CINXE.COM
Stephan Mertens | Otto-von-Guericke-Universität Magdeburg - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Stephan Mertens | Otto-von-Guericke-Universität Magdeburg - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Zh4LUYqZnOY8kHKWhm4D15luSx7BfLAK3i5T6PYr2bDNZpYfZSVuBIjMWjlhJvhhF2DVBMtFZomGp3JAWMIehg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="stephan mertens" /> <meta name="description" content="Stephan Mertens, Otto-von-Guericke-Universität Magdeburg: 56 Followers, 4 Following, 114 Research papers. Research interests: Theoritical Physics Especially…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283020905,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739828385000); window.Aedu.timeDifference = new Date().getTime() - 1739828385000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://sfb-trr-62.academia.edu/StephanMertens" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":1991712,"name":"Institut für Experimentelle Physik","url":"https://sfb-trr-62.academia.edu/Departments/Institut_f%C3%BCr_Experimentelle_Physik/Documents","university":{"id":17378,"name":"Otto-von-Guericke-Universität Magdeburg","url":"https://sfb-trr-62.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":988571,"name":"Theoritical Physics Especially Theory of Relativity","url":"https://www.academia.edu/Documents/in/Theoritical_Physics_Especially_Theory_of_Relativity"},{"id":142804,"name":"Einstein's General Theory of Relativity","url":"https://www.academia.edu/Documents/in/Einsteins_General_Theory_of_Relativity"},{"id":593628,"name":"Newtonian Mechanics","url":"https://www.academia.edu/Documents/in/Newtonian_Mechanics"},{"id":93895,"name":"Theory of Relativity","url":"https://www.academia.edu/Documents/in/Theory_of_Relativity"},{"id":442067,"name":"Classical Mechanics","url":"https://www.academia.edu/Documents/in/Classical_Mechanics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sfb-trr-62.academia.edu/StephanMertens","location":"/StephanMertens","scheme":"https","host":"sfb-trr-62.academia.edu","port":null,"pathname":"/StephanMertens","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-67fa664a-c409-4dc0-ba43-e2a6511ded28"></div> <div id="ProfileCheckPaperUpdate-react-component-67fa664a-c409-4dc0-ba43-e2a6511ded28"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Stephan Mertens</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://sfb-trr-62.academia.edu/">Otto-von-Guericke-Universität Magdeburg</a>, <a class="u-tcGrayDarker" href="https://sfb-trr-62.academia.edu/Departments/Institut_f%C3%BCr_Experimentelle_Physik/Documents">Institut für Experimentelle Physik</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Stephan" data-follow-user-id="160629230" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="160629230"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">56</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/StephanMertens/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PeterStadler"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PeterStadler">Peter F . Stadler</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/NSankeshwar"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/NSankeshwar">N Sankeshwar</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://usjt.academia.edu/FernandoFerreira"><img class="profile-avatar u-positionAbsolute" alt="Fernando Ferreira" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/6ad4dbc082bd56050eb6b34c0b7ef555?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usjt.academia.edu/FernandoFerreira">Fernando Ferreira</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade São Judas Tadeu</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/TimucinDogan"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/TimucinDogan">Dogan Timucin</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/KoenRaedt"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/KoenRaedt">Koen Raedt</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/FernandoDucha"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/FernandoDucha">Fernando Ducha</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://polito.academia.edu/RiccardoZecchina"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://polito.academia.edu/RiccardoZecchina">Riccardo Zecchina</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Politecnico di Torino</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/MIKIOKUBO"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MIKIOKUBO">MIKIO KUBO</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uniroma1.academia.edu/AdrianoBarra"><img class="profile-avatar u-positionAbsolute" alt="Adriano Barra" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/27334278/8420182/9413137/s200_adriano.barra.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uniroma1.academia.edu/AdrianoBarra">Adriano Barra</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi "La Sapienza" di Roma</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PeterSollich"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PeterSollich">Peter Sollich</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="160629230" href="https://www.academia.edu/Documents/in/Theoritical_Physics_Especially_Theory_of_Relativity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sfb-trr-62.academia.edu/StephanMertens","location":"/StephanMertens","scheme":"https","host":"sfb-trr-62.academia.edu","port":null,"pathname":"/StephanMertens","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Theoritical Physics Especially Theory of Relativity"]}" data-trace="false" data-dom-id="Pill-react-component-ef558383-a980-477a-a0c1-d7535747221c"></div> <div id="Pill-react-component-ef558383-a980-477a-a0c1-d7535747221c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="160629230" href="https://www.academia.edu/Documents/in/Einsteins_General_Theory_of_Relativity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Einstein's General Theory of Relativity"]}" data-trace="false" data-dom-id="Pill-react-component-b518a13a-a676-4086-bf4b-40cd60084445"></div> <div id="Pill-react-component-b518a13a-a676-4086-bf4b-40cd60084445"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="160629230" href="https://www.academia.edu/Documents/in/Newtonian_Mechanics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Newtonian Mechanics"]}" data-trace="false" data-dom-id="Pill-react-component-13160164-37ee-4503-a876-c86b0529c0d1"></div> <div id="Pill-react-component-13160164-37ee-4503-a876-c86b0529c0d1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="160629230" href="https://www.academia.edu/Documents/in/Theory_of_Relativity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Theory of Relativity"]}" data-trace="false" data-dom-id="Pill-react-component-ebf532e6-3998-4b61-aea7-f47e1a159c1d"></div> <div id="Pill-react-component-ebf532e6-3998-4b61-aea7-f47e1a159c1d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="160629230" href="https://www.academia.edu/Documents/in/Classical_Mechanics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Classical Mechanics"]}" data-trace="false" data-dom-id="Pill-react-component-b3c68c9e-1cbe-4544-baa6-2600c2111c9f"></div> <div id="Pill-react-component-b3c68c9e-1cbe-4544-baa6-2600c2111c9f"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Stephan Mertens</h3></div><div class="js-work-strip profile--work_container" data-work-id="110736397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning"><img alt="Research paper thumbnail of A physicist's approach to number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461455/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning">A physicist's approach to number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 15, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The statistical physics approach to the number partioning problem, a classical NPhard problem, is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The statistical physics approach to the number partioning problem, a classical NPhard problem, is both simple and rewarding. Very basic notions and methods from statistical mechanics are enough to obtain analytical results for the phase boundary that separates the "easy-to-solve" from the "hard-to-solve" phase of the NPP as well as for the probability distributions of the optimal and sub-optimal solutions. In addition, it can be shown that solving a number partioning problem of size N to some extent corresponds to locating the minimum in an unsorted list of O(2 N) numbers. Considering this correspondence it is not surprising that known heuristics for the partitioning problem are not significantly better than simple random search.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33c4de5ea1d16434d29faca364603709" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461455,"asset_id":110736397,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461455/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736397]").text(description); $(".js-view-count[data-work-id=110736397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33c4de5ea1d16434d29faca364603709" } } $('.js-work-strip[data-work-id=110736397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736397,"title":"A physicist's approach to number partitioning","internal_url":"https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461455/thumbnails/1.jpg","file_name":"0009230.pdf","download_url":"https://www.academia.edu/attachments/108461455/download_file","bulk_download_file_name":"A_physicists_approach_to_number_partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461455/0009230-libre.pdf?1701892698=\u0026response-content-disposition=attachment%3B+filename%3DA_physicists_approach_to_number_partitio.pdf\u0026Expires=1739831984\u0026Signature=ESQimmmrpT5CqPwYEng4KUuoPGeYGFdAJCnvDkar~yiYgYjxDLFkdQfaD5LtCLGAqCsOW8mMr5c5TX902yAlUacfaaDbbAjfEhCXpm5bZZ4GoG2uISRCGi6SS7X~v6SbT771n17rcVnbjddbAE~LFerajxeaKKA3zDEbHQEgsosTfoYzk7PgYQ-yKMvbZr3dkJbdJCVd27eN4S~Q0fI6MzDkTgt9KTjEUVx99tbvmi4kjoQkNz9iXDPMDV73uTPzr5R5MKGNFIcvgWfi-sJ4WH39-5em1L0Hv4J4BEaRKgd~yMMukTPJAtOS6fi9~wT8MDRaGtA9iJE06nQS~40nJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461452/thumbnails/1.jpg","file_name":"0009230.pdf","download_url":"https://www.academia.edu/attachments/108461452/download_file","bulk_download_file_name":"A_physicists_approach_to_number_partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461452/0009230-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DA_physicists_approach_to_number_partitio.pdf\u0026Expires=1739831984\u0026Signature=FsIq4XMQCd5xr7cvt1a0vmPp7sQDl1AsonzHGp0xHPLizK3stKoaYUPlquhzUEceyoFp2V3e3nHC1vvqh-aHu~8zxJqpVnzj7uo5x4MNJAit4YEu3hpInx6O3wtrkTsTSa7DtEJPTfTeFGY7J8KYzneSdt20FslWLyfILPPiBqFwdF~LOEPkvHnBZAheYPQM-Bn48P0L6Cz~dDI6YQKTV1rzhYjF1C6kFPK5-a1soBEE1Bqz4n1YwyjMcju88OnnFL4QO2swMvNdZlSRCCkBRZ~1IGX5ujKIpzm59~cf5qPm23gplz~gB2w6-MDOrAgMQ77RvvAltRGmLHor~qa27Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736396"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning"><img alt="Research paper thumbnail of The Easiest Hard Problem: Number Partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461454/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning">The Easiest Hard Problem: Number Partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Oct 14, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It