CINXE.COM

Passive daytime radiative cooling - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Passive daytime radiative cooling - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9f0cc08a-736f-4cf7-815f-2df0f7aaec3f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Passive_daytime_radiative_cooling","wgTitle":"Passive daytime radiative cooling","wgCurRevisionId":1256324990,"wgRevisionId":1256324990,"wgArticleId":71855084,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Use dmy dates from December 2022","Wikipedia articles needing clarification from August 2024","All articles with failed verification","Articles with failed verification from August 2024","Atmospheric radiation","Climate change adaptation","Climate change mitigation","Climate engineering","Cooling technology","Energy conservation","Heat transfer", "Heating, ventilation, and air conditioning","Passive cooling","Photonics","Renewable energy","Solar design","Sustainable architecture","Sustainable building","Thermodynamics","Renewable energy technology"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Passive_daytime_radiative_cooling","wgRelevantArticleId":71855084,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[], "wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q115533486","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready", "ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c3/Passive_daytime_radiative_cooling_diagram.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1577"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c3/Passive_daytime_radiative_cooling_diagram.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1051"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="841"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Passive daytime radiative cooling - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Passive_daytime_radiative_cooling"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Passive_daytime_radiative_cooling"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Passive_daytime_radiative_cooling rootpage-Passive_daytime_radiative_cooling skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Passive+daytime+radiative+cooling" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Passive+daytime+radiative+cooling" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Passive+daytime+radiative+cooling" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Passive+daytime+radiative+cooling" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Implementation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Implementation</span> </div> </a> <ul id="toc-Implementation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Benefits" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Benefits"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Benefits</span> </div> </a> <ul id="toc-Benefits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_geoengineering_approaches" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_geoengineering_approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Other geoengineering approaches</span> </div> </a> <ul id="toc-Other_geoengineering_approaches-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Function"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Function</span> </div> </a> <button aria-controls="toc-Function-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Function subsection</span> </button> <ul id="toc-Function-sublist" class="vector-toc-list"> <li id="toc-Measuring_effectiveness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measuring_effectiveness"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Measuring effectiveness</span> </div> </a> <ul id="toc-Measuring_effectiveness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Broadband_emitters_(BE)_vs._selective_emitters_(SE)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Broadband_emitters_(BE)_vs._selective_emitters_(SE)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Broadband emitters (BE) vs. selective emitters (SE)</span> </div> </a> <ul id="toc-Broadband_emitters_(BE)_vs._selective_emitters_(SE)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hybrid_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hybrid_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Hybrid systems</span> </div> </a> <ul id="toc-Hybrid_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Climatic_variations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Climatic_variations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Climatic variations</span> </div> </a> <button aria-controls="toc-Climatic_variations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Climatic variations subsection</span> </button> <ul id="toc-Climatic_variations-sublist" class="vector-toc-list"> <li id="toc-Deserts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deserts"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Deserts</span> </div> </a> <ul id="toc-Deserts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Temperate_climates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Temperate_climates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Temperate climates</span> </div> </a> <ul id="toc-Temperate_climates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tropics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tropics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Tropics</span> </div> </a> <ul id="toc-Tropics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Variables</span> </div> </a> <ul id="toc-Variables-sublist" class="vector-toc-list"> <li id="toc-Humidity_and_cloud_coverage" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Humidity_and_cloud_coverage"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.1</span> <span>Humidity and cloud coverage</span> </div> </a> <ul id="toc-Humidity_and_cloud_coverage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dropwise_condensation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dropwise_condensation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.2</span> <span>Dropwise condensation</span> </div> </a> <ul id="toc-Dropwise_condensation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rain" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Rain"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.3</span> <span>Rain</span> </div> </a> <ul id="toc-Rain-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wind" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Wind"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4.4</span> <span>Wind</span> </div> </a> <ul id="toc-Wind-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Materials_and_production" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Materials_and_production"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Materials and production</span> </div> </a> <button aria-controls="toc-Materials_and_production-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Materials and production subsection</span> </button> <ul id="toc-Materials_and_production-sublist" class="vector-toc-list"> <li id="toc-Multilayer_and_complex_structures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multilayer_and_complex_structures"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Multilayer and complex structures</span> </div> </a> <ul id="toc-Multilayer_and_complex_structures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coatings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coatings"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Coatings</span> </div> </a> <ul id="toc-Coatings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Films" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Films"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Films</span> </div> </a> <ul id="toc-Films-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metafabrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metafabrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Metafabrics</span> </div> </a> <ul id="toc-Metafabrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aerogels" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aerogels"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Aerogels</span> </div> </a> <ul id="toc-Aerogels-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nano_bubbles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nano_bubbles"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Nano bubbles</span> </div> </a> <ul id="toc-Nano_bubbles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biodegradable_surfaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biodegradable_surfaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>Biodegradable surfaces</span> </div> </a> <ul id="toc-Biodegradable_surfaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Micro-grating" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Micro-grating"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.8</span> <span>Micro-grating</span> </div> </a> <ul id="toc-Micro-grating-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Indoor_space_cooling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Indoor_space_cooling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Indoor space cooling</span> </div> </a> <ul id="toc-Indoor_space_cooling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Outdoor_urban_space_cooling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Outdoor_urban_space_cooling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Outdoor urban space cooling</span> </div> </a> <ul id="toc-Outdoor_urban_space_cooling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solar_energy_efficiency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solar_energy_efficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Solar energy efficiency</span> </div> </a> <ul id="toc-Solar_energy_efficiency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Personal_thermal_management" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Personal_thermal_management"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Personal thermal management</span> </div> </a> <ul id="toc-Personal_thermal_management-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Power_plant_condenser_cooling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Power_plant_condenser_cooling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Power plant condenser cooling</span> </div> </a> <ul id="toc-Power_plant_condenser_cooling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thermal_regulation_of_buildings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thermal_regulation_of_buildings"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Thermal regulation of buildings</span> </div> </a> <ul id="toc-Thermal_regulation_of_buildings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thermoelectric_generation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thermoelectric_generation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Thermoelectric generation</span> </div> </a> <ul id="toc-Thermoelectric_generation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Automobile_and_greenhouse_cooling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Automobile_and_greenhouse_cooling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.8</span> <span>Automobile and greenhouse cooling</span> </div> </a> <ul id="toc-Automobile_and_greenhouse_cooling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Water_harvesting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Water_harvesting"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.9</span> <span>Water harvesting</span> </div> </a> <ul id="toc-Water_harvesting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Water_and_ice_cooling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Water_and_ice_cooling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.10</span> <span>Water and ice cooling</span> </div> </a> <ul id="toc-Water_and_ice_cooling-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Side_effects" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Side_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Side effects</span> </div> </a> <button aria-controls="toc-Side_effects-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Side effects subsection</span> </button> <ul id="toc-Side_effects-sublist" class="vector-toc-list"> <li id="toc-&quot;Overcooling&quot;_and_PDRC_modulation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#&quot;Overcooling&quot;_and_PDRC_modulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>"Overcooling" and PDRC modulation</span> </div> </a> <ul id="toc-&quot;Overcooling&quot;_and_PDRC_modulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Glare_and_visual_appearance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Glare_and_visual_appearance"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Glare and visual appearance</span> </div> </a> <ul id="toc-Glare_and_visual_appearance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Passive daytime radiative cooling</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%AA%D8%A8%D8%B1%D9%8A%D8%AF_%D8%A7%D9%84%D8%A5%D8%B4%D8%B9%D8%A7%D8%B9%D9%8A_%D8%A7%D9%84%D8%B3%D9%84%D8%A8%D9%8A_%D8%A3%D8%AB%D9%86%D8%A7%D8%A1_%D8%A7%D9%84%D9%86%D9%87%D8%A7%D8%B1" title="التبريد الإشعاعي السلبي أثناء النهار – Arabic" lang="ar" hreflang="ar" data-title="التبريد الإشعاعي السلبي أثناء النهار" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q115533486#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Passive_daytime_radiative_cooling" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Passive_daytime_radiative_cooling" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Passive_daytime_radiative_cooling"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Passive_daytime_radiative_cooling"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Passive_daytime_radiative_cooling" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Passive_daytime_radiative_cooling" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;oldid=1256324990" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Passive_daytime_radiative_cooling&amp;id=1256324990&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPassive_daytime_radiative_cooling"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPassive_daytime_radiative_cooling"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Passive_daytime_radiative_cooling&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q115533486" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Management strategy for global warming</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Passive_daytime_radiative_cooling_diagram.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Passive_daytime_radiative_cooling_diagram.jpg/220px-Passive_daytime_radiative_cooling_diagram.jpg" decoding="async" width="220" height="289" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Passive_daytime_radiative_cooling_diagram.jpg/330px-Passive_daytime_radiative_cooling_diagram.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Passive_daytime_radiative_cooling_diagram.jpg/440px-Passive_daytime_radiative_cooling_diagram.jpg 2x" data-file-width="630" data-file-height="828" /></a><figcaption>PDRC can lower temperatures with zero energy consumption or pollution by radiating heat into outer space. Widespread application has been proposed as a solution to global warming.<sup id="cite_ref-:5_1-0" class="reference"><a href="#cite_note-:5-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure><p><b>Passive daytime radiative cooling</b> (<b>PDRC</b>) (also <b>passive radiative cooling</b>, <b>daytime passive radiative cooling</b>, <b>radiative sky cooling</b>, <b>photonic radiative cooling</b>, and <b>terrestrial radiative cooling</b><sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Zeven_2018_3-0" class="reference"><a href="#cite_note-Zeven_2018-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo-2022b_4-0" class="reference"><a href="#cite_note-Heo-2022b-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:21_5-0" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>) is the use of unpowered, reflective/<a href="/wiki/Emissivity" title="Emissivity">thermally-emissive</a> surfaces to lower the temperature of a building or other object.<sup id="cite_ref-:0_6-0" class="reference"><a href="#cite_note-:0-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>It has been proposed as a method of reducing temperature increases caused by <a href="/wiki/Greenhouse_gases" class="mw-redirect" title="Greenhouse gases">greenhouse gases</a> by reducing the energy needed for <a href="/wiki/Air_conditioning" title="Air conditioning">air conditioning</a>, <sup id="cite_ref-:3_7-0" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:15_8-0" class="reference"><a href="#cite_note-:15-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> lowering the <a href="/wiki/Urban_heat_island" title="Urban heat island">urban heat island effect</a>,<sup id="cite_ref-:13_9-0" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:22_10-0" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> and lowering human <a href="/wiki/Body_temperature" class="mw-redirect" title="Body temperature">body temperatures</a>.<sup id="cite_ref-:33_11-0" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:5_1-1" class="reference"><a href="#cite_note-:5-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:023_12-0" class="reference"><a href="#cite_note-:023-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:18_13-0" class="reference"><a href="#cite_note-:18-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_7-1" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRCs can aid systems that are more efficient at lower temperatures, such as <a href="/wiki/Photovoltaic_system" title="Photovoltaic system">photovoltaic systems</a>,<sup id="cite_ref-Heo-2022b_4-1" class="reference"><a href="#cite_note-Heo-2022b-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:34_14-0" class="reference"><a href="#cite_note-:34-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Dew_collection" class="mw-redirect" title="Dew collection">dew collection</a> devices, and <a href="/wiki/Thermoelectric_generator" title="Thermoelectric generator">thermoelectric generators</a>.<sup id="cite_ref-Heo_2022_Ju_lee_15-0" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:34_14-1" class="reference"><a href="#cite_note-:34-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some estimates propose that dedicating 1–2% of the Earth's surface area to PDRC would stabilize surface temperatures.<sup id="cite_ref-:032_16-0" class="reference"><a href="#cite_note-:032-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Zeven_2018_3-1" class="reference"><a href="#cite_note-Zeven_2018-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Regional variations provide different cooling potentials with <a href="/wiki/Desert_climate" title="Desert climate">desert</a> and <a href="/wiki/Temperate_climate" title="Temperate climate">temperate climates</a> benefiting more than <a href="/wiki/Tropical_climate" title="Tropical climate">tropical climates</a>, attributed to the effects of <a href="/wiki/Humidity" title="Humidity">humidity</a> and <a href="/wiki/Cloud_cover" title="Cloud cover">cloud cover</a>.<sup id="cite_ref-:4_17-0" class="reference"><a href="#cite_note-:4-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:6_18-0" class="reference"><a href="#cite_note-:6-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:7_19-0" class="reference"><a href="#cite_note-:7-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> PDRCs can be included in adaptive systems, switching from cooling to heating to mitigate any potential "overcooling" effects.<sup id="cite_ref-:54_20-0" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:14_21-0" class="reference"><a href="#cite_note-:14-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> PDRC applications for indoor space cooling is growing with an estimated "market size of ~$27 billion in 2025."<sup id="cite_ref-Yang-2020_22-0" class="reference"><a href="#cite_note-Yang-2020-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRC surfaces are designed to be high in <a href="/wiki/Solar_reflectance" class="mw-redirect" title="Solar reflectance">solar reflectance</a> to minimize heat gain and strong in <a href="/wiki/Long-wave_infrared" class="mw-redirect" title="Long-wave infrared">longwave infrared</a> (LWIR) <a href="/wiki/Thermal_radiation" title="Thermal radiation">thermal radiation</a> <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a> matching the atmosphere's <a href="/wiki/Infrared_window" title="Infrared window">infrared window</a> (8–13&#160;μm).<sup id="cite_ref-:41_23-0" class="reference"><a href="#cite_note-:41-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Zeven_2018_3-2" class="reference"><a href="#cite_note-Zeven_2018-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> This allows the heat to pass through the atmosphere into <a href="/wiki/Outer_space" title="Outer space">space</a>.<sup id="cite_ref-:0_6-1" class="reference"><a href="#cite_note-:0-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1222_24-0" class="reference"><a href="#cite_note-:1222-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRCs leverage the natural process of radiative cooling, in which the Earth cools by <a href="/wiki/Earth%27s_energy_budget" title="Earth&#39;s energy budget">releasing heat to space</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_7-2" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> PDRC operates during daytime.<sup id="cite_ref-:212_27-0" class="reference"><a href="#cite_note-:212-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> On a clear day, <a href="/wiki/Solar_irradiance" title="Solar irradiance">solar irradiance</a> can reach 1000 W/m<sup>2</sup> with a diffuse component between 50-100 W/m<sup>2</sup>. The average PDRC has an estimated cooling power of ~100-150 W/m<sup>2</sup>, proportional to the exposed <a href="/wiki/Surface_area" title="Surface area">surface area</a>.<b><sup id="cite_ref-:35432_28-0" class="reference"><a href="#cite_note-:35432-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup></b><sup id="cite_ref-:542_29-0" class="reference"><a href="#cite_note-:542-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRC applications are deployed as sky-facing surfaces.<sup id="cite_ref-:34_14-2" class="reference"><a href="#cite_note-:34-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Low-cost scalable PDRC materials with potential for mass production include <a href="/wiki/Coating" title="Coating">coatings</a>, <a href="/wiki/Thin_film" title="Thin film">thin films</a>, metafabrics, <a href="/wiki/Aerogel" title="Aerogel">aerogels</a>, and <a href="/wiki/Biodegradation" title="Biodegradation">biodegradable</a> surfaces. </p><p>While typically white, other colors can also work, although generally offering less cooling potential.<sup id="cite_ref-:16_30-0" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:38_31-0" class="reference"><a href="#cite_note-:38-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Research, development, and interest in PDRCs has grown rapidly since the 2010s, attributable to a breakthrough in the use of <a href="/wiki/Photonic_metamaterial" title="Photonic metamaterial">photonic metamaterials</a> to increase daytime cooling in 2014,<sup id="cite_ref-Heo-2022b_4-2" class="reference"><a href="#cite_note-Heo-2022b-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Raman_32-0" class="reference"><a href="#cite_note-Raman-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-1" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-0" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> along with growing concerns over energy use and global warming.<sup id="cite_ref-:32_34-0" class="reference"><a href="#cite_note-:32-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> PDRC can be contrasted with traditional compression-based cooling systems (e.g., air conditioners) that consume substantial amounts of energy, have a net heating effect (heating the outdoors more than cooling the indoors), require ready access to electric power and often employ coolants that deplete the ozone or have a strong <a href="/wiki/Greenhouse_effect" title="Greenhouse effect">greenhouse effect</a>,<sup id="cite_ref-Chen109829_36-0" class="reference"><a href="#cite_note-Chen109829-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:26_37-0" class="reference"><a href="#cite_note-:26-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>Unlike <a href="/wiki/Solar_geoengineering" class="mw-redirect" title="Solar geoengineering">solar radiation management</a>, PDRC increases heat emission beyond simple reflection.<sup id="cite_ref-Munday_38-0" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Implementation">Implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=1" title="Edit section: Implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> A 2019 study reported that "widescale adoption of radiative cooling could reduce air temperature near the surface, if not the whole atmosphere."<sup id="cite_ref-:21_5-1" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> To address global warming, PDRCs must be designed "to ensure that the emission is <i>through</i> the atmospheric transparency window and out to space, rather than just <i>to</i> the atmosphere, which would allow for local but not global cooling."<sup id="cite_ref-Munday_38-1" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style></p><blockquote class="templatequote"><p>Currently the Earth is absorbing ~1 W m<sup>2</sup> more than it is emitting, which leads to an overall warming of the climate. By covering a small fraction of the Earth with thermally emitting materials, the heat flow away from the Earth can be increased, and the net radiative flux can be reduced to zero (or even made negative), thus stabilizing (or cooling) the Earth (...) If only 1%–2% of the Earth’s surface were instead made to radiate at this rate rather than its current average value, the total heat fluxes into and away from the entire Earth would be balanced and warming would cease.<sup id="cite_ref-:023_12-1" class="reference"><a href="#cite_note-:023-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The estimated total surface area coverage is 5×10<sup>12</sup> m<sup>2</sup> or about half the size of the <a href="/wiki/Sahara_Desert" class="mw-redirect" title="Sahara Desert">Sahara Desert</a>.<sup id="cite_ref-Munday_38-2" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></p><div class="templatequotecite">—&#8202;<cite>Jeremy Munday</cite></div></blockquote> <p><a href="/wiki/Desert_climate" title="Desert climate">Desert climates</a> have the highest radiative cooling potential due to low year-round humidity and cloud cover, while <a href="/wiki/Tropical_climate" title="Tropical climate">tropical climates</a> have less potential due to higher humidity and cloud cover.<sup id="cite_ref-:21_5-2" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:17_39-0" class="reference"><a href="#cite_note-:17-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Costs for global implementation have been estimated at $1.25 to $2.5 trillion or about 3% of global GDP, with expected <a href="/wiki/Economies_of_scale" title="Economies of scale">economies of scale</a>.<sup id="cite_ref-Munday_38-3" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> Low-cost scalable materials have been developed for widescale implementation, although some challenges toward <a href="/wiki/Commercialization" title="Commercialization">commercialization</a> remain.<sup id="cite_ref-:12_40-0" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:10_41-0" class="reference"><a href="#cite_note-:10-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some studies recommended efforts to maximize solar reflectance or <a href="/wiki/Albedo" title="Albedo">albedo</a> of surfaces, with a goal of <a href="/wiki/Thermal_emittance" title="Thermal emittance">thermal emittance</a> of 90%. For example, increasing reflectivity from 0.2 (typical rooftop) to 0.9 is far more impactful than improving an already reflective surface, such as from 0.9 to 0.97.<sup id="cite_ref-:22_10-1" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Benefits">Benefits</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=2" title="Edit section: Benefits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Studies have reported many PDRC benefits: </p> <ul><li>Advancing toward a <a href="/wiki/Carbon_neutrality" class="mw-redirect" title="Carbon neutrality">carbon neutral</a> future and achieving net-zero emissions.<sup id="cite_ref-:33_11-1" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-2" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-1" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup></li> <li>Alleviating <a href="/wiki/Electrical_grid" title="Electrical grid">electrical grids</a> and <a href="/wiki/Renewable_energy" title="Renewable energy">renewable energy</a> sources from devoting electric energy to cooling.<sup id="cite_ref-:33_11-2" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:21_5-3" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li> <li>Balancing the <a href="/wiki/Earth%27s_energy_budget" title="Earth&#39;s energy budget">Earth's energy budget</a>.<sup id="cite_ref-:21_5-4" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li> <li>Cooling human <a href="/wiki/Body_temperature" class="mw-redirect" title="Body temperature">body temperatures</a> during extreme heat.<sup id="cite_ref-:33_11-3" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-3" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-2" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup></li> <li>Improving <a href="/wiki/Atmospheric_water_generator" title="Atmospheric water generator">atmospheric water collection</a> systems and <a href="/wiki/Dew_harvesting" class="mw-redirect" title="Dew harvesting">dew harvesting</a> techniques.<sup id="cite_ref-Heo_2022_Ju_lee_15-4" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:33_11-4" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-3" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Chen109829_36-1" class="reference"><a href="#cite_note-Chen109829-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></li> <li>Improving performance of <a href="/wiki/Solar_energy" title="Solar energy">solar energy</a> systems.<sup id="cite_ref-:34_14-3" class="reference"><a href="#cite_note-:34-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:33_11-5" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></li> <li>Mitigating <a href="/wiki/Energy_crises" class="mw-redirect" title="Energy crises">energy crises</a>.<sup id="cite_ref-:5_1-2" class="reference"><a href="#cite_note-:5-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Munday_38-4" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></li> <li>Mitigating urban heat island effect.<sup id="cite_ref-:21_5-5" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:22_10-2" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:45_43-0" class="reference"><a href="#cite_note-:45-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:03_44-0" class="reference"><a href="#cite_note-:03-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></li> <li>Reducing <a href="/wiki/Greenhouse_gas_emissions" title="Greenhouse gas emissions">greenhouse gas emissions</a> by replacing <a href="/wiki/Fossil_fuel" title="Fossil fuel">fossil fuel</a> energy use devoted to cooling.<sup id="cite_ref-:33_11-6" class="reference"><a href="#cite_note-:33-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:21_5-6" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li> <li>Reducing local and global temperature increases associated with global warming.<sup id="cite_ref-:5_1-3" class="reference"><a href="#cite_note-:5-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Munday_38-5" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></li> <li>Reducing <a href="/wiki/Thermal_pollution" title="Thermal pollution">thermal pollution</a> of water resources.<sup id="cite_ref-:21_5-7" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li> <li>Reducing water consumption for <a href="/wiki/Water_cooling" title="Water cooling">wet cooling</a> processing.<sup id="cite_ref-:21_5-8" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Other_geoengineering_approaches">Other geoengineering approaches</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=3" title="Edit section: Other geoengineering approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>PDRC has been claimed to be more stable, adaptable, and reversible than <a href="/wiki/Stratospheric_aerosol_injection" title="Stratospheric aerosol injection">stratospheric aerosol injection</a> (SAI).<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>Wang et al. claimed that SAI "might cause potentially dangerous threats to the Earth’s basic climate operations" that may not be reversible, and thus preferred PDRC.<sup id="cite_ref-:122_46-0" class="reference"><a href="#cite_note-:122-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Munday noted that although "unexpected effects will likely occur" with the global implementation of PDRC, that "these structures can be removed immediately if needed, unlike methods that involve dispersing particulate matter into the atmosphere, which can last for decades."<sup id="cite_ref-Munday_38-6" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>When compared to the <a href="/wiki/Reflective_surfaces_(climate_engineering)" title="Reflective surfaces (climate engineering)">reflective surfaces</a> approach of increasing surface albedo, such as through painting roofs white, or the <a href="/wiki/Space_mirror_(climate_engineering)" title="Space mirror (climate engineering)">space mirror</a> proposals of "deploying giant reflective surfaces in space", Munday claimed that "the increased reflectivity likely falls short of what is needed and comes at a high financial cost."<sup id="cite_ref-Munday_38-7" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> PDRC differs from the reflective surfaces approach by "increasing the radiative heat emission from the Earth rather than merely decreasing its solar absorption".<sup id="cite_ref-Munday_38-8" class="reference"><a href="#cite_note-Munday-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Function">Function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=4" title="Edit section: Function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg/220px-The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg" decoding="async" width="220" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg/330px-The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg/440px-The-NASA-Earth%27s-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg 2x" data-file-width="1980" data-file-height="1530" /></a><figcaption>PDRCs maximize <a href="/wiki/Thermal_radiation" title="Thermal radiation">outgoing infrared radiation</a> (shown in orange) and minimize the absorption of <a href="/wiki/Solar_Radiation" class="mw-redirect" title="Solar Radiation">Solar Radiation</a> (shown in yellow). </figcaption></figure> <p>The basic measure of PDRCs is their solar reflectivity (in 0.4–2.5&#160;μm) and <a href="/wiki/Emissivity" title="Emissivity">heat emissivity</a> (in 8–13&#160;μm),<sup id="cite_ref-:1_2-2" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> to maximize "net emission of <a href="/wiki/Thermal_radiation" title="Thermal radiation">longwave thermal radiation</a>" and minimize "absorption of downward <a href="/wiki/Shortwave_radiation" class="mw-redirect" title="Shortwave radiation">shortwave radiation</a>".<sup id="cite_ref-:21_5-9" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> PDRCs use the infrared window (8–13&#160;μm) for heat transfer with the coldness of outer space (~2.7 <a href="/wiki/Kelvin" title="Kelvin">K</a>) to radiate heat and subsequently lower ambient temperatures with zero energy input.<sup id="cite_ref-:21_5-10" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRCs mimic the natural process of <a href="/wiki/Radiative_cooling" title="Radiative cooling">radiative cooling</a>, in which the Earth cools itself by releasing heat to outer space (<a href="/wiki/Earth%27s_energy_budget" title="Earth&#39;s energy budget">Earth's energy budget</a>), although during the daytime, lowering ambient temperatures under direct solar intensity.<sup id="cite_ref-:21_5-11" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> On a clear day, solar irradiance can reach 1000 W/m<sup>2</sup> with a diffuse component between 50 and 100 W/m<sup>2</sup>. As of 2022 the average PDRC had a cooling power of ~100–150 W/m<sup>2</sup>.<sup id="cite_ref-:54_20-1" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Cooling power is proportional to the installation's <a href="/wiki/Surface_area" title="Surface area">surface area</a>.<sup id="cite_ref-Heo_2022_Ju_lee_15-5" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Measuring_effectiveness">Measuring effectiveness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=5" title="Edit section: Measuring effectiveness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most useful measurements come in a real-world setting. Standardized devices have been proposed.