CINXE.COM
Search results for: xylanase
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: xylanase</title> <meta name="description" content="Search results for: xylanase"> <meta name="keywords" content="xylanase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="xylanase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="xylanase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: xylanase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20materials" title=" lignocellulosic materials"> lignocellulosic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Paenibacillus%20illinoisensis%20CX11" title=" Paenibacillus illinoisensis CX11"> Paenibacillus illinoisensis CX11</a>, <a href="https://publications.waset.org/abstracts/search?q=Xylanase" title=" Xylanase"> Xylanase</a> </p> <a href="https://publications.waset.org/abstracts/57976/paenibacillus-illinoisensis-cx11-a-cellulase-and-xylanase-producing-bacteria-for-saccharification-of-lignocellulosic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Xylanase Impact beyond Performance: A Prebiotic Approach in Laying Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veerle%20Van%20Hoeck">Veerle Van Hoeck</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Somers"> Ingrid Somers</a>, <a href="https://publications.waset.org/abstracts/search?q=Dany%20Morisset"> Dany Morisset</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anti-nutritional factors such as non-starch polysaccharides (NSP) are present in viscous cereals used to feed poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility but also induces a significant shift in microbial composition within the intestinal tract and, thereby, can cause a prebiotic effect. In this context, a better understanding of whether and how the chicken gut flora can be modulated by xylanase is needed. To do so, in the herein laying hen study, the effects of dietary supplementation of xylanase on performance, digestibility, and cecal microbiome were evaluated. A total of 96 HiSex laying hens was used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55 %), soybean, and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (p < 0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (p < 0.05). Compared with the control, organic matter digestibility and N retention were drastically improved in the 45,000 U/kg treatment group, which implies better nutrient digestibility at this lowest recommended dosage compared to the control (p < 0.05). Furthermore, gross energy and crude fat digestibility were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosages can exert a prebiotic effect. This conclusion was drawn based on studying the sequence variation in the 16S rRNA gene in order to characterize diverse microbial communities of the cecal content. A significant increase in beneficial bacteria (Lactobacilli spp and Enterococcus casseliflavus) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase, even at the lowest dose of (45,000 U/kg), significantly improved laying hen performance and digestibility. Furthermore, it is generally accepted that a proper bacterial balance between the number of beneficial bacteria and pathogenic bacteria in the intestine is vital for the host. It seems that the xylanase enzyme is able to modulate the laying hen microbiome beneficially and thus exerts a prebiotic effect. This microbiome plasticity in response to the xylanase provides an attractive target for stimulating intestinal health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laying%20hen" title="laying hen">laying hen</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=XygestTM%20HT" title=" XygestTM HT"> XygestTM HT</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/134395/xylanase-impact-beyond-performance-a-prebiotic-approach-in-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mmango">Z. Mmango</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Nwodo"> U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20Mabinya"> L. V. Mabinya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Okoh"> A. I. Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxyl%20methyl%20cellulose" title="carboxyl methyl cellulose">carboxyl methyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=birchwood%20xylan" title=" birchwood xylan"> birchwood xylan</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=micrococcus" title=" micrococcus"> micrococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=DNS%20method" title=" DNS method"> DNS method</a> </p> <a href="https://publications.waset.org/abstracts/37709/evaluation-of-cellulase-and-xylanase-production-by-micrococcus-sp-isolated-from-decaying-lignocellulosic-biomass-obtained-from-alice-environment-in-the-eastern-cape-of-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Immobilization Strategy of Recombinant Xylanase from Trichoderma reesei by Cross-Linked Enzyme Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Md.%20Shaarani">S. Md. Shaarani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Md.%20Jahim"> J. Md. Jahim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Rahman"> R. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Md.