ha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It has applications in areas like public key encryption and task scheduling. The random version of number partitioning has an "easy-hard" phase transition similar to the phase transitions observed in other combinatorial problems like k-SAT. In contrast to most other problems, number partitioning is simple enough to obtain detailled and rigorous results on the "hard" and "easy" phase and the transition that separates them. We review the known results on random integer partitioning, give a very simple derivation of the phase transition and discuss the algorithmic implications of both phases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a85a2f8b3a8d44e65c63447c7d948d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461454,"asset_id":110736396,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461454/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736396"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736396"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736396; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736396]").text(description); $(".js-view-count[data-work-id=110736396]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736396; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736396']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a85a2f8b3a8d44e65c63447c7d948d6" } } $('.js-work-strip[data-work-id=110736396]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736396,"title":"The Easiest Hard Problem: Number Partitioning","internal_url":"https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461454/thumbnails/1.jpg","file_name":"0310317.pdf","download_url":"https://www.academia.edu/attachments/108461454/download_file","bulk_download_file_name":"The_Easiest_Hard_Problem_Number_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461454/0310317-libre.pdf?1701892691=\u0026response-content-disposition=attachment%3B+filename%3DThe_Easiest_Hard_Problem_Number_Partitio.pdf\u0026Expires=1739831984\u0026Signature=D04KJetW1xQowyBLgVsxZP1bfXTC8ZoH7e8KBpSGTYJozfXaZb6kbEqqX3GNMf06lqyQFm0Zpitop-rqq9dp7qtooZYR7fVQ~PyzFw-Zll0TYpUO6j-KF0IyCq3p2jBH4MlEurnIojRDRsNzWgOkl16xvcE9ROyQgMhw8xqXXYuCLyApir-iq2Z499hzwSzMxHz6wQ4jKMRwPCYOJSCY7QZH16wqvk2V8qhQrpxoOBj25x~D6MYKqUX5f63KIe1IAawYgJXBxwkFMms5j7YIsM7XEQtTTCZ9qRxUtFSu12mTphIe7aooDeH-pJo~Yg0RDhrYDMwjRZc0iXf0NSBrKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461456/thumbnails/1.jpg","file_name":"0310317.pdf","download_url":"https://www.academia.edu/attachments/108461456/download_file","bulk_download_file_name":"The_Easiest_Hard_Problem_Number_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461456/0310317-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DThe_Easiest_Hard_Problem_Number_Partitio.pdf\u0026Expires=1739831984\u0026Signature=QEEYul8LTEypCdfohjzVdyypU9DZc8q8QRvec6WaZU1VhMc1K9b0TbQXTaMWklbABsBWZA4TR8fmM~Zcgm9YqdlbbWC7vJ1SnTaw59UHXQjip~AEtf94wqUFEiyMjAPp8BSkZs1nw4igsccFmjQNiYKnGjqjamyUwtNgKOta~qdXKwy0UOvD1en~hZsZ9AMfeV4R0twYdxvltkRNR~gHQj3si5DnXOIwwmv9tc8fTXj3dJlnSTJeB5VVF6BHrhpbZMZQVQqh0jeUpvWt55oebCO-4e9gjwPZebO8~IFGpey-TER557Y9~uGbXJTHgp25n5knM4ouhw7tIlqPzHufug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736395"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales"><img alt="Research paper thumbnail of Proof of the local REM conjecture for number partitioning. I: Constant energy scales" class="work-thumbnail" src="https://attachments.academia-assets.com/108461450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales">Proof of the local REM conjecture for number partitioning. I: Constant energy scales</a></div><div class="wp-workCard_item"><span>Random Structures and Algorithms</span><span>, Dec 15, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The number partitioning problem is a classic problem of combinatorial optimization in which a set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The number partitioning problem is a classic problem of combinatorial optimization in which a set of n numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the n numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass representation, it is natural to define energies-corresponding to the costs of the partitions, and overlaps-corresponding to the correlations between partitions. Although the energy levels of this model are a priori highly correlated, a surprising recent conjecture asserts that the energy spectrum of number partitioning is locally that of a random energy model (REM): the spacings between nearby energy levels are uncorrelated. In other words, the properly scaled energies converge to a Poisson process. The conjecture also asserts that the corresponding spin configurations are uncorrelated, indicating vanishing overlaps in the spin glass representation. In this paper, we prove these two claims, collectively known as the local REM conjecture.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e047f9546767b1ba0e50d4bd0bce8d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461450,"asset_id":110736395,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461450/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736395"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736395"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736395; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736395]").text(description); $(".js-view-count[data-work-id=110736395]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736395; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736395']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e047f9546767b1ba0e50d4bd0bce8d6" } } $('.js-work-strip[data-work-id=110736395]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736395,"title":"Proof of the local REM conjecture for number partitioning. I: Constant energy scales","internal_url":"https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461450/thumbnails/1.jpg","file_name":"0501760.pdf","download_url":"https://www.academia.edu/attachments/108461450/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461450/0501760-libre.pdf?1701892704=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831984\u0026Signature=blun2ikyylIob4XgwU5b8ehsUmUlgRA70Z7Y2NMxOMfwQ5nqlK8blSzOXo6XQr04nDygM71qQ2mX~5lzn581nxMExeTFyF2DMmvBcn3K-EOVRDDSAe~piRnWtCA4a2MHQBs3SAT9Hfo25UCHyIvhCKFt67eCQ8LtZ~3-JibbXp3Xtcb3uW4amLV11mDTxBPx0gSBlyifqybjZIduK~0TOJcqAy7bfNN9QjTJHzFYbeFtwZs2l9c2~4CWmEvE0ERpZEZFEjBQpcYkH8FH3oc2nYqKNwwFXavBJOc2WCVaTQqMRld6~sQQSEeNKy94m-Gg2or~uulfGzeG2MjzlmR-EQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences"><img alt="Research paper thumbnail of Asymptotics of Lagged Fibonacci Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/108461445/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences">Asymptotics of Lagged Fibonacci Sequences</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 12, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Consider "lagged" Fibonacci sequences a(n) = a(n − 1) + a(⌊n/k⌋) for k > 1. We show that limn→∞ a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Consider "lagged" Fibonacci sequences a(n) = a(n − 1) + a(⌊n/k⌋) for k > 1. We show that limn→∞ a(kn)/a(n) • ln n/n = k ln k and we demonstrate the slow numerical convergence to this limit and how to deal with this slow convergence. We also discuss the connection between two classical results of N.G. de Bruijn and K. Mahler on the asymptotics of a(n).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a336b0a859d0da655649d4bbcfb35075" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461445,"asset_id":110736394,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461445/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736394]").text(description); $(".js-view-count[data-work-id=110736394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a336b0a859d0da655649d4bbcfb35075" } } $('.js-work-strip[data-work-id=110736394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736394,"title":"Asymptotics of Lagged Fibonacci Sequences","internal_url":"https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461445,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461445/thumbnails/1.jpg","file_name":"0912.pdf","download_url":"https://www.academia.edu/attachments/108461445/download_file","bulk_download_file_name":"Asymptotics_of_Lagged_Fibonacci_Sequence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461445/0912-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Lagged_Fibonacci_Sequence.pdf\u0026Expires=1739831984\u0026Signature=XFTgAYMTQeg9pBBOhF42sfsS-6JtbON9t7Wsk6MQoahijkPDzOAk4Bbf69OSxHdKHEUcczcQx2LX5GEt0pV1hCxoEGwuqCQ-ggVHrbGif3yMKe~vykPrM2ZT2Tm-Kj0mSb36owwJf2YxMymkfL5os-SQ9IqhubDfaY7pIdJT7Sq9EPRYUdsWmJSgoaSYBDerDBzQhmxmADfdKDLag02M1EmAbRmDbiG8g2nX8TK9lcCmhMnTwLS72zygO~y68-IARhici09NuMljPFE6mYX7YBx0HIJLjdVqZveaOYVskaO57oXjtaX4rpCKDcdX18OyVnlZtH1HB2BEX5uuhmUNJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning"><img alt="Research paper thumbnail of Proof of the local REM conjecture for number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning">Proof of the local REM conjecture for number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jan 31, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The number partitioning problem is a classic problem of combinatorial optimization in which a set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The number partitioning problem is a classic problem of combinatorial optimization in which a set of $n$ numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the $n$ numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass representation, it is natural to define energies -- corresponding to the costs of the partitions, and overlaps -- corresponding to the correlations between partitions. Although the energy levels of this model are {\em a priori} highly correlated, a surprising recent conjecture asserts that the energy spectrum of number partitioning is locally that of a random energy model (REM): the spacings between nearby energy levels are uncorrelated. In other words, the properly scaled energies converge to a Poisson process. The conjecture also asserts that the corresponding spin configurations are uncorrelated, indicating vanishing overlaps in the spin glass representation. In this paper, we prove these two claims, collectively known as the local REM conjecture.