<sup id="cite_ref-:46_47-0" class="reference"><a href="#cite_note-:46-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>Evaluating atmospheric downward longwave radiation based on "the use of ambient weather conditions such as the surface air temperature and humidity instead of the <a href="/wiki/Atmospheric_temperature" title="Atmospheric temperature">altitude-dependent atmospheric profiles</a>," may be problematic since "downward longwave radiation comes from various altitudes of the atmosphere with different temperatures, pressures, and water vapor contents" and "does not have uniform density, composition, and temperature across its thickness."<sup id="cite_ref-:21_5-12" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Broadband_emitters_(BE)_vs._selective_emitters_(SE)"><span id="Broadband_emitters_.28BE.29_vs._selective_emitters_.28SE.29"></span>Broadband emitters (BE) vs. selective emitters (SE)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=6" title="Edit section: Broadband emitters (BE) vs. selective emitters (SE)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Atmosfaerisk_spredning.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Atmosfaerisk_spredning.png/220px-Atmosfaerisk_spredning.png" decoding="async" width="220" height="112" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Atmosfaerisk_spredning.png/330px-Atmosfaerisk_spredning.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Atmosfaerisk_spredning.png/440px-Atmosfaerisk_spredning.png 2x" data-file-width="588" data-file-height="300" /></a><figcaption>Broadband PDRC emitters emit in both the solar spectrum and the infrared window (8 and 14 μm), while selective PDRC emitters only emit in the infrared window.<sup id="cite_ref-:54_20-2" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Broadband emitters possess high emittance in both the <a href="/wiki/Solar_spectrum" class="mw-redirect" title="Solar spectrum">solar spectrum</a> and atmospheric LWIR window (8 to 14 μm), whereas selective emitters only emit longwave infrared radiation.<sup id="cite_ref-:54_20-3" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>In theory, selective thermal emitters can achieve higher cooling power.<sup id="cite_ref-:54_20-4" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> However, selective emitters face challenges in real-world applications that can weaken their performance, such as from <a href="/wiki/Dropwise_condensation" title="Dropwise condensation">dropwise condensation</a> (common even in <a href="/wiki/Semi-arid_climate" title="Semi-arid climate">semi-arid</a> climates) that can accumulate on even <a href="/wiki/Hydrophobe" title="Hydrophobe">hydrophobic</a> surfaces and reduce emission.<sup id="cite_ref-:40_48-0" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> Broadband emitters outperform selective materials when "the material is warmer than the ambient air, or when its sub-ambient surface temperature is within the range of several degrees".<sup id="cite_ref-:13_9-1" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Each type can be advantageous for certain applications. Broadband emitters may be better for horizontal applications, such as roofs, whereas selective emitters may be more useful on vertical surfaces such as building <a href="/wiki/Fa%C3%A7ade" title="Façade">facades</a>, where dropwise condensation is inconsequential and their stronger cooling power can be achieved.<sup id="cite_ref-:40_48-1" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>Broadband emitters can be made angle-dependent to potentially enhance performance.<sup id="cite_ref-:54_20-5" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Polydimethylsiloxane" title="Polydimethylsiloxane">Polydimethylsiloxane</a> (PDMS) is a common broadband emitter.<sup id="cite_ref-:40_48-2" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> Most PDRC materials are broadband, primarily due to their lower cost and higher performance at above-ambient temperatures.<sup id="cite_ref-:43_49-0" class="reference"><a href="#cite_note-:43-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hybrid_systems">Hybrid systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=7" title="Edit section: Hybrid systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Combining PDRCs with other systems may increase their cooling power. When included in a combined <a href="/wiki/Thermal_insulation" title="Thermal insulation">thermal insulation</a>, <a href="/wiki/Evaporative_cooler" title="Evaporative cooler">evaporative cooling</a>, and radiative cooling system consisting of "a solar reflector, a water-rich and IR-emitting evaporative layer, and a vapor-permeable, IR-transparent, and solar-reflecting insulation layer," 300% higher<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="higher than what (August 2024)">clarification needed</span></a></i>&#93;</sup> ambient cooling power was demonstrated. This could extend the <a href="/wiki/Shelf_life" title="Shelf life">shelf life</a> of food by 40% in humid climates and 200% in dry climates without <a href="/wiki/Refrigeration" title="Refrigeration">refrigeration</a>. The system however requires water "re-charges" to maintain cooling power.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p><p>A dual-mode asymmetric photonic mirror (APM) consisting of silicon-based diffractive gratings could achieve all-season cooling, even under cloudy and humid conditions, as well as heating. The cooling power of APM could perform 80% more when compared to standalone radiative coolers. Under cloudy sky, it could achieve 8&#160;°C more cooling and, for heating, 5.7&#160;°C.<sup id="cite_ref-:42_51-0" class="reference"><a href="#cite_note-:42-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Climatic_variations">Climatic variations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=8" title="Edit section: Climatic variations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cooling potential of various areas varies primarily based on <a href="/wiki/Climate_zone" class="mw-redirect" title="Climate zone">climate zones</a>, weather patterns, and events. Dry and hot regions generally have higher radiative cooling power (up to 120 W m<sup>2</sup>), while colder regions or those with high <a href="/wiki/Humidity" title="Humidity">humidity</a> or <a href="/wiki/Cloud_cover" title="Cloud cover">cloud cover</a> generally have less.<sup id="cite_ref-:17_39-1" class="reference"><a href="#cite_note-:17-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Cooling potential changes seasonally due to shifts in humidity and cloud cover.<sup id="cite_ref-:21_5-13" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Studies mapping daytime radiative cooling potential have been done for China,<sup id="cite_ref-:26_37-1" class="reference"><a href="#cite_note-:26-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> India,<sup id="cite_ref-:47_52-0" class="reference"><a href="#cite_note-:47-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> the United States,<sup id="cite_ref-:48_53-0" class="reference"><a href="#cite_note-:48-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> and across Europe.<sup id="cite_ref-:49_54-0" class="reference"><a href="#cite_note-:49-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Deserts">Deserts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=9" title="Edit section: Deserts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:BW_climate.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/BW_climate.png/220px-BW_climate.png" decoding="async" width="220" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/BW_climate.png/330px-BW_climate.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/BW_climate.png/440px-BW_climate.png 2x" data-file-width="2576" data-file-height="1176" /></a><figcaption>Desert climates have the highest radiative cooling potential due to low humidity and cloud cover.<sup id="cite_ref-:21_5-14" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Dry regions such as western Asia, north Africa, <a href="/wiki/Australia_(continent)" title="Australia (continent)">Australia</a> and the southwestern United States are ideal for PDRC due to the relative lack of humidity and cloud cover across the seasons. The cooling potential for desert regions has been estimated at "in the higher range of 80–110 W m<sup>2</sup>",<sup id="cite_ref-:21_5-15" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> and 120 W m<sup>2</sup>.<sup id="cite_ref-:17_39-2" class="reference"><a href="#cite_note-:17-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Sahara_Desert" class="mw-redirect" title="Sahara Desert">Sahara Desert</a> and western Asia is the largest area on earth with such a high cooling potential.<sup id="cite_ref-:21_5-16" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>The cooling potential of desert regions is likely to remain relatively unfulfilled due to low population densities, reducing demand for local cooling, despite tremendous cooling potential.<sup id="cite_ref-:21_5-17" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Koppen-Geiger_Map_C_present.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Koppen-Geiger_Map_C_present.svg/220px-Koppen-Geiger_Map_C_present.svg.png" decoding="async" width="220" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Koppen-Geiger_Map_C_present.svg/330px-Koppen-Geiger_Map_C_present.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Koppen-Geiger_Map_C_present.svg/440px-Koppen-Geiger_Map_C_present.svg.png 2x" data-file-width="1401" data-file-height="850" /></a><figcaption><a href="/wiki/Temperate_climate" title="Temperate climate">Temperate climates</a> have a moderate to high radiative cooling potential.<sup id="cite_ref-:21_5-18" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Temperate_climates">Temperate climates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=10" title="Edit section: Temperate climates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Temperate climates have a high radiative cooling potential and greater population density, which may increase interest in PDRCs. These zones tend to be "transitional" zones between dry and humid climates.<sup id="cite_ref-:21_5-19" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> High population areas in temperate zones may be susceptible to an "overcooling" effect from PDRCs due to temperature shifts from summer to winter, which can be overcome with the modification of PDRCs to adjust for temperature shifts.<sup id="cite_ref-:54_20-6" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tropics">Tropics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=11" title="Edit section: Tropics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Koppen_classification_worldmap_A.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Koppen_classification_worldmap_A.png/220px-Koppen_classification_worldmap_A.png" decoding="async" width="220" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Koppen_classification_worldmap_A.png/330px-Koppen_classification_worldmap_A.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Koppen_classification_worldmap_A.png/440px-Koppen_classification_worldmap_A.png 2x" data-file-width="2000" data-file-height="1280" /></a><figcaption><a href="/wiki/Tropical_climate" title="Tropical climate">Tropical climates</a> have a lower radiative cooling potential due to high humidity and cloud cover.<sup id="cite_ref-:21_5-20" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>While PDRCs have proven successful in temperate regions, reaching the same level of performance is more difficult in tropical climes. This has primarily been attributed to the higher <a href="/wiki/Solar_irradiance" title="Solar irradiance">solar irradiance</a> and atmospheric radiation, particularly humidity and cloud cover.<sup id="cite_ref-:4_17-1" class="reference"><a href="#cite_note-:4-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The average cooling potential of tropical climates varies between 10 and 40 W m<sup>2</sup>, significantly lower than hot and dry climates.<sup id="cite_ref-:21_5-21" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, the cooling potential of most of southeast Asia and the <a href="/wiki/Indian_subcontinent" title="Indian subcontinent">Indian subcontinent</a> is significantly diminished in the summer due to a dramatic increase in humidity, dropping as low as 10–30 W/m<sup>2</sup>. Other similar zones, such as <a href="/wiki/Tropical_savannah" class="mw-redirect" title="Tropical savannah">tropical savannah</a> areas in Africa, see a more modest decline during summer, dropping to 20–40 W/m<sup>2</sup>. However, tropical regions generally have a higher albedo or <a href="/wiki/Radiative_forcing" title="Radiative forcing">radiative forcing</a> due to sustained <a href="/wiki/Cloud_cover" title="Cloud cover">cloud cover</a> and thus their land surface contributes less to planetary albedo.<sup id="cite_ref-:21_5-22" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>A 2022 study reported that a PDRC surface in tropical climates should have a <a href="/wiki/Solar_reflectance" class="mw-redirect" title="Solar reflectance">solar reflectance</a> of at least 97% and an infrared emittance of at least 80% to reduce temperatures. The study applied a <a href="/wiki/Barium_sulphate" class="mw-redirect" title="Barium sulphate"><style data-mw-deduplicate="TemplateStyles:r1123817410">'"`UNIQ--templatestyles-00000086-QINU`"'</style><span class="chemf nowrap">BaSO<sub class="template-chem2-sub">4</sub></span></a>-<a href="/wiki/Potassium_sulphate" class="mw-redirect" title="Potassium sulphate"><span class="chemf nowrap">K<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>SO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></a> coating with a "solar reflectance and infrared emittance (8–13 μm) of 98.4% and 95% respectively" in the tropical climate of Singapore and achieved a "sustained daytime sub-ambient temperature of 2°C" under direct solar intensity of 1000 W m<sup>2</sup>.<sup id="cite_ref-:4_17-2" class="reference"><a href="#cite_note-:4-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Variables">Variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=12" title="Edit section: Variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Humidity_and_cloud_coverage">Humidity and cloud coverage</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=13" title="Edit section: Humidity and cloud coverage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Globalcldfr_amo_200207-201504_lrg.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Globalcldfr_amo_200207-201504_lrg.jpg/220px-Globalcldfr_amo_200207-201504_lrg.jpg" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Globalcldfr_amo_200207-201504_lrg.jpg/330px-Globalcldfr_amo_200207-201504_lrg.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Globalcldfr_amo_200207-201504_lrg.jpg/440px-Globalcldfr_amo_200207-201504_lrg.jpg 2x" data-file-width="3600" data-file-height="1800" /></a><figcaption>Global map of cloud cover. Data taken from 2002 to 2015. The darker the color, the clearer the sky.</figcaption></figure> <p><a href="/wiki/Humidity" title="Humidity">Humidity</a> and cloud coverage significantly weaken PDRC effectiveness.<sup id="cite_ref-:3_7-3" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> A 2022 study noted that "vertical variations of both vapor concentration and temperature in the atmosphere" can have a considerable impact on radiative coolers. The authors reported that aerosol and cloud coverage can weaken the effectiveness of radiators and thus concluded that adaptable "design strategies of radiative coolers" are needed to maximize effectiveness under these climatic conditions.<sup id="cite_ref-:6_18-1" class="reference"><a href="#cite_note-:6-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Dropwise_condensation">Dropwise condensation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=14" title="Edit section: Dropwise condensation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> The formation of <a href="/wiki/Dropwise_condensation" title="Dropwise condensation">dropwise condensation</a> on PDRC surfaces can alter the infrared emittance of selective PDRC emitters, which can weaken their performance. Even in <a href="/wiki/Semi-arid_climate" title="Semi-arid climate">semi-arid</a> environments, dew formation. Another 2022 study reported that the cooling power of selective emitters "may broaden the narrowband emittances of the selective emitter and reduce their sub-ambient cooling power and their supposed cooling benefits over broadband emitters"<sup id="cite_ref-:40_48-3" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> and that:</p><blockquote><p>Our work shows that the assumed benefits of selective emitters are even smaller when it comes to the largest application of radiative cooling – cooling roofs of buildings. However, recently, it has been shown that for vertical building <a href="/wiki/Fa%C3%A7ade" title="Façade">facades</a> experiencing broadband summertime terrestrial heat gains and wintertime losses, selective emitters can achieve seasonal thermoregulation and energy savings. Since dew formation appears less likely on vertical surfaces even in exceptionally humid environments, the thermoregulatory benefits of selective emitters will likely persist in both humid and dry operating conditions.<sup id="cite_ref-:40_48-4" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <div class="mw-heading mw-heading4"><h4 id="Rain">Rain</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=15" title="Edit section: Rain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:World_precip_annual.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/World_precip_annual.png/220px-World_precip_annual.png" decoding="async" width="220" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/World_precip_annual.png/330px-World_precip_annual.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/World_precip_annual.png/440px-World_precip_annual.png 2x" data-file-width="8640" data-file-height="3600" /></a><figcaption>Global map of average <a href="/wiki/Annual_precipitation" class="mw-redirect" title="Annual precipitation">annual precipitation</a>. The darker the color, the higher the precipitation.</figcaption></figure> <p>Rain can generally help clean PDRC surfaces covered with dust, dirt, or other debris. However, in humid areas, consistent rain can result in water accumulation that can hinder performance. <a href="/wiki/Porosity" title="Porosity">Porous</a> PDRCs can mitigate these conditions.<sup id="cite_ref-Weng_2021_55-0" class="reference"><a href="#cite_note-Weng_2021-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> Another response is to make <a href="/wiki/Hydrophobe" title="Hydrophobe">hydrophobic</a> self-cleaning PDRCs. Scalable and sustainable hydrophobic PDRCs that avoid <a href="/wiki/VOCs" class="mw-redirect" title="VOCs">VOCs</a> can repel rainwater and other liquids.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Wind">Wind</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=16" title="Edit section: Wind"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wind may alter the efficiency of passive radiative cooling surfaces and technologies. A 2020 study proposed using a "tilt strategy and wind cover strategy" to mitigate wind effects. The researchers reported regional differences in China, noting that "85% of China's areas can achieve radiative cooling performance with wind cover" whereas in northwestern China wind cover effects would be more substantial.<sup id="cite_ref-:7_19-1" class="reference"><a href="#cite_note-:7-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Bijarniya et al. similarly proposes the use of a wind shield in areas susceptible to high winds.<sup id="cite_ref-:3_7-4" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Materials_and_production">Materials and production</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=17" title="Edit section: Materials and production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>PDRC surfaces can be made of various materials. However, for widespread application, PDRC materials must be low cost, available for mass production, and applicable in many contexts. Most research has focused on coatings and thin films, which tend to be more available for mass production, lower cost, and more applicable in a wider range of contexts, although other materials may provide potential for specific applications.<sup id="cite_ref-:12_40-1" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:10_41-1" class="reference"><a href="#cite_note-:10-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRC research has identified more sustainable material alternatives, even if not fully <a href="/wiki/Biodegradable" class="mw-redirect" title="Biodegradable">biodegradable</a>.<sup id="cite_ref-:32_34-1" class="reference"><a href="#cite_note-:32-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:29_59-0" class="reference"><a href="#cite_note-:29-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:9_60-0" class="reference"><a href="#cite_note-:9-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:28_61-0" class="reference"><a href="#cite_note-:28-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:30_62-0" class="reference"><a href="#cite_note-:30-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> A 2023 study reported that "most PDRC materials now are <a href="/wiki/Non-renewable_resource" title="Non-renewable resource">non-renewable</a> polymers, artificial photonic or synthetic chemicals, which will cause excessive CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> emissions by consuming <a href="/wiki/Fossil_fuel" title="Fossil fuel">fossil fuels</a> and go against the global carbon neutrality goal. Environmentally friendly bio-based renewable materials should be an ideal material to devise PDRC systems."<sup id="cite_ref-:31_63-0" class="reference"><a href="#cite_note-:31-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Multilayer_and_complex_structures">Multilayer and complex structures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=18" title="Edit section: Multilayer and complex structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Advanced photonic materials and structures, such as multilayer thin films, micro/nanoparticles, <a href="/wiki/Photonic_crystals" class="mw-redirect" title="Photonic crystals">photonic crystals</a>, <a href="/wiki/Metamaterials" class="mw-redirect" title="Metamaterials">metamaterials</a>, and <a href="/wiki/Electromagnetic_metasurface" title="Electromagnetic metasurface">metasurfaces</a>, have been reported as potential approaches.<sup id="cite_ref-:11_64-0" class="reference"><a href="#cite_note-:11-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> However, while multilayer and complex nano-photonic structures have proven successful in experimental scenarios and simulations, a 2022 study reorted that widespread application "is severely restricted because of the complex and expensive processes of preparation".<sup id="cite_ref-:10_41-2" class="reference"><a href="#cite_note-:10-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> Similarly, a 2020 study reported that "scalable production of artificial photonic radiators with complex structures, outstanding properties, high throughput, and low cost is still challenging".<sup id="cite_ref-:2_65-0" class="reference"><a href="#cite_note-:2-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> This has advanced research of simpler structures for PDRC materials possibly better suited for mass production.<sup id="cite_ref-:11_64-1" class="reference"><a href="#cite_note-:11-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Coatings">Coatings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=19" title="Edit section: Coatings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Bismuth(III)_oxide_2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Bismuth%28III%29_oxide_2.jpg/220px-Bismuth%28III%29_oxide_2.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Bismuth%28III%29_oxide_2.jpg/330px-Bismuth%28III%29_oxide_2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Bismuth%28III%29_oxide_2.jpg/440px-Bismuth%28III%29_oxide_2.jpg 2x" data-file-width="2202" data-file-height="1652" /></a><figcaption>A scalable colored PDRC coating using <a href="/wiki/Bismuth(III)_oxide" title="Bismuth(III) oxide">Bismuth oxide</a> (pictured) was developed by Zhai et al.<sup id="cite_ref-:16_30-1" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>PDRC coatings such as paints may be advantageous given their direct application to surfaces, simplifying preparation and reducing costs,<sup id="cite_ref-:10_41-3" class="reference"><a href="#cite_note-:10-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> although not all coatings are inexpensive.<sup id="cite_ref-:23_66-0" class="reference"><a href="#cite_note-:23-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> A 2022 study stated that coatings generally offer "strong operability, convenient processing, and low cost, which have the prospect of large-scale utilization".<sup id="cite_ref-:12_40-2" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> PDRC coatings have been developed in colors other than white while still demonstrating high solar reflectance and heat emissivity.<sup id="cite_ref-:16_30-2" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>Coatings must be durable and resistant to soiling, which can be achieved with <a href="/wiki/Porosity" title="Porosity">porous</a> PDRCs<sup id="cite_ref-Weng_2021_55-1" class="reference"><a href="#cite_note-Weng_2021-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> or hydrophobic topcoats that can withstand cleaning, although hydrophobic coatings use <a href="/wiki/Polytetrafluoroethylene" title="Polytetrafluoroethylene">polytetrafluoroethylene</a> or similar compounds to be water-resistant.<sup id="cite_ref-:23_66-1" class="reference"><a href="#cite_note-:23-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> Negative environmental impacts can be mitigated by limiting use of other toxic solvents common in paints, such as <a href="/wiki/Acetone" title="Acetone">acetone</a>. Non-toxic or <a href="/wiki/Water-based_paint" class="mw-redirect" title="Water-based paint">water-based paints</a> have been developed.<sup id="cite_ref-:23_66-2" class="reference"><a href="#cite_note-:23-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:9_60-1" class="reference"><a href="#cite_note-:9-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><p>Porous Polymers Coating (PPC) exhibit excellent PDRC performance. These polymers have a high concentration of tiny pores, which scatter light effectively at the boundary between the polymer and the air. This scattering enhances both solar reflectance (more than 96%) and thermal emittance (97% of heat), lowering surface temperatures six degrees below the surroundings at noon in Phoenix. This process is solution-based, aiding scalability.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> Dye of the desired color is coated on the polymer. Compared to traditional dye in porous polymer, in which the dye is mixed in the polymer, the new design can cool more effectively.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> </p><p>A 2018 study reported significantly lowered coating costs, stating that "photonic media, when properly randomized to minimize the photon transport mean free path, can be used to coat a black substrate and reduce its temperature by radiative cooling." This coating could "outperform commercially available solar-reflective white paint for daytime cooling" without expensive manufacturing steps or materials.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Candidate coatings </caption> <tbody><tr> <th>Coating</th> <th>Reflectance</th> <th>Emittance</th> <th>Temperature reduction</th> <th>Commercial coating</th> <th>Notes </th></tr> <tr> <td><a href="/wiki/Aluminium_phosphate" title="Aluminium phosphate">Aluminum phosphate</a></td> <td>97%</td> <td>90%</td> <td>~4.2&#160;°C</td> <td>~4.8&#160;°C</td> <td>predicted estimated cost by Dong et al. at $1.2/m2,<sup id="cite_ref-:12_40-3" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> tested in <a href="/wiki/Guangzhou" title="Guangzhou">Guangzhou</a> (daytime humidity 41%), selective emitter (SE).<sup id="cite_ref-:25_71-0" class="reference"><a href="#cite_note-:25-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Ultrawhite <a href="/wiki/Barium_sulfate" title="Barium sulfate"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">BaSO<sub class="template-chem2-sub">4</sub></span></a></td> <td>98.1%</td> <td>95%</td> <td>~4.5&#160;°C</td> <td></td> <td>paint with 60% volume concentration, "providing great reliability, convenient paint form, ease of use, and compatibility with the commercial paint fabrication process."<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Porous <a href="/wiki/Polydimethylsiloxane" title="Polydimethylsiloxane">Polydimethylsiloxane</a></td> <td>95%</td> <td>96.5%</td> <td>~8&#160;°C</td> <td></td> <td>sponge emitter template method for coatings, avoids hazardous etching agents (e.g., <a href="/wiki/Hydrofluoric_acid" title="Hydrofluoric acid">hydrofluoric acid</a>, <a href="/wiki/Hydrogen_peroxide" title="Hydrogen peroxide">hydrogen peroxide</a>, <a href="/wiki/Acetic_acid" title="Acetic acid">acetic acid</a>) or <a href="/wiki/VOCs" class="mw-redirect" title="VOCs">VOCs</a> (e.g., <a href="/wiki/Acetone" title="Acetone">acetone</a>, <a href="/wiki/Dimethylformamide" title="Dimethylformamide">dimethylformamide</a>, <a href="/wiki/Tetrahydrofuran" title="Tetrahydrofuran">tetrahydrofuran</a>, <a href="/wiki/Hexane" title="Hexane">hexane</a>), "compatibility with large-scale production," tested in <a href="/wiki/Hangzhou" title="Hangzhou">Hangzhou</a> (daytime humidity ~61%).<sup id="cite_ref-Weng_2021_55-2" class="reference"><a href="#cite_note-Weng_2021-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Waterborne_resins" title="Waterborne resins">Waterborne</a> <a href="/wiki/Thermochromism" title="Thermochromism">thermochromic</a></td> <td>96%</td> <td>94%</td> <td>~7.1&#160;°C</td> <td></td> <td>free of <a href="/wiki/Ecotoxicity" title="Ecotoxicity">ecotoxic</a> and <a href="/wiki/Carcinogen" title="Carcinogen">carcinogenic</a> <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a> "can be produced at a large scale and conveniently coated on various substrates through traditional drop casting, spraying, roller painting, or spin-coating methods" and "switchable [between] solar heating and radiative cooling," tested in Shanghai (daytime humidity ~28%).<sup id="cite_ref-:9_60-2" class="reference"><a href="#cite_note-:9-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Barium_sulphate" class="mw-redirect" title="Barium sulphate">Barium sulphate</a>, <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">Calcium carbonate</a>, and <a href="/wiki/Silicon_dioxide" title="Silicon dioxide">Silicon dioxide</a> particle coating</td> <td>97.6%</td> <td>89%</td> <td>~8.3&#160;°C</td> <td>~5.5&#160;°C lower than white paints</td> <td>"for large-scale commercial production" with a predicted estimated cost of $0.5/m2, tested in <a href="/wiki/Weihai" title="Weihai">Weihai</a> (daytime humidity 40%).<sup id="cite_ref-:12_40-4" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>α-<a href="/wiki/Bismuth(III)_oxide" title="Bismuth(III) oxide">Bismuth(III) oxide</a></td> <td>99%</td> <td>97%</td> <td>~2.31&#160;°C</td> <td></td> <td>Average cooling power 68 W/m<sup>2</sup> "low cost of raw oxide materials, and simple preparation process," tested in <a href="/wiki/Nanjing" title="Nanjing">Nanjing</a> (daytime humidity 54%).<sup id="cite_ref-:16_30-3" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Films">Films</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=20" title="Edit section: Films"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Neocerambyx_gigas_(Thomson,_1878)_(3247568711).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg/220px-Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg" decoding="async" width="220" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg/330px-Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg/440px-Neocerambyx_gigas_%28Thomson%2C_1878%29_%283247568711%29.jpg 2x" data-file-width="1855" data-file-height="881" /></a><figcaption>A photonic radiator film based on the <a href="/wiki/Longhorn_beetle" title="Longhorn beetle">longicorn beetle</a> <i><a href="/w/index.php?title=Neocerambyx_gigas&amp;action=edit&amp;redlink=1" class="new" title="Neocerambyx gigas (page does not exist)">Neocerambyx gigas</a></i> exhibited 95% solar irradiance and 96% emissivity.<sup id="cite_ref-:2_65-1" class="reference"><a href="#cite_note-:2-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure><p>Many <a href="/wiki/Thin_film" title="Thin film">thin films</a> offer high solar reflectance and heat emittance. However, films with precise patterns or structures are not <a href="/wiki/Scalability" title="Scalability">scalable</a> "due to the cost and technical difficulties inherent in large-scale precise <a href="/wiki/Lithography" title="Lithography">lithography</a>" (2022),<sup id="cite_ref-:13_9-2" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> or "due to complex nanoscale lithography/synthesis and rigidity" (2021).<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Acrylate_polymer" title="Acrylate polymer">polyacrylate</a> <a href="/wiki/Hydrogel" title="Hydrogel">hydrogel</a> film<sup id="cite_ref-:50_74-0" class="reference"><a href="#cite_note-:50-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> from the 2022 study has broader applications, including potential uses in building construction and large-scale thermal management systems. This research focused on a film developed for hybrid passive cooling. The film uses <a href="/wiki/Sodium_polyacrylate" title="Sodium polyacrylate">sodium polyacrylate</a>, a low-cost industrial material, to achieve high solar reflectance and high mid-infrared emittance. A significant feature of this material is its ability to absorb atmospheric moisture, aiding <a href="/wiki/Evaporative_cooling" class="mw-redirect" title="Evaporative cooling">evaporative cooling</a>. This tripartite mechanism allows for efficient cooling under varying atmospheric conditions, including high humidity or given limited access to clear skies.<sup id="cite_ref-:50_74-1" class="reference"><a href="#cite_note-:50-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Candidates </caption> <tbody><tr> <th>Coating</th> <th>Reflectance</th> <th>Emittance</th> <th>Temperature reduction</th> <th>Commercial coating</th> <th>Notes </th></tr> <tr> <td>Facile microstamping method film on low-cost polymer <a href="/wiki/PDMS_stamp" title="PDMS stamp">PDMS</a></td> <td>95%</td> <td>96%</td> <td>5.1&#160;°C</td> <td></td> <td>"promising for scale-up production."<sup id="cite_ref-:2_65-2" class="reference"><a href="#cite_note-:2-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Phase_inversion_(chemistry)" title="Phase inversion (chemistry)">phase inversion</a> process using <a href="/wiki/Cellulose_acetate" title="Cellulose acetate">cellulose acetate</a> and <a href="/wiki/Calcium_silicate" title="Calcium silicate">calcium silicate</a></td> <td>97.3%</td> <td>97.2%</td> <td>7.3&#160;°C</td> <td></td> <td>90.7 W m<sup>−2</sup>), "a low-cost, scalable composite film with novel dendritic cell like structures," tested in <a href="/wiki/Qingdao" title="Qingdao">Qingdao</a>.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Superhydrophobic porous (PDMS)</td> <td></td> <td></td> <td>11.52&#160;°C</td> <td></td> <td>"the film is promising to be widely used for long-term cooling for outdoor applications."<sup id="cite_ref-:30_62-1" class="reference"><a href="#cite_note-:30-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Fluorine" title="Fluorine">Fluorine</a>-free reagents and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span> particle composite film</td> <td>85%</td> <td>95%</td> <td>12.2&#160;°C</td> <td></td> <td>manufactured with "a simple preparation process, which has characteristics of low-cost environmental friendliness and excellent machinal durability," tested in <a href="/wiki/Hubei" title="Hubei">Hubei</a>.<sup id="cite_ref-:29_59-1" class="reference"><a href="#cite_note-:29-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Hierarchical flexible fibrous <a href="/wiki/Cellulose" title="Cellulose">cellulose</a> (wood pulp) film</td> <td>93.8%</td> <td>98.3%</td> <td>to 11.3&#160;°C</td> <td></td> <td>"the first time to realize high <a href="/wiki/Crystallinity" title="Crystallinity">crystallinity</a> and hierarchical <a href="/wiki/Microstructure" title="Microstructure">microstructures</a> in regenerated cellulose materials by the self-assembly of cellulose <a href="/wiki/Macromolecule" title="Macromolecule">macromolecules</a> at the molecular level," which "will provide new perspectives for the development of flexible cellulose materials."<sup id="cite_ref-:31_63-1" class="reference"><a href="#cite_note-:31-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Periodic pyramid-textured PDMS radiative film </td> <td> </td> <td> </td> <td>2&#160;°C. </td> <td> </td> <td>commercial silicon solar cells<sup id="cite_ref-:39_76-0" class="reference"><a href="#cite_note-:39-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Nanoporous_materials" title="Nanoporous materials">Nanoporous</a> <a href="/wiki/Anodic_aluminium_oxide" title="Anodic aluminium oxide">anodic aluminum oxide</a> film </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>Improved flat solar cell efficiency by ~2.72%, concentrated solar cell by ~16.02%.