interacting nonlinear regime, as a function of time, calculated with two techniques. Other parameters as in Fig. 3. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780598/figure-6-nonlinear-charge-and-energy-dynamics-of-an"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780602/figure-7-frozen-occupancies-and-ny-for-zeeman-splitting-and"><img alt="FIG. 7. Frozen occupancies n,+(t) and ny (t) for a Zeeman splitting 5; = 10-7D and different values of U. Other parameters are the same as in the previous figures. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780604/figure-8-analysis-of-the-korringa-shiba-laws-of-eqs-and-the"><img alt="FIG. 8. Analysis of the Korringa-Shiba laws of Eqs. (18) and (19). The functions At(t) and A‘(t) are compared with [x,'' (0)? and [ xO)? for U = 0.05D. Other parameters are the same as in Fig. 7. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780607/figure-9-top-panels-functions-middle-panels-power-developed"><img alt="FIG. 9. Top panels: Functions A°(t). Middle panels: Power developed by the forces induced by electrons with spin o, P,(t). Lower panels: Joule power Phoute,«(t) (see text). Solid and dashed lines correspond to o = |,*, respectively. Left (right) panels correspond to U = 0.01D (U = 0.05D), respectively. Other parameters are the same as in Fig. 7. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780609/figure-10-power-developed-by-the-forces-induced-by-electrons"><img alt="FIG. 10. Power developed by the forces induced by electrons with spin o averaged over the cycle as a function of U. The inset denotes the different components (see text) for small U. Other parameters are the same as in Fig. 7. In Fig. 10 we represent the average power over the cycle for a given spin P,. As a consequence of the symmetry transformation Eq. (27) for the chosen parameters, P, a P,. We also represent in the figure the components Py; and Py), which correspond to the contributions of the same and opposite spin to the average total power for spin up, according to Eqs. (9), (10), and (11). One can see that the crossed component P,, which vanishes for U = 0, decreases rapidly as U is turned on and saturates when U reaches values much larger than both A and the Zeeman splitting 67. Instead, for small U, Pry. increases but not so fast as the decrease in P, 1» So that the sum P; decreases for small U. For larger values of U after a modest increase, P, decreases because the charge-transfer peaks in the spectral density (separated by U) cross the Fermi level with a smaller speed, so that the factor Ve (t)” is smaller " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/8780610/figure-11-with-the-matrix-elements-of-the-relevant"><img alt="(3) With the matrix elements of the relevant quantities at each iteration, we can calculate the thermodynamic and dynamic quantities, such as the static and dynamic suscepti- bilities. For the dynamic quantities we have employed the full density matrix (FDM) version of the NRG, which is known to provide a better resolution of the spectral quantities. The energy delta peaks appearing in the dynamic susceptibilities are usually broadened by using various smooth distribution functions [37]. In our case we use a modified broadening kernel K(€,e;) defined piecewise by [40] where a defines the broadening parameter, y = a/4, and wp is an energy threshold that changes the broadening distribution function from a log Gaussian to a Gaussian at low energies. In practice, smaller a diminishes NRG over broadening but leads to nonphysical oscillations in the dynamic susceptibilities, which can be reduced by averaging over a convenient number of discretization meshes of the conduction band. The broad- ening parameter is chosen to be a = 0.02 and €) = 10-*’D. " class="figure-slide-image" src="https://figures.academia-assets.com/68034576/figure_011.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-49813642-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9bc9ae9fa2e1f97c81bf32d1bda95e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034576,"asset_id":49813642,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034576/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813642"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813642"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813642; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813642]").text(description); $(".js-view-count[data-work-id=49813642]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813642; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813642']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9bc9ae9fa2e1f97c81bf32d1bda95e0" } } $('.js-work-strip[data-work-id=49813642]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813642,"title":"Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Adiabatic