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f0d757d175411894c932780ea06a37a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461449,"asset_id":110736393,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461449/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736393]").text(description); $(".js-view-count[data-work-id=110736393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f0d757d175411894c932780ea06a37a" } } $('.js-work-strip[data-work-id=110736393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736393,"title":"Proof of the local REM conjecture for number partitioning","internal_url":"https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461449/thumbnails/1.jpg","file_name":"0501760v1.pdf","download_url":"https://www.academia.edu/attachments/108461449/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461449/0501760v1-libre.pdf?1701892699=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831984\u0026Signature=N~2vgI0ENFeiPSJWUAUG7UgLYhQ-5JRkKQAH3KeevkJEY9liaWUCAhgDwpPwTLyKa8EeRqSjmHeSdBVtxwF60hUTlw1HMIx5twiHc7hb73dyWdcop7iTgdkhh~5OWYlYkPiu9ksniipJrjfIDpUn5doL8BICGYeFA5KwtDhMLH6X6lZEAWOf6ag2Z8nNSGFIOS6HMZgltpEYpCg-S7fZ-DBHtuodviB8W8IOXVMLaQegcJi4eBaiMCRQDkmfb1VKyI8YIGrmuLT-k7mFC0VInxwK382pqSRV-QEicYBBVVbSvtn1~IVB-h8dEJJSY3PdawkKd6loC20TYPxb9yhFRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461453/thumbnails/1.jpg","file_name":"0501760v1.pdf","download_url":"https://www.academia.edu/attachments/108461453/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461453/0501760v1-libre.pdf?1701892700=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831985\u0026Signature=c1hSo7K622kMQhEwYzkOCRSo1LYnTGfFZmxS8xUTwZITo--9TcHcE4hnZKRWeuS3d~i7eQJWBcjzcCiu5IsvcKWIAKf5YyyOMhH4JJ472Cm2jLGAxzG9O1bEUIRgqSybi9NwkDQHtaiRdhRX5GYa2PjsSr7LfIzRjqWAPWF6igXBImRqYtffZCYPrUBrg9oQUjflGTQPvZNFLhmWv40loJlK~cHBG-KbIsDfPB7YbJgMHp8nIQ2AQoL4u~OtO-6xdWrC~yo15JLJMcIkNJ-i-Ec00eo75zZFzQWVyRK4sBFpaQ~Jh~FmEKdSepoDm0jYkrQzDSW536Li-oNokVguxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations"><img alt="Research paper thumbnail of Random Number Generators: A Survival Guide for Large Scale Simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/108461448/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations">Random Number Generators: A Survival Guide for Large Scale Simulations</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 26, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Monte Carlo simulations are an important tool in statistical physics, complex systems science, an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Monte Carlo simulations are an important tool in statistical physics, complex systems science, and many other fields. An increasing number of these simulations is run on parallel systems ranging from multicore desktop computers to supercomputers with thousands of CPUs. This raises the issue of generating large amounts of random numbers in a parallel application. In this lecture we will learn just enough of the theory of pseudo random number generation to make wise decisions on how to choose and how to use random number generators when it comes to large scale, parallel simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c518b98f9572f4ec6e79cb333e15241" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461448,"asset_id":110736392,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461448/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736392]").text(description); $(".js-view-count[data-work-id=110736392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c518b98f9572f4ec6e79cb333e15241" } } $('.js-work-strip[data-work-id=110736392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736392,"title":"Random Number Generators: A Survival Guide for Large Scale Simulations","internal_url":"https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461448/thumbnails/1.jpg","file_name":"0905.pdf","download_url":"https://www.academia.edu/attachments/108461448/download_file","bulk_download_file_name":"Random_Number_Generators_A_Survival_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461448/0905-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Number_Generators_A_Survival_Guid.pdf\u0026Expires=1739831985\u0026Signature=L4msPBq3cQIAOD9DLsqYXu1tWPXuzycXNZQx7sSRIFr5V5UXAw0glqSrAi~xNeia5Uufj9pu9bBT2EYBantwgvP-Mpe-J5lOYhWEMhoJ1rNTbIucpSJ5ENUewBq5CV3qMXftBR0vuFAwVmV2x5x78lpYb1PqWEyo-f9i0Ef-eIEs86-tdh7G7w1iP~C5mdvhERThxjAZ9I5ajO6Otm3XlStF7uUVIwtneNIsgBU6sP1KCYhJkkWApnaUVlLqn0BcTAjrvyw0o01epj~vLqxxcMK02fmdd0ElyPgUXQ-jxeQTLDT9wVOWgW371rvc-jXGf4eG8971aaWkACuDXYfceg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461451/thumbnails/1.jpg","file_name":"0905.pdf","download_url":"https://www.academia.edu/attachments/108461451/download_file","bulk_download_file_name":"Random_Number_Generators_A_Survival_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461451/0905-libre.pdf?1701892693=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Number_Generators_A_Survival_Guid.pdf\u0026Expires=1739831985\u0026Signature=MnqE6R5h4H9C6rQ4LH3qQWjeoJAvkwWOXMKLq4oyn9fCECrwqDom4DXrpqKrwC6KCXlxuJR92zmSw3~TiMZXiIXTJdvIZKvBltFpqbeliio88ewZqlfn9Rk-spJGDf5UCS1-b4ZYmrr-6otMkwUoRSdB9v7hUfODah9a16N8z9q6u87saA~FfbtGVzHQuFhvj6Cr~gJQWtPNe4EN9WG-id0zWIitH6Q-bKpKIOmMOdivReeyS-ooQQm8YfBdeyjRqWsfMjeOPJyPdx0Scfg8R1gBTCmie3KXw9CYZtDyJuKZLvFpUcsZN2YxTtx9ChtMtJOgsgkhMPKlf2ddlK-8VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736391"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning"><img alt="Research paper thumbnail of A complete anytime algorithm for balanced number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461444/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning">A complete anytime algorithm for balanced number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 11, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Given a set of numbers, the balanced partioning problem is to divide them into two subsets, so th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Given a set of numbers, the balanced partioning problem is to divide them into two subsets, so that the sum of the numbers in each subset are as nearly equal as possible, subject to the constraint that the cardinalities of the subsets be within one of each other. We combine the balanced largest differencing method (BLDM) and Korf's complete Karmarkar-Karp algorithm to get a new algorithm that optimally solves the balanced partitioning problem. For numbers with twelve significant digits or less, the algorithm can optimally solve balanced partioning problems of arbitrary size in practice. For numbers with greater precision, it first returns the BLDM solution, then continues to find better solutions as time allows.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="071635eada13b5cf9c9865a8a62b313f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461444,"asset_id":110736391,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461444/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736391"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736391"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736391; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736391]").text(description); $(".js-view-count[data-work-id=110736391]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736391; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736391']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "071635eada13b5cf9c9865a8a62b313f" } } $('.js-work-strip[data-work-id=110736391]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736391,"title":"A complete anytime algorithm for balanced number partitioning","internal_url":"https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461444,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461444/thumbnails/1.jpg","file_name":"9903011.pdf","download_url":"https://www.academia.edu/attachments/108461444/download_file","bulk_download_file_name":"A_complete_anytime_algorithm_for_balance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461444/9903011-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DA_complete_anytime_algorithm_for_balance.pdf\u0026Expires=1739831985\u0026Signature=CNEF728it3wqZpp2v~2JwHuCLV1eyft8t3QwIMLaUjuNqYP~qUFJ1~QUA~rSDFCmzirj2ukdRkuNH2frH25P0Lbgs0U93wMku5wO-u1jm4P-EYKSqLxB7Ksbk3iLO2fcEg9gOnqLicR6rV1EOev3b1LzfcJy-HmBp1IhQ8KJLCRZwb9ANJDAEZOKiBj8EvRXUxdD2ribE9snYpRJ7x15YujEREzJfE0b1eU6qEsIsYJlJF7-X9vGbqaJuUJiI-LEAvGEuutoaTSTXKeVagJgA1uG4A-yhUArotu5LdwBrjvzl7GlaGXC-Aoj0QiMUc3ZXo3BCxD4UJwysD7W0XKqHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461447/thumbnails/1.jpg","file_name":"9903011.pdf","download_url":"https://www.academia.edu/attachments/108461447/download_file","bulk_download_file_name":"A_complete_anytime_algorithm_for_balance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461447/9903011-libre.pdf?1701892691=\u0026response-content-disposition=attachment%3B+filename%3DA_complete_anytime_algorithm_for_balance.pdf\u0026Expires=1739831985\u0026Signature=QEeg4Nj15vs8y9diWnWODb-izeHED70JSgh0ncrsxNBJwA88U7Qt4RUoeDhrLGVT-WwCvNXTWKUMwW2vbO8tUvKLswZvPkM2Syyyh155kBxTACxdi0eoBTypR1L4Nmk99Em16cqfTqYhg236JgkGP8voyEbQYpxTV32Cm7W4Vv0JsZwfVIl4Fp97E9SxDAAp1g-B758TITicc3-NjQ4LoHeYxp~SEzL8E6Djl09OYn9FfQxY0yvK85GdjDTRP2H-GNsm5Y9f1~kC5CqS6ugqAHo7982Zs30BI4-LE5mpqiEB0rP5Vc3232stP5KMOmK6-XMzvoyQRZriHIim6V-tEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems"><img alt="Research paper thumbnail of Universality in the level statistics of disordered systems" class="work-thumbnail" src="https://attachments.academia-assets.com/108461443/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems">Universality in the level statistics of disordered systems</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, Aug 23, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Energy spectra of disordered systems share a common feature: if the entropy of the quenched disor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Energy spectra of disordered systems share a common feature: if the entropy of the quenched disorder is larger than the entropy of the dynamical variables, the spectrum is locally that of a random energy model and the correlation between energy and configuration is lost. We demonstrate this effect for the Edwards-Anderson model, but we also discuss its universality.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48a69bf8d5f1757ea7acdf17b1b7185f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461443,"asset_id":110736390,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461443/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736390]").text(description); $(".js-view-count[data-work-id=110736390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48a69bf8d5f1757ea7acdf17b1b7185f" } } $('.js-work-strip[data-work-id=110736390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736390,"title":"Universality in the level statistics of disordered systems","internal_url":"https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461443,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461443/thumbnails/1.jpg","file_name":"0404470.pdf","download_url":"https://www.academia.edu/attachments/108461443/download_file","bulk_download_file_name":"Universality_in_the_level_statistics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461443/0404470-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DUniversality_in_the_level_statistics_of.pdf\u0026Expires=1739831985\u0026Signature=HdOh2PlkDlsLsEhzg3hLTEqSxEwmrrew5q0lg9fyzqEeQofcAubKWjwe49N6SR2NJgBU~Yv9X8iF68UkrfibO7KR3Jiha~aM5TZmd4-cBfTZYoYnSpNoL1G89ILcEodlhttd691USC84ws0dMUn8hvnLMmFlECyL9lLqGa8x8ly7D8FECwHJpnv1MYeP-OBcUmCX~SmpoIhiKdVHpjqwack7puwD1PhMIAyFUNAXK4I9W-AnekEWfypEDZpH4MaT9MxxrkQb4WE3ZMvHJCYwr6H01JctAqc~CRvzvtvF0-1trqVBPUWcIwlJqLEksV4qcOSkL5coRp6xiLYJPulC8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization"><img alt="Research paper thumbnail of Random Costs in Combinatorial Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/108461442/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization">Random Costs in Combinatorial Optimization</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 7, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="52be74f0d5c157297033fa891ad2765d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461442,"asset_id":110736389,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461442/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736389]").text(description); $(".js-view-count[data-work-id=110736389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "52be74f0d5c157297033fa891ad2765d" } } $('.js-work-strip[data-work-id=110736389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736389,"title":"Random Costs in Combinatorial Optimization","internal_url":"https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461442/thumbnails/1.jpg","file_name":"9907088.pdf","download_url":"https://www.academia.edu/attachments/108461442/download_file","bulk_download_file_name":"Random_Costs_in_Combinatorial_Optimizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461442/9907088-libre.pdf?1701892688=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Costs_in_Combinatorial_Optimizati.pdf\u0026Expires=1739831985\u0026Signature=ciCNi-1V~3dRcKmAQBF3hFjqEcYASRaU4miyfv8~CHkQ28o4Aw7wTX2knS-OSFECeao6oZOkFGSbCWntatpZuELUKl3E11XKKXbkyf8v~23njmDceuoLhe45~T-p-Ic-a0fKjOK9WuWgey2nlXyyV5EGzvLWqVIjv~2nf8AYXtyOv3dqphxcy3gfBskEyxf~ecTo0oQFwVihZUjdJFtRQJSocXP6eHG4NARVjBHkt-02qiuFvQtBFp~7eeUnYP1w06gOehbMkoOnj4hozu4g5bTOvLlq6Az87tad4YnHwermsMKYmBv-vGELqLa1gtstHs9tptXcH8uTgqjJiTe7lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736388/Randomized_Algorithms"><img alt="Research paper thumbnail of Randomized Algorithms" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736388/Randomized_Algorithms">Randomized Algorithms</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736388]").text(description); $(".js-view-count[data-work-id=110736388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736388,"title":"Randomized Algorithms","internal_url":"https://www.academia.edu/110736388/Randomized_Algorithms","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736386"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736386/Quantum_Computation"><img alt="Research paper thumbnail of Quantum Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736386/Quantum_Computation">Quantum Computation</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736386"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736386"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736386; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736386]").text(description); $(".js-view-count[data-work-id=110736386]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736386; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736386']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736386]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736386,"title":"Quantum Computation","internal_url":"https://www.academia.edu/110736386/Quantum_Computation","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736385/Memory_Paths_and_Games"><img alt="Research paper thumbnail of Memory, Paths, and Games" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736385/Memory_Paths_and_Games">Memory, Paths, and Games</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736385]").text(description); $(".js-view-count[data-work-id=110736385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736385,"title":"Memory, Paths, and Games","internal_url":"https://www.academia.edu/110736385/Memory_Paths_and_Games","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation"><img alt="Research paper thumbnail of When Formulas Freeze: Phase Transitions in Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation">When Formulas Freeze: Phase Transitions in Computation</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736384]").text(description); $(".js-view-count[data-work-id=110736384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736384,"title":"When Formulas Freeze: Phase Transitions in Computation","internal_url":"https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736383"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness"><img alt="Research paper thumbnail of Who is the Hardest One of All? NP-Completeness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness">Who is the Hardest One of All? NP-Completeness</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736383"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736383]").text(description); $(".js-view-count[data-work-id=110736383]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736383']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736383]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736383,"title":"Who is the Hardest One of All? NP-Completeness","internal_url":"https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736382/Interaction_and_Pseudorandomness"><img alt="Research paper thumbnail of Interaction and Pseudorandomness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736382/Interaction_and_Pseudorandomness">Interaction and Pseudorandomness</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736382]").text(description); $(".js-view-count[data-work-id=110736382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736382,"title":"Interaction and Pseudorandomness","internal_url":"https://www.academia.edu/110736382/Interaction_and_Pseudorandomness","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736381/Insights_and_Algorithms"><img alt="Research paper thumbnail of Insights and Algorithms" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736381/Insights_and_Algorithms">Insights and Algorithms</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736381]").text(description); $(".js-view-count[data-work-id=110736381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736381,"title":"Insights and Algorithms","internal_url":"https://www.academia.edu/110736381/Insights_and_Algorithms","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736380"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics"><img alt="Research paper thumbnail of Counting, Sampling, and Statistical Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics">Counting, Sampling, and Statistical Physics</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736380"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736380"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736380; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736380]").text(description); $(".js-view-count[data-work-id=110736380]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736380; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736380']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736380]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736380,"title":"Counting, Sampling, and Statistical Physics","internal_url":"https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP"><img alt="Research paper thumbnail of The Deep Question: P vs. NP" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP">The Deep Question: P vs. NP</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736378]").text(description); $(".js-view-count[data-work-id=110736378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736378,"title":"The Deep Question: P vs. NP","internal_url":"https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem"><img alt="Research paper thumbnail of Small random instances of the stable roommates problem" class="work-thumbnail" src="https://attachments.academia-assets.com/108461432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem">Small random instances of the stable roommates problem</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, Jun 29, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let pn denote the probability that a random instance of the stable roommates problem of size n ad...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let pn denote the probability that a random instance of the stable roommates problem of size n admits a solution. We derive an explicit formula for pn and compute exact values of pn for n ≤ 12.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2ea6a0a526866c819f2a2d5288bd81f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461432,"asset_id":110736374,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461432/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736374]").text(description); $(".js-view-count[data-work-id=110736374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2ea6a0a526866c819f2a2d5288bd81f0" } } $('.js-work-strip[data-work-id=110736374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736374,"title":"Small random instances of the stable roommates problem","internal_url":"https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461432/thumbnails/1.jpg","file_name":"1502.pdf","download_url":"https://www.academia.edu/attachments/108461432/download_file","bulk_download_file_name":"Small_random_instances_of_the_stable_roo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461432/1502-libre.pdf?1701892687=\u0026response-content-disposition=attachment%3B+filename%3DSmall_random_instances_of_the_stable_roo.pdf\u0026Expires=1739831985\u0026Signature=g0ABZbBgQmsReQq6ezqXDSDpDbUDMGjfK1pS7uiFXyn9TddQPwX8o1fKFNYK9TJ3FKI~PMMdTgJmkdMGWzQsr87U~4NgwOHQVfnhch2uA2bTa5N2OCwIB4JlfoGuuB20BrMUI-6iesGIRWhEU-sy5ujdYYf5chfAS~cGV6fF5RpZcdvxHGGEgZn7ZRm~xh1eJ9xDc2s4SRuMSjBaP77WjYrZq9fjiPx5ALOOdE6MjLiToVSXlQqPOwfSTSIX7P~dUvz4n3VnwGs-SBdY2KUV7iOXk5YbO9JlPoJL6Qjl5hX1DEU6LEGZQCFagrUXD938y3AwM6Ae3KP3xBj4KB-Wlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461433/thumbnails/1.jpg","file_name":"1502.pdf","download_url":"https://www.academia.edu/attachments/108461433/download_file","bulk_download_file_name":"Small_random_instances_of_the_stable_roo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461433/1502-libre.pdf?1701892694=\u0026response-content-disposition=attachment%3B+filename%3DSmall_random_instances_of_the_stable_roo.pdf\u0026Expires=1739831985\u0026Signature=bxTO5~Rd4Ymeh8m1qAeaS8URBl3VkBgQhLi4zBd~nSMJ4ZQ1G22TZ8jzHTB1H~J8I7EEq-VWWOcQfx-CWAwQfoMhHW4NnZgf5G0qjkfq-F2mxYU16CjGeDHvnM4VYPykCEMftTKV3TUe-9v8vzJO7g0lUMJ9QTw3D3jW4HbP2O6bZah~pDytM5xT8CulwlXljIxBEk-f0KeNSKNs72rw571V--Ez-I5z0-3PpOtTADZCqGwVB~muvCvM7cZRLLyHUxK-wou8RTa2NB7syXtp6SrTZL1R5V4uIuYZ6P-Ax-PphxMe1K55-ehSirkUJnTJwIg1BtAe7Gt9PsbPkEMN6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails"><img alt="Research paper thumbnail of Pseudo Random Coins Show More Heads Than Tails" class="work-thumbnail" src="https://attachments.academia-assets.com/108461429/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails">Pseudo Random Coins Show More Heads Than Tails</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, Feb 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tossing a coin is the most elementary Monte Carlo experiment. In a computer the coin is replaced ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tossing a coin is the most elementary Monte Carlo experiment. In a computer the coin is replaced by a pseudo random number generator. It can be shown analytically and by exact enumerations that popular random number generators are not capable of imitating a fair coin: pseudo random coins show more "heads" than "tails". This bias explains the empirically observed failure of some random number generators in random walk experiments. It can be traced down to the special role of the value zero in the algebra of finite fields.