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Metafabrics">Metafabrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=21" title="Edit section: Metafabrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>PDRCs can be made of metafabrics, which can be used in clothing to shield/regulate body temperatures. Most metafabrics are made of petroleum-based fibers.<sup id="cite_ref-:20_78-0" class="reference"><a href="#cite_note-:20-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> For instance, 2023 study reported that a that "new flexible cellulose fibrous films with wood-like hierarchical microstructures need to be developed for wearable PDRC applications."<sup id="cite_ref-:31_63-2" class="reference"><a href="#cite_note-:31-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p><p>A 2021 study chose a composite of <a href="/wiki/Titanium_oxide" title="Titanium oxide">titanium oxide</a> and <a href="/wiki/Polylactic_acid" title="Polylactic acid">polylactic acid</a> (TiO2-PLA) with a <a href="/wiki/Polytetrafluoroethylene" title="Polytetrafluoroethylene">polytetrafluoroethylene</a> (PTFE) lamination. The fabric underwent optical and thermal characterization, measuring like reflectivity and emissivity. Numerical simulations, including <a href="/wiki/Mie_scattering" title="Mie scattering">Lorenz-Mie theory</a> and <a href="/wiki/Monte_Carlo_method" title="Monte Carlo method">Monte Carlo simulations</a>, were crucial in predicting the fabric's performance and guiding optimization. Mechanical testing was conducted to assess the fabric's durability, strength, and practicality.<sup id="cite_ref-:51_79-0" class="reference"><a href="#cite_note-:51-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p><p>The study reported exceptional ability to facilitate radiative cooling. The fabric achieved 94.5% emissivity and 92.4% reflectivity. This combination of high emissivity and reflectivity is central to its cooling capabilities, significantly outperforming traditional fabrics. Additionally, the fabric's mechanical properties, including strength, durability, waterproofness, and breathability, confirmed its suitability for clothing.<sup id="cite_ref-:51_79-1" class="reference"><a href="#cite_note-:51-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Candidates </caption> <tbody><tr> <th>Coating</th> <th>Reflectance</th> <th>Emittance</th> <th>Notes </th></tr> <tr> <td>Eco-friendly bio-derived regenerable polymer <a href="/wiki/Alginate" class="mw-redirect" title="Alginate">alginate</a> to modify <a href="/wiki/Cotton_fiber" class="mw-redirect" title="Cotton fiber">cotton fiber</a> and then in-matrix generate <a href="/wiki/Calcium_carbonate" title="Calcium carbonate"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">CaCO<sub class="template-chem2-sub">3</sub></span></a> nano- or other micro-particles</td> <td>90%</td> <td>97%</td> <td>5.4ᵒC</td> <td>"fully compatible with industrial processing facilities" and with "effective <a href="/wiki/UV_protection" class="mw-redirect" title="UV protection">UV protection</a> properties with a UPF value of 15, is fast-dry, and is stable against washing."<sup id="cite_ref-:20_78-1" class="reference"><a href="#cite_note-:20-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Wearable hat constructed of a radiative cooling paper with <a href="/wiki/Silicon_dioxide" title="Silicon dioxide"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span></a> fibers and <a href="/wiki/Fumed_silica" title="Fumed silica">fumed</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span></td> <td>97%</td> <td>91%</td> <td> </td> <td>reduced temperatures for the hair of the wearer by 12.9ᵒC when compared with a basic white cotton hat (and 19ᵒC when compared with no hat), <a href="/wiki/Waterproofing" title="Waterproofing">waterproof</a> and air permeable, "suitable for the manufacture of radiative cooling hat to achieve the thermal management of human head."<sup id="cite_ref-:19_82-0" class="reference"><a href="#cite_note-:19-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Aerogels">Aerogels</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=22" title="Edit section: Aerogels"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Aerogel" title="Aerogel">Aerogels</a> offer a potential low-cost material scalable for mass production. Some aerogels can be considered a more environmentally friendly alternative to other materials, with degradable potential and the absence of toxic chemicals.<sup id="cite_ref-:27_83-0" class="reference"><a href="#cite_note-:27-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:28_61-1" class="reference"><a href="#cite_note-:28-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Aerogels can be useful as <a href="/wiki/Thermal_insulation" title="Thermal insulation">thermal insulation</a> to reduce solar absorption and parasitic heat gain to improve the cooling performance of PDRCs.<sup id="cite_ref-:04_84-0" class="reference"><a href="#cite_note-:04-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Candidates </caption> <tbody><tr> <th>Coating</th> <th>Reflectance</th> <th>Emittance</th> <th>Temperature reduction</th> <th>Notes </th></tr> <tr> <td>Superhydrophobic waste paper-based (cellulose) aerogel</td> <td>93%</td> <td>91%</td> <td>8.5&#160;°C</td> <td>n a building energy simulation the aerogel "showed that 43.4% of cooling energy on average could be saved compared to the building baseline consumption" in China if widely implemented.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Degradable and superhydrophobic stereo-complex poly (<a href="/wiki/Lactic_acid" title="Lactic acid">lactic acid</a>) aerogel with low <a href="/wiki/Thermal_conductivity" class="mw-redirect" title="Thermal conductivity">thermal conductivity</a></td> <td>89%</td> <td>93%</td> <td>3.5ᵒC</td> <td>"opens an environmentally sustainable pathway to radiative cooling applications."<sup id="cite_ref-:28_61-2" class="reference"><a href="#cite_note-:28-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Low-cost <a href="/wiki/Silica-alumina" class="mw-redirect" title="Silica-alumina">silica-alumina</a> nanofibrous aerogels (SAFAs) synthesized by <a href="/wiki/Electrospinning" title="Electrospinning">electrospinning</a></td> <td>95%</td> <td>93%</td> <td>5ᵒC</td> <td>"the SAFAs exhibit high compression fatigue resistance, robust fire resistance and excellent thermal insulation" with "low cost and high performance," shows potential for further studies.<sup id="cite_ref-:27_83-1" class="reference"><a href="#cite_note-:27-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Clear <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">SiO<sub class="template-chem2-sub">2</sub></span> aerogel </td> <td> </td> <td> </td> <td>7.7&#160;°C </td> <td>Used an <a href="/wiki/Optical_modulator" title="Optical modulator">optical modulator</a> (n-hexadecane) in <a href="/wiki/Microparticle" title="Microparticle">microparticles</a> within a silicone <a href="/wiki/Elastomer" title="Elastomer">elastomer</a> matrix. Commercial silicon solar cells.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Nano_bubbles">Nano bubbles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=23" title="Edit section: Nano bubbles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pigments absorb light. Soap bubbles show a prism of different colors on their surfaces. These colors result from the way light interacts with differing thicknesses of the bubble's surface, termed <a href="/wiki/Structural_coloration" title="Structural coloration">structural color</a>. One study reported that cellulose nanocrystals (CNCs), which are derived from the cellulose found in plants, could be made into iridescent, colorful films without added pigment. They made films with blue, green and red colors that, when placed under sunlight, were an average of nearly 7ᵒF cooler than the surrounding air. The film generated over 120 W m<sup>-2</sup> of cooling power.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Biodegradable_surfaces">Biodegradable surfaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=24" title="Edit section: Biodegradable surfaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many proposed radiative cooling materials are not <a href="/wiki/Biodegradable" class="mw-redirect" title="Biodegradable">biodegradable</a>. A 2022 study reported that "sustainable materials for radiative cooling have not been sufficiently investigated."<sup id="cite_ref-:32_34-2" class="reference"><a href="#cite_note-:32-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Candidates </caption> <tbody><tr> <th>Coating</th> <th>Reflectance</th> <th>Emittance</th> <th>Temperature reduction</th> <th>Notes </th></tr> <tr> <td>Eco-friendly porous polymer structure via thermally induced <a href="/wiki/Phase_separation" title="Phase separation">phase separation</a></td> <td>91%</td> <td>92%</td> <td>9&#160;°C</td> <td>sufficient durability for use on buildings and highest cooling effect reported "among all organic-based passive radiation cooling emitters."<sup id="cite_ref-:32_34-3" class="reference"><a href="#cite_note-:32-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Micro-grating">Micro-grating</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=25" title="Edit section: Micro-grating"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A silica micro-grating photonic device cooled commercial silicon cells by 3.6&#160;°C under solar intensity of 830 W m<sup>−2</sup> to 990 W m<sup>−2</sup>.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=26" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Passive daytime radiative cooling has "the potential to simultaneously alleviate the two major problems of <a href="/wiki/Energy_crisis" title="Energy crisis">energy crisis</a> and global warming"<sup id="cite_ref-:5_1-4" class="reference"><a href="#cite_note-:5-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> along with an "environmental protection refrigeration technology."<i><sup id="cite_ref-:12_40-5" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup></i> PDRCs have an array of potential applications, but are now most often applied to various aspects of the <a href="/wiki/Built_environment" title="Built environment">built environment</a>, such as <a href="/wiki/Building_envelope" title="Building envelope">building envelopes</a>, <a href="/wiki/Cool_pavement" title="Cool pavement">cool pavements</a>, and other surfaces to decrease energy demand, costs, and CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> emissions.<sup id="cite_ref-:8_89-0" class="reference"><a href="#cite_note-:8-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> PDRC has been applied for <a href="/wiki/Indoors_environment" class="mw-redirect" title="Indoors environment">indoor space</a> cooling, outdoor urban cooling, <a href="/wiki/Solar_cell_efficiency" class="mw-redirect" title="Solar cell efficiency">solar cell efficiency</a>, <a href="/wiki/Power_plant" class="mw-redirect" title="Power plant">power plant</a> condenser cooling, among other applications.<sup id="cite_ref-:3_7-5" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-6" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-4" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> For outdoor applications, PDRC durability is an important requirement.<sup id="cite_ref-:43_49-1" class="reference"><a href="#cite_note-:43-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Indoor_space_cooling">Indoor space cooling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=27" title="Edit section: Indoor space cooling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Typical_suburban_street_in_the_United_States.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Typical_suburban_street_in_the_United_States.tif/lossy-page1-228px-Typical_suburban_street_in_the_United_States.tif.jpg" decoding="async" width="228" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Typical_suburban_street_in_the_United_States.tif/lossy-page1-342px-Typical_suburban_street_in_the_United_States.tif.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Typical_suburban_street_in_the_United_States.tif/lossy-page1-456px-Typical_suburban_street_in_the_United_States.tif.jpg 2x" data-file-width="894" data-file-height="591" /></a><figcaption><a href="/wiki/Single-family_detached_home" title="Single-family detached home">Single-family detached homes</a> in the US <a href="/wiki/Suburb" title="Suburb">suburbs</a> are estimated to lower energy costs by 26% to 46% with PDRC implementation.<sup id="cite_ref-:24_90-0" class="reference"><a href="#cite_note-:24-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The most common application is on building envelopes, including <a href="/wiki/Cool_roofs" class="mw-redirect" title="Cool roofs">cool roofs</a>. A PDRC can double the energy savings of a white roof.<sup id="cite_ref-Heo_2022_Ju_lee_15-7" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> This makes PDRCs an alternative or supplement to <a href="/wiki/Air_conditioning" title="Air conditioning">air conditioning</a> that lowers <a href="/wiki/Energy_demand" class="mw-redirect" title="Energy demand">energy demand</a> and reduces air conditioning's release of <a href="/wiki/Hydrofluorocarbon" title="Hydrofluorocarbon">hydrofluorocarbons</a> (HFC) into the atmosphere. HFCs can be thousands of times more potent than CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub>.<sup id="cite_ref-:3_7-6" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-8" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:10_41-4" class="reference"><a href="#cite_note-:10-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:15_8-1" class="reference"><a href="#cite_note-:15-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>Air conditioning accounts for 12%-15% of global energy usage,<sup id="cite_ref-:3_7-7" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:20_78-2" class="reference"><a href="#cite_note-:20-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> while CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> emissions from air conditioning account for "13.7% of energy-related CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> emissions, approximately 52.3 <a href="/wiki/Exajoule" class="mw-redirect" title="Exajoule">EJ</a> yearly"<sup id="cite_ref-:12_40-6" class="reference"><a href="#cite_note-:12-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> or 10% of total emissions.<sup id="cite_ref-:20_78-3" class="reference"><a href="#cite_note-:20-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> Air conditioning applications are expected to rise.<sup id="cite_ref-:16_30-4" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> However, this can be significantly reduced with the mass production of low-cost PDRCs for indoor space cooling.<sup id="cite_ref-:3_7-8" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:15_8-2" class="reference"><a href="#cite_note-:15-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> A multilayer PDRC surface covering 10% of a building's roof can replace 35% of air conditioning used during the hottest hours of daytime.<sup id="cite_ref-:3_7-9" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>In suburban <a href="/wiki/Single_family_residence" class="mw-redirect" title="Single family residence">single-family residential areas</a>, PDRCs can lower energy costs by 26% to 46% in the United States<sup id="cite_ref-:24_90-1" class="reference"><a href="#cite_note-:24-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> and lower temperatures on average by 5.1ᵒC. With the addition of "cold storage to utilize the excess cooling energy of water generated during off-peak hours, the cooling effects for indoor air during the peak-cooling-load times can be significantly enhanced" and air temperatures may be reduced by 6.6–12.7&#160;°C.<sup id="cite_ref-:36_92-0" class="reference"><a href="#cite_note-:36-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p><p>In cities, PDRCs can produce significant energy and cost savings. In a study on US cities, Zhou et al. found that "cities in hot and arid regions can achieve high annual electricity consumption savings of &gt;2200 <a href="/wiki/KWh" class="mw-redirect" title="KWh">kWh</a>, while &lt;400 kWh is attainable in colder and more humid cities," ranking from highest to lowest by electricity consumption savings as follows: Phoenix (~2500 kWh), Las Vegas (~2250 kWh), <a href="/wiki/Austin,_Texas" title="Austin, Texas">Austin</a> (~2100 kWh), <a href="/wiki/Honolulu" title="Honolulu">Honolulu</a> (~2050 kWh), <a href="/wiki/Atlanta" title="Atlanta">Atlanta</a> (~1500 kWh), <a href="/wiki/Indianapolis" title="Indianapolis">Indianapolis</a> (~1200 kWh), Chicago (~1150 kWh), New York City (~900 kWh), <a href="/wiki/Minneapolis" title="Minneapolis">Minneapolis</a> (~850 kWh), <a href="/wiki/Boston" title="Boston">Boston</a> (~750 kWh), Seattle (~350 kWh).<sup id="cite_ref-:36_92-1" class="reference"><a href="#cite_note-:36-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> In a study projecting energy savings for Indian cities in 2030, <a href="/wiki/Mumbai" title="Mumbai">Mumbai</a> and <a href="/wiki/Kolkata" title="Kolkata">Kolkata</a> had a lower energy savings potential, <a href="/wiki/Jaisalmer" title="Jaisalmer">Jaisalmer</a>, <a href="/wiki/Varanasi" title="Varanasi">Varansai</a>, and Delhi had a higher potential, although with significant variations from April to August dependent on humidity and wind cover.<sup id="cite_ref-:47_52-1" class="reference"><a href="#cite_note-:47-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>The growing interest and rise in PDRC application to buildings has been attributed to cost savings related to "the sheer magnitude of the global building surface area, with a market size of ~$27 billion in 2025," as estimated in a 2020 study.<sup id="cite_ref-:8_89-1" class="reference"><a href="#cite_note-:8-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Outdoor_urban_space_cooling">Outdoor urban space cooling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=28" title="Edit section: Outdoor urban space cooling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Urban_heat_island" title="Urban heat island">Urban heat island</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Buildings_in_Kolkata.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Buildings_in_Kolkata.jpg/228px-Buildings_in_Kolkata.jpg" decoding="async" width="228" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Buildings_in_Kolkata.jpg/342px-Buildings_in_Kolkata.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Buildings_in_Kolkata.jpg/456px-Buildings_in_Kolkata.jpg 2x" data-file-width="6000" data-file-height="3375" /></a><figcaption>A PDRC installed on a roof in <a href="/wiki/Kolkata" title="Kolkata">Kolkata</a> exhibited a nearly 4.9&#160;°C (8.8&#160;°F) decrease in surface ground temperatures (with an average reduction of 2.2&#160;°C or 4.0&#160;°F).<sup id="cite_ref-:13_9-3" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>PDRC surfaces can mitigate extreme heat from the <a href="/wiki/Urban_heat_island_effect" class="mw-redirect" title="Urban heat island effect">urban heat island effect</a> that occurs in over 450 cities worldwide. It can be as much as 10–12&#160;°C (18–22&#160;°F) hotter in <a href="/wiki/Urban_area" title="Urban area">urban areas</a> than nearby <a href="/wiki/Rural_area" title="Rural area">rural areas</a>.<sup id="cite_ref-:13_9-4" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:22_10-3" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> On an average hot summer day, the roofs of buildings can be 27–50&#160;°C (49–90&#160;°F) hotter than the surrounding air, warming air temperatures further through <a href="/wiki/Convection_(heat_transfer)" title="Convection (heat transfer)">convection</a>. Well-insulated dark rooftops are significantly hotter than all other urban surfaces, including asphalt pavements,<sup id="cite_ref-:22_10-4" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> further expanding air conditioning demand (which further accelerates global warming and urban heat island through the release of <a href="/wiki/Waste_heat" title="Waste heat">waste heat</a> into the ambient air) and increasing risks of heat-related disease and fatal health effects.<sup id="cite_ref-:13_9-5" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:45_43-1" class="reference"><a href="#cite_note-:45-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:03_44-1" class="reference"><a href="#cite_note-:03-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRCs can be applied to building roofs and urban shelters to significantly lower surface temperatures with zero energy consumption by reflecting heat out of the <a href="/wiki/Urban_environment" class="mw-redirect" title="Urban environment">urban environment</a> and into outer space.<sup id="cite_ref-:13_9-6" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:22_10-5" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> The primary obstacle to PDRC implementation is the glare that may be caused through the reflection of <a href="/wiki/Visible_light" class="mw-redirect" title="Visible light">visible light</a> onto surrounding buildings. Colored PDRC surfaces may mitigate glare.<sup id="cite_ref-:23_66-3" class="reference"><a href="#cite_note-:23-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> such as Zhai et al.<sup id="cite_ref-:16_30-5" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> "Super-white paints with commercial high-index (n~1.9) <a href="/wiki/Retroreflector" title="Retroreflector">retroreflective spheres</a>",<sup id="cite_ref-:23_66-4" class="reference"><a href="#cite_note-:23-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> or the use of retroreflective materials (RRM) may also mitigate glare.<sup id="cite_ref-:22_10-6" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Surrounding buildings without PDRC may weaken the cooling power of PDRCs.<sup id="cite_ref-:24_90-2" class="reference"><a href="#cite_note-:24-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p><p>Even when installed on roofs in highly dense urban areas, broadband radiative cooling panels lower surface temperatures at the <a href="/wiki/Sidewalk" title="Sidewalk">sidewalk</a> level.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> A 2022 study assessed the effects of PDRC surfaces in winter, including non-modulated and modulated PDRCs, in the <a href="/wiki/Kolkata_metropolitan_area" class="mw-redirect" title="Kolkata metropolitan area">Kolkata metropolitan area</a>. A non-modulated PDRC with a reflectance of 0.95 and emissivity of 0.93 decreased ground surface temperatures by nearly 4.9&#160;°C (8.8&#160;°F) and with an average daytime reduction of 2.2&#160;°C (4.0&#160;°F).<sup id="cite_ref-:13_9-7" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>While in summer the cooling effects of broadband non-modulated PDRCs may be desirable, they could present an uncomfortable "overcooling" effect for city populations in winter and thus increase energy use for heating. This can be mitigated by broadband modulated PDRCs, which they found could increase daily ambient urban temperatures by 0.4–1.4&#160;°C (0.72–2.52&#160;°F) in winter. While in Kolkata "overcooling" is unlikely, elsewhere it could have unwanted impacts. Therefore, modulated PDRCs may be preferred in cities with warm summers and cold winters for controlled cooling, while non-modulated PDRCs may be more beneficial for cities with hot summers and moderate winters.<sup id="cite_ref-:13_9-8" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a study on urban <a href="/wiki/Bus_shelters" class="mw-redirect" title="Bus shelters">bus shelters</a>, it was found that most shelters fail at providing thermal comfort for <a href="/wiki/Commuters" class="mw-redirect" title="Commuters">commuters</a>, while a tree could provide 0.5&#160;°C (0.90&#160;°F) more cooling.<sup id="cite_ref-:24_90-3" class="reference"><a href="#cite_note-:24-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> Other methods to cool shelters often involve air conditioning or other energy intensive measures. Urban shelters with PDRC roofing can significantly reduce temperatures with zero energy input, while adding "a non-reciprocal mid-infrared cover" can increase benefits by reducing incoming atmospheric radiation as well as reflecting radiation from surrounding buildings.<sup id="cite_ref-:24_90-4" class="reference"><a href="#cite_note-:24-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p><p>For outdoor urban space cooling, a 2021 study recommended that PDRC in urban areas primarily focus on increasing albedo so long as emissivity can be maintained above 90%.<sup id="cite_ref-:22_10-7" class="reference"><a href="#cite_note-:22-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Solar_energy_efficiency">Solar energy efficiency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=29" title="Edit section: Solar energy efficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Silicon_heterojunction_solar_cell.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Silicon_heterojunction_solar_cell.jpg/227px-Silicon_heterojunction_solar_cell.jpg" decoding="async" width="227" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Silicon_heterojunction_solar_cell.jpg/341px-Silicon_heterojunction_solar_cell.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Silicon_heterojunction_solar_cell.jpg/454px-Silicon_heterojunction_solar_cell.jpg 2x" data-file-width="2620" data-file-height="2008" /></a><figcaption><a href="/wiki/Solar_cell_efficiency" class="mw-redirect" title="Solar cell efficiency">Solar cell efficiency</a> can be improved with PDRC application to reduce overheating and degradation of cells.<sup id="cite_ref-Heo_2022_Ju_lee_15-9" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>PDRC surfaces can be integrated with <a href="/wiki/Solar_energy" title="Solar energy">solar energy plants</a>, referred to as solar energy–radiative cooling (SE–RC), to improve functionality and performance by preventing <a href="/wiki/Solar_cell" title="Solar cell">solar cells</a> from 'overheating' and thus degrading. Since silicon solar cells have a maximum efficiency of 33.7% (with the average commercial panel reaching around 20%), the majority of absorbed power produces excess heat and increases the operating temperature.<sup id="cite_ref-Heo_2022_Ju_lee_15-10" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:39_76-1" class="reference"><a href="#cite_note-:39-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> Solar cell efficiency declines 0.4-0.5% for every 1 ᵒC increase in temperature.<sup id="cite_ref-Heo_2022_Ju_lee_15-11" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRC can extend the life of solar cells by lowering the operating temperature of the system.<sup id="cite_ref-:39_76-2" class="reference"><a href="#cite_note-:39-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> Integrating PDRCs into solar energy systems is also relatively simple, given that "most solar energy harvesting systems have a sky-facing flat plate structural design, which is similar to radiative cooling systems." Integration has been reported to increase energy gain per unit area while increasing the fraction of the day the cell operates.<sup id="cite_ref-:34_14-4" class="reference"><a href="#cite_note-:34-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Methods have been proposed to potentially enhance cooling performance. One 2022 study proposed using a "full-spectrum synergetic management (FSSM) strategy to cool solar cells, which combines radiative cooling and spectral splitting to enhance radiative heat dissipation and reduce the <a href="/wiki/Waste_heat" title="Waste heat">waste heat</a> generated by the absorption of sub-BG photons."<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Personal_thermal_management">Personal thermal management</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=30" title="Edit section: Personal thermal management"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Personal thermal management (PTM) employs PDRC in fabrics to regulate body temperatures during extreme heat. While other fabrics are useful for heat accumulation, they "may lead to <a href="/wiki/Heat_stroke" title="Heat stroke">heat stroke</a> in hot weather."<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> A 2021 study claimed that "incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend humans against intensifying global climate change."<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p><p>Wearable PDRCs can come in different forms and target outdoor workers. Products are at the <a href="/wiki/Prototype" title="Prototype">prototype</a> stage.<sup id="cite_ref-:19_82-1" class="reference"><a href="#cite_note-:19-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Although most textiles are white, colored wearable materials in select colors may be appropriate in some contexts.<sup id="cite_ref-Heo_2022_Ju_lee_15-12" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Power_plant_condenser_cooling">Power plant condenser cooling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=31" title="Edit section: Power plant condenser cooling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Power plant condensers used in <a href="/wiki/Thermoelectric_generator" title="Thermoelectric generator">thermoelectric power plants</a> and <a href="/wiki/Solar_plant" class="mw-redirect" title="Solar plant">concentrated solar plants</a> (CSP) can cool water for effective use within the <a href="/wiki/Heat_exchanger" title="Heat exchanger">heat exchanger</a>. A study of a pond covered with a radiative cooler reported that 150 W m<sup>2</sup> flux could be achieved without loss of water.<sup id="cite_ref-:3_7-10" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> PDRC can reduce water use and thermal pollution caused by <a href="/wiki/Water_cooling" title="Water cooling">water cooling</a>.<sup id="cite_ref-:21_5-23" class="reference"><a href="#cite_note-:21-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>A review reported that supplementing the air-cooled condenser for radiative cooling panels in a thermoelectric power plant condenser achieved a 4096 kWhth/day cooling effect with a pump energy consumption of 11 kWh/day.<sup id="cite_ref-:3_7-11" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> A concentrated solar plant (CSP) on the CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> supercritical cycle at 550ᵒC was reported to produce 5% net output gain over an air-cooled system by integration with 14 m2 /kWe capacity radiative cooler."<sup id="cite_ref-:3_7-12" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thermal_regulation_of_buildings">Thermal regulation of buildings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=32" title="Edit section: Thermal regulation of buildings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to cooling, PDRC surfaces can be modified for bi-directional thermal regulation (cooling and heating).<sup id="cite_ref-:13_9-9" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This can be achieved through switching thermal emittance between high and low values.<sup id="cite_ref-:13_9-10" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Heo_2022_Ju_lee_15-13" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thermoelectric_generation">Thermoelectric generation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=33" title="Edit section: Thermoelectric generation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When combined with a thermoelectric generator, a PDRC surface can generate small amounts of electricity.<sup id="cite_ref-Heo_2022_Ju_lee_15-14" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Automobile_and_greenhouse_cooling">Automobile and greenhouse cooling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=34" title="Edit section: Automobile and greenhouse cooling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Thermally enclosed spaces, including automobiles and <a href="/wiki/Greenhouse" title="Greenhouse">greenhouses</a>, are particularly susceptible to harmful temperature increases. This is because of the heavy presence of windows, which are <a href="/wiki/Attenuation_coefficient#Absorption_and_scattering_coefficients" title="Attenuation coefficient">transparent</a> to incoming solar radiation yet <a href="/wiki/Attenuation_coefficient" title="Attenuation coefficient">opaque</a> to outgoing long-wave thermal radiation, which causes them to heat rapidly in the sun. Automobile temperatures in direct sunlight can rise to 60–82 ᵒC when ambient temperatures is only 21 ᵒC.<sup id="cite_ref-Heo_2022_Ju_lee_15-15" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Water_harvesting">Water harvesting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=35" title="Edit section: Water harvesting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Dew_harvesting" class="mw-redirect" title="Dew harvesting">Dew harvesting</a> yields may be improved via with PDRC. Selective PDRC emitters that have a high emissivity and broadband emitters may produce varying results. In one study using a broadband PDRC, the device condensed ~8.5 mL day of water for 800 W m<sup>2</sup> of peak solar intensity."<sup id="cite_ref-Heo_2022_Ju_lee_15-16" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Whereas selective emitters may be less advantageous in other contexts, they may be superior for dew harvesting applications.<sup id="cite_ref-:40_48-5" class="reference"><a href="#cite_note-:40-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> PDRCs could improve atmospheric water harvesting by being combined with <a href="/wiki/Atmospheric_water_generator" title="Atmospheric water generator">solar vapor generation systems</a> to improve water collection rates.<sup id="cite_ref-:43_49-2" class="reference"><a href="#cite_note-:43-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Water_and_ice_cooling">Water and ice cooling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=36" title="Edit section: Water and ice cooling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>PDRC surfaces can be installed over the surface of a <a href="/wiki/Body_of_water" title="Body of water">body of water</a> for cooling. In a controlled study, a body of water was cooled 10.6 ᵒC below the ambient temperature with the usage of a photonic radiator.<sup id="cite_ref-:3_7-13" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag failed verification of its source citation(s). (August 2024)">failed verification</span></a></i>&#93;</sup> </p><p>PDRC surfaces have been developed to cool ice and prevent ice from melting under sunlight. It has been proposed as a sustainable method for ice protection. This can also be applied to protect refrigerated food from spoiling.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Side_effects">Side effects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=37" title="Edit section: Side effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Jeremy Munday writes that although "unexpected effects will likely occur", PDRC structures "can be removed immediately if needed, unlike methods that involve dispersing particulate matter into the atmosphere, which can last for decades."<sup id="cite_ref-:0322_99-0" class="reference"><a href="#cite_note-:0322-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> Stratospheric aerosol injection "might cause potentially dangerous threats to the Earth’s basic climate operations" that may not be reversible, preferring PDRC.<sup id="cite_ref-:1222_24-1" class="reference"><a href="#cite_note-:1222-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Zevenhoven et al. state that "instead of stratospheric aerosol injection (SAI), cloud brightening or a large number of mirrors in the sky (“sunshade geoengineering”) to block out or reflect incoming (short-wave, SW) <a href="/wiki/Solar_irradiation" class="mw-redirect" title="Solar irradiation">solar irradiation</a>, long-wavelength (LW) thermal radiation can be selectively emitted and transferred through the atmosphere into space".<sup id="cite_ref-Zeven_2018_3-3" class="reference"><a href="#cite_note-Zeven_2018-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="&quot;Overcooling&quot;_and_PDRC_modulation"><span id=".22Overcooling.22_and_PDRC_modulation"></span>"Overcooling" and PDRC modulation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=38" title="Edit section: &quot;Overcooling&quot; and PDRC modulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:VO2_crystal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/VO2_crystal.jpg/249px-VO2_crystal.jpg" decoding="async" width="249" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/VO2_crystal.jpg/374px-VO2_crystal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/VO2_crystal.jpg/498px-VO2_crystal.jpg 2x" data-file-width="1800" data-file-height="1256" /></a><figcaption>Modifying PDRCs with <a href="/wiki/Vanadium_dioxide" class="mw-redirect" title="Vanadium dioxide">vanadium dioxide</a> (pictured) can achieve temperature-based 'switching' from cooling to heating to mitigate the "overcooling" effect.<sup id="cite_ref-:54_20-7" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>"Overcooling" is cited as a side effect of PDRCs that may be problematic, especially when PDRCs are applied in high-population areas with hot summers and cool winters, characteristic of <a href="/wiki/Temperate_zones" class="mw-redirect" title="Temperate zones">temperate zones</a>.