CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 747 results for author: <span class="mathjax">Chen, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Chen%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16279">arXiv:2411.16279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16279">pdf</a>, <a href="https://arxiv.org/format/2411.16279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant Electron-Phonon Coupling Induced Band-Gap Renormalization in Anharmonic Silver Chalcohalide Antiperovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ben%C3%ADtez%2C+P">Pol Ben铆tez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+R">Ruoshi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B3pez%2C+C">Cibr谩n L贸pez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamarit%2C+J">Josep-Llu铆s Tamarit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%8D%C3%B1iguez-Gonz%C3%A1lez%2C+J">Jorge 脥帽iguez-Gonz谩lez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saucedo%2C+E">Edgardo Saucedo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monserrat%2C+B">Bartomeu Monserrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cazorla%2C+C">Claudio Cazorla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16279v1-abstract-short" style="display: inline;"> Silver chalcohalide antiperovskites (CAP), Ag$_{3}$XY (X = S, Se; Y = Br, I), are a family of highly anharmonic inorganic compounds with great potential for energy applications. However, a substantial and unresolved discrepancy exists between the optoelectronic properties predicted by theoretical first-principles methods and those measured experimentally at room temperature, hindering the fundamen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16279v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16279v1-abstract-full" style="display: none;"> Silver chalcohalide antiperovskites (CAP), Ag$_{3}$XY (X = S, Se; Y = Br, I), are a family of highly anharmonic inorganic compounds with great potential for energy applications. However, a substantial and unresolved discrepancy exists between the optoelectronic properties predicted by theoretical first-principles methods and those measured experimentally at room temperature, hindering the fundamental understanding and rational engineering of CAP. In this work, we employ density functional theory, tight-binding calculations, and anharmonic Fr枚hlich theory to investigate the optoelectronic properties of CAP at finite temperatures. Near room temperature, we observe a giant band-gap ($E_{g}$) reduction of approximately $20$-$60$\% relative to the value calculated at $T = 0$ K, bringing the estimated $E_{g}$ into excellent agreement with experimental measurements. This relative $T$-induced band-gap renormalization is roughly twice the largest value previously reported in the literature for similar temperature ranges. Low-energy optical polar phonon modes, which break inversion symmetry and promote the overlap between silver and chalcogen $s$ electronic orbitals in the conduction band, are identified as the primary contributors to this giant $E_{g}$ reduction. Furthermore, when considering temperature effects, the optical absorption coefficient of CAP increases by nearly an order of magnitude for visible light frequencies. These insights not only bridge a crucial gap between theory and experiment but also open pathways for future technologies where temperature, electric fields, or light dynamically tailor optoelectronic behavior, positioning CAP as a versatile platform for next-generation energy applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16279v1-abstract-full').style.display = 'none'; document.getElementById('2411.16279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09631">arXiv:2411.09631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09631">pdf</a>, <a href="https://arxiv.org/format/2411.09631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> NEP-MB-pol: A unified machine-learned framework for fast and accurate prediction of water&#39;s thermodynamic and transport properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+T">Ting Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+P">Penghua Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+N">Ning Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jianbin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09631v2-abstract-short" style="display: inline;"> Water&#39;s unique hydrogen-bonding network and anomalous properties pose significant challenges for accurately modeling its structural, thermodynamic, and transport behavior across varied conditions. Although machine-learned potentials have advanced the prediction of individual properties, a unified computational framework capable of simultaneously capturing water&#39;s complex and subtle properties with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09631v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09631v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09631v2-abstract-full" style="display: none;"> Water&#39;s unique hydrogen-bonding network and anomalous properties pose significant challenges for accurately modeling its structural, thermodynamic, and transport behavior across varied conditions. Although machine-learned potentials have advanced the prediction of individual properties, a unified computational framework capable of simultaneously capturing water&#39;s complex and subtle properties with high accuracy has remained elusive. Here, we address this challenge by introducing NEP-MB-pol, a highly accurate and efficient neuroevolution potential (NEP) trained on extensive many-body polarization (MB-pol) reference data approaching coupled-cluster-level accuracy, combined with path-integral molecular dynamics and quantum-correction techniques to incorporate nuclear quantum effects. This NEP-MB-pol framework reproduces experimentally measured structural, thermodynamic, and transport properties of water across a broad temperature range, achieving simultaneous, fast, and accurate prediction of self-diffusion coefficient, viscosity, and thermal conductivity. Our approach provides a unified and robust tool for exploring thermodynamic and transport properties of water under diverse conditions, with significant potential for broader applications across research fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09631v2-abstract-full').style.display = 