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="261f745958c075f4d714453f9ea8215f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461429,"asset_id":110736373,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461429/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736373]").text(description); $(".js-view-count[data-work-id=110736373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "261f745958c075f4d714453f9ea8215f" } } $('.js-work-strip[data-work-id=110736373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736373,"title":"Pseudo Random Coins Show More Heads Than Tails","internal_url":"https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461429/thumbnails/1.jpg","file_name":"0307138.pdf","download_url":"https://www.academia.edu/attachments/108461429/download_file","bulk_download_file_name":"Pseudo_Random_Coins_Show_More_Heads_Than.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461429/0307138-libre.pdf?1701892696=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_Random_Coins_Show_More_Heads_Than.pdf\u0026Expires=1739831985\u0026Signature=N~ORvo0lve4c19QS2p23UKUMzZ2iQCvSKKCQ2qVzW4HNYuycKGoiYSyKW6kRB9MYKoQ3Ya3NE-zX6R4upZ7nvf7SX4bcgMhF-k6Mst2PL8FtO1XY5~mLN1YqHjz61NEOlT7kpGmwK~1u36QvXV7gimoOvmnCAW2gTtVDAiW1n3M8TkQSnPn6WGRzroguRPiUFqzYrKl-ivOxyPiMlhigBQK7rxYq4WIXvNOp8ge4EfbvRhzz2uhftcKVjvc5k8UiRHi2tp3iB3lKIRGRwssWx2P58gAE~bWiP52yUXGZSxk5z9C5v1Kk0o~UL~fpOpHPLDlp4u9EApVmQRhV0v-30A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461431/thumbnails/1.jpg","file_name":"0307138.pdf","download_url":"https://www.academia.edu/attachments/108461431/download_file","bulk_download_file_name":"Pseudo_Random_Coins_Show_More_Heads_Than.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461431/0307138-libre.pdf?1701892694=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_Random_Coins_Show_More_Heads_Than.pdf\u0026Expires=1739831985\u0026Signature=UkKYX4yqsA0PXLCPKAEXuyD4E2X7wRnXttz6eRrDcdzCfz6UmjxkIb0KblxpXsgnIYGSwV2U2YjDbkbhZUVJVCPw3cCjXjVNdGLN6x0wUGhz9dVTD9zqF03qK7UmSvC0Bq1yiD9SJdIBq3xNyUYW4jFk-n1c5D8g1OthSxf~9T~57zk9LBH2KRU3XAlZHOaRWy3LsUgfLVEMa7OWWoNebdGyw86U6uznBS1TzbRxVYBsyzHpZRGPuO7-py~qIYToQqxHn687Bhmvtl5zqWfop3YX2l7FZW0kik6lD97dzrrt1U649vQp6s3zhV0csJ7ga4ER4ZvNhHue3kq0foktVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12060089" id="papers"><div class="js-work-strip profile--work_container" data-work-id="110736397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning"><img alt="Research paper thumbnail of A physicist's approach to number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461455/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning">A physicist's approach to number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 15, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The statistical physics approach to the number partioning problem, a classical NPhard problem, is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The statistical physics approach to the number partioning problem, a classical NPhard problem, is both simple and rewarding. Very basic notions and methods from statistical mechanics are enough to obtain analytical results for the phase boundary that separates the "easy-to-solve" from the "hard-to-solve" phase of the NPP as well as for the probability distributions of the optimal and sub-optimal solutions. In addition, it can be shown that solving a number partioning problem of size N to some extent corresponds to locating the minimum in an unsorted list of O(2 N) numbers. Considering this correspondence it is not surprising that known heuristics for the partitioning problem are not significantly better than simple random search.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33c4de5ea1d16434d29faca364603709" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461455,"asset_id":110736397,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461455/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736397]").text(description); $(".js-view-count[data-work-id=110736397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33c4de5ea1d16434d29faca364603709" } } $('.js-work-strip[data-work-id=110736397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736397,"title":"A physicist's approach to number partitioning","internal_url":"https://www.academia.edu/110736397/A_physicists_approach_to_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461455/thumbnails/1.jpg","file_name":"0009230.pdf","download_url":"https://www.academia.edu/attachments/108461455/download_file","bulk_download_file_name":"A_physicists_approach_to_number_partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461455/0009230-libre.pdf?1701892698=\u0026response-content-disposition=attachment%3B+filename%3DA_physicists_approach_to_number_partitio.pdf\u0026Expires=1739831984\u0026Signature=ESQimmmrpT5CqPwYEng4KUuoPGeYGFdAJCnvDkar~yiYgYjxDLFkdQfaD5LtCLGAqCsOW8mMr5c5TX902yAlUacfaaDbbAjfEhCXpm5bZZ4GoG2uISRCGi6SS7X~v6SbT771n17rcVnbjddbAE~LFerajxeaKKA3zDEbHQEgsosTfoYzk7PgYQ-yKMvbZr3dkJbdJCVd27eN4S~Q0fI6MzDkTgt9KTjEUVx99tbvmi4kjoQkNz9iXDPMDV73uTPzr5R5MKGNFIcvgWfi-sJ4WH39-5em1L0Hv4J4BEaRKgd~yMMukTPJAtOS6fi9~wT8MDRaGtA9iJE06nQS~40nJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461452/thumbnails/1.jpg","file_name":"0009230.pdf","download_url":"https://www.academia.edu/attachments/108461452/download_file","bulk_download_file_name":"A_physicists_approach_to_number_partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461452/0009230-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DA_physicists_approach_to_number_partitio.pdf\u0026Expires=1739831984\u0026Signature=FsIq4XMQCd5xr7cvt1a0vmPp7sQDl1AsonzHGp0xHPLizK3stKoaYUPlquhzUEceyoFp2V3e3nHC1vvqh-aHu~8zxJqpVnzj7uo5x4MNJAit4YEu3hpInx6O3wtrkTsTSa7DtEJPTfTeFGY7J8KYzneSdt20FslWLyfILPPiBqFwdF~LOEPkvHnBZAheYPQM-Bn48P0L6Cz~dDI6YQKTV1rzhYjF1C6kFPK5-a1soBEE1Bqz4n1YwyjMcju88OnnFL4QO2swMvNdZlSRCCkBRZ~1IGX5ujKIpzm59~cf5qPm23gplz~gB2w6-MDOrAgMQ77RvvAltRGmLHor~qa27Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736396"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning"><img alt="Research paper thumbnail of The Easiest Hard Problem: Number Partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461454/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning">The Easiest Hard Problem: Number Partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Oct 14, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It ha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It has applications in areas like public key encryption and task scheduling. The random version of number partitioning has an "easy-hard" phase transition similar to the phase transitions observed in other combinatorial problems like k-SAT. In contrast to most other problems, number partitioning is simple enough to obtain detailled and rigorous results on the "hard" and "easy" phase and the transition that separates them. We review the known results on random integer partitioning, give a very simple derivation of the phase transition and discuss the algorithmic implications of both phases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a85a2f8b3a8d44e65c63447c7d948d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461454,"asset_id":110736396,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461454/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736396"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736396"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736396; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736396]").text(description); $(".js-view-count[data-work-id=110736396]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736396; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736396']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a85a2f8b3a8d44e65c63447c7d948d6" } } $('.js-work-strip[data-work-id=110736396]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736396,"title":"The Easiest Hard Problem: Number Partitioning","internal_url":"https://www.academia.edu/110736396/The_Easiest_Hard_Problem_Number_Partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461454/thumbnails/1.jpg","file_name":"0310317.pdf","download_url":"https://www.academia.edu/attachments/108461454/download_file","bulk_download_file_name":"The_Easiest_Hard_Problem_Number_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461454/0310317-libre.pdf?1701892691=\u0026response-content-disposition=attachment%3B+filename%3DThe_Easiest_Hard_Problem_Number_Partitio.pdf\u0026Expires=1739831984\u0026Signature=D04KJetW1xQowyBLgVsxZP1bfXTC8ZoH7e8KBpSGTYJozfXaZb6kbEqqX3GNMf06lqyQFm0Zpitop-rqq9dp7qtooZYR7fVQ~PyzFw-Zll0TYpUO6j-KF0IyCq3p2jBH4MlEurnIojRDRsNzWgOkl16xvcE9ROyQgMhw8xqXXYuCLyApir-iq2Z499hzwSzMxHz6wQ4jKMRwPCYOJSCY7QZH16wqvk2V8qhQrpxoOBj25x~D6MYKqUX5f63KIe1IAawYgJXBxwkFMms5j7YIsM7XEQtTTCZ9qRxUtFSu12mTphIe7aooDeH-pJo~Yg0RDhrYDMwjRZc0iXf0NSBrKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461456/thumbnails/1.jpg","file_name":"0310317.pdf","download_url":"https://www.academia.edu/attachments/108461456/download_file","bulk_download_file_name":"The_Easiest_Hard_Problem_Number_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461456/0310317-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DThe_Easiest_Hard_Problem_Number_Partitio.pdf\u0026Expires=1739831984\u0026Signature=QEEYul8LTEypCdfohjzVdyypU9DZc8q8QRvec6WaZU1VhMc1K9b0TbQXTaMWklbABsBWZA4TR8fmM~Zcgm9YqdlbbWC7vJ1SnTaw59UHXQjip~AEtf94wqUFEiyMjAPp8BSkZs1nw4igsccFmjQNiYKnGjqjamyUwtNgKOta~qdXKwy0UOvD1en~hZsZ9AMfeV4R0twYdxvltkRNR~gHQj3si5DnXOIwwmv9tc8fTXj3dJlnSTJeB5VVF6BHrhpbZMZQVQqh0jeUpvWt55oebCO-4e9gjwPZebO8~IFGpey-TER557Y9~uGbXJTHgp25n5knM4ouhw7tIlqPzHufug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736395"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales"><img alt="Research paper thumbnail of Proof of the local REM conjecture for number partitioning. I: Constant energy scales" class="work-thumbnail" src="https://attachments.academia-assets.com/108461450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales">Proof of the local REM conjecture for number partitioning. I: Constant energy scales</a></div><div class="wp-workCard_item"><span>Random Structures and Algorithms</span><span>, Dec 15, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The number partitioning problem is a classic problem of combinatorial optimization in which a set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The number partitioning problem is a classic problem of combinatorial optimization in which a set of n numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the n numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass representation, it is natural to define energies-corresponding to the costs of the partitions, and overlaps-corresponding to the correlations between partitions. Although the energy levels of this model are a priori highly correlated, a surprising recent conjecture asserts that the energy spectrum of number partitioning is locally that of a random energy model (REM): the spacings between nearby energy levels are uncorrelated. In other words, the properly scaled energies converge to a Poisson process. The conjecture also asserts that the corresponding spin configurations are uncorrelated, indicating vanishing overlaps in the spin glass representation. In this paper, we prove these two claims, collectively known as the local REM conjecture.