Charge Dynamics in Interacting Quantum Dots","grobid_abstract":"We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.","publication_name":"Physical Review B","grobid_abstract_attachment_id":68034576},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813642/Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot","translated_internal_url":"","created_at":"2021-07-12T10:30:45.319-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034576/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034576/download_file","bulk_download_file_name":"Nonlinear_charge_and_energy_dynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034576/fulltext-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DNonlinear_charge_and_energy_dynamics_of.pdf\u0026Expires=1743936387\u0026Signature=Baka2JCXfiIOFcpI620ypYKKyni4uBL2y~8gm6cH0FgSjH6m-o3HwxhbsMhoUJtxsuoQ~9gJIm-w5M2mKR3~gcV8ixXni3p2WwQnlIM~vZlCd7Pcp0L2vLOfi1ESxO2NNl3L-ddWgUH0jAgzVTIe2aQi~X8xUB7VwVtagx9V3JICcS-zhdMClu~lY-IdFo8Gn5lRscwmv7njkJpmJ3HBQUgL6VMzpX~qqCOErCY1NT0wj0pgAGNabEuj0mj1PZeVRA2b5E6ao~IzgnmzEUcr01MiK1Zbva4vvzDJUVXYV~ykLDxv6DP4XFKMPo0NvcNhuteCTJ3O3DAPZ~3gDDEnAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonlinear_charge_and_energy_dynamics_of_an_adiabatically_driven_interacting_quantum_dot","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R 0 = h/(2e 2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034576/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/68034576/download_file","bulk_download_file_name":"Nonlinear_charge_and_energy_dynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034576/fulltext-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DNonlinear_charge_and_energy_dynamics_of.pdf\u0026Expires=1743936387\u0026Signature=Baka2JCXfiIOFcpI620ypYKKyni4uBL2y~8gm6cH0FgSjH6m-o3HwxhbsMhoUJtxsuoQ~9gJIm-w5M2mKR3~gcV8ixXni3p2WwQnlIM~vZlCd7Pcp0L2vLOfi1ESxO2NNl3L-ddWgUH0jAgzVTIe2aQi~X8xUB7VwVtagx9V3JICcS-zhdMClu~lY-IdFo8Gn5lRscwmv7njkJpmJ3HBQUgL6VMzpX~qqCOErCY1NT0wj0pgAGNabEuj0mj1PZeVRA2b5E6ao~IzgnmzEUcr01MiK1Zbva4vvzDJUVXYV~ykLDxv6DP4XFKMPo0NvcNhuteCTJ3O3DAPZ~3gDDEnAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422588,"url":"http://link.aps.org/article/10.1103/PhysRevB.95.235117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-49813642-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813641"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_"><img alt="Research paper thumbnail of Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}" class="work-thumbnail" src="https://attachments.academia-assets.com/68034573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_">Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 19, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="69fdc82264295f2e667c7e4026f7be23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034573,"asset_id":49813641,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034573/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813641"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813641"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813641; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813641]").text(description); $(".js-view-count[data-work-id=49813641]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813641; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813641']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "69fdc82264295f2e667c7e4026f7be23" } } $('.js-work-strip[data-work-id=49813641]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813641,"title":"Singlet Orbital Ordering in Bilayer Sr_{3}Cr_{2}O_{7}","translated_title":"","metadata":{"abstract":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","publication_date":{"day":19,"month":1,"year":2017,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","internal_url":"https://www.academia.edu/49813641/Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.211-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034573/thumbnails/1.jpg","file_name":"60f7570cf9aa782bc20db654ded5b75cce7b.pdf","download_url":"https://www.academia.edu/attachments/68034573/download_file","bulk_download_file_name":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034573/60f7570cf9aa782bc20db654ded5b75cce7b-libre.pdf?1626111611=\u0026response-content-disposition=attachment%3B+filename%3DSinglet_Orbital_Ordering_in_Bilayer_Sr_3.pdf\u0026Expires=1743936388\u0026Signature=U2J4DFlvdZ3hz1n~DSKahYPUrmZTzPvC~bRvMqQnbaYJB9JAhOMtRTiG1QJ0h0qtNZ5hIqCtZlqMGu0DiESxNZIGsws~kvBwt7eorNF0wh4DxibfYzh-XtI~eF5F~gGv6XmYxhOHFwzx~0UULJZ0dct6DksOV3xGhvZyaPVyV0u62PfVwRj4XbkTCtBKS3lEhGSrP6LlucyPVCV1wf4M0kTZW~Ad9yb0BKUXoYRff0TLIBlJIjXbARz-9RUUKepm1mMq8gYmu~ChgrKYpgJROnKIefzoLyOd9kNZH8qYaWA~u4hE2gOnSSFx1wHpsNlN0Hc4R9Cw2IXXDwVUCTSRMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3_Cr_2_O_7_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We