'none'; document.getElementById('2411.09631v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures in the main text; 8 figures in the SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04823">arXiv:2411.04823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04823">pdf</a>, <a href="https://arxiv.org/format/2411.04823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Si/SiO$_\text{2}$ MOSFET Reliability Physics: From Four-State Model to All-State Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xinjing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04823v1-abstract-short" style="display: inline;"> As implemented in the commercialized device modeling software, the four-state nonradiative multi-phonon model has attracted intensive attention in the past decade for describing the physics in negative bias temperature instability (NBTI) and other reliability issues of Si/SiO$_\text{2}$ MOSFET devices. It was proposed initially based on the assumption that the oxygen vacancy defects (V$_\text{O}$)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04823v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04823v1-abstract-full" style="display: none;"> As implemented in the commercialized device modeling software, the four-state nonradiative multi-phonon model has attracted intensive attention in the past decade for describing the physics in negative bias temperature instability (NBTI) and other reliability issues of Si/SiO$_\text{2}$ MOSFET devices. It was proposed initially based on the assumption that the oxygen vacancy defects (V$_\text{O}$) in SiO$_\text{2}$ dielectric layer are bistable in the Si-dimer and back-projected structures during carrier capture and emission. Through high-throughput first-principles structural search, we found V$_\text{O}$ on non-equivalent O sites in amorphous SiO$_\text{2}$ can take 4 types of structural configurations in neutral state and 7 types of configurations in +1 charged state after capturing holes, which produce a wide range of charge-state transition levels for trapping holes. The finding contrasts the structural-bistability assumption and makes the four-state model invalid for most of O sites. To describe the reliability physics accurately, we propose an all-state model to consider all these structural configurations as well as all the carrier capture/emission transitions and thermal transitions between them. With the all-state model, we show that the V$_\text{O}$ defects play important roles in causing NBTI, which challenges the recent studies that discarded V$_\text{O}$ as a possible hole trap in NBTI. Our systematical calculations on the diversified V$_\text{O}$ properties and the all-state model provide the microscopic foundation for describing the reliability physics of MOSFETs and other transistors accurately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04823v1-abstract-full').style.display = 'none'; document.getElementById('2411.04823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01945">arXiv:2411.01945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01945">pdf</a>, <a href="https://arxiv.org/format/2411.01945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Semi-implicit Lax-Wendroff kinetic scheme for multi-scale phonon transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shuang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Songze Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">Hong Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01945v1-abstract-short" style="display: inline;"> Fast and accurate predictions of the spatiotemporal distributions of temperature are crucial to the multi-scale thermal management and safe operation of microelectronic devices. To realize it, an efficient semi-implicit Lax-Wendroff kinetic scheme is developed for numerically solving the transient phonon Boltzmann transport equation (BTE) from the ballistic to diffusive regime. The phonon BTE at t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01945v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01945v1-abstract-full" style="display: none;"> Fast and accurate predictions of the spatiotemporal distributions of temperature are crucial to the multi-scale thermal management and safe operation of microelectronic devices. To realize it, an efficient semi-implicit Lax-Wendroff kinetic scheme is developed for numerically solving the transient phonon Boltzmann transport equation (BTE) from the ballistic to diffusive regime. The phonon BTE at the cell center is discretized under the framework of finite volume method, where the trapezoidal and midpoint rules are used to deal with the temporal integration of phonon scattering and convection terms, respectively. For the reconstruction of the interfacial distribution function, the phonon BTE at the cell interface is discretized in the form of finite difference method and solved numerically, where second-order upwind and central scheme are used to deal with the spatial interpolation and gradient of interfacial distribution function, respectively. The macroscopic governing equations are invoked for the evolution of macroscopic fields at both the cell center and interface, where the macroscopic flux is obtained by taking the moment of the interfacial distribution function. Numerical results show that the present scheme could accurately predict the steady/unsteady heat conduction in solid materials from the ballistic to diffusive regime, and its time and cell size are not limited by the relaxation time and phonon mean free path. The present work could provide a useful tool for the efficient predictions of the macroscopic spatiotemporal distributions in the multi-scale thermal engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01945v1-abstract-full').style.display = 'none'; document.getElementById('2411.01945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, 58 refernece</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82D37; 80A05 80A19 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01578">arXiv:2411.01578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01578">pdf</a>, <a href="https://arxiv.org/format/2411.01578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrating Graph Neural Networks and Many-Body Expansion Theory for Potential