%20Illias"> R. Md. Illias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern developments in biotechnology have paved the way for extensive use of biocatalysis in industries. Although it offers immense potential, industrial application is usually hampered by lack of operational stability, difficulty in recovery as well as limited re-use of the enzyme. These drawbacks, however, can be overcome by immobilization. Cross-linked enzyme aggregates (CLEAs), a versatile carrier-free immobilization technique is one that is currently capturing global interest. This approach involves precipitating soluble enzyme with an appropriate precipitant and subsequent crosslinking by a crosslinking reagent. Without ineffective carriers, CLEAs offer high enzymatic activity, stability and reduced production cost. This study demonstrated successful CLEA synthesis of recombinant xylanase from Trichoderma reesei using ethanol as aggregating agent and glutaraldehyde (2% (v/v); 100 mM) as crosslinker. Effects of additives including proteic feeder such as bovine serum albumin (BSA) and poly-L-Lysine were investigated to reveal its significance in enhancing the performance of enzyme. Addition of 0.1 mg BSA/U xylanase showed considerable increment in CLEA development with approximately 50% retained activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linked" title="cross-linked">cross-linked</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant" title=" recombinant"> recombinant</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/9446/immobilization-strategy-of-recombinant-xylanase-from-trichoderma-reesei-by-cross-linked-enzyme-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Bibi">Zainab Bibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman"> Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geobacillus" title="geobacillus">geobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/66925/enhanced-production-of-endo-v-14-xylanase-from-a-newly-isolated-thermophile-geobacillus-stearothermophilus-kibge-ib29-for-prospective-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nkohla">A. Nkohla</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Nwodo"> U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20Mabinya"> L. V. Mabinya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Okoh"> A. I. Okoh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20material" title="lignocellulosic material">lignocellulosic material</a>, <a href="https://publications.waset.org/abstracts/search?q=chryseobacterium%20sp." title=" chryseobacterium sp."> chryseobacterium sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/37911/assessment-of-cellulase-and-xylanase-production-by-chryseobacterium-sp-isolated-from-decaying-biomass-in-alice-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Functional Cell Surface Display Using Ice Nucleation Protein from Erwina ananas on Escherischia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei%20Yuin%20Joanne%20Wee">Mei Yuin Joanne Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md.%20Illias"> Rosli Md. Illias </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell surface display is the expression of a protein with an anchoring motif on the surface of the cell. This approach offers advantages when used in bioconversion in terms of easier purification steps and more efficient enzymatic reaction. A surface display system using ice nucleation protein (InaA) from Erwina ananas as an anchoring motif has been constructed to display xylanase (xyl) on the surface of Escherischia coli. The InaA was truncated so that it is made up of the N- and C-terminal domain (INPANC-xyl) and it has successfully directed xylanase to the surface of the cell. A study was also done on xylanase fused to two other ice nucleation proteins, InaK (INPKNC-xyl) and InaZ (INPZNC-xyl) from Pseudomonas syringae KCTC 1832 and Pseudomonas syringae S203 respectively. Surface localization of the fusion protein was verified using SDS-PAGE and Western blot on the cell fractions and all anchoring motifs were successfully displayed on the outer membrane of E. coli. Upon comparison, whole-cell activity of INPANC-xyl was more than six and five times higher than INPKNC-xyl and INPZNC-xyl respectively. Furthermore, the expression of INPANC-xyl on the surface of E. coli did not inhibit the growth of the cell. This is the first report of surface display system using ice nucleation protein, InaA from E. ananas. From this study, this anchoring motif offers an attractive alternative to the current surface display systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title="cell surface display">cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherischia%20coli" title=" Escherischia coli"> Escherischia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20nucleation%20protein" title=" ice nucleation protein"> ice nucleation protein</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/39347/functional-cell-surface-display-using-ice-nucleation-protein-from-erwina-ananas-on-escherischia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Min%20Yi">Yeng Min Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md%20Illias"> Rosli Md Illias</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehhuddin%20Hamdan"> Salehhuddin Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title=" cell surface display"> cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=TibA%20autotransporter" title=" TibA autotransporter"> TibA autotransporter</a> </p> <a