<sup id="cite_ref-:54_20-8" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> While PDRC application in these areas can be useful in summer, in winter it can result in an increase in energy consumption for heating and thus may reduce the benefits of PDRCs on <a href="/wiki/Energy_savings" class="mw-redirect" title="Energy savings">energy savings</a> and emissions.<sup id="cite_ref-:13_9-11" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:14_21-1" class="reference"><a href="#cite_note-:14-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> As per Chen et al., "to overcome this issue, dynamically switchable coatings have been developed to prevent overcooling in winter or cold environments."<sup id="cite_ref-:54_20-9" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>The detriments of overcooling can be reduced by modulation of PDRCs, harnessing their passive cooling abilities during summer, while modifying them to passively heat during winter. Modulation can involve "switching the emissivity or reflectance to low values during the winter and high values during the warm period."<sup id="cite_ref-:13_9-12" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> In 2022, Khan et al. concluded that "low-cost optically modulated" PDRCs are "under development" and "are expected to be commercially available on the market soon with high future potential to reduce urban heat in cities without leading to an overcooling penalty during cold periods."<sup id="cite_ref-:13_9-13" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are various methods of making PDRCs 'switchable' to mitigate overcooling.<sup id="cite_ref-:54_20-10" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Most research has used <a href="/wiki/Vanadium_dioxide" class="mw-redirect" title="Vanadium dioxide">vanadium dioxide</a> (VO2), an <a href="/wiki/Inorganic_compound" title="Inorganic compound">inorganic compound</a>, to achieve temperature-based 'switchable' cooling and heating effects.<sup id="cite_ref-:54_20-11" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:14_21-2" class="reference"><a href="#cite_note-:14-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> While, as per Khan et al., developing VO2 is difficult, their review found that "recent research has focused on simplifying and improving the expansion of techniques for different types of applications."<sup id="cite_ref-:13_9-14" class="reference"><a href="#cite_note-:13-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Chen et al. found that "much effort has been devoted to VO2 coatings in the switching of the <a href="/wiki/Infrared_window" title="Infrared window">mid-infrared spectrum</a>, and only a few studies have reported the switchable ability of temperature-dependent coatings in the solar spectrum."<sup id="cite_ref-:54_20-12" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Temperature-dependent switching requires no extra energy input to achieve both cooling and heating.<sup id="cite_ref-:54_20-13" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Other methods of PDRC 'switching' require extra energy input to achieve desired effects. One such method involves changing the <a href="/wiki/Dielectric_strength" title="Dielectric strength">dielectric environment</a>. This can be done through "reversible wetting" and drying of the PDRC surface with common liquids such as water and <a href="/wiki/Alcohol_(chemistry)" title="Alcohol (chemistry)">alcohol</a>. However, for this to be implemented on a mass scale, "the recycling, and utilization of working liquids and the tightness of the circulation loop should be considered in realistic applications."<sup id="cite_ref-:54_20-14" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another method involves 'switching' through mechanical force, which may be useful and has been "widely investigated in [PDRC] polymer coatings owing to their stretchability." For this method, "to achieve a switchable coating in <a href="/wiki/Long-wave_infrared" class="mw-redirect" title="Long-wave infrared">εLWIR</a>, mechanical stress/strain can be applied in a thin PDMS film, consisting of a PDMS grating and embedded <a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticles</a>." One study estimated, with the use of this method, that "19.2% of the energy used for heating and cooling can be saved in the US, which is 1.7 times higher than the only cooling mode and 2.2 times higher than the only heating mode," which may inspire additional research and development.<sup id="cite_ref-:54_20-15" class="reference"><a href="#cite_note-:54-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Glare_and_visual_appearance">Glare and visual appearance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=39" title="Edit section: Glare and visual appearance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Glare_(vision)" title="Glare (vision)">Glare</a> caused from surfaces with high solar reflectance may present visibility concerns that can limit PDRC application, particularly within urban environments at the ground level.<sup id="cite_ref-:16_30-6" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> PDRCs that use a "scattering system" to generate reflection in a more diffused manner have been developed and are "more favorable in real applications," as per Lin et al.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> </p><p>Low-cost PDRC colored paint coatings, which reduce glare and increase the color diversity of PDRC surfaces, have also been developed. While some of the surface's solar reflectance is lost in the visible light spectrum, colored PDRCs can still exhibit significant cooling power, such as a coating by Zhai et al., which used a α-<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Bi<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">3</sub></span> coating (resembling the color of the compound) to develop a non-toxic paint that demonstrated a solar reflectance of 99% and heat emissivity of 97%.<sup id="cite_ref-:16_30-7" class="reference"><a href="#cite_note-:16-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>Generally it is noted that there is a tradeoff between cooling potential and darker colored surfaces. Less reflective colored PDRCs can also be applied to walls while more reflective white PDRCs can be applied to roofs to increase visual diversity of vertical surfaces, yet still contribute to cooling.<sup id="cite_ref-:38_31-1" class="reference"><a href="#cite_note-:38-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=40" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Erg_Chebbi_Silver_Ant_Nest.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Erg_Chebbi_Silver_Ant_Nest.jpg/220px-Erg_Chebbi_Silver_Ant_Nest.jpg" decoding="async" width="220" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Erg_Chebbi_Silver_Ant_Nest.jpg/330px-Erg_Chebbi_Silver_Ant_Nest.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/Erg_Chebbi_Silver_Ant_Nest.jpg/440px-Erg_Chebbi_Silver_Ant_Nest.jpg 2x" data-file-width="3363" data-file-height="2038" /></a><figcaption>The <a href="/wiki/Saharan_silver_ant" title="Saharan silver ant">Saharan silver ant</a>'s ability to cool its body temperature in extreme heat inspired early PDRC research.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Nocturnal passive radiative cooling has been recognized for thousands of years, with records showing awareness by the <a href="/wiki/Ancient_Iranians" class="mw-redirect" title="Ancient Iranians">ancient Iranians</a>, demonstrated through the construction of <a href="/wiki/Yakhch%C4%81l" title="Yakhchāl">Yakhchāls</a>, since 400 B.C.E.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p><p>PDRCwas hypothesized by <a href="/wiki/F%C3%A9lix_Trombe" title="Félix Trombe">Félix Trombe</a> in 1967. The first experimental setup was created in 1975, but was only successful for nighttime cooling. Further developments to achieve daytime cooling using different material compositions were not successful.<sup id="cite_ref-:3_7-14" class="reference"><a href="#cite_note-:3-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 1980s, Lushiku and Granqvist identified the infrared window as a potential way to access the ultracold outer space as a way to achieve passive daytime cooling.<sup id="cite_ref-Zeven_2018_3-4" class="reference"><a href="#cite_note-Zeven_2018-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Early attempts at developing passive radiative daytime cooling materials took inspiration from nature, particularly the <a href="/wiki/Saharan_silver_ant" title="Saharan silver ant">Saharan silver ant</a> and white beetles, noting how they cooled themselves in extreme heat.<sup id="cite_ref-Heo_2022_Ju_lee_15-17" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-5" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>Research and development in PDRCevolved rapidly in the 2010s with the discovery of the ability to suppress <a href="/wiki/Solar_heating" class="mw-redirect" title="Solar heating">solar heating</a> using photonic metamaterials, which widely expanded research and development in the field.<sup id="cite_ref-Heo_2022_Ju_lee_15-18" class="reference"><a href="#cite_note-Heo_2022_Ju_lee-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Banik_33-6" class="reference"><a href="#cite_note-Banik-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2024, Nissan introduced a paint that lowers car interior temperatures by up to 21 °F in direct sunlight. It involves two types of particles, each operating at a different frequency. One reflects near-infrared light. The second converts other frequencies to match the infrared window, radiating the energy into space.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=41" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Albedo" title="Albedo">Albedo</a></li> <li><a href="/wiki/Emissivity" title="Emissivity">Emissivity</a></li> <li><a href="/wiki/Energy_conservation" title="Energy conservation">Energy conservation</a></li> <li><a href="/wiki/Low-energy_building" class="mw-redirect" title="Low-energy building">Low-energy building</a></li> <li><a href="/wiki/Passive_cooling" title="Passive cooling">Passive cooling</a></li> <li><a href="/wiki/Passive_house" title="Passive house">Passive house</a></li> <li><a href="/wiki/Passive_solar_building_design" title="Passive solar building design">Passive solar building design</a></li> <li><a href="/wiki/Radiative_cooling" title="Radiative cooling">Radiative cooling</a></li> <li><a href="/wiki/Sustainable_city" title="Sustainable city">Sustainable city</a></li> <li><a href="/wiki/Urban_heat_island" title="Urban heat island">Urban heat island</a></li> <li><a href="/wiki/Zero-energy_building" title="Zero-energy building">Zero-energy building</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Passive_daytime_radiative_cooling&amp;action=edit&amp;section=42" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:5-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:5_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:5_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:5_1-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFChenPangChenYan2022" class="citation journal cs1">Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">"Passive daytime radiative cooling: Fundamentals, material designs, and applications"</a>. <i>EcoMat</i>. <b>4</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">10.1002/eom2.12153</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240331557">240331557</a>. <q>Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EcoMat&amp;rft.atitle=Passive+daytime+radiative+cooling%3A+Fundamentals%2C+material+designs%2C+and+applications&amp;rft.volume=4&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1002%2Feom2.12153&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240331557%23id-name%3DS2CID&amp;rft.aulast=Chen&amp;rft.aufirst=Meijie&amp;rft.au=Pang%2C+Dan&amp;rft.au=Chen%2C+Xingyu&amp;rft.au=Yan%2C+Hongjie&amp;rft.au=Yang%2C+Yuan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Feom2.12153&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangWuShiHu2021" class="citation journal cs1">Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">"A structural polymer for highly efficient all-day passive radiative cooling"</a>. <i>Nature Communications</i>. <b>12</b> (365): 365. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-20646-7">10.1038/s41467-020-20646-7</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">7809060</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33446648">33446648</a>. <q>Accordingly, designing and fabricating efficient PDRC with sufficiently high solar reflectance (𝜌¯solar) (λ ~ 0.3–2.5 μm) to minimize solar heat gain and simultaneously strong LWIR thermal emittance (ε¯LWIR) to maximize radiative heat loss is highly desirable. When the incoming radiative heat from the Sun is balanced by the outgoing radiative heat emission, the temperature of the Earth can reach its steady state.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+structural+polymer+for+highly+efficient+all-day+passive+radiative+cooling&amp;rft.volume=12&amp;rft.issue=365&amp;rft.pages=365&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F33446648&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-020-20646-7&amp;rft.aulast=Wang&amp;rft.aufirst=Tong&amp;rft.au=Wu%2C+Yi&amp;rft.au=Shi%2C+Lan&amp;rft.au=Hu%2C+Xinhua&amp;rft.au=Chen%2C+Min&amp;rft.au=Wu%2C+Limin&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Zeven_2018-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zeven_2018_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zeven_2018_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Zeven_2018_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Zeven_2018_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Zeven_2018_3-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZevenhovenaFält2018" class="citation journal cs1">Zevenhovena, Ron; Fält, Martin (June 2018). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0360544218304936">"Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach"</a>. <i>Energy</i>. <b>152</b>: 27. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Ene...152...27Z">2018Ene...152...27Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.energy.2018.03.084">10.1016/j.energy.2018.03.084</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116318678">116318678</a> &#8211; via Elsevier Science Direct. <q>An alternative, third geoengineering approach would be enhanced cooling by thermal radiation from the Earth's surface into space." [...] "With 100 W m<sup>2</sup> as a demonstrated passive cooling effect, a surface coverage of 0.3% would then be needed, or 1% of Earth's land mass surface. If half of it would be installed in urban, built areas which cover roughly 3% of the Earth's land mass, a 17% coverage would be needed there, with the remainder being installed in rural areas.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy&amp;rft.atitle=Radiative+cooling+through+the+atmospheric+window%3A+A+third%2C+less+intrusive+geoengineering+approach&amp;rft.volume=152&amp;rft.pages=27&amp;rft.date=2018-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116318678%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.energy.2018.03.084&amp;rft_id=info%3Abibcode%2F2018Ene...152...27Z&amp;rft.aulast=Zevenhovena&amp;rft.aufirst=Ron&amp;rft.au=F%C3%A4lt%2C+Martin&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0360544218304936&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Heo-2022b-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Heo-2022b_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Heo-2022b_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Heo-2022b_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeoJu_LeeSong2022" class="citation journal cs1">Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2022/tc/d2tc00318j">"Heat-shedding with photonic structures: radiative cooling and its potential"</a>. <i>Journal of Materials Chemistry C</i>. <b>10</b> (27): 9915–9937. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD2TC00318J">10.1039/D2TC00318J</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249695930">249695930</a> &#8211; via Royal Society of Chemistry.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry+C&amp;rft.atitle=Heat-shedding+with+photonic+structures%3A+radiative+cooling+and+its+potential&amp;rft.volume=10&amp;rft.issue=27&amp;rft.pages=9915-9937&amp;rft.date=2022-06&amp;rft_id=info%3Adoi%2F10.1039%2FD2TC00318J&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249695930%23id-name%3DS2CID&amp;rft.aulast=Heo&amp;rft.aufirst=Se-Yeon&amp;rft.au=Ju+Lee%2C+Gil&amp;rft.au=Song%2C+Young+Min&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2022%2Ftc%2Fd2tc00318j&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:21-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:21_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:21_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:21_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:21_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:21_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:21_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:21_5-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:21_5-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-:21_5-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-:21_5-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-:21_5-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-:21_5-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-:21_5-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-:21_5-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-:21_5-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-:21_5-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-:21_5-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-:21_5-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-:21_5-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-:21_5-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-:21_5-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-:21_5-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-:21_5-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-:21_5-23"><sup><i><b>x</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAiliYinYang2021" class="citation journal cs1">Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (October 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12111379">"Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand"</a>. <i>Atmosphere</i>. <b>12</b> (11): 1379. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Atmos..12.1379A">2021Atmos..12.1379A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12111379">10.3390/atmos12111379</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Atmosphere&amp;rft.atitle=Global+Radiative+Sky+Cooling+Potential+Adjusted+for+Population+Density+and+Cooling+Demand&amp;rft.volume=12&amp;rft.issue=11&amp;rft.pages=1379&amp;rft.date=2021-10&amp;rft_id=info%3Adoi%2F10.3390%2Fatmos12111379&amp;rft_id=info%3Abibcode%2F2021Atmos..12.1379A&amp;rft.aulast=Aili&amp;rft.aufirst=Ablimit&amp;rft.au=Yin%2C+Xiaobo&amp;rft.au=Yang%2C+Ronggui&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fatmos12111379&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:0-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenLuGong2021" class="citation journal cs1">Chen, Jianheng; Lu, Lin; Gong, Quan (June 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0196890421003083">"A new study on passive radiative sky cooling resource maps of China"</a>. <i>Energy Conversion and Management</i>. <b>237</b>: 114132. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ECM...23714132C">2021ECM...23714132C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enconman.2021.114132">10.1016/j.enconman.2021.114132</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234839652">234839652</a> &#8211; via Elsevier Science Direct. <q>Passive radiative cooling utilizes atmospheric transparency window (8–13 μm) to discharge heat into outer space and inhibits solar absorption.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Conversion+and+Management&amp;rft.atitle=A+new+study+on+passive+radiative+sky+cooling+resource+maps+of+China&amp;rft.volume=237&amp;rft.pages=114132&amp;rft.date=2021-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234839652%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.enconman.2021.114132&amp;rft_id=info%3Abibcode%2F2021ECM...23714132C&amp;rft.aulast=Chen&amp;rft.aufirst=Jianheng&amp;rft.au=Lu%2C+Lin&amp;rft.au=Gong%2C+Quan&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0196890421003083&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:3-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:3_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:3_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:3_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:3_7-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:3_7-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:3_7-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-:3_7-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-:3_7-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-:3_7-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-:3_7-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-:3_7-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-:3_7-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-:3_7-14"><sup><i><b>o</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBijarniyaSarkarMaiti2020" class="citation journal cs1">Bijarniya, Jay Prakash; Sarkar, Jahar; Maiti, Pralay (November 2020). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1364032120305529">"Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities"</a>. <i>Renewable and Sustainable Energy Reviews</i>. <b>133</b>: 110263. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020RSERv.13310263B">2020RSERv.13310263B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.rser.2020.110263">10.1016/j.rser.2020.110263</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:224874019">224874019</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+and+Sustainable+Energy+Reviews&amp;rft.atitle=Review+on+passive+daytime+radiative+cooling%3A+Fundamentals%2C+recent+researches%2C+challenges+and+opportunities&amp;rft.volume=133&amp;rft.pages=110263&amp;rft.date=2020-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A224874019%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.rser.2020.110263&amp;rft_id=info%3Abibcode%2F2020RSERv.13310263B&amp;rft.aulast=Bijarniya&amp;rft.aufirst=Jay+Prakash&amp;rft.au=Sarkar%2C+Jahar&amp;rft.au=Maiti%2C+Pralay&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1364032120305529&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:15-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-:15_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:15_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:15_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenmoussaEzzianiDjireAmine2022" class="citation journal cs1">Benmoussa, Youssef; Ezziani, Maria; Djire, All-Fousseni; Amine, Zaynab; Khaldoun, Asmae; Limami, Houssame (September 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2214785322055961">"Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material"</a>. <i>Materials Today: Proceedings</i>. <b>72</b>: 3632–3637. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.matpr.2022.08.411">10.1016/j.matpr.2022.08.411</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252136357">252136357</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Today%3A+Proceedings&amp;rft.atitle=Simulation+of+an+energy-efficient+cool+roof+with+cellulose-based+daytime+radiative+cooling+material&amp;rft.volume=72&amp;rft.pages=3632-3637&amp;rft.date=2022-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.matpr.2022.08.411&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252136357%23id-name%3DS2CID&amp;rft.aulast=Benmoussa&amp;rft.aufirst=Youssef&amp;rft.au=Ezziani%2C+Maria&amp;rft.au=Djire%2C+All-Fousseni&amp;rft.au=Amine%2C+Zaynab&amp;rft.au=Khaldoun%2C+Asmae&amp;rft.au=Limami%2C+Houssame&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2214785322055961&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:13-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-:13_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:13_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:13_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:13_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:13_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:13_9-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:13_9-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:13_9-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-:13_9-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-:13_9-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-:13_9-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-:13_9-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-:13_9-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-:13_9-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-:13_9-14"><sup><i><b>o</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhanCarlosenaFengKhorat2022" class="citation journal cs1">Khan, Ansar; Carlosena, Laura; Feng, Jie; Khorat, Samiran; Khatun, Rupali; Doan, Quang-Van; Santamouris, Mattheos (January 2022). <a rel="nofollow" class="external text" href="https://www.mdpi.com/2071-1050/14/3/1110">"Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter"</a>. <i>Sustainability</i>. <b>14</b> &#8211; via MDPI.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sustainability&amp;rft.atitle=Optically+Modulated+Passive+Broadband+Daytime+Radiative+Cooling+Materials+Can+Cool+Cities+in+Summer+and+Heat+Cities+in+Winter&amp;rft.volume=14&amp;rft.date=2022-01&amp;rft.aulast=Khan&amp;rft.aufirst=Ansar&amp;rft.au=Carlosena%2C+Laura&amp;rft.au=Feng%2C+Jie&amp;rft.au=Khorat%2C+Samiran&amp;rft.au=Khatun%2C+Rupali&amp;rft.au=Doan%2C+Quang-Van&amp;rft.au=Santamouris%2C+Mattheos&amp;rft_id=https%3A%2F%2Fwww.mdpi.com%2F2071-1050%2F14%2F3%2F1110&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:22-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-:22_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:22_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:22_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:22_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:22_10-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:22_10-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:22_10-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:22_10-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnandSailorBaniassadi2021" class="citation journal cs1">Anand, Jyothis; Sailor, David J.; Baniassadi, Amir (February 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S2210670720308295">"The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops"</a>. <i>Sustainable Cities and Society</i>. <b>65</b>: 102612. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SusCS..6502612A">2021SusCS..6502612A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scs.2020.102612">10.1016/j.scs.2020.102612</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:229476136">229476136</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sustainable+Cities+and+Society&amp;rft.atitle=The+relative+role+of+solar+reflectance+and+thermal+emittance+for+passive+daytime+radiative+cooling+technologies+applied+to+rooftops&amp;rft.volume=65&amp;rft.pages=102612&amp;rft.date=2021-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A229476136%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.scs.2020.102612&amp;rft_id=info%3Abibcode%2F2021SusCS..6502612A&amp;rft.aulast=Anand&amp;rft.aufirst=Jyothis&amp;rft.au=Sailor%2C+David+J.&amp;rft.au=Baniassadi%2C+Amir&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS2210670720308295&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:33-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-:33_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:33_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:33_11-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:33_11-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:33_11-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:33_11-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:33_11-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiangWuGuoLi2022" class="citation journal cs1">Liang, Jun; Wu, Jiawei; Guo, Jun; Li, Huagen; Zhou, Xianjun; Liang, Sheng; Qiu, Cheng-Wei; Tao, Guangming (September 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843130">"Radiative cooling for passive thermal management towards sustainable carbon neutrality"</a>. <i>National Science Review</i>. <b>10</b> (1): nwac208. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fnsr%2Fnwac208">10.1093/nsr/nwac208</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843130">9843130</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36684522">36684522</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=National+Science+Review&amp;rft.atitle=Radiative+cooling+for+passive+thermal+management+towards+sustainable+carbon+neutrality&amp;rft.volume=10&amp;rft.issue=1&amp;rft.pages=nwac208&amp;rft.date=2022-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9843130%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F36684522&amp;rft_id=info%3Adoi%2F10.1093%2Fnsr%2Fnwac208&amp;rft.aulast=Liang&amp;rft.aufirst=Jun&amp;rft.au=Wu%2C+Jiawei&amp;rft.au=Guo%2C+Jun&amp;rft.au=Li%2C+Huagen&amp;rft.au=Zhou%2C+Xianjun&amp;rft.au=Liang%2C+Sheng&amp;rft.au=Qiu%2C+Cheng-Wei&amp;rft.au=Tao%2C+Guangming&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9843130&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:023-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-:023_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:023_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunday2019" class="citation journal cs1">Munday, Jeremy (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">"Tackling Climate Change through Radiative Cooling"</a>. <i>Joule</i>. <b>3</b> (9): 2057–2060. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Joule...3.2057M">2019Joule...3.2057M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">10.1016/j.joule.2019.07.010</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:201590290">201590290</a>. <q>By covering the Earth with a small fraction of thermally emitting materials, the heat flow away from the Earth can be increased, and the net radiative flux can be reduced to zero (or even made negative), thus stabilizing (or cooling) the Earth.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Tackling+Climate+Change+through+Radiative+Cooling&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=2057-2060&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A201590290%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2019.07.010&amp;rft_id=info%3Abibcode%2F2019Joule...3.2057M&amp;rft.aulast=Munday&amp;rft.aufirst=Jeremy&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2019.07.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:18-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-:18_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinYangTanFan2020" class="citation journal cs1">Yin, Xiaobo; Yang, Ronggui; Tan, Gang; Fan, Shanhui (November 2020). <a rel="nofollow" class="external text" href="https://www.science.org/doi/full/10.1126/science.abb0971">"Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source"</a>. <i>Science</i>. <b>370</b> (6518): 786–791. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...370..786Y">2020Sci...370..786Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abb0971">10.1126/science.abb0971</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33184205">33184205</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226308213">226308213</a>. <q>...terrestrial radiative cooling has emerged as a promising solution for mitigating urban heat islands and for potentially fighting against global warming if it can be implemented at a large scale.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Terrestrial+radiative+cooling%3A+Using+the+cold+universe+as+a+renewable+and+sustainable+energy+source&amp;rft.volume=370&amp;rft.issue=6518&amp;rft.pages=786-791&amp;rft.date=2020-11&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.abb0971&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226308213%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33184205&amp;rft_id=info%3Abibcode%2F2020Sci...370..786Y&amp;rft.aulast=Yin&amp;rft.aufirst=Xiaobo&amp;rft.au=Yang%2C+Ronggui&amp;rft.au=Tan%2C+Gang&amp;rft.au=Fan%2C+Shanhui&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Ffull%2F10.1126%2Fscience.abb0971&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:34-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-:34_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:34_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:34_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:34_14-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:34_14-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmedLiJavedMa2021" class="citation journal cs1">Ahmed, Salman; Li, Zhenpeng; Javed, Muhammad Shahzad; Ma, Tao (September 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S2468606921001416">"A review on the integration of radiative cooling and solar energy harvesting"</a>. <i>Materials Today: Energy</i>. <b>21</b>: 100776. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021MTEne..2100776A">2021MTEne..2100776A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mtener.2021.100776">10.1016/j.mtener.2021.100776</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Today%3A+Energy&amp;rft.atitle=A+review+on+the+integration+of+radiative+cooling+and+solar+energy+harvesting&amp;rft.volume=21&amp;rft.pages=100776&amp;rft.date=2021-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mtener.2021.100776&amp;rft_id=info%3Abibcode%2F2021MTEne..2100776A&amp;rft.aulast=Ahmed&amp;rft.aufirst=Salman&amp;rft.au=Li%2C+Zhenpeng&amp;rft.au=Javed%2C+Muhammad+Shahzad&amp;rft.au=Ma%2C+Tao&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS2468606921001416&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Heo_2022_Ju_lee-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Heo_2022_Ju_lee_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Heo_2022_Ju_lee_15-18"><sup><i><b>s</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeoJu_LeeSong2022" class="citation journal cs1">Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2022/tc/d2tc00318j">"Heat-shedding with photonic structures: radiative cooling and its potential"</a>. <i>Journal of Materials Chemistry C</i>. <b>10</b> (27): 9915–9937. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD2TC00318J">10.1039/D2TC00318J</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249695930">249695930</a> &#8211; via Royal Society of Chemistry.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry+C&amp;rft.atitle=Heat-shedding+with+photonic+structures%3A+radiative+cooling+and+its+potential&amp;rft.volume=10&amp;rft.issue=27&amp;rft.pages=9915-9937&amp;rft.date=2022-06&amp;rft_id=info%3Adoi%2F10.1039%2FD2TC00318J&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249695930%23id-name%3DS2CID&amp;rft.aulast=Heo&amp;rft.aufirst=Se-Yeon&amp;rft.au=Ju+Lee%2C+Gil&amp;rft.au=Song%2C+Young+Min&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2022%2Ftc%2Fd2tc00318j&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:032-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-:032_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunday2019" class="citation journal cs1">Munday, Jeremy (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">"Tackling Climate Change through Radiative Cooling"</a>. <i>Joule</i>. <b>3</b> (9): 2057–2060. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Joule...3.2057M">2019Joule...3.2057M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">10.1016/j.joule.2019.07.010</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:201590290">201590290</a>. <q>If only 1%–2% of the Earth's surface were instead made to radiate at this rate rather than its current average value, the total heat fluxes into and away from the entire Earth would be balanced and warming would cease.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Tackling+Climate+Change+through+Radiative+Cooling&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=2057-2060&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A201590290%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2019.07.010&amp;rft_id=info%3Abibcode%2F2019Joule...3.2057M&amp;rft.aulast=Munday&amp;rft.aufirst=Jeremy&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2019.07.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:4-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:4_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanFeiLiNg2022" class="citation journal cs1">Han, Di; Fei, Jipeng; Li, Hong; Ng, Bing Feng (August 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0360132322005169">"The criteria to achieving sub-ambient radiative cooling and its limits in tropical daytime"</a>. <i>Building and Environment</i>. <b>221</b> (1): 109281. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022BuEnv.22109281H">2022BuEnv.22109281H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.buildenv.2022.109281">10.1016/j.buildenv.2022.109281</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Building+and+Environment&amp;rft.atitle=The+criteria+to+achieving+sub-ambient+radiative+cooling+and+its+limits+in+tropical+daytime&amp;rft.volume=221&amp;rft.issue=1&amp;rft.pages=109281&amp;rft.date=2022-08&amp;rft_id=info%3Adoi%2F10.1016%2Fj.buildenv.2022.109281&amp;rft_id=info%3Abibcode%2F2022BuEnv.22109281H&amp;rft.aulast=Han&amp;rft.aufirst=Di&amp;rft.au=Fei%2C+Jipeng&amp;rft.au=Li%2C+Hong&amp;rft.au=Ng%2C+Bing+Feng&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0360132322005169&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:6-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-:6_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:6_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangLinLiHuang2022" class="citation journal cs1">Huang, Jingyuan; Lin, Chongjia; Li, Yang; Huang, Baoling (May 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0017931021015362#fig0010">"Effects of humidity, aerosol, and cloud on subambient radiative cooling"</a>. <i>International Journal of Heat and Mass Transfer</i>. <b>186</b>: 122438. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022IJHMT.18622438H">2022IJHMT.18622438H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijheatmasstransfer.2021.122438">10.1016/j.ijheatmasstransfer.2021.122438</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245805048">245805048</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Heat+and+Mass+Transfer&amp;rft.atitle=Effects+of+humidity%2C+aerosol%2C+and+cloud+on+subambient+radiative+cooling&amp;rft.volume=186&amp;rft.pages=122438&amp;rft.date=2022-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245805048%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijheatmasstransfer.2021.122438&amp;rft_id=info%3Abibcode%2F2022IJHMT.18622438H&amp;rft.aulast=Huang&amp;rft.aufirst=Jingyuan&amp;rft.au=Lin%2C+Chongjia&amp;rft.au=Li%2C+Yang&amp;rft.au=Huang%2C+Baoling&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0017931021015362%23fig0010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:7-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-:7_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:7_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuZhangZhangJiao2020" class="citation journal cs1">Liu, Junwei; Zhang, Ji; Zhang, Debao; Jiao, Shifei; Xing, Jingcheng; Tang, Huajie; Zhang, Ying; Li, Shuai; Zhou, Zhihua; Zuo, Jian (September 2020). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1364032120302264">"Sub-ambient radiative cooling with wind cover"</a>. <i>Renewable and Sustainable Energy Reviews</i>. <b>130</b>: 109935. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020RSERv.13009935L">2020RSERv.13009935L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.rser.2020.109935">10.1016/j.rser.2020.109935</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219911962">219911962</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+and+Sustainable+Energy+Reviews&amp;rft.atitle=Sub-ambient+radiative+cooling+with+wind+cover&amp;rft.volume=130&amp;rft.pages=109935&amp;rft.date=2020-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219911962%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.rser.2020.109935&amp;rft_id=info%3Abibcode%2F2020RSERv.13009935L&amp;rft.aulast=Liu&amp;rft.aufirst=Junwei&amp;rft.au=Zhang%2C+Ji&amp;rft.au=Zhang%2C+Debao&amp;rft.au=Jiao%2C+Shifei&amp;rft.au=Xing%2C+Jingcheng&amp;rft.au=Tang%2C+Huajie&amp;rft.au=Zhang%2C+Ying&amp;rft.au=Li%2C+Shuai&amp;rft.au=Zhou%2C+Zhihua&amp;rft.au=Zuo%2C+Jian&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1364032120302264&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:54-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-:54_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:54_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:54_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:54_20-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:54_20-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:54_20-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:54_20-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:54_20-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-:54_20-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-:54_20-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-:54_20-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-:54_20-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-:54_20-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-:54_20-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-:54_20-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-:54_20-15"><sup><i><b>p</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenPangChenYan2022" class="citation journal cs1">Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">"Passive daytime radiative cooling: Fundamentals, material designs, and applications"</a>. <i>EcoMat</i>. <b>4</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">10.1002/eom2.12153</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240331557">240331557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EcoMat&amp;rft.atitle=Passive+daytime+radiative+cooling%3A+Fundamentals%2C+material+designs%2C+and+applications&amp;rft.volume=4&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1002%2Feom2.12153&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240331557%23id-name%3DS2CID&amp;rft.aulast=Chen&amp;rft.aufirst=Meijie&amp;rft.au=Pang%2C+Dan&amp;rft.au=Chen%2C+Xingyu&amp;rft.au=Yan%2C+Hongjie&amp;rft.au=Yang%2C+Yuan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Feom2.12153&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:14-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-:14_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:14_21-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:14_21-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangKimHu2022" class="citation journal cs1">Wang, Zhaochen; Kim, Sun-Kyung; Hu, Run (March 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.matt.2022.01.018">"Self-switchable radiative cooling"</a>. <i>Matter</i>. <b>5</b> (3): 780–782. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.matt.2022.01.018">10.1016/j.matt.2022.01.018</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:247329090">247329090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Matter&amp;rft.atitle=Self-switchable+radiative+cooling&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=780-782&amp;rft.date=2022-03&amp;rft_id=info%3Adoi%2F10.1016%2Fj.matt.2022.01.018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A247329090%23id-name%3DS2CID&amp;rft.aulast=Wang&amp;rft.aufirst=Zhaochen&amp;rft.au=Kim%2C+Sun-Kyung&amp;rft.au=Hu%2C+Run&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.matt.2022.01.018&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Yang-2020-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yang-2020_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangZhang2020" class="citation journal cs1">Yang, Yuan; Zhang, Yifan (2020). <a rel="nofollow" class="external text" href="https://par.nsf.gov/servlets/purl/10282838">"Passive daytime radiative cooling: Principle, application, and economic analysis"</a>. <i>MRS Energy &amp; Sustainability</i>. <b>7</b> (18). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1557%2Fmre.2020.18">10.1557/mre.2020.18</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220008145">220008145</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220927212513/https://par.nsf.gov/servlets/purl/10282838">Archived</a> from the original on 27 September 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">27 September</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MRS+Energy+%26+Sustainability&amp;rft.atitle=Passive+daytime+radiative+cooling%3A+Principle%2C+application%2C+and+economic+analysis&amp;rft.volume=7&amp;rft.issue=18&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.1557%2Fmre.2020.18&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220008145%23id-name%3DS2CID&amp;rft.aulast=Yang&amp;rft.aufirst=Yuan&amp;rft.au=Zhang%2C+Yifan&amp;rft_id=https%3A%2F%2Fpar.nsf.gov%2Fservlets%2Fpurl%2F10282838&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:41-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-:41_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.3m.com/3M/en_US/energy-conservation-us/applications/passive-radiative-cooling/">"What is 3M Passive Radiative Cooling?"</a>. <i>3M</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210922171222/https://www.3m.com/3M/en_US/energy-conservation-us/applications/passive-radiative-cooling/">Archived</a> from the original on 22 September 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">27 September</span> 2022</span>. <q>Passive Radiative Cooling is a natural phenomenon that only occurs at night in nature because all nature materials absorb more solar energy during the day than they are able to radiate to the sky.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=3M&amp;rft.atitle=What+is+3M+Passive+Radiative+Cooling%3F&amp;rft_id=https%3A%2F%2Fwww.3m.com%2F3M%2Fen_US%2Fenergy-conservation-us%2Fapplications%2Fpassive-radiative-cooling%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:1222-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1222_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1222_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangWuShiHu2021" class="citation journal cs1">Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">"A structural polymer for highly efficient all-day passive radiative cooling"</a>. <i>Nature Communications</i>. <b>12</b> (365): 365. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-20646-7">10.1038/s41467-020-20646-7</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">7809060</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33446648">33446648</a>. <q>Accordingly, designing and fabricating efficient PDRC with sufficiently high solar reflectance (𝜌¯solar) (λ ~ 0.3–2.5 μm) to minimize solar heat gain and simultaneously strong LWIR thermal emittance (ε¯LWIR) to maximize radiative heat loss is highly desirable. When the incoming radiative heat from the Sun is balanced by the outgoing radiative heat emission, the temperature of the Earth can reach its steady state.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+structural+polymer+for+highly+efficient+all-day+passive+radiative+cooling&amp;rft.volume=12&amp;rft.issue=365&amp;rft.pages=365&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F33446648&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-020-20646-7&amp;rft.aulast=Wang&amp;rft.aufirst=Tong&amp;rft.au=Wu%2C+Yi&amp;rft.au=Shi%2C+Lan&amp;rft.au=Hu%2C+Xinhua&amp;rft.au=Chen%2C+Min&amp;rft.au=Wu%2C+Limin&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuYaoHuangXu2022" class="citation journal cs1">Yu, Xinxian; Yao, Fengju; Huang, Wenjie; Xu, Dongyan; Chen, Chun (July 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0960148122007418">"Enhanced radiative cooling paint with broken glass bubbles"</a>. <i>Renewable Energy</i>. <b>194</b>: 129–136. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022REne..194..129Y">2022REne..194..129Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.renene.2022.05.094">10.1016/j.renene.2022.05.094</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248972097">248972097</a> &#8211; via Elsevier Science Direct. <q>Radiative cooling does not consume external energy but rather harvests coldness from outer space as a new renewable energy source.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+Energy&amp;rft.atitle=Enhanced+radiative+cooling+paint+with+broken+glass+bubbles&amp;rft.volume=194&amp;rft.pages=129-136&amp;rft.date=2022-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248972097%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.renene.2022.05.094&amp;rft_id=info%3Abibcode%2F2022REne..194..129Y&amp;rft.aulast=Yu&amp;rft.aufirst=Xinxian&amp;rft.au=Yao%2C+Fengju&amp;rft.au=Huang%2C+Wenjie&amp;rft.au=Xu%2C+Dongyan&amp;rft.au=Chen%2C+Chun&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0960148122007418&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMa2021" class="citation journal cs1">Ma, Hongchen (2021). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/abs/10.1021/acsami.1c02145">"Flexible Daytime Radiative Cooling Enhanced by Enabling Three-Phase Composites with Scattering Interfaces between Silica Microspheres and Hierarchical Porous Coatings"</a>. <i>ACS Appl. Mater. Interfaces</i>. <b>13</b> (16): 19282–19290. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.03902">2103.03902</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.1c02145">10.1021/acsami.1c02145</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33866783">33866783</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:232147880">232147880</a> &#8211; via ACS Publications. <q>Daytime radiative cooling has attracted considerable attention recently due to its tremendous potential for passively exploiting the coldness of the universe as clean and renewable energy.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Appl.+Mater.+Interfaces&amp;rft.atitle=Flexible+Daytime+Radiative+Cooling+Enhanced+by+Enabling+Three-Phase+Composites+with+Scattering+Interfaces+between+Silica+Microspheres+and+Hierarchical+Porous+Coatings&amp;rft.volume=13&amp;rft.issue=16&amp;rft.pages=19282-19290&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2103.03902&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A232147880%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33866783&amp;rft_id=info%3Adoi%2F10.1021%2Facsami.1c02145&amp;rft.aulast=Ma&amp;rft.aufirst=Hongchen&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Facsami.1c02145&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:212-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-:212_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAiliYinYang2021" class="citation journal cs1">Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (October 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12111379">"Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand"</a>. <i>Atmosphere</i>. <b>12</b> (11): 1379. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Atmos..12.1379A">2021Atmos..12.1379A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12111379">10.3390/atmos12111379</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Atmosphere&amp;rft.atitle=Global+Radiative+Sky+Cooling+Potential+Adjusted+for+Population+Density+and+Cooling+Demand&amp;rft.volume=12&amp;rft.issue=11&amp;rft.pages=1379&amp;rft.date=2021-10&amp;rft_id=info%3Adoi%2F10.3390%2Fatmos12111379&amp;rft_id=info%3Abibcode%2F2021Atmos..12.1379A&amp;rft.aulast=Aili&amp;rft.aufirst=Ablimit&amp;rft.au=Yin%2C+Xiaobo&amp;rft.au=Yang%2C+Ronggui&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fatmos12111379&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:35432-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-:35432_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeoJu_LeeSong2022" class="citation journal cs1">Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2022/tc/d2tc00318j">"Heat-shedding with photonic structures: radiative cooling and its potential"</a>. <i>Journal of Materials Chemistry C</i>. <b>10</b> (27): 9915–9937. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD2TC00318J">10.1039/D2TC00318J</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249695930">249695930</a> &#8211; via Royal Society of Chemistry.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry+C&amp;rft.atitle=Heat-shedding+with+photonic+structures%3A+radiative+cooling+and+its+potential&amp;rft.volume=10&amp;rft.issue=27&amp;rft.pages=9915-9937&amp;rft.date=2022-06&amp;rft_id=info%3Adoi%2F10.1039%2FD2TC00318J&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249695930%23id-name%3DS2CID&amp;rft.aulast=Heo&amp;rft.aufirst=Se-Yeon&amp;rft.au=Ju+Lee%2C+Gil&amp;rft.au=Song%2C+Young+Min&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2022%2Ftc%2Fd2tc00318j&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:542-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-:542_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenPangChenYan2022" class="citation journal cs1">Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">"Passive daytime radiative cooling: Fundamentals, material designs, and applications"</a>. <i>EcoMat</i>. <b>4</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Feom2.12153">10.1002/eom2.12153</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240331557">240331557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EcoMat&amp;rft.atitle=Passive+daytime+radiative+cooling%3A+Fundamentals%2C+material+designs%2C+and+applications&amp;rft.volume=4&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1002%2Feom2.12153&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240331557%23id-name%3DS2CID&amp;rft.aulast=Chen&amp;rft.aufirst=Meijie&amp;rft.au=Pang%2C+Dan&amp;rft.au=Chen%2C+Xingyu&amp;rft.au=Yan%2C+Hongjie&amp;rft.au=Yang%2C+Yuan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Feom2.12153&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:16-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-:16_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:16_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:16_30-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:16_30-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:16_30-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:16_30-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:16_30-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:16_30-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaiFanLi2022" class="citation journal cs1">Zhai, Huatian; Fan, Desong; Li, Qiang (September 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0927024822002732">"Scalable and paint-format colored coatings for passive radiative cooling"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>245</b>: 111853. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SEMSC.24511853Z">2022SEMSC.24511853Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2022.111853">10.1016/j.solmat.2022.111853</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249877164">249877164</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Scalable+and+paint-format+colored+coatings+for+passive+radiative+cooling&amp;rft.volume=245&amp;rft.pages=111853&amp;rft.date=2022-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249877164%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2022.111853&amp;rft_id=info%3Abibcode%2F2022SEMSC.24511853Z&amp;rft.aulast=Zhai&amp;rft.aufirst=Huatian&amp;rft.au=Fan%2C+Desong&amp;rft.au=Li%2C+Qiang&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0927024822002732&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:38-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-:38_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:38_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDangXiangYaoYang2022" class="citation journal cs1">Dang, Saichao; Xiang, Jingbo; Yao, Hongxin; Yang, Fan; Ye, Hong (March 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0378778822000329">"Color-preserving daytime passive radiative cooling based on Fe3+-doped Y2Ce2O7"</a>. <i>Energy and Buildings</i>. <b>259</b>: 111861. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022EneBu.25911861D">2022EneBu.25911861D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enbuild.2022.111861">10.1016/j.enbuild.2022.111861</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:246105880">246105880</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+and+Buildings&amp;rft.atitle=Color-preserving+daytime+passive+radiative+cooling+based+on+Fe3%2B-doped+Y2Ce2O7&amp;rft.volume=259&amp;rft.pages=111861&amp;rft.date=2022-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A246105880%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.enbuild.2022.111861&amp;rft_id=info%3Abibcode%2F2022EneBu.25911861D&amp;rft.aulast=Dang&amp;rft.aufirst=Saichao&amp;rft.au=Xiang%2C+Jingbo&amp;rft.au=Yao%2C+Hongxin&amp;rft.au=Yang%2C+Fan&amp;rft.au=Ye%2C+Hong&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378778822000329&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Raman-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Raman_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamanAnomaZhuRaphaeli2014" class="citation journal cs1">Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Raphaeli, Eden; Fan, Shanhui (2014). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/nature13883">"Passive Radiative Cooling Below Ambient air Temperature under Direct Sunlight"</a>. <i>Nature</i>. <b>515</b> (7528): 540–544. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Natur.515..540R">2014Natur.515..540R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature13883">10.1038/nature13883</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25428501">25428501</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4382732">4382732</a> &#8211; via nature.com.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Passive+Radiative+Cooling+Below+Ambient+air+Temperature+under+Direct+Sunlight&amp;rft.volume=515&amp;rft.issue=7528&amp;rft.pages=540-544&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1038%2Fnature13883&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4382732%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F25428501&amp;rft_id=info%3Abibcode%2F2014Natur.515..540R&amp;rft.aulast=Raman&amp;rft.aufirst=Aaswath+P.&amp;rft.au=Anoma%2C+Marc+Abou&amp;rft.au=Zhu%2C+Linxiao&amp;rft.au=Raphaeli%2C+Eden&amp;rft.au=Fan%2C+Shanhui&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnature13883&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Banik-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Banik_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Banik_33-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Banik_33-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Banik_33-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Banik_33-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Banik_33-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Banik_33-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanikAgrawalMeddebSergeev2021" class="citation journal cs1">Banik, Udayan; Agrawal, Ashutosh; Meddeb, Hosni; Sergeev, Oleg; Reininghaus, Nies; Götz-Köhler, Maximilian; Gehrke, Kai; Stührenberg, Jonas; Vehse, Martin; Sznajder, Maciej; Agert, Carsten (2021). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/abs/10.1021/acsami.1c04056">"Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling"</a>. <i>ACS Applied Materials &amp; Interfaces</i>. <b>13</b> (20): 24130–24137. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.1c04056">10.1021/acsami.1c04056</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33974398">33974398</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234471290">234471290</a> &#8211; via ACS Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Applied+Materials+%26+Interfaces&amp;rft.atitle=Efficient+Thin+Polymer+Coating+as+a+Selective+Thermal+Emitter+for+Passive+Daytime+Radiative+Cooling&amp;rft.volume=13&amp;rft.issue=20&amp;rft.pages=24130-24137&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234471290%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33974398&amp;rft_id=info%3Adoi%2F10.1021%2Facsami.1c04056&amp;rft.aulast=Banik&amp;rft.aufirst=Udayan&amp;rft.au=Agrawal%2C+Ashutosh&amp;rft.au=Meddeb%2C+Hosni&amp;rft.au=Sergeev%2C+Oleg&amp;rft.au=Reininghaus%2C+Nies&amp;rft.au=G%C3%B6tz-K%C3%B6hler%2C+Maximilian&amp;rft.au=Gehrke%2C+Kai&amp;rft.au=St%C3%BChrenberg%2C+Jonas&amp;rft.au=Vehse%2C+Martin&amp;rft.au=Sznajder%2C+Maciej&amp;rft.au=Agert%2C+Carsten&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Facsami.1c04056&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:32-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-:32_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:32_34-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:32_34-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:32_34-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkParkNieLee2022" class="citation journal cs1">Park, Chanil; Park, Choyeon; Nie, Xiao; Lee, Jaeho; Kim, Yong Seok; Yoo, Youngjae (2022). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/full/10.1021/acssuschemeng.2c01182">"Fully Organic and Flexible Biodegradable Emitter for Global Energy-Free Cooling Applications"</a>. <i>ACS Sustainable Chemistry &amp; Engineering</i>. <b>10</b> (21): 7091–7099. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facssuschemeng.2c01182">10.1021/acssuschemeng.2c01182</a> &#8211; via ACS Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Sustainable+Chemistry+%26+Engineering&amp;rft.atitle=Fully+Organic+and+Flexible+Biodegradable+Emitter+for+Global+Energy-Free+Cooling+Applications&amp;rft.volume=10&amp;rft.issue=21&amp;rft.pages=7091-7099&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1021%2Facssuschemeng.2c01182&amp;rft.aulast=Park&amp;rft.aufirst=Chanil&amp;rft.au=Park%2C+Choyeon&amp;rft.au=Nie%2C+Xiao&amp;rft.au=Lee%2C+Jaeho&amp;rft.au=Kim%2C+Yong+Seok&amp;rft.au=Yoo%2C+Youngjae&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Ffull%2F10.1021%2Facssuschemeng.2c01182&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMirandaRenaldiKhoslaMcCulloch2021" class="citation journal cs1">Miranda, Nicole D.; Renaldi, Renaldi; Khosla, Radhika; McCulloch, Malcolm D. (October 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1364032121006900">"Bibliometric analysis and landscape of actors in passive cooling research"</a>. <i>Renewable and Sustainable Energy Reviews</i>. <b>149</b>: 111406. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021RSERv.14911406M">2021RSERv.14911406M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.rser.2021.111406">10.1016/j.rser.2021.111406</a> &#8211; via Elsevier Science Direct. <q>In the last three years, however, publications on radiative cooling and solar control have been the most numerous and hence are promising technologies in the field.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+and+Sustainable+Energy+Reviews&amp;rft.atitle=Bibliometric+analysis+and+landscape+of+actors+in+passive+cooling+research&amp;rft.volume=149&amp;rft.pages=111406&amp;rft.date=2021-10&amp;rft_id=info%3Adoi%2F10.1016%2Fj.rser.2021.111406&amp;rft_id=info%3Abibcode%2F2021RSERv.14911406M&amp;rft.aulast=Miranda&amp;rft.aufirst=Nicole+D.&amp;rft.au=Renaldi%2C+Renaldi&amp;rft.au=Khosla%2C+Radhika&amp;rft.au=McCulloch%2C+Malcolm+D.&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1364032121006900&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Chen109829-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chen109829_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chen109829_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenWangQiuCao2021" class="citation journal cs1">Chen, Guoliang; Wang, Yaming; Qiu, Jun; Cao, Jianyun; Zou, Yongchun; Wang, Shuqi; Jia, Dechang; Zhou, Yu (August 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.matdes.2021.109829">"A facile bioinspired strategy for accelerating water collection enabled by passive radiative cooling and wettability engineering"</a>. <i>Materials &amp; Design</i>. <b>206</b>: 109829. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.matdes.2021.109829">10.1016/j.matdes.2021.109829</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236255835">236255835</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+%26+Design&amp;rft.atitle=A+facile+bioinspired+strategy+for+accelerating+water+collection+enabled+by+passive+radiative+cooling+and+wettability+engineering&amp;rft.volume=206&amp;rft.pages=109829&amp;rft.date=2021-08&amp;rft_id=info%3Adoi%2F10.1016%2Fj.matdes.2021.109829&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236255835%23id-name%3DS2CID&amp;rft.aulast=Chen&amp;rft.aufirst=Guoliang&amp;rft.au=Wang%2C+Yaming&amp;rft.au=Qiu%2C+Jun&amp;rft.au=Cao%2C+Jianyun&amp;rft.au=Zou%2C+Yongchun&amp;rft.au=Wang%2C+Shuqi&amp;rft.au=Jia%2C+Dechang&amp;rft.au=Zhou%2C+Yu&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.matdes.2021.109829&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:26-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-:26_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:26_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChangZhang2019" class="citation journal cs1">Chang, Kai; Zhang, Qingyuan (2019). <a rel="nofollow" class="external text" href="https://ynu.repo.nii.ac.jp/?action=repository_uri&amp;item_id=10221">"Modeling of downward longwave radiation and radiative cooling potential in China"</a>. <i>Journal of Renewable and Sustainable Energy</i>. <b>11</b> (6): 066501. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5117319">10.1063/1.5117319</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10131%2F00012884">10131/00012884</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:209774036">209774036</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Renewable+and+Sustainable+Energy&amp;rft.atitle=Modeling+of+downward+longwave+radiation+and+radiative+cooling+potential+in+China&amp;rft.volume=11&amp;rft.issue=6&amp;rft.pages=066501&amp;rft.date=2019&amp;rft_id=info%3Ahdl%2F10131%2F00012884&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A209774036%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.5117319&amp;rft.aulast=Chang&amp;rft.aufirst=Kai&amp;rft.au=Zhang%2C+Qingyuan&amp;rft_id=https%3A%2F%2Fynu.repo.nii.ac.jp%2F%3Faction%3Drepository_uri%26item_id%3D10221&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Munday-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Munday_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Munday_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Munday_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Munday_38-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Munday_38-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Munday_38-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Munday_38-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Munday_38-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Munday_38-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunday2019" class="citation journal cs1">Munday, Jeremy (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">"Tackling Climate Change through Radiative Cooling"</a>. <i>Joule</i>. <b>3</b> (9): 2057–2060. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Joule...3.2057M">2019Joule...3.2057M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">10.1016/j.joule.2019.07.010</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:201590290">201590290</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Tackling+Climate+Change+through+Radiative+Cooling&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=2057-2060&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A201590290%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2019.07.010&amp;rft_id=info%3Abibcode%2F2019Joule...3.2057M&amp;rft.aulast=Munday&amp;rft.aufirst=Jeremy&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2019.07.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:17-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-:17_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:17_39-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:17_39-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinYangTanFan2020" class="citation journal cs1">Yin, Xiaobo; Yang, Ronggui; Tan, Gang; Fan, Shanhui (November 2020). <a rel="nofollow" class="external text" href="https://www.science.org/doi/full/10.1126/science.abb0971">"Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source"</a>. <i>Science</i>. <b>370</b> (6518): 786–791. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Sci...370..786Y">2020Sci...370..786Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abb0971">10.1126/science.abb0971</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33184205">33184205</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226308213">226308213</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Terrestrial+radiative+cooling%3A+Using+the+cold+universe+as+a+renewable+and+sustainable+energy+source&amp;rft.volume=370&amp;rft.issue=6518&amp;rft.pages=786-791&amp;rft.date=2020-11&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.abb0971&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226308213%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33184205&amp;rft_id=info%3Abibcode%2F2020Sci...370..786Y&amp;rft.aulast=Yin&amp;rft.aufirst=Xiaobo&amp;rft.au=Yang%2C+Ronggui&amp;rft.au=Tan%2C+Gang&amp;rft.au=Fan%2C+Shanhui&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Ffull%2F10.1126%2Fscience.abb0971&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:12-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-:12_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:12_40-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:12_40-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:12_40-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:12_40-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:12_40-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:12_40-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDongHanWangZhang2022" class="citation journal cs1">Dong, Yan; Han, Han; Wang, Fuqiang; Zhang, Yingjie; Cheng, Ziming; Shi, Xuhang; Yan, Yujing (June 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0960148122005614">"A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method"</a>. <i>Renewable Energy</i>. <b>192</b>: 606–616. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022REne..192..606D">2022REne..192..606D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.renene.2022.04.093">10.1016/j.renene.2022.04.093</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+Energy&amp;rft.atitle=A+low-cost+sustainable+coating%3A+Improving+passive+daytime+radiative+cooling+performance+using+the+spectral+band+complementarity+method&amp;rft.volume=192&amp;rft.pages=606-616&amp;rft.date=2022-06&amp;rft_id=info%3Adoi%2F10.1016%2Fj.renene.2022.04.093&amp;rft_id=info%3Abibcode%2F2022REne..192..606D&amp;rft.aulast=Dong&amp;rft.aufirst=Yan&amp;rft.au=Han%2C+Han&amp;rft.au=Wang%2C+Fuqiang&amp;rft.au=Zhang%2C+Yingjie&amp;rft.au=Cheng%2C+Ziming&amp;rft.au=Shi%2C+Xuhang&amp;rft.au=Yan%2C+Yujing&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0960148122005614&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:10-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-:10_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:10_41-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:10_41-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:10_41-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:10_41-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuiLuoZhangSun2022" class="citation journal cs1">Cui, Yan; Luo, Xianyu; Zhang, Fenghua; Sun, Le; Jin, Nuo; Yang, Weiman (August 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1674200121002133">"Progress of passive daytime radiative cooling technologies towards commercial applications"</a>. <i>Particuology</i>. <b>67</b>: 57–67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.partic.2021.10.004">10.1016/j.partic.2021.10.004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:243468810">243468810</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Particuology&amp;rft.atitle=Progress+of+passive+daytime+radiative+cooling+technologies+towards+commercial+applications&amp;rft.volume=67&amp;rft.pages=57-67&amp;rft.date=2022-08&amp;rft_id=info%3Adoi%2F10.1016%2Fj.partic.2021.10.004&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A243468810%23id-name%3DS2CID&amp;rft.aulast=Cui&amp;rft.aufirst=Yan&amp;rft.au=Luo%2C+Xianyu&amp;rft.au=Zhang%2C+Fenghua&amp;rft.au=Sun%2C+Le&amp;rft.au=Jin%2C+Nuo&amp;rft.au=Yang%2C+Weiman&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1674200121002133&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLvChenLi2022" class="citation journal cs1">Lv, Jinpeng; Chen, Zhuo; Li, Xingji (April 2022). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/abs/10.1021/acsaem.1c03457">"Calcium Phosphate Paints for Full-Daytime Subambient Radiative Cooling"</a>. <i>ACS Applied Energy Materials</i>. <b>5</b> (4): 4117–4124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsaem.1c03457">10.1021/acsaem.1c03457</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:247986320">247986320</a> &#8211; via ACS Publications. <q>Passive radiative cooling is of great significance for energy-saving and global carbon neutrality because of its zero energy consumption, no pollution, and low cost.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Applied+Energy+Materials&amp;rft.atitle=Calcium+Phosphate+Paints+for+Full-Daytime+Subambient+Radiative+Cooling&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=4117-4124&amp;rft.date=2022-04&amp;rft_id=info%3Adoi%2F10.1021%2Facsaem.1c03457&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A247986320%23id-name%3DS2CID&amp;rft.aulast=Lv&amp;rft.aufirst=Jinpeng&amp;rft.au=Chen%2C+Zhuo&amp;rft.au=Li%2C+Xingji&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Facsaem.1c03457&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:45-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-:45_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:45_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenPangYan2022" class="citation journal cs1">Chen, Meijie; Pang, Dan; Yan, Hongjie (November 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1359431122010560">"Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres"</a>. <i>Applied Thermal Engineering</i>. <b>216</b>: 119125. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AppTE.21619125C">2022AppTE.21619125C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.applthermaleng.2022.119125">10.1016/j.applthermaleng.2022.119125</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251420566">251420566</a> &#8211; via Elsevier Science Direct. <q>One such promising alternative is radiative cooling, which is a ubiquitous process of losing surface heat through thermal radiation. Instead of releasing waste heat into ambient air as conventional cooling systems, radiative cooling passively discharges it into outer space.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Thermal+Engineering&amp;rft.atitle=Colored+passive+daytime+radiative+cooling+coatings+based+on+dielectric+and+plasmonic+spheres&amp;rft.volume=216&amp;rft.pages=119125&amp;rft.date=2022-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251420566%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.applthermaleng.2022.119125&amp;rft_id=info%3Abibcode%2F2022AppTE.21619125C&amp;rft.aulast=Chen&amp;rft.aufirst=Meijie&amp;rft.au=Pang%2C+Dan&amp;rft.au=Yan%2C+Hongjie&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1359431122010560&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:03-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-:03_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:03_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKovatsBrisley2021" class="citation journal cs1">Kovats, Sari; Brisley, Rachel (2021). Betts, R.A.; Howard, A.B.; Pearson, K.V. (eds.). <a rel="nofollow" class="external text" href="https://www.ukclimaterisk.org/wp-content/uploads/2021/06/CCRA3-Chapter-5-FINAL.pdf">"Health, Communities and the Built Environment"</a> <span class="cs1-format">(PDF)</span>. <i>The Third UK Climate Change Risk Assessment Technical Report</i>. Prepared for the Climate Change Committee, London: 38. <q>Although uptake may increase autonomously in the future, relying on air conditioning to deal with the risk is a potentially maladaptive solution, and it expels waste heat into the environment – thereby enhancing the urban heat island effect.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Third+UK+Climate+Change+Risk+Assessment+Technical+Report&amp;rft.atitle=Health%2C+Communities+and+the+Built+Environment&amp;rft.pages=38&amp;rft.date=2021&amp;rft.aulast=Kovats&amp;rft.aufirst=Sari&amp;rft.au=Brisley%2C+Rachel&amp;rft_id=https%3A%2F%2Fwww.ukclimaterisk.org%2Fwp-content%2Fuploads%2F2021%2F06%2FCCRA3-Chapter-5-FINAL.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenChangChenChen2021" class="citation journal cs1">Chen, Shau-Liang; Chang, Sih-Wei; Chen, Yen-Jen; Chen, Hsuen-Li (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs43247-021-00278-5">"Possible warming effect of fine particulate matter in the atmosphere"</a>. <i>Communications Earth &amp; Environment</i>. <b>2</b> (1): 208. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ComEE...2..208C">2021ComEE...2..208C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs43247-021-00278-5">10.1038/s43247-021-00278-5</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:238234137">238234137</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+Earth+%26+Environment&amp;rft.atitle=Possible+warming+effect+of+fine+particulate+matter+in+the+atmosphere&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=208&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A238234137%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs43247-021-00278-5&amp;rft_id=info%3Abibcode%2F2021ComEE...2..208C&amp;rft.aulast=Chen&amp;rft.aufirst=Shau-Liang&amp;rft.au=Chang%2C+Sih-Wei&amp;rft.au=Chen%2C+Yen-Jen&amp;rft.au=Chen%2C+Hsuen-Li&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fs43247-021-00278-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:122-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-:122_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangWuShiHu2021" class="citation journal cs1">Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">"A structural polymer for highly efficient all-day passive radiative cooling"</a>. <i>Nature Communications</i>. <b>12</b> (365): 365. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-20646-7">10.1038/s41467-020-20646-7</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809060">7809060</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33446648">33446648</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+structural+polymer+for+highly+efficient+all-day+passive+radiative+cooling&amp;rft.volume=12&amp;rft.issue=365&amp;rft.pages=365&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F33446648&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-020-20646-7&amp;rft.aulast=Wang&amp;rft.aufirst=Tong&amp;rft.au=Wu%2C+Yi&amp;rft.au=Shi%2C+Lan&amp;rft.au=Hu%2C+Xinhua&amp;rft.au=Chen%2C+Min&amp;rft.au=Wu%2C+Limin&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7809060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:46-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-:46_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoonChaeSeoChoi2022" class="citation journal cs1">Yoon, Siwon; Chae, Dongwoo; Seo, Junyong; Choi, Minwoo; Lim, Hangyu; Lee, Heon; Lee, Bong Jae (August 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1359431122006871">"Development of a device for characterizing radiative cooling performance"</a>. <i>Applied Thermal Engineering</i>. <b>213</b>: 118744. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AppTE.21318744Y">2022AppTE.21318744Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.applthermaleng.2022.118744">10.1016/j.applthermaleng.2022.118744</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249330437">249330437</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Thermal+Engineering&amp;rft.atitle=Development+of+a+device+for+characterizing+radiative+cooling+performance&amp;rft.volume=213&amp;rft.pages=118744&amp;rft.date=2022-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249330437%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.applthermaleng.2022.118744&amp;rft_id=info%3Abibcode%2F2022AppTE.21318744Y&amp;rft.aulast=Yoon&amp;rft.aufirst=Siwon&amp;rft.au=Chae%2C+Dongwoo&amp;rft.au=Seo%2C+Junyong&amp;rft.au=Choi%2C+Minwoo&amp;rft.au=Lim%2C+Hangyu&amp;rft.au=Lee%2C+Heon&amp;rft.au=Lee%2C+Bong+Jae&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1359431122006871&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:40-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-:40_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:40_48-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:40_48-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:40_48-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:40_48-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:40_48-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimsekMandalRamanPilon2022" class="citation journal cs1">Simsek, Eylul; Mandal, Jyotirmoy; Raman, Aaswath P.; Pilon, Laurent (December 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijheatmasstransfer.2022.123399">"Dropwise condensation reduces selectivity of sky-facing radiative cooling surfaces"</a>. <i>International Journal of Heat and Mass Transfer</i>. <b>198</b>: 123399. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022IJHMT.19823399S">2022IJHMT.19823399S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijheatmasstransfer.2022.123399">10.1016/j.ijheatmasstransfer.2022.123399</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252242911">252242911</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Heat+and+Mass+Transfer&amp;rft.atitle=Dropwise+condensation+reduces+selectivity+of+sky-facing+radiative+cooling+surfaces&amp;rft.volume=198&amp;rft.pages=123399&amp;rft.date=2022-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252242911%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijheatmasstransfer.2022.123399&amp;rft_id=info%3Abibcode%2F2022IJHMT.19823399S&amp;rft.aulast=Simsek&amp;rft.aufirst=Eylul&amp;rft.au=Mandal%2C+Jyotirmoy&amp;rft.au=Raman%2C+Aaswath+P.&amp;rft.au=Pilon%2C+Laurent&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.ijheatmasstransfer.2022.123399&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:43-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-:43_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:43_49-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:43_49-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouRadaTianHan2022" class="citation journal cs1">Zhou, Lyu; Rada, Jacob; Tian, Yanpei; Han, Yu; Lai, Zhiping; McCabe, Matthew F.; Gan, Qiaoqiang (September 2022). <a rel="nofollow" class="external text" href="https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.6.090201#fulltext">"Radiative cooling for energy sustainability: Materials, systems, and applications"</a>. <i>Physical Review Materials</i>. <b>6</b> (9): 090201. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvM...6i0201Z">2022PhRvM...6i0201Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevMaterials.6.090201">10.1103/PhysRevMaterials.6.090201</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10754%2F681638">10754/681638</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252416825">252416825</a> &#8211; via APS Physics.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Materials&amp;rft.atitle=Radiative+cooling+for+energy+sustainability%3A+Materials%2C+systems%2C+and+applications&amp;rft.volume=6&amp;rft.issue=9&amp;rft.pages=090201&amp;rft.date=2022-09&amp;rft_id=info%3Ahdl%2F10754%2F681638&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252416825%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevMaterials.6.090201&amp;rft_id=info%3Abibcode%2F2022PhRvM...6i0201Z&amp;rft.aulast=Zhou&amp;rft.aufirst=Lyu&amp;rft.au=Rada%2C+Jacob&amp;rft.au=Tian%2C+Yanpei&amp;rft.au=Han%2C+Yu&amp;rft.au=Lai%2C+Zhiping&amp;rft.au=McCabe%2C+Matthew+F.&amp;rft.au=Gan%2C+Qiaoqiang&amp;rft_id=https%3A%2F%2Fjournals.aps.org%2Fprmaterials%2Fabstract%2F10.1103%2FPhysRevMaterials.6.090201%23fulltext&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuLeroyZhangPatel2022" class="citation journal cs1">Lu, Zhengmao; Leroy, Arny; Zhang, Lenan; Patel, Jatin J.; Wang, Evelyn N.; Grossman, Jeffrey C. (September 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2022.101068">"Significantly enhanced sub-ambient passive cooling enabled by evaporation, radiation, and insulation"</a>. <i>Cell Reports Physical Science</i>. <b>3</b> (10): 101068. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022CRPS....301068L">2022CRPS....301068L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2022.101068">10.1016/j.xcrp.2022.101068</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F146578">1721.1/146578</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252411940">252411940</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cell+Reports+Physical+Science&amp;rft.atitle=Significantly+enhanced+sub-ambient+passive+cooling+enabled+by+evaporation%2C+radiation%2C+and+insulation&amp;rft.volume=3&amp;rft.issue=10&amp;rft.pages=101068&amp;rft.date=2022-09&amp;rft_id=info%3Ahdl%2F1721.1%2F146578&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252411940%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.xcrp.2022.101068&amp;rft_id=info%3Abibcode%2F2022CRPS....301068L&amp;rft.aulast=Lu&amp;rft.aufirst=Zhengmao&amp;rft.au=Leroy%2C+Arny&amp;rft.au=Zhang%2C+Lenan&amp;rft.au=Patel%2C+Jatin+J.&amp;rft.au=Wang%2C+Evelyn+N.&amp;rft.au=Grossman%2C+Jeffrey+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.xcrp.2022.101068&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:42-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-:42_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLyLiuSongXiao2022" class="citation journal cs1">Ly, Kally Chein Sheng; Liu, Xianghui; Song, Xiaokun; Xiao, Chengyu; Wang, Pan; Zhou, Han; Fan, Tongxiang (May 2022). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202203789">"A Dual-Mode Infrared Asymmetric Photonic Structure for All-Season Passive Radiative Cooling and Heating"</a>. <i>Advanced Functional Materials</i>. <b>32</b> (31). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.202203789">10.1002/adfm.202203789</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248804080">248804080</a> &#8211; via Wiley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=A+Dual-Mode+Infrared+Asymmetric+Photonic+Structure+for+All-Season+Passive+Radiative+Cooling+and+Heating&amp;rft.volume=32&amp;rft.issue=31&amp;rft.date=2022-05&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.202203789&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248804080%23id-name%3DS2CID&amp;rft.aulast=Ly&amp;rft.aufirst=Kally+Chein+Sheng&amp;rft.au=Liu%2C+Xianghui&amp;rft.au=Song%2C+Xiaokun&amp;rft.au=Xiao%2C+Chengyu&amp;rft.au=Wang%2C+Pan&amp;rft.au=Zhou%2C+Han&amp;rft.au=Fan%2C+Tongxiang&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Fadfm.202203789&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:47-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-:47_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:47_52-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarkarBijarniya2020" class="citation journal cs1">Sarkar, Jahar; Bijarniya, Jay Prakash (December 2020). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S1364032120305918">"Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India"</a>. <i>Renewable and Sustainable Energy Reviews</i>. <b>134</b>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020RSERv.13410303B">2020RSERv.13410303B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.rser.2020.110303">10.1016/j.rser.2020.110303</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+and+Sustainable+Energy+Reviews&amp;rft.atitle=Climate+change+effect+on+the+cooling+performance+and+assessment+of+passive+daytime+photonic+radiative+cooler+in+India&amp;rft.volume=134&amp;rft.date=2020-12&amp;rft_id=info%3Adoi%2F10.1016%2Fj.rser.2020.110303&amp;rft_id=info%3Abibcode%2F2020RSERv.13410303B&amp;rft.aulast=Sarkar&amp;rft.aufirst=Jahar&amp;rft.au=Bijarniya%2C+Jay+Prakash&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1364032120305918&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:48-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-:48_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiPetersonCoimbra2019" class="citation journal cs1">Li, Mengying; Peterson, Hannah B.; Coimbra, Carlos F. M. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5094510">"Radiative cooling resource maps for the contiguous United States"</a>. <i>Journal of Renewable and Sustainable Energy</i>. <b>11</b> (3): 036501. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.5094510">10.1063/1.5094510</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:197617551">197617551</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Renewable+and+Sustainable+Energy&amp;rft.atitle=Radiative+cooling+resource+maps+for+the+contiguous+United+States&amp;rft.volume=11&amp;rft.issue=3&amp;rft.pages=036501&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1063%2F1.5094510&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A197617551%23id-name%3DS2CID&amp;rft.aulast=Li&amp;rft.aufirst=Mengying&amp;rft.au=Peterson%2C+Hannah+B.&amp;rft.au=Coimbra%2C+Carlos+F.+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.5094510&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:49-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-:49_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVilàMedranoCastell2021" class="citation journal cs1">Vilà, Roger; Medrano, Marc; Castell, Albert (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12091119">"Mapping Nighttime and All-Day Radiative Cooling Potential in Europe and the Influence of Solar Reflectivity"</a>. <i>Atmosphere</i>. <b>12</b> (9): 1119. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Atmos..12.1119V">2021Atmos..12.1119V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos12091119">10.3390/atmos12091119</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2073-4433">2073-4433</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Atmosphere&amp;rft.atitle=Mapping+Nighttime+and+All-Day+Radiative+Cooling+Potential+in+Europe+and+the+Influence+of+Solar+Reflectivity&amp;rft.volume=12&amp;rft.issue=9&amp;rft.pages=1119&amp;rft.date=2021&amp;rft.issn=2073-4433&amp;rft_id=info%3Adoi%2F10.3390%2Fatmos12091119&amp;rft_id=info%3Abibcode%2F2021Atmos..12.1119V&amp;rft.aulast=Vil%C3%A0&amp;rft.aufirst=Roger&amp;rft.au=Medrano%2C+Marc&amp;rft.au=Castell%2C+Albert&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fatmos12091119&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-Weng_2021-55"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weng_2021_55-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weng_2021_55-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Weng_2021_55-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWengZhangJiangZhao2021" class="citation journal cs1">Weng, Yangziwan; Zhang, Weifeng; Jiang, Yi; Zhao, Weiyun; Deng, Yuan (September 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0927024821002488">"Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>230</b>: 111205. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SEMSC.23011205W">2021SEMSC.23011205W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2021.111205">10.1016/j.solmat.2021.111205</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Effective+daytime+radiative+cooling+via+a+template+method+based+PDMS+sponge+emitter+with+synergistic+thermo-optical+activity&amp;rft.volume=230&amp;rft.pages=111205&amp;rft.date=2021-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2021.111205&amp;rft_id=info%3Abibcode%2F2021SEMSC.23011205W&amp;rft.aulast=Weng&amp;rft.aufirst=Yangziwan&amp;rft.au=Zhang%2C+Weifeng&amp;rft.au=Jiang%2C+Yi&amp;rft.au=Zhao%2C+Weiyun&amp;rft.au=Deng%2C+Yuan&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0927024821002488&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenPangYan2022" class="citation journal cs1">Chen, Meijie; Pang, Dan; Yan, Hongjie (April 2022). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/360269482">"Sustainable and self-cleaning bilayer coatings for high-efficiency daytime radiative cooling"</a>. <i>Journal of Materials Chemistry</i>. <b>10</b> (2).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry&amp;rft.atitle=Sustainable+and+self-cleaning+bilayer+coatings+for+high-efficiency+daytime+radiative+cooling&amp;rft.volume=10&amp;rft.issue=2&amp;rft.date=2022-04&amp;rft.aulast=Chen&amp;rft.aufirst=Meijie&amp;rft.au=Pang%2C+Dan&amp;rft.au=Yan%2C+Hongjie&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F360269482&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarlosenaAnduezaTorresIrulegi2021" class="citation journal cs1">Carlosena, Laura; Andueza, Ángel; Torres, Luis; Irulegi, Olatz; Hernández-Minguillón, Rufino J.; Sevilla, Joaquín; Santamouris, Mattheos (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2021.111209">"Experimental development and testing of low-cost scalable radiative cooling materials for building applications"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>230</b>: 111209. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SEMSC.23011209C">2021SEMSC.23011209C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2021.111209">10.1016/j.solmat.2021.111209</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10810%2F53717">10810/53717</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Experimental+development+and+testing+of+low-cost+scalable+radiative+cooling+materials+for+building+applications&amp;rft.volume=230&amp;rft.pages=111209&amp;rft.date=2021&amp;rft_id=info%3Ahdl%2F10810%2F53717&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2021.111209&amp;rft_id=info%3Abibcode%2F2021SEMSC.23011209C&amp;rft.aulast=Carlosena&amp;rft.aufirst=Laura&amp;rft.au=Andueza%2C+%C3%81ngel&amp;rft.au=Torres%2C+Luis&amp;rft.au=Irulegi%2C+Olatz&amp;rft.au=Hern%C3%A1ndez-Minguill%C3%B3n%2C+Rufino+J.&amp;rft.au=Sevilla%2C+Joaqu%C3%ADn&amp;rft.au=Santamouris%2C+Mattheos&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.solmat.2021.111209&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangMandalRaman2021" class="citation journal cs1">Huang, Xin; Mandal, Aaswath; Raman, Huang (November 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JPE.12.012112">"Do-it-yourself radiative cooler as a radiative cooling standard and cooling component for device design"</a>. <i>Photonics Energy</i>. <b>12</b> (1). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JPE.12.012112">10.1117/1.JPE.12.012112</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244383874">244383874</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Photonics+Energy&amp;rft.atitle=Do-it-yourself+radiative+cooler+as+a+radiative+cooling+standard+and+cooling+component+for+device+design&amp;rft.volume=12&amp;rft.issue=1&amp;rft.date=2021-11&amp;rft_id=info%3Adoi%2F10.1117%2F1.JPE.12.012112&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244383874%23id-name%3DS2CID&amp;rft.aulast=Huang&amp;rft.aufirst=Xin&amp;rft.au=Mandal%2C+Aaswath&amp;rft.au=Raman%2C+Huang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1117%252F1.JPE.12.012112&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:29-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-:29_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:29_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNieTanLiWei2022" class="citation journal cs1">Nie, Shijin; Tan, Xinyu; Li, Xinyi; Wei, Ke; Xiao, Ting; Jiang, Lihua; Geng, Jialing; Liu, Yuan; Hu, Weiwei; Chen, Xiaobo (November 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0266353822004924">"Facile and environmentally-friendly fabrication of robust composite film with superhydrophobicity and radiative cooling property"</a>. <i>Composites Science and Technology</i>. <b>230</b> (1): 109750. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.compscitech.2022.109750">10.1016/j.compscitech.2022.109750</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252425283">252425283</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Composites+Science+and+Technology&amp;rft.atitle=Facile+and+environmentally-friendly+fabrication+of+robust+composite+film+with+superhydrophobicity+and+radiative+cooling+property&amp;rft.volume=230&amp;rft.issue=1&amp;rft.pages=109750&amp;rft.date=2022-11&amp;rft_id=info%3Adoi%2F10.1016%2Fj.compscitech.2022.109750&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252425283%23id-name%3DS2CID&amp;rft.aulast=Nie&amp;rft.aufirst=Shijin&amp;rft.au=Tan%2C+Xinyu&amp;rft.au=Li%2C+Xinyi&amp;rft.au=Wei%2C+Ke&amp;rft.au=Xiao%2C+Ting&amp;rft.au=Jiang%2C+Lihua&amp;rft.au=Geng%2C+Jialing&amp;rft.au=Liu%2C+Yuan&amp;rft.au=Hu%2C+Weiwei&amp;rft.au=Chen%2C+Xiaobo&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0266353822004924&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:9-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-:9_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:9_60-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:9_60-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangZhangChenGu2022" class="citation journal cs1">Wang, Tong; Zhang, Yinan; Chen, Min; Gu, Min; Wu, Limin (March 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2022.100782">"Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating"</a>. <i>Cell Reports Physical Science</i>. <b>3</b> (3): 100782. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022CRPS....300782W">2022CRPS....300782W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2022.100782">10.1016/j.xcrp.2022.100782</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:247038918">247038918</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cell+Reports+Physical+Science&amp;rft.atitle=Scalable+and+waterborne+titanium-dioxide-free+thermochromic+coatings+for+self-adaptive+passive+radiative+cooling+and+heating&amp;rft.volume=3&amp;rft.issue=3&amp;rft.pages=100782&amp;rft.date=2022-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A247038918%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.xcrp.2022.100782&amp;rft_id=info%3Abibcode%2F2022CRPS....300782W&amp;rft.aulast=Wang&amp;rft.aufirst=Tong&amp;rft.au=Zhang%2C+Yinan&amp;rft.au=Chen%2C+Min&amp;rft.au=Gu%2C+Min&amp;rft.au=Wu%2C+Limin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.xcrp.2022.100782&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:28-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-:28_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:28_61-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:28_61-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuZhangHouPan2022" class="citation journal cs1">Liu, Xianhu; Zhang, Mingtao; Hou, Yangzhe; Pan, Yamin; Liu, Chuntai; Shen, Changyu (September 2022). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202207414">"Hierarchically Superhydrophobic Stereo-Complex Poly (Lactic Acid) Aerogel for Daytime Radiative Cooling"</a>. <i>Advanced Functional Materials</i>. <b>32</b> (46). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.202207414">10.1002/adfm.202207414</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252076428">252076428</a> &#8211; via Wiley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Hierarchically+Superhydrophobic+Stereo-Complex+Poly+%28Lactic+Acid%29+Aerogel+for+Daytime+Radiative+Cooling&amp;rft.volume=32&amp;rft.issue=46&amp;rft.date=2022-09&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.202207414&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252076428%23id-name%3DS2CID&amp;rft.aulast=Liu&amp;rft.aufirst=Xianhu&amp;rft.au=Zhang%2C+Mingtao&amp;rft.au=Hou%2C+Yangzhe&amp;rft.au=Pan%2C+Yamin&amp;rft.au=Liu%2C+Chuntai&amp;rft.au=Shen%2C+Changyu&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Fadfm.202207414&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:30-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-:30_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:30_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFanXueGuoWang2022" class="citation journal cs1">Fan, Ting-Ting; Xue, Chao-Hua; Guo, Xiao-Jing; Wang, Hui-Di; Huang, Meng-Chen; Zhang, Dong-Mei; Deng, Fu-Quan (May 2022). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s10853-022-07292-8">"Eco-friendly preparation of durable superhydrophobic porous film for daytime radiative cooling"</a>. <i>Journal of Materials Science</i>. <b>57</b> (22): 10425–10443. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022JMatS..5710425F">2022JMatS..5710425F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10853-022-07292-8">10.1007/s10853-022-07292-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249020815">249020815</a> &#8211; via Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Science&amp;rft.atitle=Eco-friendly+preparation+of+durable+superhydrophobic+porous+film+for+daytime+radiative+cooling&amp;rft.volume=57&amp;rft.issue=22&amp;rft.pages=10425-10443&amp;rft.date=2022-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249020815%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10853-022-07292-8&amp;rft_id=info%3Abibcode%2F2022JMatS..5710425F&amp;rft.aulast=Fan&amp;rft.aufirst=Ting-Ting&amp;rft.au=Xue%2C+Chao-Hua&amp;rft.au=Guo%2C+Xiao-Jing&amp;rft.au=Wang%2C+Hui-Di&amp;rft.au=Huang%2C+Meng-Chen&amp;rft.au=Zhang%2C+Dong-Mei&amp;rft.au=Deng%2C+Fu-Quan&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10853-022-07292-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:31-63"><span class="mw-cite-backlink">^ <a href="#cite_ref-:31_63-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:31_63-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:31_63-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhongZhangYuanXu2023" class="citation journal cs1">Zhong, Shenjie; Zhang, Jiawen; Yuan, Shuaixia; Xu, Tianqi; Zhang, Xun; Xu, Lang; Zuo, Tian; Cai, Ying; Yi, Lingmin (January 2023). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S1385894722040396">"Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling"</a>. <i>Chemical Engineering Journal</i>. <b>451</b> (1): 138558. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023ChEnJ.45138558Z">2023ChEnJ.45138558Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cej.2022.138558">10.1016/j.cej.2022.138558</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251488725">251488725</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Engineering+Journal&amp;rft.atitle=Self-assembling+hierarchical+flexible+cellulose+films+assisted+by+electrostatic+field+for+passive+daytime+radiative+cooling&amp;rft.volume=451&amp;rft.issue=1&amp;rft.pages=138558&amp;rft.date=2023-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251488725%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cej.2022.138558&amp;rft_id=info%3Abibcode%2F2023ChEnJ.45138558Z&amp;rft.aulast=Zhong&amp;rft.aufirst=Shenjie&amp;rft.au=Zhang%2C+Jiawen&amp;rft.au=Yuan%2C+Shuaixia&amp;rft.au=Xu%2C+Tianqi&amp;rft.au=Zhang%2C+Xun&amp;rft.au=Xu%2C+Lang&amp;rft.au=Zuo%2C+Tian&amp;rft.au=Cai%2C+Ying&amp;rft.au=Yi%2C+Lingmin&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1385894722040396&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:11-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-:11_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:11_64-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangChenCaiLuan2021" class="citation journal cs1">Zhang, Yinan; Chen, Xi; Cai, Boyuan; Luan, Haitao; Zhang, Qiming; Gu, Min (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadpr.202000106">"Photonics Empowered Passive Radiative Cooling"</a>. <i>Advanced Photonics Research</i>. <b>2</b> (4). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadpr.202000106">10.1002/adpr.202000106</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233568826">233568826</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Photonics+Research&amp;rft.atitle=Photonics+Empowered+Passive+Radiative+Cooling&amp;rft.volume=2&amp;rft.issue=4&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1002%2Fadpr.202000106&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233568826%23id-name%3DS2CID&amp;rft.aulast=Zhang&amp;rft.aufirst=Yinan&amp;rft.au=Chen%2C+Xi&amp;rft.au=Cai%2C+Boyuan&amp;rft.au=Luan%2C+Haitao&amp;rft.au=Zhang%2C+Qiming&amp;rft.au=Gu%2C+Min&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fadpr.202000106&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:2-65"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_65-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_65-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_65-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangLyLiuChen2020" class="citation journal cs1">Zhang, Haiwen; Ly, Kally C. S.; Liu, Xianghui; Chen, Zhihan; Yan, Max; Wu, Zilong; Wang, Xin; Zheng, Yuebeng; Zhou, Han; Fan, Tongxiang (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334532">"Biologically inspired flexible photonic films for efficient passive radiative cooling"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>117</b> (26): 14657–14666. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PNAS..11714657Z">2020PNAS..11714657Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.2001802117">10.1073/pnas.2001802117</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334532">7334532</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32541048">32541048</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.atitle=Biologically+inspired+flexible+photonic+films+for+efficient+passive+radiative+cooling&amp;rft.volume=117&amp;rft.issue=26&amp;rft.pages=14657-14666&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7334532%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F32541048&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.2001802117&amp;rft_id=info%3Abibcode%2F2020PNAS..11714657Z&amp;rft.aulast=Zhang&amp;rft.aufirst=Haiwen&amp;rft.au=Ly%2C+Kally+C.+S.&amp;rft.au=Liu%2C+Xianghui&amp;rft.au=Chen%2C+Zhihan&amp;rft.au=Yan%2C+Max&amp;rft.au=Wu%2C+Zilong&amp;rft.au=Wang%2C+Xin&amp;rft.au=Zheng%2C+Yuebeng&amp;rft.au=Zhou%2C+Han&amp;rft.au=Fan%2C+Tongxiang&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7334532&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:23-66"><span class="mw-cite-backlink">^ <a href="#cite_ref-:23_66-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:23_66-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:23_66-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:23_66-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:23_66-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMandalYangYuRaman2020" class="citation journal cs1">Mandal, Jyotirmoy; Yang, Yuan; Yu, Nanfung; Raman, Aaswath P. (July 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2020.04.010">"Paints as a Scalable and Effective Radiative Cooling Technology for Buildings"</a>. <i>Joule</i>. <b>4</b> (7): 1350–1356. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Joule...4.1350M">2020Joule...4.1350M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2020.04.010">10.1016/j.joule.2020.04.010</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219749984">219749984</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Paints+as+a+Scalable+and+Effective+Radiative+Cooling+Technology+for+Buildings&amp;rft.volume=4&amp;rft.issue=7&amp;rft.pages=1350-1356&amp;rft.date=2020-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219749984%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2020.04.010&amp;rft_id=info%3Abibcode%2F2020Joule...4.1350M&amp;rft.aulast=Mandal&amp;rft.aufirst=Jyotirmoy&amp;rft.au=Yang%2C+Yuan&amp;rft.au=Yu%2C+Nanfung&amp;rft.au=Raman%2C+Aaswath+P.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2020.04.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevkinSvecFréchet2009" class="citation journal cs1">Levkin, Pavel A.; Svec, Frantisek; Fréchet, Jean M. J. (23 June 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760971">"Porous Polymer Coatings: a Versatile Approach to Superhydrophobic Surfaces"</a>. <i>Advanced Functional Materials</i>. <b>19</b> (12): 1993–1998. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200801916">10.1002/adfm.200801916</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1616-301X">1616-301X</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760971">2760971</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20160978">20160978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Porous+Polymer+Coatings%3A+a+Versatile+Approach+to+Superhydrophobic+Surfaces&amp;rft.volume=19&amp;rft.issue=12&amp;rft.pages=1993-1998&amp;rft.date=2009-06-23&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2760971%23id-name%3DPMC&amp;rft.issn=1616-301X&amp;rft_id=info%3Apmid%2F20160978&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200801916&amp;rft.aulast=Levkin&amp;rft.aufirst=Pavel+A.&amp;rft.au=Svec%2C+Frantisek&amp;rft.au=Fr%C3%A9chet%2C+Jean+M.+J.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2760971&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.1021/acsami.0c14792.s001">"Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling"</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.0c14792.s001">10.1021/acsami.0c14792.s001</a><span class="reference-accessdate">. Retrieved <span class="nowrap">21 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Cross-Linked+Porous+Polymeric+Coating+without+a+Metal-Reflective+Layer+for+Sub-Ambient+Radiative+Cooling&amp;rft_id=info%3Adoi%2F10.1021%2Facsami.0c14792.s001&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1021%2Facsami.0c14792.s001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaoLiLiuLiu2022" class="citation journal cs1">Gao, Shilun; Li, Zhenxi; Liu, Nian; Liu, Guoliang; Yang, Huabin; Cao, Peng-Fei (August 2022). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202202013">"Are Porous Polymers Practical to Protect Li-Metal Anodes? - Current Strategies and Future Opportunities"</a>. <i>Advanced Functional Materials</i>. <b>32</b> (31). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.202202013">10.1002/adfm.202202013</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1616-301X">1616-301X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249557441">249557441</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Are+Porous+Polymers+Practical+to+Protect+Li-Metal+Anodes%3F+-+Current+Strategies+and+Future+Opportunities&amp;rft.volume=32&amp;rft.issue=31&amp;rft.date=2022-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249557441%23id-name%3DS2CID&amp;rft.issn=1616-301X&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.202202013&amp;rft.aulast=Gao&amp;rft.aufirst=Shilun&amp;rft.au=Li%2C+Zhenxi&amp;rft.au=Liu%2C+Nian&amp;rft.au=Liu%2C+Guoliang&amp;rft.au=Yang%2C+Huabin&amp;rft.au=Cao%2C+Peng-Fei&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fadfm.202202013&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiganyanunPlumleyHanHsu2018" class="citation journal cs1">Atiganyanun, Sarun; Plumley, John B.; Han, Seok Jun; Hsu, Kevin; Cytrynbaum, Jacob; Peng, Thomas L.; Han, Sang M.; Han, Sang Eon (February 2018). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b01492">"Effective Radiative Cooling by Paint-Format Microsphere-Based Photonic Random Media"</a>. <i>ACS Photonics</i>. <b>5</b> (4): 1181–1187. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsphotonics.7b01492">10.1021/acsphotonics.7b01492</a> &#8211; via ACS Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Photonics&amp;rft.atitle=Effective+Radiative+Cooling+by+Paint-Format+Microsphere-Based+Photonic+Random+Media&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=1181-1187&amp;rft.date=2018-02&amp;rft_id=info%3Adoi%2F10.1021%2Facsphotonics.7b01492&amp;rft.aulast=Atiganyanun&amp;rft.aufirst=Sarun&amp;rft.au=Plumley%2C+John+B.&amp;rft.au=Han%2C+Seok+Jun&amp;rft.au=Hsu%2C+Kevin&amp;rft.au=Cytrynbaum%2C+Jacob&amp;rft.au=Peng%2C+Thomas+L.&amp;rft.au=Han%2C+Sang+M.