Energy Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siqi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+X">Xianqi Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yili Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+C">Cheng-Wei Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+J">Jun Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+L">Lin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+G">Guo Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alhmoud%2C+D">Dieaa Alhmoud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+H">Hui Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhou Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01578v1-abstract-short" style="display: inline;"> Rational design of next-generation functional materials relied on quantitative predictions of their electronic structures beyond single building blocks. First-principles quantum mechanical (QM) modeling became infeasible as the size of a material grew beyond hundreds of atoms. In this study, we developed a new computational tool integrating fragment-based graph neural networks (FBGNN) into the fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01578v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01578v1-abstract-full" style="display: none;"> Rational design of next-generation functional materials relied on quantitative predictions of their electronic structures beyond single building blocks. First-principles quantum mechanical (QM) modeling became infeasible as the size of a material grew beyond hundreds of atoms. In this study, we developed a new computational tool integrating fragment-based graph neural networks (FBGNN) into the fragment-based many-body expansion (MBE) theory, referred to as FBGNN-MBE, and demonstrated its capacity to reproduce full-dimensional potential energy surfaces (FD-PES) for hierarchic chemical systems with manageable accuracy, complexity, and interpretability. In particular, we divided the entire system into basic building blocks (fragments), evaluated their single-fragment energies using a first-principles QM model and attacked many-fragment interactions using the structure-property relationships trained by FBGNNs. Our development of FBGNN-MBE demonstrated the potential of a new framework integrating deep learning models into fragment-based QM methods, and marked a significant step towards computationally aided design of large functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01578v1-abstract-full').style.display = 'none'; document.getElementById('2411.01578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted as a Spotlight paper to NeurIPS 2024 AI4Mat Workshop. See https://openreview.net/forum?id=ra3CxVuhUf</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00332">arXiv:2411.00332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00332">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> In-situ Self-optimization of Quantum Dot Emission for Lasers by Machine-Learning Assisted Epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+W">Wenkang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+S">Shujie Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+H">Hongyue Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+N">Ning Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+K">Kaiyao Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+H">Hui Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siming Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Chunlai Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fengqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanguo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chao Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00332v1-abstract-short" style="display: inline;"> Traditional methods for optimizing light source emissions rely on a time-consuming trial-and-error approach. While in-situ optimization of light source gain media emission during growth is ideal, it has yet to be realized. In this work, we integrate in-situ reflection high-energy electron diffraction (RHEED) with machine learning (ML) to correlate the surface reconstruction with the photoluminesce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00332v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00332v1-abstract-full" style="display: none;"> Traditional methods for optimizing light source emissions rely on a time-consuming trial-and-error approach. While in-situ optimization of light source gain media emission during growth is ideal, it has yet to be realized. In this work, we integrate in-situ reflection high-energy electron diffraction (RHEED) with machine learning (ML) to correlate the surface reconstruction with the photoluminescence (PL) of InAs/GaAs quantum dots (QDs), which serve as the active region of lasers. A lightweight ResNet-GLAM model is employed for the real-time processing of RHEED data as input, enabling effective identification of optical performance. This approach guides the dynamic optimization of growth parameters, allowing real-time feedback control to adjust the QDs emission for lasers. We successfully optimized InAs QDs on GaAs substrates, with a 3.2-fold increase in PL intensity and a reduction in full width at half maximum (FWHM) from 36.69 meV to 28.17 meV under initially suboptimal growth conditions. Our automated, in-situ self-optimized lasers with 5-layer InAs QDs achieved electrically pumped continuous-wave operation at 1240 nm with a low threshold current of 150 A/cm2 at room temperature, an excellent performance comparable to samples grown through traditional manual multi-parameter optimization methods. These results mark a significant step toward intelligent, low-cost, and reproductive light emitters production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00332v1-abstract-full').style.display = 'none'; document.getElementById('2411.00332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22727">arXiv:2410.22727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22727">pdf</a>, <a href="https://arxiv.org/format/2410.22727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance from spin-polarized polarons in an Ising system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying-Fei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balguri%2C+S">Sudhaman Balguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chun-Jing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahenderu%2C+M+B">Mira B. Mahenderu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22727v1-abstract-short" style="display: inline;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22727v1-abstract-full" style="display: none;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to explore their origin, particularly focusing on EuCd$_2$P$_2$. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance (T$_{MR}$) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this non-quasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the $p$-$f$ mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd$_2$X$_2$ family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'none'; document.getElementById('2410.22727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20368">arXiv:2410.20368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20368">pdf</a>, <a href="https://arxiv.org/format/2410.20368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Spin-Orbit Effects in Superconductors In$_5$Bi$_3$ and In$_5$Sb$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yao Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monserrat%2C+B">Bartomeu Monserrat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20368v1-abstract-short" style="display: inline;"> We report a first principles computational analysis of two phonon-mediated superconductors, In$_{5}$Bi$_{3}$ and In$_{5}$Sb$_{3}$. We show that spin-orbit coupling leads to splitting of electron bands around the Fermi energy, resulting in a suppression of the electronic density of states in both compounds. In In$_{5}$Bi$_{3}$, the spin-orbit coupling is essential for the dynamical stability of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20368v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20368v1-abstract-full" style="display: none;"> We report a first principles computational analysis of two phonon-mediated superconductors, In$_{5}$Bi$_{3}$ and In$_{5}$Sb$_{3}$. We show that spin-orbit coupling leads to splitting of electron bands around the Fermi energy, resulting in a suppression of the electronic density of states in both compounds. In In$_{5}$Bi$_{3}$, the spin-orbit coupling is essential for the dynamical stability of the experimentally observed phase, and the calculated superconducting critical temperature is in close agreement with measurements. In In$_{5}$Sb$_{3}$, the spin-orbit coupling significantly reduces the calculated superconducting critical temperature compared to calculations neglecting relativistic effects. Our work emphasises the subtle interplay between spin-orbit interactions and phonon-mediated superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20368v1-abstract-full').style.display = 'none'; document.getElementById('2410.20368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19233">arXiv:2410.19233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19233">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Irreversible charging caused by energy dissipation from depinning of droplets on polymer surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuaijia Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leon%2C+R+T">Ronald T. Leon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qambari%2C+R">Rahmat Qambari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Menghan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherrell%2C+P+C">Peter C. Sherrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellis%2C+A+V">Amanda V. Ellis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berry%2C+J+D">Joseph D. Berry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19233v1-abstract-short" style="display: inline;"> Interfacial energy dissipation during stick-slip motion of a liquid drop on a non-conductive polymer substrate is shown to lead to an irreversible increase in electrical charge. This previously unobserved phenomenon occurs during surface wetting, in contrast to the previously reported charge separation mechanism that occurs during dewetting. Understanding this electrification mechanism will facili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19233v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19233v1-abstract-full" style="display: none;"> Interfacial energy dissipation during stick-slip motion of a liquid drop on a non-conductive polymer substrate is shown to lead to an irreversible increase in electrical charge. This previously unobserved phenomenon occurs during surface wetting, in contrast to the previously reported charge separation mechanism that occurs during dewetting. Understanding this electrification mechanism will facilitate the design of energy harvesters and aid the development of risk mitigation strategies for electrostatic buildup in liquid flow across a wide range of industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19233v1-abstract-full').style.display = 'none'; document.getElementById('2410.19233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18339">arXiv:2410.18339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18339">pdf</a>, <a href="https://arxiv.org/format/2410.18339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53434-8">10.1038/s41467-024-53434-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scale-tailored localization and its observation in non-Hermitian electrical circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Cui-Xian Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+L">Luhong Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinzhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+X">Xinhui Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yanjing Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18339v1-abstract-short" style="display: inline;"> Anderson localization and non-Hermitian skin effect are two paradigmatic wave localization phenomena, resulting from wave interference and the intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization, where the number of induced localized modes and their localization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18339v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18339v1-abstract-full" style="display: none;"> Anderson localization and non-Hermitian skin effect are two paradigmatic wave localization phenomena, resulting from wave interference and the intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization, where the number of induced localized modes and their localization lengths scale exclusively with the coupling range. We show that the long-range coupling fundamentally reshapes the energy spectra and eigenstates by creating multiple connected paths on the lattice. Furthermore, we present experimental