href="https://publications.waset.org/abstracts/39502/cell-surface-display-of-xylanase-on-escherichia-coli-by-tiba-autotransporter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Enzyme Treatment of Sorghum Dough: Modifications of Rheological Properties and Product Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Sruthi">G. K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sila%20Bhattacharya"> Sila Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important food crop in the dry tropical areas of the world, and possesses significant levels of phytochemicals and dietary fiber to offer health benefits. However, the absence of gluten is a limitation for converting the sorghum dough into sheeted/flattened/rolled products. Chapathi/roti (flat unleavened bread prepared conventionally from whole wheat flour dough) was attempted from sorghum as wheat gluten causes allergic reactions leading to celiac disease. Dynamic oscillatory rheology of sorghum flour dough (control sample) and enzyme treated sorghum doughs were studied and linked to the attributes of the finished ready-to-eat product. Enzymes like amylase, xylanase, and a mix of amylase and xylanase treated dough affected drastically the rheological behaviour causing a lowering of dough consistency. In the case of amylase treated dough, marked decrease of the storage modulus (G') values from 85513 Pa to 23041 Pa and loss modulus (G") values from 8304 Pa to 7370 Pa was noticed while the phase angle (δ) increased from 5.6 to 10.1o for treated doughs. There was a 2 and 3 fold increase in the total sugar content after α-amylase and xylanase treatment, respectively, with simultaneous changes in the structure of the dough and finished product. Scanning electron microscopy exhibited enhanced extent of changes in starch granules. Amylase and mixed enzyme treatment produced a sticky dough which was difficult to roll/flatten. The dough handling properties were improved by the use of xylanase and quality attributes of the chapath/roti. It is concluded that enzyme treatment can offer improved rheological status of gluten free doughs and products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorghum%20dough" title="sorghum dough">sorghum dough</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20oscillatory%20rheology" title=" dynamic oscillatory rheology"> dynamic oscillatory rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20assessment" title=" sensory assessment"> sensory assessment</a> </p> <a href="https://publications.waset.org/abstracts/26226/enzyme-treatment-of-sorghum-dough-modifications-of-rheological-properties-and-product-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Takematsu">H. M. Takematsu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20De%20Camargo"> B. R. De Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20F.%20%20Noronha"> E. F. Noronha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title="sugarcane bagasse">sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerrado%20biome" title=" Cerrado biome "> Cerrado biome </a>, <a href="https://publications.waset.org/abstracts/search?q=hollocelulase" title=" hollocelulase"> hollocelulase</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass "> lignocellulosic biomass </a> </p> <a href="https://publications.waset.org/abstracts/79253/evaluation-of-hollocelulase-production-for-lignocellulosic-biomass-degradation-by-penicillium-polonicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> New Insights Into Gluten-Free Bread Staling Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mostafa">Sayed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Mostafa%20Mohamed%20Faheid"> Siham Mostafa Mohamed Faheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Rizk%20Sayed%20Ahmed"> Ibrahim Rizk Sayed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Fehry%20Mohamed%20Kishk"> Yasser Fehry Mohamed Kishk</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Hassan%20Ragab"> Gamal Hassan Ragab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gluten-free foods are still the only treatment for gluten-allergic patients. Consequently, this study is concerned with improving the quality attributes of gluten-free bread using different concentrations (0, 20, 40, 60 and 80ppm) of all maltogenic α-amylase (MA) and xylanase (XY) compared with wheat flour Balady bread and untreated gluten-free Balady bread (GFBB). Pasting properties, falling number, water activity, alkaline water retention capacity (AWRC) and sensory properties (fresh bread, after 24h, after 48h and after 72h) of gluten-free bread were evaluated. Additionally, the effect of merging different concentrations of maltogenic α-amylase and xylanase on stalling behavior (AWRC) and sensory properties of gluten-free Balady bread was investigated. The addition of MA led to a gradually decreased peak viscosity, breakdown, setback and pasting temperature of GFBB with the increasing level of MA. Maltogenic α-amylase and xylanase addition led to a reduction in the FN values compared to the untreated gluten-free sample, noting that the MA-treated samples showed a significant decrease compared to the XY-treated and untreated samples. Wheat flour Balady bread significantly showed a higher value of AWRC compared to untreated gluten-free Balady bread at different storage periods (zero time, after 24h, after 48h and after 72h). MA-treated samples showed