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e047f9546767b1ba0e50d4bd0bce8d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461450,"asset_id":110736395,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461450/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736395"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736395"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736395; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736395]").text(description); $(".js-view-count[data-work-id=110736395]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736395; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736395']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e047f9546767b1ba0e50d4bd0bce8d6" } } $('.js-work-strip[data-work-id=110736395]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736395,"title":"Proof of the local REM conjecture for number partitioning. I: Constant energy scales","internal_url":"https://www.academia.edu/110736395/Proof_of_the_local_REM_conjecture_for_number_partitioning_I_Constant_energy_scales","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461450/thumbnails/1.jpg","file_name":"0501760.pdf","download_url":"https://www.academia.edu/attachments/108461450/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461450/0501760-libre.pdf?1701892704=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831984\u0026Signature=blun2ikyylIob4XgwU5b8ehsUmUlgRA70Z7Y2NMxOMfwQ5nqlK8blSzOXo6XQr04nDygM71qQ2mX~5lzn581nxMExeTFyF2DMmvBcn3K-EOVRDDSAe~piRnWtCA4a2MHQBs3SAT9Hfo25UCHyIvhCKFt67eCQ8LtZ~3-JibbXp3Xtcb3uW4amLV11mDTxBPx0gSBlyifqybjZIduK~0TOJcqAy7bfNN9QjTJHzFYbeFtwZs2l9c2~4CWmEvE0ERpZEZFEjBQpcYkH8FH3oc2nYqKNwwFXavBJOc2WCVaTQqMRld6~sQQSEeNKy94m-Gg2or~uulfGzeG2MjzlmR-EQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences"><img alt="Research paper thumbnail of Asymptotics of Lagged Fibonacci Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/108461445/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences">Asymptotics of Lagged Fibonacci Sequences</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 12, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Consider "lagged" Fibonacci sequences a(n) = a(n − 1) + a(⌊n/k⌋) for k > 1. We show that limn→∞ a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Consider "lagged" Fibonacci sequences a(n) = a(n − 1) + a(⌊n/k⌋) for k > 1. We show that limn→∞ a(kn)/a(n) • ln n/n = k ln k and we demonstrate the slow numerical convergence to this limit and how to deal with this slow convergence. We also discuss the connection between two classical results of N.G. de Bruijn and K. Mahler on the asymptotics of a(n).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a336b0a859d0da655649d4bbcfb35075" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461445,"asset_id":110736394,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461445/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736394]").text(description); $(".js-view-count[data-work-id=110736394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a336b0a859d0da655649d4bbcfb35075" } } $('.js-work-strip[data-work-id=110736394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736394,"title":"Asymptotics of Lagged Fibonacci Sequences","internal_url":"https://www.academia.edu/110736394/Asymptotics_of_Lagged_Fibonacci_Sequences","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461445,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461445/thumbnails/1.jpg","file_name":"0912.pdf","download_url":"https://www.academia.edu/attachments/108461445/download_file","bulk_download_file_name":"Asymptotics_of_Lagged_Fibonacci_Sequence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461445/0912-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Lagged_Fibonacci_Sequence.pdf\u0026Expires=1739831984\u0026Signature=XFTgAYMTQeg9pBBOhF42sfsS-6JtbON9t7Wsk6MQoahijkPDzOAk4Bbf69OSxHdKHEUcczcQx2LX5GEt0pV1hCxoEGwuqCQ-ggVHrbGif3yMKe~vykPrM2ZT2Tm-Kj0mSb36owwJf2YxMymkfL5os-SQ9IqhubDfaY7pIdJT7Sq9EPRYUdsWmJSgoaSYBDerDBzQhmxmADfdKDLag02M1EmAbRmDbiG8g2nX8TK9lcCmhMnTwLS72zygO~y68-IARhici09NuMljPFE6mYX7YBx0HIJLjdVqZveaOYVskaO57oXjtaX4rpCKDcdX18OyVnlZtH1HB2BEX5uuhmUNJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning"><img alt="Research paper thumbnail of Proof of the local REM conjecture for number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning">Proof of the local REM conjecture for number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jan 31, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The number partitioning problem is a classic problem of combinatorial optimization in which a set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The number partitioning problem is a classic problem of combinatorial optimization in which a set of $n$ numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the $n$ numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass representation, it is natural to define energies -- corresponding to the costs of the partitions, and overlaps -- corresponding to the correlations between partitions. Although the energy levels of this model are {\em a priori} highly correlated, a surprising recent conjecture asserts that the energy spectrum of number partitioning is locally that of a random energy model (REM): the spacings between nearby energy levels are uncorrelated. In other words, the properly scaled energies converge to a Poisson process. The conjecture also asserts that the corresponding spin configurations are uncorrelated, indicating vanishing overlaps in the spin glass representation. In this paper, we prove these two claims, collectively known as the local REM conjecture.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f0d757d175411894c932780ea06a37a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461449,"asset_id":110736393,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461449/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736393]").text(description); $(".js-view-count[data-work-id=110736393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f0d757d175411894c932780ea06a37a" } } $('.js-work-strip[data-work-id=110736393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736393,"title":"Proof of the local REM conjecture for number partitioning","internal_url":"https://www.academia.edu/110736393/Proof_of_the_local_REM_conjecture_for_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461449/thumbnails/1.jpg","file_name":"0501760v1.pdf","download_url":"https://www.academia.edu/attachments/108461449/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461449/0501760v1-libre.pdf?1701892699=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831984\u0026Signature=N~2vgI0ENFeiPSJWUAUG7UgLYhQ-5JRkKQAH3KeevkJEY9liaWUCAhgDwpPwTLyKa8EeRqSjmHeSdBVtxwF60hUTlw1HMIx5twiHc7hb73dyWdcop7iTgdkhh~5OWYlYkPiu9ksniipJrjfIDpUn5doL8BICGYeFA5KwtDhMLH6X6lZEAWOf6ag2Z8nNSGFIOS6HMZgltpEYpCg-S7fZ-DBHtuodviB8W8IOXVMLaQegcJi4eBaiMCRQDkmfb1VKyI8YIGrmuLT-k7mFC0VInxwK382pqSRV-QEicYBBVVbSvtn1~IVB-h8dEJJSY3PdawkKd6loC20TYPxb9yhFRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461453/thumbnails/1.jpg","file_name":"0501760v1.pdf","download_url":"https://www.academia.edu/attachments/108461453/download_file","bulk_download_file_name":"Proof_of_the_local_REM_conjecture_for_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461453/0501760v1-libre.pdf?1701892700=\u0026response-content-disposition=attachment%3B+filename%3DProof_of_the_local_REM_conjecture_for_nu.pdf\u0026Expires=1739831985\u0026Signature=c1hSo7K622kMQhEwYzkOCRSo1LYnTGfFZmxS8xUTwZITo--9TcHcE4hnZKRWeuS3d~i7eQJWBcjzcCiu5IsvcKWIAKf5YyyOMhH4JJ472Cm2jLGAxzG9O1bEUIRgqSybi9NwkDQHtaiRdhRX5GYa2PjsSr7LfIzRjqWAPWF6igXBImRqYtffZCYPrUBrg9oQUjflGTQPvZNFLhmWv40loJlK~cHBG-KbIsDfPB7YbJgMHp8nIQ2AQoL4u~OtO-6xdWrC~yo15JLJMcIkNJ-i-Ec00eo75zZFzQWVyRK4sBFpaQ~Jh~FmEKdSepoDm0jYkrQzDSW536Li-oNokVguxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations"><img alt="Research paper thumbnail of Random Number Generators: A Survival Guide for Large Scale Simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/108461448/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations">Random Number Generators: A Survival Guide for Large Scale Simulations</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 26, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Monte Carlo simulations are an important tool in statistical physics, complex systems science, an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Monte Carlo simulations are an important tool in statistical physics, complex systems science, and many other fields. An increasing number of these simulations is run on parallel systems ranging from multicore desktop computers to supercomputers with thousands of CPUs. This raises the issue of generating large amounts of random numbers in a parallel application. In this lecture we will learn just enough of the theory of pseudo random number generation to make wise decisions on how to choose and how to use random number generators when it comes to large scale, parallel simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c518b98f9572f4ec6e79cb333e15241" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461448,"asset_id":110736392,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461448/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736392]").text(description); $(".js-view-count[data-work-id=110736392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c518b98f9572f4ec6e79cb333e15241" } } $('.js-work-strip[data-work-id=110736392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736392,"title":"Random Number Generators: A Survival Guide for Large Scale Simulations","internal_url":"https://www.academia.edu/110736392/Random_Number_Generators_A_Survival_Guide_for_Large_Scale_Simulations","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461448/thumbnails/1.jpg","file_name":"0905.pdf","download_url":"https://www.academia.edu/attachments/108461448/download_file","bulk_download_file_name":"Random_Number_Generators_A_Survival_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461448/0905-libre.pdf?1701892697=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Number_Generators_A_Survival_Guid.pdf\u0026Expires=1739831985\u0026Signature=L4msPBq3cQIAOD9DLsqYXu1tWPXuzycXNZQx7sSRIFr5V5UXAw0glqSrAi~xNeia5Uufj9pu9bBT2EYBantwgvP-Mpe-J5lOYhWEMhoJ1rNTbIucpSJ5ENUewBq5CV3qMXftBR0vuFAwVmV2x5x78lpYb1PqWEyo-f9i0Ef-eIEs86-tdh7G7w1iP~C5mdvhERThxjAZ9I5ajO6Otm3XlStF7uUVIwtneNIsgBU6sP1KCYhJkkWApnaUVlLqn0BcTAjrvyw0o01epj~vLqxxcMK02fmdd0ElyPgUXQ-jxeQTLDT9wVOWgW371rvc-jXGf4eG8971aaWkACuDXYfceg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461451/thumbnails/1.jpg","file_name":"0905.pdf","download_url":"https://www.academia.edu/attachments/108461451/download_file","bulk_download_file_name":"Random_Number_Generators_A_Survival_Guid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461451/0905-libre.pdf?1701892693=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Number_Generators_A_Survival_Guid.pdf\u0026Expires=1739831985\u0026Signature=MnqE6R5h4H9C6rQ4LH3qQWjeoJAvkwWOXMKLq4oyn9fCECrwqDom4DXrpqKrwC6KCXlxuJR92zmSw3~TiMZXiIXTJdvIZKvBltFpqbeliio88ewZqlfn9Rk-spJGDf5UCS1-b4ZYmrr-6otMkwUoRSdB9v7hUfODah9a16N8z9q6u87saA~FfbtGVzHQuFhvj6Cr~gJQWtPNe4EN9WG-id0zWIitH6Q-bKpKIOmMOdivReeyS-ooQQm8YfBdeyjRqWsfMjeOPJyPdx0Scfg8R1gBTCmie3KXw9CYZtDyJuKZLvFpUcsZN2YxTtx9ChtMtJOgsgkhMPKlf2ddlK-8VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736391"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning"><img alt="Research paper thumbnail of A complete anytime algorithm for balanced number partitioning" class="work-thumbnail" src="https://attachments.academia-assets.com/108461444/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning">A complete anytime algorithm for balanced number partitioning</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 11, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Given a set of numbers, the balanced partioning problem is to divide them into two subsets, so th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Given a set of numbers, the balanced partioning problem is to divide them into two subsets, so that the sum of the numbers in each subset are as nearly equal as possible, subject to the constraint that the cardinalities of the subsets be within one of each other. We combine the balanced largest differencing method (BLDM) and Korf's complete Karmarkar-Karp algorithm to get a new algorithm that optimally solves the balanced partitioning problem. For numbers with twelve significant digits or less, the algorithm can optimally solve balanced partioning problems of arbitrary size in practice. For numbers with greater precision, it first returns the BLDM solution, then continues to find better solutions as time allows.