perform an extensive study of Sr_{3}Cr_{2}O_{7}, the n=2 member of the Ruddlesden-Popper Sr_{n+1}Cr_{n}O_{3n+1} system. An antiferromagnetic ordering is clearly visible in the magnetization and the specific heat, which yields a huge transition entropy, Rln(6). By neutron diffraction as a function of temperature we have determined the antiferromagnetic structure that coincides with the one obtained from density functional theory calculations. It is accompanied by anomalous asymmetric distortions of the CrO_{6} octahedra. Strong coupling and Lanczos calculations on a derived Kugel-Khomskii Hamiltonian yield a simultaneous orbital and moment ordering. Our results favor an exotic ordered phase of orbital singlets not originated by frustration.","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034573/thumbnails/1.jpg","file_name":"60f7570cf9aa782bc20db654ded5b75cce7b.pdf","download_url":"https://www.academia.edu/attachments/68034573/download_file","bulk_download_file_name":"Singlet_Orbital_Ordering_in_Bilayer_Sr_3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034573/60f7570cf9aa782bc20db654ded5b75cce7b-libre.pdf?1626111611=\u0026response-content-disposition=attachment%3B+filename%3DSinglet_Orbital_Ordering_in_Bilayer_Sr_3.pdf\u0026Expires=1743936388\u0026Signature=U2J4DFlvdZ3hz1n~DSKahYPUrmZTzPvC~bRvMqQnbaYJB9JAhOMtRTiG1QJ0h0qtNZ5hIqCtZlqMGu0DiESxNZIGsws~kvBwt7eorNF0wh4DxibfYzh-XtI~eF5F~gGv6XmYxhOHFwzx~0UULJZ0dct6DksOV3xGhvZyaPVyV0u62PfVwRj4XbkTCtBKS3lEhGSrP6LlucyPVCV1wf4M0kTZW~Ad9yb0BKUXoYRff0TLIBlJIjXbARz-9RUUKepm1mMq8gYmu~ChgrKYpgJROnKIefzoLyOd9kNZH8qYaWA~u4hE2gOnSSFx1wHpsNlN0Hc4R9Cw2IXXDwVUCTSRMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813641-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813640"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_"><img alt="Research paper thumbnail of Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/" class="work-thumbnail" src="https://attachments.academia-assets.com/68034538/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_">Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-sit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e23c6e3cf0f3391c484c94420f4356a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":68034538,"asset_id":49813640,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/68034538/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813640"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813640"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813640; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813640]").text(description); $(".js-view-count[data-work-id=49813640]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813640; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813640']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e23c6e3cf0f3391c484c94420f4356a3" } } $('.js-work-strip[data-work-id=49813640]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813640,"title":"Magnetic and orbital ordering of RuO/sub 2/ planes in RuSr/sub 2/ (Eu,Gd) Cu/sub 2/O/sub 8/","translated_title":"","metadata":{"ai_title_tag":"Magnetic and Orbital Orderings in RuSr2(Eu,Gd)Cu2O8","grobid_abstract":"We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":68034537},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813640/Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_","translated_internal_url":"","created_at":"2021-07-12T10:30:45.069-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":68034538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034538/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034538/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034538/000504058-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=FJzs7gqQompndO25WCwh0M2yYwfsDWO6GAWj4dBfpTJf2qS8gVZfEywx79-fjkq0oH9RAwAJqsW1cLQqkqQ1JbLH-r6RpLeyLCwN5s6yFVR71Wo0EqY33hPkaizbKFsCom1UuCsCfpet20-HWSGGFqttTlRVNAX8pWQGyMYV0Fkeoumi~TbKDe06bLvtG6hmDpQBfsNPu-kuFD1cGVw50iGkFAG9eTzhAqMdS5RKLJIcJz38-MxbiwxQptazss8rVJkWCHN3u7ijdN-IToqPrdV3FKqYaqcqZuu-kIaXFxz~LKORFygXsOiUDus~OGzLmR-GVgDl7OHWyO8iJzxd4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnetic_and_orbital_ordering_of_RuO_sub_2_planes_in_RuSr_sub_2_Eu_Gd_Cu_sub_2_O_sub_8_","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions between t 2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturbation theory in the hopping terms, we derive effective Hamiltonians to describe the RuO 2 planes of RuSr 2 ͑Eu, Gd͒Cu 2 O 8. For undoped planes (formal valence Ru +5), depending on the parameters we find three possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the parameters based on