higher water binding capacity and water activity (aw)in comparison with XY-treated samples, with significance during all storage periods. Concerning the overall acceptability during the third day, the highest score (4.6) was observed by the GFBB sample containing 40ppm MA, followed by 4.3, which was investigated by the GFBB sample containing 80ppm XY with no significance between them and with significance compared to the other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title="celiac disease">celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free%20products" title=" gluten-free products"> gluten-free products</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-stalling%20agents" title=" anti-stalling agents"> anti-stalling agents</a>, <a href="https://publications.waset.org/abstracts/search?q=maltogenic%20%CE%B1-amylase" title=" maltogenic α-amylase"> maltogenic α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/173389/new-insights-into-gluten-free-bread-staling-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20M.%20El%20Sebai">T. N. M. El Sebai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khattab"> A. A. Khattab</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20M.%20Abd-El%20Rahim"> Wafaa M. Abd-El Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Moawad"> H. Moawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title="rice straw">rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20mutants" title=" UV mutants"> UV mutants</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillium" title=" Penicillium"> Penicillium</a> </p> <a href="https://publications.waset.org/abstracts/7467/enhancement-of-rice-straw-composting-using-uv-induced-mutants-of-penicillium-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Zimoch-Korzycka">Anna Zimoch-Korzycka</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Kulig"> Dominika Kulig</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Jarmoluk"> Andrzej Jarmoluk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosanase" title=" chitosanase"> chitosanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitooligosaccharides" title=" chitooligosaccharides"> chitooligosaccharides</a> </p> <a href="https://publications.waset.org/abstracts/7592/characterisation-of-chitooligomers-prepared-with-the-aid-of-cellulase-xylanase-and-chitosanase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Fungal Cellulase/Xylanase Complex and Their Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateldze">L. Kutateldze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze"> T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zakariashvili"> N. Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Khokhashvili"> I. Khokhashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sadunishvili"> T. Sadunishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase%2Fxylanase" title="cellulase/xylanase">cellulase/xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20hydrolysis" title=" cellulose hydrolysis"> cellulose hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain" title=" thermophilic strain"> thermophilic strain</a> </p> <a href="https://publications.waset.org/abstracts/27128/fungal-cellulasexylanase-complex-and-their-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Aqueous Two Phase Extraction of Jonesia denitrificans Xylanase 6 in PEG 1000/Phosphate System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawel%20Boucherba">Nawel Boucherba</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Bettache"> Azzedine Bettache</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Messis"> Abdelaziz Messis</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Duchiron"> Francis Duchiron</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benallaoua"> Said Benallaoua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impetus for research in the field of bioseparation has been sparked by the difficulty and complexity in the downstream processing of biological products. Indeed, 50% to 90% of the production cost for a typical biological product resides in the purification strategy. There is a need for efficient and economical large scale bioseparation techniques which will achieve high purity and high recovery while maintaining the biological activity of the molecule. One such purification technique which meets these criteria involves the partitioning of biomolecules between two immiscible phases in an aqueous system (ATPS). The Production of xylanases is carried out in 500ml of a liquid medium based on birchwood xylan. In each ATPS, PEG 1000 is added to a mixture consisting of dipotassium phosphate, sodium chloride and the culture medium inoculated with the strain Jonesia denitrificans, the mixture was adjusted to different pH. The concentration of PEG 1000 was varied: 8 to 16 % and the NaCl percentages are also varied from 2 to 4% while maintaining the other parameters constant. The results showed that the best ATPS for purification of xylanases is composed of PEG 1000 at 8.33%, 13.14 % of K2HPO4, 1.62% NaCl at pH 7. We obtained a yield of 96.62 %, a partition coefficient of 86.66 and a purification factor of 2.9. The zymogram showed that the activity is mainly detected in the top phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonesia%20denitrificans%20BN13" title="Jonesia denitrificans BN13">Jonesia