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="071635eada13b5cf9c9865a8a62b313f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461444,"asset_id":110736391,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461444/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736391"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736391"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736391; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736391]").text(description); $(".js-view-count[data-work-id=110736391]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736391; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736391']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "071635eada13b5cf9c9865a8a62b313f" } } $('.js-work-strip[data-work-id=110736391]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736391,"title":"A complete anytime algorithm for balanced number partitioning","internal_url":"https://www.academia.edu/110736391/A_complete_anytime_algorithm_for_balanced_number_partitioning","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461444,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461444/thumbnails/1.jpg","file_name":"9903011.pdf","download_url":"https://www.academia.edu/attachments/108461444/download_file","bulk_download_file_name":"A_complete_anytime_algorithm_for_balance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461444/9903011-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DA_complete_anytime_algorithm_for_balance.pdf\u0026Expires=1739831985\u0026Signature=CNEF728it3wqZpp2v~2JwHuCLV1eyft8t3QwIMLaUjuNqYP~qUFJ1~QUA~rSDFCmzirj2ukdRkuNH2frH25P0Lbgs0U93wMku5wO-u1jm4P-EYKSqLxB7Ksbk3iLO2fcEg9gOnqLicR6rV1EOev3b1LzfcJy-HmBp1IhQ8KJLCRZwb9ANJDAEZOKiBj8EvRXUxdD2ribE9snYpRJ7x15YujEREzJfE0b1eU6qEsIsYJlJF7-X9vGbqaJuUJiI-LEAvGEuutoaTSTXKeVagJgA1uG4A-yhUArotu5LdwBrjvzl7GlaGXC-Aoj0QiMUc3ZXo3BCxD4UJwysD7W0XKqHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461447/thumbnails/1.jpg","file_name":"9903011.pdf","download_url":"https://www.academia.edu/attachments/108461447/download_file","bulk_download_file_name":"A_complete_anytime_algorithm_for_balance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461447/9903011-libre.pdf?1701892691=\u0026response-content-disposition=attachment%3B+filename%3DA_complete_anytime_algorithm_for_balance.pdf\u0026Expires=1739831985\u0026Signature=QEeg4Nj15vs8y9diWnWODb-izeHED70JSgh0ncrsxNBJwA88U7Qt4RUoeDhrLGVT-WwCvNXTWKUMwW2vbO8tUvKLswZvPkM2Syyyh155kBxTACxdi0eoBTypR1L4Nmk99Em16cqfTqYhg236JgkGP8voyEbQYpxTV32Cm7W4Vv0JsZwfVIl4Fp97E9SxDAAp1g-B758TITicc3-NjQ4LoHeYxp~SEzL8E6Djl09OYn9FfQxY0yvK85GdjDTRP2H-GNsm5Y9f1~kC5CqS6ugqAHo7982Zs30BI4-LE5mpqiEB0rP5Vc3232stP5KMOmK6-XMzvoyQRZriHIim6V-tEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems"><img alt="Research paper thumbnail of Universality in the level statistics of disordered systems" class="work-thumbnail" src="https://attachments.academia-assets.com/108461443/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems">Universality in the level statistics of disordered systems</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, Aug 23, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Energy spectra of disordered systems share a common feature: if the entropy of the quenched disor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Energy spectra of disordered systems share a common feature: if the entropy of the quenched disorder is larger than the entropy of the dynamical variables, the spectrum is locally that of a random energy model and the correlation between energy and configuration is lost. We demonstrate this effect for the Edwards-Anderson model, but we also discuss its universality.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48a69bf8d5f1757ea7acdf17b1b7185f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461443,"asset_id":110736390,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461443/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736390]").text(description); $(".js-view-count[data-work-id=110736390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48a69bf8d5f1757ea7acdf17b1b7185f" } } $('.js-work-strip[data-work-id=110736390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736390,"title":"Universality in the level statistics of disordered systems","internal_url":"https://www.academia.edu/110736390/Universality_in_the_level_statistics_of_disordered_systems","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461443,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461443/thumbnails/1.jpg","file_name":"0404470.pdf","download_url":"https://www.academia.edu/attachments/108461443/download_file","bulk_download_file_name":"Universality_in_the_level_statistics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461443/0404470-libre.pdf?1701892689=\u0026response-content-disposition=attachment%3B+filename%3DUniversality_in_the_level_statistics_of.pdf\u0026Expires=1739831985\u0026Signature=HdOh2PlkDlsLsEhzg3hLTEqSxEwmrrew5q0lg9fyzqEeQofcAubKWjwe49N6SR2NJgBU~Yv9X8iF68UkrfibO7KR3Jiha~aM5TZmd4-cBfTZYoYnSpNoL1G89ILcEodlhttd691USC84ws0dMUn8hvnLMmFlECyL9lLqGa8x8ly7D8FECwHJpnv1MYeP-OBcUmCX~SmpoIhiKdVHpjqwack7puwD1PhMIAyFUNAXK4I9W-AnekEWfypEDZpH4MaT9MxxrkQb4WE3ZMvHJCYwr6H01JctAqc~CRvzvtvF0-1trqVBPUWcIwlJqLEksV4qcOSkL5coRp6xiLYJPulC8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736389"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization"><img alt="Research paper thumbnail of Random Costs in Combinatorial Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/108461442/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization">Random Costs in Combinatorial Optimization</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Feb 7, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="52be74f0d5c157297033fa891ad2765d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461442,"asset_id":110736389,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461442/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736389"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736389]").text(description); $(".js-view-count[data-work-id=110736389]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736389']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "52be74f0d5c157297033fa891ad2765d" } } $('.js-work-strip[data-work-id=110736389]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736389,"title":"Random Costs in Combinatorial Optimization","internal_url":"https://www.academia.edu/110736389/Random_Costs_in_Combinatorial_Optimization","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461442,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461442/thumbnails/1.jpg","file_name":"9907088.pdf","download_url":"https://www.academia.edu/attachments/108461442/download_file","bulk_download_file_name":"Random_Costs_in_Combinatorial_Optimizati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461442/9907088-libre.pdf?1701892688=\u0026response-content-disposition=attachment%3B+filename%3DRandom_Costs_in_Combinatorial_Optimizati.pdf\u0026Expires=1739831985\u0026Signature=ciCNi-1V~3dRcKmAQBF3hFjqEcYASRaU4miyfv8~CHkQ28o4Aw7wTX2knS-OSFECeao6oZOkFGSbCWntatpZuELUKl3E11XKKXbkyf8v~23njmDceuoLhe45~T-p-Ic-a0fKjOK9WuWgey2nlXyyV5EGzvLWqVIjv~2nf8AYXtyOv3dqphxcy3gfBskEyxf~ecTo0oQFwVihZUjdJFtRQJSocXP6eHG4NARVjBHkt-02qiuFvQtBFp~7eeUnYP1w06gOehbMkoOnj4hozu4g5bTOvLlq6Az87tad4YnHwermsMKYmBv-vGELqLa1gtstHs9tptXcH8uTgqjJiTe7lA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736388/Randomized_Algorithms"><img alt="Research paper thumbnail of Randomized Algorithms" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736388/Randomized_Algorithms">Randomized Algorithms</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736388]").text(description); $(".js-view-count[data-work-id=110736388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736388,"title":"Randomized Algorithms","internal_url":"https://www.academia.edu/110736388/Randomized_Algorithms","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736386"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736386/Quantum_Computation"><img alt="Research paper thumbnail of Quantum Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736386/Quantum_Computation">Quantum Computation</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736386"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736386"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736386; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736386]").text(description); $(".js-view-count[data-work-id=110736386]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736386; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736386']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736386]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736386,"title":"Quantum Computation","internal_url":"https://www.academia.edu/110736386/Quantum_Computation","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736385/Memory_Paths_and_Games"><img alt="Research paper thumbnail of Memory, Paths, and Games" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736385/Memory_Paths_and_Games">Memory, Paths, and Games</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736385]").text(description); $(".js-view-count[data-work-id=110736385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736385,"title":"Memory, Paths, and Games","internal_url":"https://www.academia.edu/110736385/Memory_Paths_and_Games","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation"><img alt="Research paper thumbnail of When Formulas Freeze: Phase Transitions in Computation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation">When Formulas Freeze: Phase Transitions in Computation</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736384]").text(description); $(".js-view-count[data-work-id=110736384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736384,"title":"When Formulas Freeze: Phase Transitions in Computation","internal_url":"https://www.academia.edu/110736384/When_Formulas_Freeze_Phase_Transitions_in_Computation","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736383"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness"><img alt="Research paper