experimental data. When electron doping consistent with the hole doping of the superconducting RuO 2 planes is included, we obtain (for reasonable parameters) a double-exchange model with infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to one used before [H. Aliaga and A. A. Aligia, Physica B 320, 34 (2002)], which consistently explains the seemingly contradictory magnetic properties of RuSr 2 ͑Eu, Gd͒Cu 2 O 8 .","impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[{"id":68034538,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034538/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034538/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034538/000504058-libre.pdf?1626111612=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=FJzs7gqQompndO25WCwh0M2yYwfsDWO6GAWj4dBfpTJf2qS8gVZfEywx79-fjkq0oH9RAwAJqsW1cLQqkqQ1JbLH-r6RpLeyLCwN5s6yFVR71Wo0EqY33hPkaizbKFsCom1UuCsCfpet20-HWSGGFqttTlRVNAX8pWQGyMYV0Fkeoumi~TbKDe06bLvtG6hmDpQBfsNPu-kuFD1cGVw50iGkFAG9eTzhAqMdS5RKLJIcJz38-MxbiwxQptazss8rVJkWCHN3u7ijdN-IToqPrdV3FKqYaqcqZuu-kIaXFxz~LKORFygXsOiUDus~OGzLmR-GVgDl7OHWyO8iJzxd4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":68034537,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/68034537/thumbnails/1.jpg","file_name":"000504058.pdf","download_url":"https://www.academia.edu/attachments/68034537/download_file","bulk_download_file_name":"Magnetic_and_orbital_ordering_of_RuO_sub.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/68034537/000504058-libre.pdf?1626111613=\u0026response-content-disposition=attachment%3B+filename%3DMagnetic_and_orbital_ordering_of_RuO_sub.pdf\u0026Expires=1743936388\u0026Signature=hC8Hcl1kl4hGnrpa3rnOu3SmQ2Kh5SRKvnOOKZKImq1i9NwhRClxKDqnU206DfUinbcy3hyQvAhQGOhplDTMLry2gJUGVMgOsnObqGSh5A5OX5Wcx~8fAxp8PSd3yYREqJuUNKw84F-7JqPFaRmQ~s-bHLiMrvMceCaipiqKY5pmRFUIcm~g052DBptPmkhJ9zXHhgWEAQ647IVvgCC8xe5lUy3hBXc7193uIMnpUWLT7D0kR0HCYfoExv-xXjbooRUx-bFTXIESROp2SaQ09akSlV5ol9ogB48hg5tzbWm-ZU8T1z0imTpOcJydSybUIrUBiGXTznInNnPTN7hocg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":10422587,"url":"http://www.lume.ufrgs.br/bitstream/10183/104294/1/000504058.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813640-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="49813639"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/49813639/Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model"><img alt="Research paper thumbnail of Self-consistent hybridization expansions for static properties of the Anderson impurity model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Self-consistent hybridization expansions for static properties of the Anderson impurity model</div><div class="wp-workCard_item"><span>physica status solidi (b)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="49813639"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="49813639"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49813639; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49813639]").text(description); $(".js-view-count[data-work-id=49813639]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49813639; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='49813639']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=49813639]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":49813639,"title":"Self-consistent hybridization expansions for static properties of the Anderson impurity model","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"physica status solidi (b)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/49813639/Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model","translated_internal_url":"","created_at":"2021-07-12T10:30:44.983-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32436904,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Self_consistent_hybridization_expansions_for_static_properties_of_the_Anderson_impurity_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":32436904,"first_name":"A.","middle_initials":"","last_name":"Aligia","page_name":"AAAligia","domain_name":"uncu","created_at":"2015-06-22T11:27:22.339-07:00","display_name":"A. Aligia","url":"https://uncu.academia.edu/AAAligia"},"attachments":[],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-49813639-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "b4008dfeb86f3a58861f5fc7e8d08dd7e7040d072c7ed67fddf8faf15f36a5e8", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Yq4gqZx6CCY-qDa75x1u1ka0qDHiDXOKDvkDWFmdEtJjKl_AYlckPvMBdzDh6nP1YuIxS3RMoOhJadFYwfmFTw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uncu.academia.edu/AAAligia" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="gu4bh5b3gJVGH7EApIYUIIU5AHNiZr8Ei9M4TFSJaHyDamTuaNqsjYu28IuicQkDoW-ZCfQnbGbMQ-pMzO3_4Q" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>