denitrificans BN13</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two%20phases%20system" title=" aqueous two phases system"> aqueous two phases system</a>, <a href="https://publications.waset.org/abstracts/search?q=zymogram" title=" zymogram "> zymogram </a> </p> <a href="https://publications.waset.org/abstracts/27076/aqueous-two-phase-extraction-of-jonesia-denitrificans-xylanase-6-in-peg-1000phosphate-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman">Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Bibi"> Zainab Bibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilization" title="immobilization">immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=reusability" title=" reusability"> reusability</a>, <a href="https://publications.waset.org/abstracts/search?q=thermozymes" title=" thermozymes"> thermozymes</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/31636/endo-v-14-xylanase-from-thermophilic-geobacillus-stearothermophilus-immobilization-using-matrix-entrapment-technique-to-increase-the-stability-and-recycling-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedita%20Sharma">Nivedita Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulose" title=" lignocellulose"> lignocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20enzymes" title=" microbial enzymes"> microbial enzymes</a> </p> <a href="https://publications.waset.org/abstracts/161810/second-generation-biofuels-a-futuristic-green-deal-for-lignocellulosic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Production of Mycelial Biomass, Exopolysaccharide, and Enzyme during Solid-State Fermentation of Plant Raw Materials by Medicinal Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Khardziani">Tamar Khardziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Violeta%20Berikashvili"> Violeta Berikashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrosi%20Chkuaseli"> Amrosi Chkuaseli</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Elisashvili"> Vladimir Elisashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of this proposal are to develop low-cost, innovative, and competitive technologies for the production of mycelial biomass of medicinal mushrooms as a natural food supplement for poultry. To fulfill this task, industrial strains of Lentinus edodes, Ganoderma lucidum, and Pleurotus ostreatus were used in this study. The solid-state fermentation (SSF) of wheat grains, wheat bran, and soy flour was performed in flasks and bags. Among nine mushroom strains, P. ostreatus 2191 appeared to be the most productive in protein biomass accumulation in the SSF of wheat bran. All mushrooms produced exopolysaccharide with the highest yield of 5-8 mg/mL depending on fungal strain and growth substrate. Supplementation of medium with 1% glycerol and 2-4% peptone favored mushroom growth and protein accumulation. Among inorganic nitrogen sources, KNO₃ also provided high biomass and protein production. The SSF of all growth substrates was accompanied by the secretion of cellulase and xylanase activities. The highest CMCase activity (12-13 U/g) was revealed in the cultivation of P. ostreatus 2191 using wheat bran as a growth substrate and ammonium sulfate or yeast extract as a nitrogen source, whereas the highest xylanase activity was detected in the fermentation of soy flour supplemented with peptone. Acknowledgments: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (Grant number STEM-22-2077). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title="mushrooms">mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20raw%20materials" title=" plant raw materials"> plant raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20protein" title=" biomass protein"> biomass protein</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a> </p> <a href="https://publications.waset.org/abstracts/179758/production-of-mycelial-biomass-exopolysaccharide-and-enzyme-during-solid-state-fermentation-of-plant-raw-materials-by-medicinal-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astorga-Trejo%20Rebeca">Astorga-Trejo Rebeca</a>, <a href="https://publications.waset.org/abstracts/search?q=Fonseca-Peralta%20H%C3%A9ctor%20Manuel"> Fonseca-Peralta Héctor Manuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Beltr%C3%A1n-Arredondo%20Laura%20Ivonne"> Beltrán-Arredondo Laura Ivonne</a>, <a href="https://publications.waset.org/abstracts/search?q=Castro-Mart%C3%ADnez%20Claudia"> Castro-Martínez Claudia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stover" title=" corn stover"> corn stover</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol%202G" title=" bioethanol 2G"> bioethanol 2G</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a> </p> <a href="https://publications.waset.org/abstracts/143684/use-of-corn-stover-for-the-production-of-2g-bioethanol-enzymes-and-xylitol-under-a-biorefinery-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efri%20%20Mardawati">Efri Mardawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Purwadi"> Ronny Purwadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Made%20Tri%20Ari%20%20Penia%20Kresnowati"> Made Tri Ari Penia Kresnowati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tjandra%20Setiadi"> Tjandra Setiadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunches%20%28EFB%29" title="oil palm empty fruit bunches (EFB)">oil palm empty fruit bunches (EFB)</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20modelling" title=" kinetic modelling"> kinetic modelling</a> </p> <a href="https://publications.waset.org/abstracts/3158/optimization-and-kinetic-analysis-of-the-enzymatic-hydrolysis-of-oil-palm-empty-fruit-bunch-to-xylose-using-crude-xylanase-from-trichoderma-viride-itb-cc-l67" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodeji%20Fasuyi">Ayodeji Fasuyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Telfairia occidentalis</em> is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of <em>Telfairia occidentalis</em>. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (<em>Turbotox), </em>a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/<em>Turbotox</em> mixtures were used in diets containing four varying levels of <em>Telfairia occidentalis</em> leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and <em>Turbotox</em> additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Telfairia%20occidentalis%20leaf%20meal" title="Telfairia occidentalis leaf meal">Telfairia occidentalis leaf meal</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a> </p> <a href="https://publications.waset.org/abstracts/122958/improving-the-utilization-of-telfairia-occidentalis-leaf-meal-with-cellulase-glucanase-xylanase-combination-and-selected-probiotic-in-broiler-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Cellulolytic and Xylanolytic Enzymes from Mycelial Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sadunishvili">T. Sadunishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateladze"> L. Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze"> T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zakariashvili"> N. Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobava"> M. Jobava</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kvesitadze"> G. Kvesitadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple repeated soil-climatic zones in Georgia determines the diversity of microorganisms. Hundreds of microscopic fungi of different genera have been isolated from different ecological niches, including some extreme environments. Biosynthetic ability of microscopic fungi has been studied. Trichoderma ressei, representative of the Ascomycetes secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. The other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β-glucosidase, and hence has limited efficiency in cellulose hydrolysis. Six producers of stable cellulases and xylanases from mesophilic and thermophilic fungi have been selected. By optimization of submerged cultivation conditions, high activities of cellulases and xylanases were obtained. For enzymes purification, their sedimentation by organic solvents such as ethyl alcohol, acetone, isopropanol and by ammonium sulphate in different ratios have been carried out. Best results were obtained with precipitation by ethyl alcohol (1:3.5) and ammonium sulphate. The yields of enzyme according to cellulase activities were 80-85% in both cases. Cellulase activity of enzyme preparation obtained from the strain Trichoderma viride X 33 is 126 U/g, from the strain Penicillium canescence D 85–185U/g and from the strain Sporotrichum pulverulentum T 5-0 110 U/g. Cellulase activity of enzyme preparation obtained from the strain Aspergillus sp. Av10 is 120 U/g, xylanase activity of enzyme preparation obtained from the strain Aspergillus niger A 7-5–1155U/g and from the strain Aspergillus niger Aj 38-1250 U/g. Optimum pH and temperature of operation and thermostability, of the enzyme preparations, were established. The efficiency of hydrolyses of different agricultural residues by the microscopic fungi cellulases has been studied. The glucose yield from the residues as a result of enzymatic hydrolysis is highly determined by the ratio of enzyme to substrate, pH, temperature, and duration of the process. Hydrolysis efficiency was significantly increased as a result of different pretreatment of the residues by different methods. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/78640/cellulolytic-and-xylanolytic-enzymes-from-mycelial-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yetti%20Marlida">Yetti Marlida</a>, <a href="https://publications.waset.org/abstracts/search?q=Syukri%20Arif"> Syukri Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadirman%20Haska"> Nadirman Haska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20trunk" title="oil palm trunk">oil palm trunk</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharification" title=" saccharification"> saccharification</a> </p> <a href="https://publications.waset.org/abstracts/19168/production-of-bioethanol-from-oil-palmtrunk-by-cocktail-carbohydrases-enzyme-produced-by-thermophilic-bacteria-isolated-from-hot-spring-in-west-sumatera-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20safensis%20LCX" title="Bacillus safensis LCX">Bacillus safensis LCX</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20enzymes" title=" lignocellulosic enzymes"> lignocellulosic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a> </p> <a href="https://publications.waset.org/abstracts/64985/production-of-lignocellulosic-enzymes-by-bacillus-safensis-lcx-using-agro-food-wastes-in-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Sex-Dependent Fitness Improvement of Hercules Beetle