&amp;rft.au=Han%2C+Sang+Eon&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Facsphotonics.7b01492&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:25-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-:25_71-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiWangLiuHuang2019" class="citation journal cs1">Li, Na; Wang, Junfeng; Liu, Defang; Huang, Xia; Xu, Zhikui; Zhang, Chenyang; Zhang, Zhijie; Zhong, Mingfeng (June 2019). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0927024819300522">"Selective spectral optical properties and structure of aluminum phosphate for daytime passive radiative cooling application"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>194</b>: 103–110. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019SEMSC.194..103L">2019SEMSC.194..103L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2019.01.036">10.1016/j.solmat.2019.01.036</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104321878">104321878</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Selective+spectral+optical+properties+and+structure+of+aluminum+phosphate+for+daytime+passive+radiative+cooling+application&amp;rft.volume=194&amp;rft.pages=103-110&amp;rft.date=2019-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104321878%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2019.01.036&amp;rft_id=info%3Abibcode%2F2019SEMSC.194..103L&amp;rft.aulast=Li&amp;rft.aufirst=Na&amp;rft.au=Wang%2C+Junfeng&amp;rft.au=Liu%2C+Defang&amp;rft.au=Huang%2C+Xia&amp;rft.au=Xu%2C+Zhikui&amp;rft.au=Zhang%2C+Chenyang&amp;rft.au=Zhang%2C+Zhijie&amp;rft.au=Zhong%2C+Mingfeng&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0927024819300522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiPeoplesYaoRuan2021" class="citation journal cs1">Li, Xiangyu; Peoples, Joseph; Yao, Peiyan; Ruan, Xiulin (April 2021). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acsami.1c02368">"Ultrawhite <span class="chemf nowrap">BaSO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> Paints and Films for Remarkable Daytime Subambient Radiative Cooling"</a>. <i>ACS Applied Materials &amp; Interfaces</i>. <b>13</b> (18): 21733–21739. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.1c02368">10.1021/acsami.1c02368</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33856776">33856776</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233259255">233259255</a> &#8211; via ACS Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Applied+Materials+%26+Interfaces&amp;rft.atitle=Ultrawhite+%3Cspan+class%3D%22chemf+nowrap%22%3EBaSO%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E4%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E%3C%2Fspan%3E+Paints+and+Films+for+Remarkable+Daytime+Subambient+Radiative+Cooling&amp;rft.volume=13&amp;rft.issue=18&amp;rft.pages=21733-21739&amp;rft.date=2021-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233259255%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F33856776&amp;rft_id=info%3Adoi%2F10.1021%2Facsami.1c02368&amp;rft.aulast=Li&amp;rft.aufirst=Xiangyu&amp;rft.au=Peoples%2C+Joseph&amp;rft.au=Yao%2C+Peiyan&amp;rft.au=Ruan%2C+Xiulin&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facsami.1c02368&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouZhaoHuangNan2021" class="citation journal cs1">Zhou, Lei; Zhao, Jintao; Huang, Haoyun; Nan, Feng; Zhou, Guanghong; Qu, Qingdong (2021). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/abs/10.1021/acsphotonics.1c01149">"Flexible Polymer Photonic Films with Embedded Microvoids for High-Performance Passive Daytime Radiative Cooling"</a>. <i>ACS Photonics</i>. <b>8</b> (11): 3301–3307. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsphotonics.1c01149">10.1021/acsphotonics.1c01149</a> &#8211; via ACS Publications.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Photonics&amp;rft.atitle=Flexible+Polymer+Photonic+Films+with+Embedded+Microvoids+for+High-Performance+Passive+Daytime+Radiative+Cooling&amp;rft.volume=8&amp;rft.issue=11&amp;rft.pages=3301-3307&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1021%2Facsphotonics.1c01149&amp;rft.aulast=Zhou&amp;rft.aufirst=Lei&amp;rft.au=Zhao%2C+Jintao&amp;rft.au=Huang%2C+Haoyun&amp;rft.au=Nan%2C+Feng&amp;rft.au=Zhou%2C+Guanghong&amp;rft.au=Qu%2C+Qingdong&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Facsphotonics.1c01149&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:50-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-:50_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:50_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiawChenChangChen2008" class="citation journal cs1">Liaw, Wen-Chang; Chen, Chee-Shan; Chang, Wen-Shion; Chen, Kuan-Pin (February 2008). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1263/jbb.105.97">"Xylitol Production from Rice Straw Hemicellulose Hydrolyzate by Polyacrylic Hydrogel Thin Films with Immobilized Candida subtropicalis WF79"</a>. <i>Journal of Bioscience and Bioengineering</i>. <b>105</b> (2): 97–105. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1263%2Fjbb.105.97">10.1263/jbb.105.97</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1389-1723">1389-1723</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18343334">18343334</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Bioscience+and+Bioengineering&amp;rft.atitle=Xylitol+Production+from+Rice+Straw+Hemicellulose+Hydrolyzate+by+Polyacrylic+Hydrogel+Thin+Films+with+Immobilized+Candida+subtropicalis+WF79&amp;rft.volume=105&amp;rft.issue=2&amp;rft.pages=97-105&amp;rft.date=2008-02&amp;rft.issn=1389-1723&amp;rft_id=info%3Apmid%2F18343334&amp;rft_id=info%3Adoi%2F10.1263%2Fjbb.105.97&amp;rft.aulast=Liaw&amp;rft.aufirst=Wen-Chang&amp;rft.au=Chen%2C+Chee-Shan&amp;rft.au=Chang%2C+Wen-Shion&amp;rft.au=Chen%2C+Kuan-Pin&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1263%2Fjbb.105.97&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangJingChenZhang2022" class="citation journal cs1">Zhang, Shuai; Jing, Weilong; Chen, Zhang; Zhang, Canying; Wu, Daxiong; Gao, Yanfeng; Zhu, Haitao (July 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0960148122008084">"Full daytime sub-ambient radiative cooling film with high efficiency and low cost"</a>. <i>Renewable Energy</i>. <b>194</b>: 850–857. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022REne..194..850Z">2022REne..194..850Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.renene.2022.05.151">10.1016/j.renene.2022.05.151</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249423146">249423146</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+Energy&amp;rft.atitle=Full+daytime+sub-ambient+radiative+cooling+film+with+high+efficiency+and+low+cost&amp;rft.volume=194&amp;rft.pages=850-857&amp;rft.date=2022-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249423146%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.renene.2022.05.151&amp;rft_id=info%3Abibcode%2F2022REne..194..850Z&amp;rft.aulast=Zhang&amp;rft.aufirst=Shuai&amp;rft.au=Jing%2C+Weilong&amp;rft.au=Chen%2C+Zhang&amp;rft.au=Zhang%2C+Canying&amp;rft.au=Wu%2C+Daxiong&amp;rft.au=Gao%2C+Yanfeng&amp;rft.au=Zhu%2C+Haitao&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0960148122008084&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:39-76"><span class="mw-cite-backlink">^ <a href="#cite_ref-:39_76-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:39_76-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:39_76-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangLuoGuoLi2021" class="citation journal cs1">Wang, Ke; Luo, Guoling; Guo, Xiaowei; Li, Shaorong; Liu, Zhijun; Yang, Cheng (September 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0038092X21006010">"Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film"</a>. <i>Solar Energy</i>. <b>225</b>: 245. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SoEn..225..245W">2021SoEn..225..245W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solener.2021.07.025">10.1016/j.solener.2021.07.025</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy&amp;rft.atitle=Radiative+cooling+of+commercial+silicon+solar+cells+using+a+pyramid-textured+PDMS+film&amp;rft.volume=225&amp;rft.pages=245&amp;rft.date=2021-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solener.2021.07.025&amp;rft_id=info%3Abibcode%2F2021SoEn..225..245W&amp;rft.aulast=Wang&amp;rft.aufirst=Ke&amp;rft.au=Luo%2C+Guoling&amp;rft.au=Guo%2C+Xiaowei&amp;rft.au=Li%2C+Shaorong&amp;rft.au=Liu%2C+Zhijun&amp;rft.au=Yang%2C+Cheng&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0038092X21006010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTangZhouJiaoZhang2022" class="citation journal cs1">Tang, Huajie; Zhou, Zhihua; Jiao, Shifei; Zhang, Yunfei; Li, Shuai; Zhang, Debao; Zhang, Ji; Liu, Junwei; Zhao, Dongliang (January 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2021.111498">"Radiative cooling of solar cells with scalable and high-performance nanoporous anodic aluminum oxide"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>235</b>: 111498. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SEMSC.23511498T">2022SEMSC.23511498T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2021.111498">10.1016/j.solmat.2021.111498</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244299138">244299138</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Radiative+cooling+of+solar+cells+with+scalable+and+high-performance+nanoporous+anodic+aluminum+oxide&amp;rft.volume=235&amp;rft.pages=111498&amp;rft.date=2022-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244299138%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2021.111498&amp;rft_id=info%3Abibcode%2F2022SEMSC.23511498T&amp;rft.aulast=Tang&amp;rft.aufirst=Huajie&amp;rft.au=Zhou%2C+Zhihua&amp;rft.au=Jiao%2C+Shifei&amp;rft.au=Zhang%2C+Yunfei&amp;rft.au=Li%2C+Shuai&amp;rft.au=Zhang%2C+Debao&amp;rft.au=Zhang%2C+Ji&amp;rft.au=Liu%2C+Junwei&amp;rft.au=Zhao%2C+Dongliang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.solmat.2021.111498&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:20-78"><span class="mw-cite-backlink">^ <a href="#cite_ref-:20_78-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:20_78-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:20_78-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:20_78-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuZhangZhangLiang2022" class="citation journal cs1">Liu, Yanran; Zhang, Hanfang; Zhang, Yihe; Liang, Ce; An, Qi (July 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1359836822003675">"Rendering passive radiative cooling capability to cotton textile by an alginate/<span class="chemf nowrap">CaCO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span> coating via synergistic light manipulation and high water permeation"</a>. <i>Composites Part B: Engineering</i>. <b>240</b>: 109988. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.compositesb.2022.109988">10.1016/j.compositesb.2022.109988</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249109763">249109763</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Composites+Part+B%3A+Engineering&amp;rft.atitle=Rendering+passive+radiative+cooling+capability+to+cotton+textile+by+an+alginate%2F%3Cspan+class%3D%22chemf+nowrap%22%3ECaCO%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E3%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E%3C%2Fspan%3E+coating+via+synergistic+light+manipulation+and+high+water+permeation&amp;rft.volume=240&amp;rft.pages=109988&amp;rft.date=2022-07&amp;rft_id=info%3Adoi%2F10.1016%2Fj.compositesb.2022.109988&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249109763%23id-name%3DS2CID&amp;rft.aulast=Liu&amp;rft.aufirst=Yanran&amp;rft.au=Zhang%2C+Hanfang&amp;rft.au=Zhang%2C+Yihe&amp;rft.au=Liang%2C+Ce&amp;rft.au=An%2C+Qi&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1359836822003675&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:51-79"><span class="mw-cite-backlink">^ <a href="#cite_ref-:51_79-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:51_79-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZengPianSuWang2021" class="citation journal cs1">Zeng, Shaoning; Pian, Sijie; Su, Minyu; Wang, Zhuning; Wu, Maoqi; Liu, Xinhang; Chen, Mingyue; Xiang, Yuanzhuo; Wu, Jiawei; Zhang, Manni; Cen, Qingqing; Tang, Yuwei; Zhou, Xianheng; Huang, Zhiheng; Wang, Rui (6 August 2021). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.abi5484">"Hierarchical-morphology metafabric for scalable passive daytime radiative cooling"</a>. <i>Science</i>. <b>373</b> (6555): 692–696. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Sci...373..692Z">2021Sci...373..692Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abi5484">10.1126/science.abi5484</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34353954">34353954</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236929292">236929292</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Hierarchical-morphology+metafabric+for+scalable+passive+daytime+radiative+cooling&amp;rft.volume=373&amp;rft.issue=6555&amp;rft.pages=692-696&amp;rft.date=2021-08-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236929292%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021Sci...373..692Z&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.abi5484&amp;rft_id=info%3Apmid%2F34353954&amp;rft.aulast=Zeng&amp;rft.aufirst=Shaoning&amp;rft.au=Pian%2C+Sijie&amp;rft.au=Su%2C+Minyu&amp;rft.au=Wang%2C+Zhuning&amp;rft.au=Wu%2C+Maoqi&amp;rft.au=Liu%2C+Xinhang&amp;rft.au=Chen%2C+Mingyue&amp;rft.au=Xiang%2C+Yuanzhuo&amp;rft.au=Wu%2C+Jiawei&amp;rft.au=Zhang%2C+Manni&amp;rft.au=Cen%2C+Qingqing&amp;rft.au=Tang%2C+Yuwei&amp;rft.au=Zhou%2C+Xianheng&amp;rft.au=Huang%2C+Zhiheng&amp;rft.au=Wang%2C+Rui&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.abi5484&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoWuWangLi2023" class="citation journal cs1">Zhao, Guoxu; Wu, Tinglong; Wang, Ruhai; Li, Zhong; Yang, Qingzhen; Wang, Lei; Zhou, Hongwei; Jin, Birui; Liu, Hao; Fang, Yunsheng; Wang, Dong; Xu, Feng (20 October 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588953">"Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations"</a>. <i>Science Advances</i>. <b>9</b> (42): eadj5407. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023SciA....9J5407Z">2023SciA....9J5407Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.adj5407">10.1126/sciadv.adj5407</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588953">10588953</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37862410">37862410</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Advances&amp;rft.atitle=Hydrogel-assisted+microfluidic+spinning+of+stretchable+fibers+via+fluidic+and+interfacial+self-adaptations&amp;rft.volume=9&amp;rft.issue=42&amp;rft.pages=eadj5407&amp;rft.date=2023-10-20&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10588953%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2023SciA....9J5407Z&amp;rft_id=info%3Apmid%2F37862410&amp;rft_id=info%3Adoi%2F10.1126%2Fsciadv.adj5407&amp;rft.issn=2375-2548&amp;rft.aulast=Zhao&amp;rft.aufirst=Guoxu&amp;rft.au=Wu%2C+Tinglong&amp;rft.au=Wang%2C+Ruhai&amp;rft.au=Li%2C+Zhong&amp;rft.au=Yang%2C+Qingzhen&amp;rft.au=Wang%2C+Lei&amp;rft.au=Zhou%2C+Hongwei&amp;rft.au=Jin%2C+Birui&amp;rft.au=Liu%2C+Hao&amp;rft.au=Fang%2C+Yunsheng&amp;rft.au=Wang%2C+Dong&amp;rft.au=Xu%2C+Feng&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10588953&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangChenXuHe2023" class="citation journal cs1">Huang, Leping; Chen, Ying; Xu, Zhaobao; He, Cui; Li, Youmu; Zhao, Jinchao; Tang, Youhong (January 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457868">"Regulating Al2O3/PAN/PEG Nanofiber Membranes with Suitable Phase Change Thermoregulation Features"</a>. <i>Nanomaterials</i>. <b>13</b> (16): 2313. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fnano13162313">10.3390/nano13162313</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2079-4991">2079-4991</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457868">10457868</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37630898">37630898</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nanomaterials&amp;rft.atitle=Regulating+Al2O3%2FPAN%2FPEG+Nanofiber+Membranes+with+Suitable+Phase+Change+Thermoregulation+Features&amp;rft.volume=13&amp;rft.issue=16&amp;rft.pages=2313&amp;rft.date=2023-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10457868%23id-name%3DPMC&amp;rft.issn=2079-4991&amp;rft_id=info%3Apmid%2F37630898&amp;rft_id=info%3Adoi%2F10.3390%2Fnano13162313&amp;rft.aulast=Huang&amp;rft.aufirst=Leping&amp;rft.au=Chen%2C+Ying&amp;rft.au=Xu%2C+Zhaobao&amp;rft.au=He%2C+Cui&amp;rft.au=Li%2C+Youmu&amp;rft.au=Zhao%2C+Jinchao&amp;rft.au=Tang%2C+Youhong&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10457868&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:19-82"><span class="mw-cite-backlink">^ <a href="#cite_ref-:19_82-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:19_82-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiAnLiuZhang2022" class="citation journal cs1">Li, Yiping; An, Zhimin; Liu, Xinchao; Zhang, Rubing (October 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0927024822003373">"A radiative cooling paper based on ceramic fiber for thermal management of human head"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>246</b>: 111918. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SEMSC.24611918L">2022SEMSC.24611918L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2022.111918">10.1016/j.solmat.2022.111918</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251335644">251335644</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=A+radiative+cooling+paper+based+on+ceramic+fiber+for+thermal+management+of+human+head&amp;rft.volume=246&amp;rft.pages=111918&amp;rft.date=2022-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251335644%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2022.111918&amp;rft_id=info%3Abibcode%2F2022SEMSC.24611918L&amp;rft.aulast=Li&amp;rft.aufirst=Yiping&amp;rft.au=An%2C+Zhimin&amp;rft.au=Liu%2C+Xinchao&amp;rft.au=Zhang%2C+Rubing&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0927024822003373&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:27-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-:27_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:27_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiSunYangZhang2023" class="citation journal cs1">Li, Tao; Sun, Haoyang; Yang, Meng; Zhang, Chentao; Lv, Sha; Li, Bin; Chen, Longhao; Sun, Dazhi (2023). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S138589472204997X">"All-Ceramic, Compressible and Scalable Nanofibrous Aerogels for Subambient Daytime Radiative Cooling"</a>. <i>Chemical Engineering Journal</i>. <b>452</b>: 139518. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023ChEnJ.45239518L">2023ChEnJ.45239518L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cej.2022.139518">10.1016/j.cej.2022.139518</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252678873">252678873</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Engineering+Journal&amp;rft.atitle=All-Ceramic%2C+Compressible+and+Scalable+Nanofibrous+Aerogels+for+Subambient+Daytime+Radiative+Cooling&amp;rft.volume=452&amp;rft.pages=139518&amp;rft.date=2023&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252678873%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cej.2022.139518&amp;rft_id=info%3Abibcode%2F2023ChEnJ.45239518L&amp;rft.aulast=Li&amp;rft.aufirst=Tao&amp;rft.au=Sun%2C+Haoyang&amp;rft.au=Yang%2C+Meng&amp;rft.au=Zhang%2C+Chentao&amp;rft.au=Lv%2C+Sha&amp;rft.au=Li%2C+Bin&amp;rft.au=Chen%2C+Longhao&amp;rft.au=Sun%2C+Dazhi&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS138589472204997X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:04-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-:04_84-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeroyBhatiaKelsallCastillejo-Cuberos2019" class="citation journal cs1">Leroy, A.; Bhatia, B.; Kelsall, C.C.; Castillejo-Cuberos, A.M.; Capua H., Di; Zhang, L.; Guzman, A.M.; Wang, E.N. (October 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821464">"High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel"</a>. <i>Materials Science</i>. <b>5</b> (10): eaat9480. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019SciA....5.9480L">2019SciA....5.9480L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.aat9480">10.1126/sciadv.aat9480</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821464">6821464</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31692957">31692957</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207896571">207896571</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Science&amp;rft.atitle=High-performance+subambient+radiative+cooling+enabled+by+optically+selective+and+thermally+insulating+polyethylene+aerogel&amp;rft.volume=5&amp;rft.issue=10&amp;rft.pages=eaat9480&amp;rft.date=2019-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6821464%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207896571%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019SciA....5.9480L&amp;rft_id=info%3Apmid%2F31692957&amp;rft_id=info%3Adoi%2F10.1126%2Fsciadv.aat9480&amp;rft.aulast=Leroy&amp;rft.aufirst=A.&amp;rft.au=Bhatia%2C+B.&amp;rft.au=Kelsall%2C+C.C.&amp;rft.au=Castillejo-Cuberos%2C+A.M.&amp;rft.au=Capua+H.%2C+Di&amp;rft.au=Zhang%2C+L.&amp;rft.au=Guzman%2C+A.M.&amp;rft.au=Wang%2C+E.N.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6821464&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYueWuZhangYang2022" class="citation journal cs1">Yue, Xuejie; Wu, Hai; Zhang, Tao; Yang, Dongya; Que, Fengxian (April 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0360544222001906">"Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building"</a>. <i>Energy</i>. <b>245</b>: 123287. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Ene...24523287Y">2022Ene...24523287Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.energy.2022.123287">10.1016/j.energy.2022.123287</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:246409163">246409163</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy&amp;rft.atitle=Superhydrophobic+waste+paper-based+aerogel+as+a+thermal+insulating+cooler+for+building&amp;rft.volume=245&amp;rft.pages=123287&amp;rft.date=2022-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A246409163%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.energy.2022.123287&amp;rft_id=info%3Abibcode%2F2022Ene...24523287Y&amp;rft.aulast=Yue&amp;rft.aufirst=Xuejie&amp;rft.au=Wu%2C+Hai&amp;rft.au=Zhang%2C+Tao&amp;rft.au=Yang%2C+Dongya&amp;rft.au=Que%2C+Fengxian&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0360544222001906&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeLimJeonJang2022" class="citation journal cs1">Lee, Kang Won; Lim, Woojong; Jeon, Min Soo; Jang, Hanmin; Hwang, Jehwan; Lee, Chi Hwan; Kim, Dong Rip (2022). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202105882">"Visibly Clear Radiative Cooling Metamaterials for Enhanced Thermal Management in Solar Cells and Windows"</a>. <i>Advanced Functional Materials</i>. <b>32</b> (1). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.202105882">10.1002/adfm.202105882</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:242578536">242578536</a> &#8211; via Wiley Online Library.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Visibly+Clear+Radiative+Cooling+Metamaterials+for+Enhanced+Thermal+Management+in+Solar+Cells+and+Windows&amp;rft.volume=32&amp;rft.issue=1&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.202105882&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A242578536%23id-name%3DS2CID&amp;rft.aulast=Lee&amp;rft.aufirst=Kang+Won&amp;rft.au=Lim%2C+Woojong&amp;rft.au=Jeon%2C+Min+Soo&amp;rft.au=Jang%2C+Hanmin&amp;rft.au=Hwang%2C+Jehwan&amp;rft.au=Lee%2C+Chi+Hwan&amp;rft.au=Kim%2C+Dong+Rip&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Fadfm.202105882&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.acs.org/pressroom/newsreleases/2023/march/colorful-films-could-help-buildings-cars-keep-their-cool.html">"Colorful films could help buildings, cars keep their cool"</a>. <i>American Chemical Society</i><span class="reference-accessdate">. Retrieved <span class="nowrap">15 August</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=American+Chemical+Society&amp;rft.atitle=Colorful+films+could+help+buildings%2C+cars+keep+their+cool&amp;rft_id=https%3A%2F%2Fwww.acs.org%2Fpressroom%2Fnewsreleases%2F2023%2Fmarch%2Fcolorful-films-could-help-buildings-cars-keep-their-cool.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoLuHuLu2022" class="citation journal cs1">Zhao, Bin; Lu, Kegui; Hu, Mingke; Lu, Jie; Wu, Lijun; Xu, Chengfeng; Xuan, Qingdong; Pei, Gang (May 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0960148122005250">"Radiative cooling of solar cells with micro-grating photonic cooler"</a>. <i>Renewable Energy</i>. <b>191</b>: 662–668. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022REne..191..662Z">2022REne..191..662Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.renene.2022.04.063">10.1016/j.renene.2022.04.063</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248142250">248142250</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Renewable+Energy&amp;rft.atitle=Radiative+cooling+of+solar+cells+with+micro-grating+photonic+cooler&amp;rft.volume=191&amp;rft.pages=662-668&amp;rft.date=2022-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248142250%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.renene.2022.04.063&amp;rft_id=info%3Abibcode%2F2022REne..191..662Z&amp;rft.aulast=Zhao&amp;rft.aufirst=Bin&amp;rft.au=Lu%2C+Kegui&amp;rft.au=Hu%2C+Mingke&amp;rft.au=Lu%2C+Jie&amp;rft.au=Wu%2C+Lijun&amp;rft.au=Xu%2C+Chengfeng&amp;rft.au=Xuan%2C+Qingdong&amp;rft.au=Pei%2C+Gang&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0960148122005250&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:8-89"><span class="mw-cite-backlink">^ <a href="#cite_ref-:8_89-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:8_89-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangZhang2020" class="citation journal cs1">Yang, Yuan; Zhang, Yifan (2020). <a rel="nofollow" class="external text" href="https://par.nsf.gov/servlets/purl/10282838">"Passive daytime radiative cooling: Principle, application, and economic analysis"</a>. <i>MRS Energy &amp; Sustainability</i>. <b>7</b> (18). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1557%2Fmre.2020.18">10.1557/mre.2020.18</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220008145">220008145</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220927212513/https://par.nsf.gov/servlets/purl/10282838">Archived</a> from the original on 27 September 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">27 September</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MRS+Energy+%26+Sustainability&amp;rft.atitle=Passive+daytime+radiative+cooling%3A+Principle%2C+application%2C+and+economic+analysis&amp;rft.volume=7&amp;rft.issue=18&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.1557%2Fmre.2020.18&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220008145%23id-name%3DS2CID&amp;rft.aulast=Yang&amp;rft.aufirst=Yuan&amp;rft.au=Zhang%2C+Yifan&amp;rft_id=https%3A%2F%2Fpar.nsf.gov%2Fservlets%2Fpurl%2F10282838&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:24-90"><span class="mw-cite-backlink">^ <a href="#cite_ref-:24_90-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:24_90-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:24_90-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:24_90-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:24_90-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMokhartiUlpaniGhasempour2022" class="citation journal cs1">Mokharti, Reza; Ulpani, Giulia; Ghasempour, Roghayeh (July 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S1359431122004471">"The Cooling Station: Combining hydronic radiant cooling and daytime radiative cooling for urban shelters"</a>. <i>Applied Thermal Engineering</i>. <b>211</b>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AppTE.21118493M">2022AppTE.21118493M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.applthermaleng.2022.118493">10.1016/j.applthermaleng.2022.118493</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248076103">248076103</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Thermal+Engineering&amp;rft.atitle=The+Cooling+Station%3A+Combining+hydronic+radiant+cooling+and+daytime+radiative+cooling+for+urban+shelters&amp;rft.volume=211&amp;rft.date=2022-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248076103%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.applthermaleng.2022.118493&amp;rft_id=info%3Abibcode%2F2022AppTE.21118493M&amp;rft.aulast=Mokharti&amp;rft.aufirst=Reza&amp;rft.au=Ulpani%2C+Giulia&amp;rft.au=Ghasempour%2C+Roghayeh&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS1359431122004471&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFengYangLiuMao2021" class="citation journal cs1">Feng, Chunzao; Yang, Peihua; Liu, Huidong; Mao, Mingran; Liu, Yipu; Xue, Tong; Fu, Jia; Cheng, Ting; Hu, Xuejiao; Fan, Hong Jin; Liu, Kang (July 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S2211285521002299">"Bilayer porous polymer for efficient passive building cooling"</a>. <i>Nano Technology</i>. <b>85</b>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NEne...8505971F">2021NEne...8505971F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nanoen.2021.105971">10.1016/j.nanoen.2021.105971</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10356%2F155637">10356/155637</a></span> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nano+Technology&amp;rft.atitle=Bilayer+porous+polymer+for+efficient+passive+building+cooling&amp;rft.volume=85&amp;rft.date=2021-07&amp;rft_id=info%3Ahdl%2F10356%2F155637&amp;rft_id=info%3Adoi%2F10.1016%2Fj.nanoen.2021.105971&amp;rft_id=info%3Abibcode%2F2021NEne...8505971F&amp;rft.aulast=Feng&amp;rft.aufirst=Chunzao&amp;rft.au=Yang%2C+Peihua&amp;rft.au=Liu%2C+Huidong&amp;rft.au=Mao%2C+Mingran&amp;rft.au=Liu%2C+Yipu&amp;rft.au=Xue%2C+Tong&amp;rft.au=Fu%2C+Jia&amp;rft.au=Cheng%2C+Ting&amp;rft.au=Hu%2C+Xuejiao&amp;rft.au=Fan%2C+Hong+Jin&amp;rft.au=Liu%2C+Kang&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS2211285521002299&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:36-92"><span class="mw-cite-backlink">^ <a href="#cite_ref-:36_92-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:36_92-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouMiljkovicCai2021" class="citation journal cs1">Zhou, Kai; Miljkovic, Nenad; Cai, Lili (March 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0378778821000335">"Performance analysis on system-level integration and operation of daytime radiative cooling technology for air-conditioning in buildings"</a>. <i>Energy and Buildings</i>. <b>235</b>: 110749. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021EneBu.23510749Z">2021EneBu.23510749Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enbuild.2021.110749">10.1016/j.enbuild.2021.110749</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234180182">234180182</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+and+Buildings&amp;rft.atitle=Performance+analysis+on+system-level+integration+and+operation+of+daytime+radiative+cooling+technology+for+air-conditioning+in+buildings&amp;rft.volume=235&amp;rft.pages=110749&amp;rft.date=2021-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234180182%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.enbuild.2021.110749&amp;rft_id=info%3Abibcode%2F2021EneBu.23510749Z&amp;rft.aulast=Zhou&amp;rft.aufirst=Kai&amp;rft.au=Miljkovic%2C+Nenad&amp;rft.au=Cai%2C+Lili&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378778821000335&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYounesGhaliGhaddar2022" class="citation journal cs1">Younes, Jaafar; Ghali, Kamel; Ghaddar, Nesreen (August 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S2210670722002542">"Diurnal Selective Radiative Cooling Impact in Mitigating Urban Heat Island Effect"</a>. <i>Sustainable Cities and Society</i>. <b>83</b>: 103932. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SusCS..8303932Y">2022SusCS..8303932Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scs.2022.103932">10.1016/j.scs.2022.103932</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248588547">248588547</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sustainable+Cities+and+Society&amp;rft.atitle=Diurnal+Selective+Radiative+Cooling+Impact+in+Mitigating+Urban+Heat+Island+Effect&amp;rft.volume=83&amp;rft.pages=103932&amp;rft.date=2022-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248588547%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.scs.2022.103932&amp;rft_id=info%3Abibcode%2F2022SusCS..8303932Y&amp;rft.aulast=Younes&amp;rft.aufirst=Jaafar&amp;rft.au=Ghali%2C+Kamel&amp;rft.au=Ghaddar%2C+Nesreen&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS2210670722002542&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuZhaoXuLi2022" class="citation journal cs1">Lu, Kegui; Zhao, Bin; Xu, Chengfeng; Li, Xiasheng; Pei, Gang (September 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S092702482200280X">"A full-spectrum synergetic management strategy for passive cooling of solar cells"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>245</b>: 111860. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SEMSC.24511860L">2022SEMSC.24511860L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2022.111860">10.1016/j.solmat.2022.111860</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250159405">250159405</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=A+full-spectrum+synergetic+management+strategy+for+passive+cooling+of+solar+cells&amp;rft.volume=245&amp;rft.pages=111860&amp;rft.date=2022-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250159405%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2022.111860&amp;rft_id=info%3Abibcode%2F2022SEMSC.24511860L&amp;rft.aulast=Lu&amp;rft.aufirst=Kegui&amp;rft.au=Zhao%2C+Bin&amp;rft.au=Xu%2C+Chengfeng&amp;rft.au=Li%2C+Xiasheng&amp;rft.au=Pei%2C+Gang&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS092702482200280X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFangChenBickChen2021" class="citation journal cs1">Fang, Yunsheng; Chen, Guorui; Bick, Michael; Chen, Jun (July 2021). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlehtml/2021/cs/d1cs00003a">"Smart textiles for personalized thermoregulation"</a>. <i>Chem. Soc. Rev</i>. <b>50</b> (17): 9357–9374. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD1CS00003A">10.1039/D1CS00003A</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34296235">34296235</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236198429">236198429</a> &#8211; via Royal Society of Chemistry.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chem.+Soc.+Rev.&amp;rft.atitle=Smart+textiles+for+personalized+thermoregulation&amp;rft.volume=50&amp;rft.issue=17&amp;rft.pages=9357-9374&amp;rft.date=2021-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236198429%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F34296235&amp;rft_id=info%3Adoi%2F10.1039%2FD1CS00003A&amp;rft.aulast=Fang&amp;rft.aufirst=Yunsheng&amp;rft.au=Chen%2C+Guorui&amp;rft.au=Bick%2C+Michael&amp;rft.au=Chen%2C+Jun&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlehtml%2F2021%2Fcs%2Fd1cs00003a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeng2021" class="citation journal cs1">Zeng, Shaoning (July 2021). <a rel="nofollow" class="external text" href="https://www.science.org/doi/abs/10.1126/science.abi5484?cookieSet=1">"Hierarchical-morphology metafabric for scalable passive daytime radiative cooling"</a>. <i>Science</i>. <b>373</b> (6555): 692–696. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Sci...373..692Z">2021Sci...373..692Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abi5484">10.1126/science.abi5484</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34353954">34353954</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236929292">236929292</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Hierarchical-morphology+metafabric+for+scalable+passive+daytime+radiative+cooling&amp;rft.volume=373&amp;rft.issue=6555&amp;rft.pages=692-696&amp;rft.date=2021-07&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.abi5484&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236929292%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F34353954&amp;rft_id=info%3Abibcode%2F2021Sci...373..692Z&amp;rft.aulast=Zeng&amp;rft.aufirst=Shaoning&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Fabs%2F10.1126%2Fscience.abi5484%3FcookieSet%3D1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuiLuZhangSu2022" class="citation journal cs1">Cui, Chaofan; Lu, Jun; Zhang, Siqi; Su, Juanjuan; Han, Jian (October 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0927024822003725">"Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>247</b>: 111954. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SEMSC.24711954C">2022SEMSC.24711954C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2022.111954">10.1016/j.solmat.2022.111954</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252097903">252097903</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Hierarchical-porous+coating+coupled+with+textile+for+passive+daytime+radiative+cooling+and+self-cleaning&amp;rft.volume=247&amp;rft.pages=111954&amp;rft.date=2022-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252097903%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2022.111954&amp;rft_id=info%3Abibcode%2F2022SEMSC.24711954C&amp;rft.aulast=Cui&amp;rft.aufirst=Chaofan&amp;rft.au=Lu%2C+Jun&amp;rft.au=Zhang%2C+Siqi&amp;rft.au=Su%2C+Juanjuan&amp;rft.au=Han%2C+Jian&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0927024822003725&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiLiangLiXu2022" class="citation journal cs1">Li, Jinlei; Liang, Yuan; Li, Wei; Xu, Ning; Zhu, Bin; Wu, Zhen; Wang, Xueyang; Fan, Shanhui; Wang, Minghuai; Zhu, Jia (February 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836806">"Protecting ice from melting under sunlight via radiative cooling"</a>. <i>Science Advances</i>. <b>8</b> (6): eabj9756. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022SciA....8.9756L">2022SciA....8.9756L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.abj9756">10.1126/sciadv.abj9756</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836806">8836806</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35148187">35148187</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Advances&amp;rft.atitle=Protecting+ice+from+melting+under+sunlight+via+radiative+cooling&amp;rft.volume=8&amp;rft.issue=6&amp;rft.pages=eabj9756&amp;rft.date=2022-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8836806%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F35148187&amp;rft_id=info%3Adoi%2F10.1126%2Fsciadv.abj9756&amp;rft_id=info%3Abibcode%2F2022SciA....8.9756L&amp;rft.aulast=Li&amp;rft.aufirst=Jinlei&amp;rft.au=Liang%2C+Yuan&amp;rft.au=Li%2C+Wei&amp;rft.au=Xu%2C+Ning&amp;rft.au=Zhu%2C+Bin&amp;rft.au=Wu%2C+Zhen&amp;rft.au=Wang%2C+Xueyang&amp;rft.au=Fan%2C+Shanhui&amp;rft.au=Wang%2C+Minghuai&amp;rft.au=Zhu%2C+Jia&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8836806&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-:0322-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0322_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunday2019" class="citation journal cs1">Munday, Jeremy (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">"Tackling Climate Change through Radiative Cooling"</a>. <i>Joule</i>. <b>3</b> (9): 2057–2060. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Joule...3.2057M">2019Joule...3.2057M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2019.07.010">10.1016/j.joule.2019.07.010</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:201590290">201590290</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Tackling+Climate+Change+through+Radiative+Cooling&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=2057-2060&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A201590290%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2019.07.010&amp;rft_id=info%3Abibcode%2F2019Joule...3.2057M&amp;rft.aulast=Munday&amp;rft.aufirst=Jeremy&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2019.07.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinDuChenChao2022" class="citation journal cs1">Lin, Kaixin; Du, Yuwei; Chen, Siru; Chao, Luke; Lee, Hau Him; Ho, Tsz Chung; Zhu, Yihao; Zeng, Yijun; Pan, Aiqiang; Tso, Chi Yan (December 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0378778822006788">"Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for high-performance daytime passive radiative cooling"</a>. <i>Energy and Buildings</i>. <b>276</b>: 112507. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022EneBu.27612507L">2022EneBu.27612507L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enbuild.2022.112507">10.1016/j.enbuild.2022.112507</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252510605">252510605</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+and+Buildings&amp;rft.atitle=Nanoparticle-polymer+hybrid+dual-layer+coating+with+broadband+solar+reflection+for+high-performance+daytime+passive+radiative+cooling&amp;rft.volume=276&amp;rft.pages=112507&amp;rft.date=2022-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252510605%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.enbuild.2022.112507&amp;rft_id=info%3Abibcode%2F2022EneBu.27612507L&amp;rft.aulast=Lin&amp;rft.aufirst=Kaixin&amp;rft.au=Du%2C+Yuwei&amp;rft.au=Chen%2C+Siru&amp;rft.au=Chao%2C+Luke&amp;rft.au=Lee%2C+Hau+Him&amp;rft.au=Ho%2C+Tsz+Chung&amp;rft.au=Zhu%2C+Yihao&amp;rft.au=Zeng%2C+Yijun&amp;rft.au=Pan%2C+Aiqiang&amp;rft.au=Tso%2C+Chi+Yan&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378778822006788&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuLinWeiHuang2020" class="citation journal cs1">Wu, Wanchun; Lin, Shenghua; Wei, Mingming; Huang, Jinhua; Xu, Hua; Lu, Yuehui; Song, Weijie (June 2020). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0927024820301161">"Flexible passive radiative cooling inspired by Saharan silver ants"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>210</b>: 110512. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020SEMSC.21010512W">2020SEMSC.21010512W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2020.110512">10.1016/j.solmat.2020.110512</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216200857">216200857</a> &#8211; via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Flexible+passive+radiative+cooling+inspired+by+Saharan+silver+ants&amp;rft.volume=210&amp;rft.pages=110512&amp;rft.date=2020-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216200857%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2020.110512&amp;rft_id=info%3Abibcode%2F2020SEMSC.21010512W&amp;rft.aulast=Wu&amp;rft.aufirst=Wanchun&amp;rft.au=Lin%2C+Shenghua&amp;rft.au=Wei%2C+Mingming&amp;rft.au=Huang%2C+Jinhua&amp;rft.au=Xu%2C+Hua&amp;rft.au=Lu%2C+Yuehui&amp;rft.au=Song%2C+Weijie&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0927024820301161&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKazemiShirvani2011" class="citation journal cs1">Kazemi, A.G.; Shirvani, A.H. (2011). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/49607818">"An Overview of Some Vernacular Techniques in Iranian Sustainable Architecture in Reference to Cisterns and Ice Houses"</a>. <i>Journal of Sustainable Development</i>. <b>4</b> (1). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5539%2Fjsd.v4n1p264">10.5539/jsd.v4n1p264</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Sustainable+Development&amp;rft.atitle=An+Overview+of+Some+Vernacular+Techniques+in+Iranian+Sustainable+Architecture+in+Reference+to+Cisterns+and+Ice+Houses&amp;rft.volume=4&amp;rft.issue=1&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.5539%2Fjsd.v4n1p264&amp;rft.aulast=Kazemi&amp;rft.aufirst=A.G.&amp;rft.au=Shirvani%2C+A.H.&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F49607818&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrving2024" class="citation web cs1">Irving, Michael (8 August 2024). <a rel="nofollow" class="external text" href="https://newatlas.com/materials/nissans-passive-cooling-coating-cars/?utm_source=New+Atlas+Subscribers&amp;utm_campaign=ed1d1d6f56-EMAIL_CAMPAIGN_2024_08_08_02_03&amp;utm_medium=email&amp;utm_term=0_65b67362bd-ed1d1d6f56-%5BLIST_EMAIL_ID%5D">"Nissan's new paint cools cars by up to 21 °F in direct sunlight"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 August</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=New+Atlas&amp;rft.atitle=Nissan%27s+new+paint+cools+cars+by+up+to+21+%C2%B0F+in+direct+sunlight&amp;rft.date=2024-08-08&amp;rft.aulast=Irving&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fnewatlas.com%2Fmaterials%2Fnissans-passive-cooling-coating-cars%2F%3Futm_source%3DNew%2BAtlas%2BSubscribers%26utm_campaign%3Ded1d1d6f56-EMAIL_CAMPAIGN_2024_08_08_02_03%26utm_medium%3Demail%26utm_term%3D0_65b67362bd-ed1d1d6f56-%255BLIST_EMAIL_ID%255D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APassive+daytime+radiative+cooling" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Heating,_ventilation,_and_air_conditioning" style="vertical-align: middle;;padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:HVAC" title="Template:HVAC"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:HVAC" title="Template talk:HVAC"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:HVAC" title="Special:EditPage/Template:HVAC"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Heating,_ventilation,_and_air_conditioning" style="font-size:114%;margin:0 4em"><a href="/wiki/Heating,_ventilation,_and_air_conditioning" title="Heating, ventilation, and air conditioning">Heating, ventilation, and air conditioning</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamental <br />concepts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air_changes_per_hour" title="Air changes per hour">Air changes per hour</a></li> <li><a href="/wiki/Bake-out" title="Bake-out">Bake-out</a></li> <li><a href="/wiki/Building_envelope" title="Building envelope">Building envelope</a></li> <li><a href="/wiki/Convection" title="Convection">Convection</a></li> <li><a href="/wiki/Dilution_(equation)" title="Dilution (equation)">Dilution</a></li> <li><a href="/wiki/Domestic_energy_consumption" title="Domestic energy consumption">Domestic energy consumption</a></li> <li><a href="/wiki/Enthalpy" title="Enthalpy">Enthalpy</a></li> <li><a href="/wiki/Fluid_dynamics" title="Fluid dynamics">Fluid dynamics</a></li> <li><a href="/wiki/Gas_compressor" class="mw-redirect" title="Gas compressor">Gas compressor</a></li> <li><a href="/wiki/Heat_pump_and_refrigeration_cycle" title="Heat pump and refrigeration cycle">Heat pump and refrigeration cycle</a></li> <li><a href="/wiki/Heat_transfer" title="Heat transfer">Heat transfer</a></li> <li><a href="/wiki/Humidity" title="Humidity">Humidity</a></li> <li><a href="/wiki/Infiltration_(HVAC)" title="Infiltration (HVAC)">Infiltration</a></li> <li><a href="/wiki/Latent_heat" title="Latent heat">Latent heat</a></li> <li><a href="/wiki/Noise_control" title="Noise control">Noise control</a></li> <li><a href="/wiki/Outgassing" title="Outgassing">Outgassing</a></li> <li><a href="/wiki/Particulates" title="Particulates">Particulates</a></li> <li><a href="/wiki/Psychrometrics" title="Psychrometrics">Psychrometrics</a></li> <li><a href="/wiki/Sensible_heat" title="Sensible heat">Sensible heat</a></li> <li><a href="/wiki/Stack_effect" title="Stack effect">Stack effect</a></li> <li><a href="/wiki/Thermal_comfort" title="Thermal comfort">Thermal comfort</a></li> <li><a href="/wiki/Thermal_destratification" title="Thermal destratification">Thermal destratification</a></li> <li><a href="/wiki/Thermal_mass" title="Thermal mass">Thermal mass</a></li> <li><a href="/wiki/Thermodynamics" title="Thermodynamics">Thermodynamics</a></li> <li><a href="/wiki/Vapour_pressure_of_water" title="Vapour pressure of water">Vapour pressure of water</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Technology</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absorption-compression_heat_pump" title="Absorption-compression heat pump">Absorption-compression heat pump</a></li> <li><a href="/wiki/Absorption_refrigerator" title="Absorption refrigerator">Absorption refrigerator</a></li> <li><a href="/wiki/Air_barrier" title="Air barrier">Air barrier</a></li> <li><a href="/wiki/Air_conditioning" title="Air conditioning">Air conditioning</a></li> <li><a href="/wiki/Antifreeze" title="Antifreeze">Antifreeze</a></li> <li><a href="/wiki/Automobile_air_conditioning" class="mw-redirect" title="Automobile air conditioning">Automobile air conditioning</a></li> <li><a href="/wiki/Autonomous_building" title="Autonomous building">Autonomous building</a></li> <li><a href="/wiki/Building_insulation_material" title="Building insulation material">Building insulation materials</a></li> <li><a href="/wiki/Central_heating" title="Central heating">Central heating</a></li> <li><a href="/wiki/Central_solar_heating" title="Central solar heating">Central solar heating</a></li> <li><a href="/wiki/Chilled_beam" title="Chilled beam">Chilled beam</a></li> <li><a href="/wiki/Chilled_water" title="Chilled water">Chilled water</a></li> <li><a href="/wiki/Constant_air_volume" title="Constant air volume">Constant air volume</a> (CAV)</li> <li><a href="/wiki/Coolant" title="Coolant">Coolant</a></li> <li><a href="/wiki/Cross_ventilation" title="Cross ventilation">Cross ventilation</a></li> <li><a href="/wiki/Dedicated_outdoor_air_system" title="Dedicated outdoor air system">Dedicated outdoor air system</a> (DOAS)</li> <li><a href="/wiki/Deep_water_source_cooling" title="Deep water source cooling">Deep water source cooling</a></li> <li><a href="/wiki/Demand_controlled_ventilation" title="Demand controlled ventilation">Demand controlled ventilation</a> (DCV)</li> <li><a href="/wiki/Displacement_ventilation" title="Displacement ventilation">Displacement ventilation</a></li> <li><a href="/wiki/District_cooling" title="District cooling">District cooling</a></li> <li><a href="/wiki/District_heating" title="District heating">District heating</a></li> <li><a href="/wiki/Electric_heating" title="Electric heating">Electric heating</a></li> <li><a href="/wiki/Energy_recovery_ventilation" class="mw-redirect" title="Energy recovery ventilation">Energy recovery ventilation</a> (ERV)</li> <li><a href="/wiki/Firestop" title="Firestop">Firestop</a></li> <li><a href="/wiki/Forced-air" title="Forced-air">Forced-air</a></li> <li><a href="/wiki/Forced-air_gas" title="Forced-air gas">Forced-air gas</a></li> <li><a href="/wiki/Free_cooling" title="Free cooling">Free cooling</a></li> <li><a href="/wiki/Heat_recovery_ventilation" title="Heat recovery ventilation">Heat recovery ventilation</a> (HRV)</li> <li><a href="/wiki/Hybrid_heat" title="Hybrid heat">Hybrid heat</a></li> <li><a href="/wiki/Hydronics" title="Hydronics">Hydronics</a></li> <li><a href="/wiki/Ice_storage_air_conditioning" title="Ice storage air conditioning">Ice storage air conditioning</a></li> <li><a href="/wiki/Kitchen_ventilation" title="Kitchen ventilation">Kitchen ventilation</a></li> <li><a href="/wiki/Mixed-mode_ventilation" title="Mixed-mode ventilation">Mixed-mode ventilation</a></li> <li><a href="/wiki/Microgeneration" title="Microgeneration">Microgeneration</a></li> <li><a href="/wiki/Passive_cooling" title="Passive cooling">Passive cooling</a></li> <li><a class="mw-selflink selflink">Passive daytime radiative cooling</a></li> <li><a href="/wiki/Passive_house" title="Passive house">Passive house</a></li> <li><a href="/wiki/Passive_ventilation" title="Passive ventilation">Passive ventilation</a></li> <li><a href="/wiki/Radiant_heating_and_cooling" title="Radiant heating and cooling">Radiant heating and cooling</a></li> <li><a href="/wiki/Radiant_cooling" class="mw-redirect" title="Radiant cooling">Radiant cooling</a></li> <li><a href="/wiki/Radiant_heating" class="mw-redirect" title="Radiant heating">Radiant heating</a></li> <li><a href="/wiki/Radon_mitigation" title="Radon mitigation">Radon mitigation</a></li> <li><a href="/wiki/Refrigeration" title="Refrigeration">Refrigeration</a></li> <li><a href="/wiki/Renewable_heat" title="Renewable heat">Renewable heat</a></li> <li><a href="/wiki/Room_air_distribution" title="Room air distribution">Room air distribution</a></li> <li><a href="/wiki/Solar_air_heat" title="Solar air heat">Solar air heat</a></li> <li><a href="/wiki/Solar_combisystem" title="Solar combisystem">Solar combisystem</a></li> <li><a href="/wiki/Solar_cooling" class="mw-redirect" title="Solar cooling">Solar cooling</a></li> <li><a href="/wiki/Solar_heating" class="mw-redirect" title="Solar heating">Solar heating</a></li> <li><a href="/wiki/Thermal_insulation" title="Thermal insulation">Thermal insulation</a></li> <li><a href="/wiki/Thermosiphon" title="Thermosiphon">Thermosiphon</a></li> <li><a href="/wiki/Underfloor_air_distribution" title="Underfloor air distribution">Underfloor air distribution</a></li> <li><a href="/wiki/Underfloor_heating" title="Underfloor heating">Underfloor heating</a></li> <li><a href="/wiki/Vapor_barrier" title="Vapor barrier">Vapor barrier</a></li> <li><a href="/wiki/Vapor-compression_refrigeration" title="Vapor-compression refrigeration">Vapor-compression refrigeration</a> (VCRS)</li> <li><a href="/wiki/Variable_air_volume" title="Variable air volume">Variable air volume</a> (VAV)</li> <li><a href="/wiki/Variable_refrigerant_flow" title="Variable refrigerant flow">Variable refrigerant flow</a> (VRF)</li> <li><a href="/wiki/Ventilation_(architecture)" title="Ventilation (architecture)">Ventilation</a></li> <li><a href="/wiki/Water_heat_recycling" title="Water heat recycling">Water heat recycling</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Components</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air_conditioner_inverter" class="mw-redirect" title="Air conditioner inverter">Air conditioner inverter</a></li> <li><a href="/wiki/Air_door" title="Air door">Air door</a></li> <li><a href="/wiki/Air_filter" title="Air filter">Air filter</a></li> <li><a href="/wiki/Air_handler" title="Air handler">Air handler</a></li> <li><a href="/wiki/Air_ioniser" title="Air ioniser">Air ionizer</a></li> <li><a href="/wiki/Air-mixing_plenum" title="Air-mixing plenum">Air-mixing plenum</a></li> <li><a href="/wiki/Air_purifier" title="Air purifier">Air purifier</a></li> <li><a href="/wiki/Air_source_heat_pump" title="Air source heat pump">Air source heat pump</a></li> <li><a href="/wiki/Attic_fan" title="Attic fan">Attic fan</a></li> <li><a href="/wiki/Automatic_balancing_valve" title="Automatic balancing valve">Automatic balancing valve</a></li> <li><a href="/wiki/Back_boiler" title="Back boiler">Back boiler</a></li> <li><a href="/wiki/Barrier_pipe" title="Barrier pipe">Barrier pipe</a></li> <li><a href="/wiki/Blast_damper" title="Blast damper">Blast damper</a></li> <li><a href="/wiki/Boiler" title="Boiler">Boiler</a></li> <li><a href="/wiki/Centrifugal_fan" title="Centrifugal fan">Centrifugal fan</a></li> <li><a href="/wiki/Ceramic_heater" title="Ceramic heater">Ceramic heater</a></li> <li><a href="/wiki/Chiller" title="Chiller">Chiller</a></li> <li><a href="/wiki/Condensate_pump" title="Condensate pump">Condensate pump</a></li> <li><a href="/wiki/Condenser_(heat_transfer)" title="Condenser (heat transfer)">Condenser</a></li> <li><a href="/wiki/Condensing_boiler" title="Condensing boiler">Condensing boiler</a></li> <li><a href="/wiki/Convection_heater" title="Convection heater">Convection heater</a></li> <li><a href="/wiki/Compressor" title="Compressor">Compressor</a></li> <li><a href="/wiki/Cooling_tower" title="Cooling tower">Cooling tower</a></li> <li><a href="/wiki/Damper_(flow)" title="Damper (flow)">Damper</a></li> <li><a href="/wiki/Dehumidifier" title="Dehumidifier">Dehumidifier</a></li> <li><a href="/wiki/Duct_(flow)" title="Duct (flow)">Duct</a></li> <li><a href="/wiki/Economizer" title="Economizer">Economizer</a></li> <li><a href="/wiki/Electrostatic_precipitator" title="Electrostatic precipitator">Electrostatic precipitator</a></li> <li><a href="/wiki/Evaporative_cooler" title="Evaporative cooler">Evaporative cooler</a></li> <li><a href="/wiki/Evaporator" title="Evaporator">Evaporator</a></li> <li><a href="/wiki/Exhaust_hood" class="mw-redirect" title="Exhaust hood">Exhaust hood</a></li> <li><a href="/wiki/Expansion_tank" title="Expansion tank">Expansion tank</a></li> <li><a href="/wiki/Fan_(machine)" title="Fan (machine)">Fan</a></li> <li><a href="/wiki/Fan_coil_unit" title="Fan coil unit">Fan coil unit</a></li> <li><a href="/wiki/Fan_filter_unit" title="Fan filter unit">Fan filter unit</a></li> <li><a href="/wiki/Fan_heater" title="Fan heater">Fan heater</a></li> <li><a href="/wiki/Fire_damper" title="Fire damper">Fire damper</a></li> <li><a href="/wiki/Fireplace" title="Fireplace">Fireplace</a></li> <li><a href="/wiki/Fireplace_insert" title="Fireplace insert">Fireplace insert</a></li> <li><a href="/wiki/Freeze_stat" title="Freeze stat">Freeze stat</a></li> <li><a href="/wiki/Flue" title="Flue">Flue</a></li> <li><a href="/wiki/Freon" title="Freon">Freon</a></li> <li><a href="/wiki/Fume_hood" title="Fume hood">Fume hood</a></li> <li><a href="/wiki/Furnace_(house_heating)" class="mw-redirect" title="Furnace (house heating)">Furnace</a></li> <li><a href="/wiki/Gas_compressor" class="mw-redirect" title="Gas compressor">Gas compressor</a></li> <li><a href="/wiki/Gas_heater" title="Gas heater">Gas heater</a></li> <li><a href="/wiki/Gasoline_heater" title="Gasoline heater">Gasoline heater</a></li> <li><a href="/wiki/Grease_duct" title="Grease duct">Grease duct</a></li> <li><a href="/wiki/Grille_(architecture)" title="Grille (architecture)">Grille</a></li> <li><a href="/wiki/Ground-coupled_heat_exchanger" title="Ground-coupled heat exchanger">Ground-coupled heat exchanger</a></li> <li><a href="/wiki/Ground_source_heat_pump" title="Ground source heat pump">Ground source heat pump</a></li> <li><a href="/wiki/Heat_exchanger" title="Heat exchanger">Heat exchanger</a></li> <li><a href="/wiki/Heat_pipe" title="Heat pipe">Heat pipe</a></li> <li><a href="/wiki/Heat_pump" title="Heat pump">Heat pump</a></li> <li><a href="/wiki/Heating_film" title="Heating film">Heating film</a></li> <li><a href="/wiki/Heating_system" title="Heating system">Heating system</a></li> <li><a href="/wiki/HEPA" title="HEPA">HEPA</a></li> <li><a href="/wiki/High_efficiency_glandless_circulating_pump" title="High efficiency glandless circulating pump">High efficiency glandless circulating pump</a></li> <li><a href="/wiki/High-pressure_cut-off_switch" class="mw-redirect" title="High-pressure cut-off switch">High-pressure cut-off switch</a></li> <li><a href="/wiki/Humidifier" title="Humidifier">Humidifier</a></li> <li><a href="/wiki/Infrared_heater" title="Infrared heater">Infrared heater</a></li> <li><a href="/wiki/Inverter_compressor" title="Inverter compressor">Inverter compressor</a></li> <li><a href="/wiki/Kerosene_heater" title="Kerosene heater">Kerosene heater</a></li> <li><a href="/wiki/Louver" title="Louver">Louver</a></li> <li><a href="/wiki/Mechanical_room" title="Mechanical room">Mechanical room</a></li> <li><a href="/wiki/Oil_heater" title="Oil heater">Oil heater</a></li> <li><a href="/wiki/Packaged_terminal_air_conditioner" title="Packaged terminal air conditioner">Packaged terminal air conditioner</a></li> <li><a href="/wiki/Plenum_space" title="Plenum space">Plenum space</a></li> <li><a href="/wiki/Pressurisation_ductwork" title="Pressurisation ductwork">Pressurisation ductwork</a></li> <li><a href="/wiki/Process_duct_work" title="Process duct work">Process duct work</a></li> <li><a href="/wiki/Radiator_(heating)" title="Radiator (heating)">Radiator</a></li> <li><a href="/wiki/Radiator_reflector" title="Radiator reflector">Radiator reflector</a></li> <li><a href="/wiki/Recuperator" title="Recuperator">Recuperator</a></li> <li><a href="/wiki/Refrigerant" title="Refrigerant">Refrigerant</a></li> <li><a href="/wiki/Register_(air_and_heating)" title="Register (air and heating)">Register</a></li> <li><a href="/wiki/Reversing_valve" title="Reversing valve">Reversing valve</a></li> <li><a href="/wiki/Run-around_coil" title="Run-around coil">Run-around coil</a></li> <li><a href="/wiki/Sail_switch" title="Sail switch">Sail switch</a></li> <li><a href="/wiki/Scroll_compressor" title="Scroll compressor">Scroll compressor</a></li> <li><a href="/wiki/Solar_chimney" title="Solar chimney">Solar chimney</a></li> <li><a href="/wiki/Solar-assisted_heat_pump" title="Solar-assisted heat pump">Solar-assisted heat pump</a></li> <li><a href="/wiki/Space_heater" title="Space heater">Space heater</a></li> <li><a href="/wiki/Smoke_canopy" title="Smoke canopy">Smoke canopy</a></li> <li><a href="/wiki/Smoke_damper" title="Smoke damper">Smoke damper</a></li> <li><a href="/wiki/Smoke_exhaust_ductwork" title="Smoke exhaust ductwork">Smoke exhaust ductwork</a></li> <li><a href="/wiki/Thermal_expansion_valve" title="Thermal expansion valve">Thermal expansion valve</a></li> <li><a href="/wiki/Thermal_wheel" title="Thermal wheel">Thermal wheel</a></li> <li><a href="/wiki/Thermostatic_radiator_valve" title="Thermostatic radiator valve">Thermostatic radiator valve</a></li> <li><a href="/wiki/Trickle_vent" title="Trickle vent">Trickle vent</a></li> <li><a href="/wiki/Trombe_wall" title="Trombe wall">Trombe wall</a></li> <li><a href="/wiki/TurboSwing" title="TurboSwing">TurboSwing</a></li> <li><a href="/wiki/Turning_vanes_(HVAC)" title="Turning vanes (HVAC)">Turning vanes</a></li> <li><a href="/wiki/Ultra-low_particulate_air" title="Ultra-low particulate air">Ultra-low particulate air</a> (ULPA)</li> <li><a href="/wiki/Whole-house_fan" title="Whole-house fan">Whole-house fan</a></li> <li><a href="/wiki/Windcatcher" title="Windcatcher">Windcatcher</a></li> <li><a href="/wiki/Wood-burning_stove" title="Wood-burning stove">Wood-burning stove</a></li> <li><a href="/wiki/Zone_valve" title="Zone valve">Zone valve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Measurement<br />and control</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air_flow_meter" title="Air flow meter">Air flow meter</a></li> <li><a href="/wiki/Aquastat" title="Aquastat">Aquastat</a></li> <li><a href="/wiki/BACnet" title="BACnet">BACnet</a></li> <li><a href="/wiki/Blower_door" title="Blower door">Blower door</a></li> <li><a href="/wiki/Building_automation" title="Building automation">Building automation</a></li> <li><a href="/wiki/Carbon_dioxide_sensor" title="Carbon dioxide sensor">Carbon dioxide sensor</a></li> <li><a href="/wiki/Clean_air_delivery_rate" title="Clean air delivery rate">Clean air delivery rate</a> (CADR)</li> <li><a href="/wiki/Control_valve" title="Control valve">Control valve</a></li> <li><a href="/wiki/Gas_detector" title="Gas detector">Gas detector</a></li> <li><a href="/wiki/Home_energy_monitor" title="Home energy monitor">Home energy monitor</a></li> <li><a href="/wiki/Humidistat" title="Humidistat">Humidistat</a></li> <li><a href="/wiki/HVAC_control_system" title="HVAC control system">HVAC control system</a></li> <li><a href="/wiki/Infrared_thermometer" title="Infrared thermometer">Infrared thermometer</a></li> <li><a href="/wiki/Intelligent_buildings" class="mw-redirect" title="Intelligent buildings">Intelligent buildings</a></li> <li><a href="/wiki/LonWorks" title="LonWorks">LonWorks</a></li> <li><a href="/wiki/Minimum_efficiency_reporting_value" title="Minimum efficiency reporting value">Minimum efficiency reporting value</a> (MERV)</li> <li><a href="/wiki/Normal_temperature_and_pressure" class="mw-redirect" title="Normal temperature and pressure">Normal temperature and pressure</a> (NTP)</li> <li><a href="/wiki/OpenTherm" title="OpenTherm">OpenTherm</a></li> <li><a href="/wiki/Programmable_communicating_thermostat" title="Programmable communicating thermostat">Programmable communicating thermostat</a></li> <li><a href="/wiki/Programmable_thermostat" title="Programmable thermostat">Programmable thermostat</a></li> <li><a href="/wiki/Psychrometrics" title="Psychrometrics">Psychrometrics</a></li> <li><a href="/wiki/Room_temperature" title="Room temperature">Room temperature</a></li> <li><a href="/wiki/Smart_thermostat" title="Smart thermostat">Smart thermostat</a></li> <li><a href="/wiki/Standard_temperature_and_pressure" title="Standard temperature and pressure">Standard temperature and pressure</a> (STP)</li> <li><a href="/wiki/Thermographic_camera" class="mw-redirect" title="Thermographic camera">Thermographic camera</a></li> <li><a href="/wiki/Thermostat" title="Thermostat">Thermostat</a></li> <li><a href="/wiki/Thermostatic_radiator_valve" title="Thermostatic radiator valve">Thermostatic radiator valve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Professions,<br />trades,<br />and services</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Architectural_acoustics" title="Architectural acoustics">Architectural acoustics</a></li> <li><a href="/wiki/Architectural_engineering" title="Architectural engineering">Architectural engineering</a></li> <li><a href="/wiki/Architectural_technologist" title="Architectural technologist">Architectural technologist</a></li> <li><a href="/wiki/Building_services_engineering" title="Building services engineering">Building services engineering</a></li> <li><a href="/wiki/Building_information_modeling" title="Building information modeling">Building information modeling</a> (BIM)</li> <li><a href="/wiki/Deep_energy_retrofit" title="Deep energy retrofit">Deep energy retrofit</a></li> <li><a href="/wiki/Duct_cleaning" class="mw-redirect" title="Duct cleaning">Duct cleaning</a></li> <li><a href="/wiki/Duct_leakage_testing" title="Duct leakage testing">Duct leakage testing</a></li> <li><a href="/wiki/Environmental_engineering" title="Environmental engineering">Environmental engineering</a></li> <li><a href="/wiki/Hydronic_balancing" title="Hydronic balancing">Hydronic balancing</a></li> <li><a href="/wiki/Kitchen_exhaust_cleaning" title="Kitchen exhaust cleaning">Kitchen exhaust cleaning</a></li> <li><a href="/wiki/Mechanical_engineering" title="Mechanical engineering">Mechanical engineering</a></li> <li><a href="/wiki/Mechanical,_electrical,_and_plumbing" title="Mechanical, electrical, and plumbing">Mechanical, electrical, and plumbing</a></li> <li><a href="/wiki/Mold_growth,_assessment,_and_remediation" class="mw-redirect" title="Mold growth, assessment, and remediation">Mold growth, assessment, and remediation</a></li> <li><a href="/wiki/Refrigerant_reclamation" title="Refrigerant reclamation">Refrigerant reclamation</a></li> <li><a href="/wiki/Testing,_adjusting,_balancing" title="Testing, adjusting, balancing">Testing, adjusting, balancing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Industry <br />organizations</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air_Conditioning,_Heating_and_Refrigeration_Institute" title="Air Conditioning, Heating and Refrigeration Institute">AHRI</a></li> <li><a href="/wiki/Air_Movement_and_Control_Association" title="Air Movement and Control Association">AMCA</a></li> <li><a href="/wiki/ASHRAE" title="ASHRAE">ASHRAE</a></li> <li><a href="/wiki/ASTM_International" title="ASTM International">ASTM International</a></li> <li><a href="/wiki/Building_Research_Establishment" title="Building Research Establishment">BRE</a></li> <li><a href="/wiki/BSRIA" title="BSRIA">BSRIA</a></li> <li><a href="/wiki/Chartered_Institution_of_Building_Services_Engineers" title="Chartered Institution of Building Services Engineers">CIBSE</a></li> <li><a href="/wiki/Institute_of_Refrigeration" title="Institute of Refrigeration">Institute of Refrigeration</a></li> <li><a href="/wiki/International_Institute_of_Refrigeration" title="International Institute of Refrigeration">IIR</a></li> <li><a href="/wiki/Leadership_in_Energy_and_Environmental_Design" class="mw-redirect" title="Leadership in Energy and Environmental Design">LEED</a></li> <li><a href="/wiki/Sheet_Metal_and_Air_Conditioning_Contractors%27_National_Association" title="Sheet Metal and Air Conditioning Contractors&#39; National Association">SMACNA</a></li> <li><a href="/wiki/Uniform_Mechanical_Code" title="Uniform Mechanical Code">UMC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Health and safety</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indoor_air_quality" title="Indoor air quality">Indoor air quality</a> (IAQ)</li> <li><a href="/wiki/Passive_smoking" title="Passive smoking">Passive smoking</a></li> <li><a href="/wiki/Sick_building_syndrome" title="Sick building syndrome">Sick building syndrome</a> (SBS)</li> <li><a href="/wiki/Volatile_organic_compound" title="Volatile organic compound">Volatile organic compound</a> (VOC)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;text-align: middle;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ASHRAE_Handbook" title="ASHRAE Handbook">ASHRAE Handbook</a></li> <li><a href="/wiki/Building_science" title="Building science">Building science</a></li> <li><a href="/wiki/Fireproofing" title="Fireproofing">Fireproofing</a></li> <li><a href="/wiki/Glossary_of_HVAC_terms" title="Glossary of HVAC terms">Glossary of HVAC terms</a></li> <li><a href="/wiki/Warm_Spaces" title="Warm Spaces">Warm Spaces</a></li> <li><a href="/wiki/World_Refrigeration_Day" title="World Refrigeration Day">World Refrigeration Day</a></li> <li><a href="/wiki/Template:Home_automation" title="Template:Home automation">Template:Home automation</a></li> <li><a href="/wiki/Template:Solar_energy" title="Template:Solar energy">Template:Solar energy</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐tm4g9 Cached time: 20241122154346 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.706 seconds Real time usage: 2.288 seconds Preprocessor visited node count: 10617/1000000 Post‐expand include size: 365033/2097152 bytes Template argument size: 4623/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 497554/5000000 bytes Lua time usage: 0.996/10.000 seconds Lua memory usage: 9758122/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1701.647 1 -total 59.19% 1007.120 1 Template:Reflist 50.19% 854.126 99 Template:Cite_journal 7.54% 128.387 1 Template:Short_description 5.86% 99.644 1 Template:HVAC 5.54% 94.269 1 Template:Navbox 5.15% 87.698 2 Template:Pagetype 3.15% 53.655 8 Template:Convert 3.01% 51.220 1 Template:Clarify 2.83% 48.117 1 Template:Fix-span --> <!-- Saved in parser cache with key enwiki:pcache:idhash:71855084-0!canonical and timestamp 20241122154346 and revision id 1256324990. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Passive_daytime_radiative_cooling&amp;oldid=1256324990">https://en.wikipedia.org/w/index.php?title=Passive_daytime_radiative_cooling&amp;oldid=1256324990</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Atmospheric_radiation" title="Category:Atmospheric radiation">Atmospheric radiation</a></li><li><a href="/wiki/Category:Climate_change_adaptation" title="Category:Climate change adaptation">Climate change adaptation</a></li><li><a href="/wiki/Category:Climate_change_mitigation" title="Category:Climate change mitigation">Climate change mitigation</a></li><li><a href="/wiki/Category:Climate_engineering" title="Category:Climate engineering">Climate engineering</a></li><li><a href="/wiki/Category:Cooling_technology" title="Category:Cooling technology">Cooling technology</a></li><li><a href="/wiki/Category:Energy_conservation" title="Category:Energy conservation">Energy conservation</a></li><li><a href="/wiki/Category:Heat_transfer" title="Category:Heat transfer">Heat transfer</a></li><li><a href="/wiki/Category:Heating,_ventilation,_and_air_conditioning" title="Category:Heating, ventilation, and air conditioning">Heating, ventilation, and air conditioning</a></li><li><a href="/wiki/Category:Passive_cooling" title="Category:Passive cooling">Passive cooling</a></li><li><a href="/wiki/Category:Photonics" title="Category:Photonics">Photonics</a></li><li><a href="/wiki/Category:Renewable_energy" title="Category:Renewable energy">Renewable energy</a></li><li><a href="/wiki/Category:Solar_design" title="Category:Solar design">Solar design</a></li><li><a href="/wiki/Category:Sustainable_architecture" title="Category:Sustainable architecture">Sustainable architecture</a></li><li><a href="/wiki/Category:Sustainable_building" title="Category:Sustainable building">Sustainable building</a></li><li><a href="/wiki/Category:Thermodynamics" title="Category:Thermodynamics">Thermodynamics</a></li><li><a href="/wiki/Category:Renewable_energy_technology" title="Category:Renewable energy technology">Renewable energy technology</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2022" title="Category:Use dmy dates from December 2022">Use dmy dates from December 2022</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_August_2024" title="Category:Wikipedia articles needing clarification from August 2024">Wikipedia articles needing clarification from August 2024</a></li><li><a href="/wiki/Category:All_articles_with_failed_verification" title="Category:All articles with failed verification">All articles with failed verification</a></li><li><a href="/wiki/Category:Articles_with_failed_verification_from_August_2024" title="Category:Articles with failed verification from August 2024">Articles with failed verification from August 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 November 2024, at 10:32<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Passive_daytime_radiative_cooling&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-w8xh7","wgBackendResponseTime":178,"wgPageParseReport":{"limitreport":{"cputime":"1.706","walltime":"2.288","ppvisitednodes":{"value":10617,"limit":1000000},"postexpandincludesize":{"value":365033,"limit":2097152},"templateargumentsize":{"value":4623,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":497554,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1701.647 1 -total"," 59.19% 1007.120 1 Template:Reflist"," 50.19% 854.126 99 Template:Cite_journal"," 7.54% 128.387 1 Template:Short_description"," 5.86% 99.644 1 Template:HVAC"," 5.54% 94.269 1 Template:Navbox"," 5.15% 87.698 2 Template:Pagetype"," 3.15% 53.655 8 Template:Convert"," 3.01% 51.220 1 Template:Clarify"," 2.83% 48.117 1 Template:Fix-span"]},"scribunto":{"limitreport-timeusage":{"value":"0.996","limit":"10.000"},"limitreport-memusage":{"value":9758122,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-tm4g9","timestamp":"20241122154346","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Passive daytime radiative cooling","url":"https:\/\/en.wikipedia.org\/wiki\/Passive_daytime_radiative_cooling","sameAs":"http:\/\/www.wikidata.org\/entity\/Q115533486","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q115533486","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2022-09-27T08:41:10Z","dateModified":"2024-11-09T10:32:47Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/c\/c3\/Passive_daytime_radiative_cooling_diagram.jpg","headline":"management strategy for global warming"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10