thumbnail of Who is the Hardest One of All? NP-Completeness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness">Who is the Hardest One of All? NP-Completeness</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736383"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736383]").text(description); $(".js-view-count[data-work-id=110736383]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736383']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736383]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736383,"title":"Who is the Hardest One of All? NP-Completeness","internal_url":"https://www.academia.edu/110736383/Who_is_the_Hardest_One_of_All_NP_Completeness","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736382/Interaction_and_Pseudorandomness"><img alt="Research paper thumbnail of Interaction and Pseudorandomness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736382/Interaction_and_Pseudorandomness">Interaction and Pseudorandomness</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736382]").text(description); $(".js-view-count[data-work-id=110736382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736382,"title":"Interaction and Pseudorandomness","internal_url":"https://www.academia.edu/110736382/Interaction_and_Pseudorandomness","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736381/Insights_and_Algorithms"><img alt="Research paper thumbnail of Insights and Algorithms" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736381/Insights_and_Algorithms">Insights and Algorithms</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736381]").text(description); $(".js-view-count[data-work-id=110736381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736381,"title":"Insights and Algorithms","internal_url":"https://www.academia.edu/110736381/Insights_and_Algorithms","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736380"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics"><img alt="Research paper thumbnail of Counting, Sampling, and Statistical Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics">Counting, Sampling, and Statistical Physics</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736380"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736380"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736380; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736380]").text(description); $(".js-view-count[data-work-id=110736380]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736380; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736380']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736380]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736380,"title":"Counting, Sampling, and Statistical Physics","internal_url":"https://www.academia.edu/110736380/Counting_Sampling_and_Statistical_Physics","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP"><img alt="Research paper thumbnail of The Deep Question: P vs. NP" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP">The Deep Question: P vs. NP</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Aug 11, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736378]").text(description); $(".js-view-count[data-work-id=110736378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110736378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736378,"title":"The Deep Question: P vs. NP","internal_url":"https://www.academia.edu/110736378/The_Deep_Question_P_vs_NP","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem"><img alt="Research paper thumbnail of Small random instances of the stable roommates problem" class="work-thumbnail" src="https://attachments.academia-assets.com/108461432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem">Small random instances of the stable roommates problem</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, Jun 29, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let pn denote the probability that a random instance of the stable roommates problem of size n ad...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let pn denote the probability that a random instance of the stable roommates problem of size n admits a solution. We derive an explicit formula for pn and compute exact values of pn for n ≤ 12.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2ea6a0a526866c819f2a2d5288bd81f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461432,"asset_id":110736374,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461432/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736374]").text(description); $(".js-view-count[data-work-id=110736374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2ea6a0a526866c819f2a2d5288bd81f0" } } $('.js-work-strip[data-work-id=110736374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736374,"title":"Small random instances of the stable roommates problem","internal_url":"https://www.academia.edu/110736374/Small_random_instances_of_the_stable_roommates_problem","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461432/thumbnails/1.jpg","file_name":"1502.pdf","download_url":"https://www.academia.edu/attachments/108461432/download_file","bulk_download_file_name":"Small_random_instances_of_the_stable_roo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461432/1502-libre.pdf?1701892687=\u0026response-content-disposition=attachment%3B+filename%3DSmall_random_instances_of_the_stable_roo.pdf\u0026Expires=1739831985\u0026Signature=g0ABZbBgQmsReQq6ezqXDSDpDbUDMGjfK1pS7uiFXyn9TddQPwX8o1fKFNYK9TJ3FKI~PMMdTgJmkdMGWzQsr87U~4NgwOHQVfnhch2uA2bTa5N2OCwIB4JlfoGuuB20BrMUI-6iesGIRWhEU-sy5ujdYYf5chfAS~cGV6fF5RpZcdvxHGGEgZn7ZRm~xh1eJ9xDc2s4SRuMSjBaP77WjYrZq9fjiPx5ALOOdE6MjLiToVSXlQqPOwfSTSIX7P~dUvz4n3VnwGs-SBdY2KUV7iOXk5YbO9JlPoJL6Qjl5hX1DEU6LEGZQCFagrUXD938y3AwM6Ae3KP3xBj4KB-Wlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461433/thumbnails/1.jpg","file_name":"1502.pdf","download_url":"https://www.academia.edu/attachments/108461433/download_file","bulk_download_file_name":"Small_random_instances_of_the_stable_roo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461433/1502-libre.pdf?1701892694=\u0026response-content-disposition=attachment%3B+filename%3DSmall_random_instances_of_the_stable_roo.pdf\u0026Expires=1739831985\u0026Signature=bxTO5~Rd4Ymeh8m1qAeaS8URBl3VkBgQhLi4zBd~nSMJ4ZQ1G22TZ8jzHTB1H~J8I7EEq-VWWOcQfx-CWAwQfoMhHW4NnZgf5G0qjkfq-F2mxYU16CjGeDHvnM4VYPykCEMftTKV3TUe-9v8vzJO7g0lUMJ9QTw3D3jW4HbP2O6bZah~pDytM5xT8CulwlXljIxBEk-f0KeNSKNs72rw571V--Ez-I5z0-3PpOtTADZCqGwVB~muvCvM7cZRLLyHUxK-wou8RTa2NB7syXtp6SrTZL1R5V4uIuYZ6P-Ax-PphxMe1K55-ehSirkUJnTJwIg1BtAe7Gt9PsbPkEMN6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110736373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails"><img alt="Research paper thumbnail of Pseudo Random Coins Show More Heads Than Tails" class="work-thumbnail" src="https://attachments.academia-assets.com/108461429/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails">Pseudo Random Coins Show More Heads Than Tails</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, Feb 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tossing a coin is the most elementary Monte Carlo experiment. In a computer the coin is replaced ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tossing a coin is the most elementary Monte Carlo experiment. In a computer the coin is replaced by a pseudo random number generator. It can be shown analytically and by exact enumerations that popular random number generators are not capable of imitating a fair coin: pseudo random coins show more "heads" than "tails". This bias explains the empirically observed failure of some random number generators in random walk experiments. It can be traced down to the special role of the value zero in the algebra of finite fields.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="261f745958c075f4d714453f9ea8215f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108461429,"asset_id":110736373,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108461429/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110736373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110736373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110736373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110736373]").text(description); $(".js-view-count[data-work-id=110736373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110736373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110736373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "261f745958c075f4d714453f9ea8215f" } } $('.js-work-strip[data-work-id=110736373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110736373,"title":"Pseudo Random Coins Show More Heads Than Tails","internal_url":"https://www.academia.edu/110736373/Pseudo_Random_Coins_Show_More_Heads_Than_Tails","owner_id":160629230,"coauthors_can_edit":true,"owner":{"id":160629230,"first_name":"Stephan","middle_initials":null,"last_name":"Mertens","page_name":"StephanMertens","domain_name":"sfb-trr-62","created_at":"2020-06-09T09:47:12.388-07:00","display_name":"Stephan Mertens","url":"https://sfb-trr-62.academia.edu/StephanMertens"},"attachments":[{"id":108461429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461429/thumbnails/1.jpg","file_name":"0307138.pdf","download_url":"https://www.academia.edu/attachments/108461429/download_file","bulk_download_file_name":"Pseudo_Random_Coins_Show_More_Heads_Than.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461429/0307138-libre.pdf?1701892696=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_Random_Coins_Show_More_Heads_Than.pdf\u0026Expires=1739831985\u0026Signature=N~ORvo0lve4c19QS2p23UKUMzZ2iQCvSKKCQ2qVzW4HNYuycKGoiYSyKW6kRB9MYKoQ3Ya3NE-zX6R4upZ7nvf7SX4bcgMhF-k6Mst2PL8FtO1XY5~mLN1YqHjz61NEOlT7kpGmwK~1u36QvXV7gimoOvmnCAW2gTtVDAiW1n3M8TkQSnPn6WGRzroguRPiUFqzYrKl-ivOxyPiMlhigBQK7rxYq4WIXvNOp8ge4EfbvRhzz2uhftcKVjvc5k8UiRHi2tp3iB3lKIRGRwssWx2P58gAE~bWiP52yUXGZSxk5z9C5v1Kk0o~UL~fpOpHPLDlp4u9EApVmQRhV0v-30A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108461431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108461431/thumbnails/1.jpg","file_name":"0307138.pdf","download_url":"https://www.academia.edu/attachments/108461431/download_file","bulk_download_file_name":"Pseudo_Random_Coins_Show_More_Heads_Than.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108461431/0307138-libre.pdf?1701892694=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_Random_Coins_Show_More_Heads_Than.pdf\u0026Expires=1739831985\u0026Signature=UkKYX4yqsA0PXLCPKAEXuyD4E2X7wRnXttz6eRrDcdzCfz6UmjxkIb0KblxpXsgnIYGSwV2U2YjDbkbhZUVJVCPw3cCjXjVNdGLN6x0wUGhz9dVTD9zqF03qK7UmSvC0Bq1yiD9SJdIBq3xNyUYW4jFk-n1c5D8g1OthSxf~9T~57zk9LBH2KRU3XAlZHOaRWy3LsUgfLVEMa7OWWoNebdGyw86U6uznBS1TzbRxVYBsyzHpZRGPuO7-py~qIYToQqxHn687Bhmvtl5zqWfop3YX2l7FZW0kik6lD97dzrrt1U649vQp6s3zhV0csJ7ga4ER4ZvNhHue3kq0foktVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "dac9e57712bc3dd1fc8f61e33dd93a6f46a1ae4a29f448fc6aa41558cf565677", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="pQMptLFIesW79j57sjm2hzL16dMENacZu-4H62bV48QOe7T6XvSIJw-qFtRVcU0xvPt3yQ4McZrjZyZDyDwk8g" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://sfb-trr-62.academia.edu/StephanMertens" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="4dnd2F_1PNWe3MXd4ME2_ZO3I8I4Ar4TOfhhOFXUhFhKoUCWsEnONyqA7XIHic1LHbm92DI7aJBhcUCQ-z1Dbg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>