Larvae by Amendment of Thermophile-Fermented Compost to Humus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Futo%20Asano">Futo Asano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Yatsushiro"> Yusuke Yatsushiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokuni%20Miyamoto"> Hirokuni Miyamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Kodama"> Hiroaki Kodama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermophile-fermented compost is produced using small fishes, crabs, and shrimps under a high temperature (approximately 75℃) by fermentation-associated self-heating. This compost has been used as a feed additive for pigs and hens in Japan, and the fecundity of this livestock is enhanced. Firmicutes is a dominant phylum in the microbial composition of the compost. We first reported that improvement of female larval fitness of Hercules beetle can be achieved by amendment of this compost to the humus. When the 90-d-old larvae were reared for subsequent 72 days in the humus with this compost, the growth of female larvae was significantly enhanced when compared with the growth of female larvae in the humus without the compost. In contrast, the growth of male larvae in the compost-free humus was the same as the larvae grow in the compost-amended humus. The bacterial composition of the feces of larvae was determined at 0 days and 46 days after transfer to the humus with or without the compost. The most dominant bacterium in the feces was Xylanimonas. Interestingly, the growth improvement of female larvae was associated with an increased abundance of Mollicutes in the fecal samples. These results indicate that the compost act as a probiotic material for enhancing the female larvae growth by supporting Mollicutes. Here, we tried to isolate Mollicutes from the contents of the midgut and hindgut of the 3rd instar female larvae of the Hercules beetle. These gut contents were spread onto a selective agar medium for Mollicutes (PPLO agar broth, BD Difco, NJ, USA). Although we isolated none of the Mollicutes until now, several bacteria that are closely related to Xylanimonas and Luteimicrobium were isolated. These isolates have xylanase and glucanase (CMCase) activities. We show the gut bacterial profiles of larvae and discuss how the fitness of female larvae of the Hercules beetle is improved by the compost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=beetle" title=" beetle"> beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=mollicutes" title=" mollicutes"> mollicutes</a>, <a href="https://publications.waset.org/abstracts/search?q=woody%20biomass" title=" woody biomass"> woody biomass</a> </p> <a href="https://publications.waset.org/abstracts/156759/sex-dependent-fitness-improvement-of-hercules-beetle-larvae-by-amendment-of-thermophile-fermented-compost-to-humus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Pinheiro%20Silva">Jessica Pinheiro Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Brenda%20Rabello%20De%20Camargo"> Brenda Rabello De Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Gusmao%20De%20Morais"> Daniel Gusmao De Morais</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliane%20%20Ferreira%20Noronha"> Eliane Ferreira Noronha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title="cellulosome">cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=CipA" title=" CipA"> CipA</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title=" Clostridium thermocellum"> Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesin" title=" cohesin"> cohesin</a>, <a href="https://publications.waset.org/abstracts/search?q=dockerin" title=" dockerin"> dockerin</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/79260/heterologous-expression-of-a-clostridium-thermocellum-proteins-and-assembly-of-cellulosomes-in-vitro-for-biotechnology-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20R.%20Gobinath">A. K. R. Gobinath</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Jianzhong"> He Jianzhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Lin%20Yang"> Kun-Lin Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoclave%20pretreatment" title="autoclave pretreatment">autoclave pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen%20production" title=" biohydrogen production"> biohydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=clostridial%20fermentation" title=" clostridial fermentation"> clostridial fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20waste" title=" fruit waste"> fruit waste</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20microwave%20pretreatment" title=" and microwave pretreatment"> and microwave pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/54893/anaerobic-fermentation-process-for-production-of-biohydrogen-from-pretreated-fruit-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjiv%20Kumar%20Soni">Sanjiv Kumar Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetna%20Janveja"> Chetna Janveja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kitchen%20waste" title="kitchen waste">kitchen waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bioconversion" title=" bioconversion"> bioconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/7320/bioconversion-of-kitchen-waste-to-bio-ethanol-for-energy-security-and-solid-waste-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>