observations of scale-tailored localization in non-Hermitian electrical circuits utilizing adjustable voltage followers and switches. The circuit admittance spectra possess separate point-shaped and loop-shaped components in the complex energy plane, corresponding respectively to skin modes and scale-tailored localized states. Our findings not only expand and deepen the understanding of peculiar effects induced by non-Hermiticity but also offer a feasible experimental platform for exploring and controlling wave localizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18339v1-abstract-full').style.display = 'none'; document.getElementById('2410.18339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+16 pages, 5+11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9120 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16987">arXiv:2410.16987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16987">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A single-phase epitaxially grown ferroelectric perovskite nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Songhee Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zi%2C+X">Xian Zi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+J">Jie Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ting%2C+C">Cui Ting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qianying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+G">Gang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhiguo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16987v1-abstract-short" style="display: inline;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16987v1-abstract-full" style="display: none;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report the synthesis and characterizations of epitaxial single-phase ferroelectric cerium tantalum nitride (CeTaN3) on both oxides and semiconductors. The polar symmetry of CeTaN3 was confirmed by observing the atomic displacement of central ions relative to the center of the TaN6 octahedra, as well as through optical second harmonic generation. We observed switchable ferroelectric domains in CeTaN3 films using piezo-response force microscopy, complemented by the characterization of square-like polarization-electric field hysteresis loops. The remanent polarization of CeTaN3 reaches approximately 20 uC/cm2 at room temperature, consistent with theoretical calculations. This work establishes a vital link between ferroelectric nitride perovskites and their practical applications, paving the way for next-generation information and energy-storage devices with enhanced performance, scalability, and manufacturability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'none'; document.getElementById('2410.16987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15763">arXiv:2410.15763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15763">pdf</a>, <a href="https://arxiv.org/format/2410.15763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Exact Solutions Disentangle Higher-Order Topology in 2D Non-Hermitian Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lingfang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yating Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+G">Gangzhou Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Y">Yang Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shihua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Z">Zhenhua Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15763v1-abstract-short" style="display: inline;"> We report the exact closed-form solutions for higher-order topological states as well as explicit energy-spectrum relationships in two-dimensional (2D) non-Hermitian multi-orbital lattices with generalized boundary conditions. These analytical solutions unequivocally confirm that topological edge states in a 2D non-Hermitian system which feature point-gap topology must undergo the non-Hermitian sk&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15763v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15763v1-abstract-full" style="display: none;"> We report the exact closed-form solutions for higher-order topological states as well as explicit energy-spectrum relationships in two-dimensional (2D) non-Hermitian multi-orbital lattices with generalized boundary conditions. These analytical solutions unequivocally confirm that topological edge states in a 2D non-Hermitian system which feature point-gap topology must undergo the non-Hermitian skin effect along the edge. Under double open boundary conditions, the occurrence of the non-Hermitian skin effect for either topological edge states or bulk states can be accurately predicted by our proposed winding numbers. We unveil that the zero-energy topological corner state only manifests itself on a corner where two nearby gapped edge states intersect, and thus can either disappear completely or strengthen drastically due to the non-Hermitian skin effect of gapped topological edge states. Our analytical results offer direct insight into the non-Bloch band topology in two or higher dimensions and trigger experimental investigations into related phenomena such as quadrupole topological insulators and topological lasing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15763v1-abstract-full').style.display = 'none'; document.getElementById('2410.15763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13820">arXiv:2410.13820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13820">pdf</a>, <a href="https://arxiv.org/format/2410.13820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhancing universal machine learning potentials with polarizable long-range interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+R">Rongzhi Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yam%2C+C">ChiYung Yam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jianjun Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuguang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">GuanHua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Ziyang Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13820v1-abstract-short" style="display: inline;"> Long-range interactions are crucial in determining the behavior of chemical systems in various environments. Accurate predictions of physical and chemical phenomena at the atomic level hinge on accurate modeling of these interactions. Here, we present a framework that substantially enhances the predictive power of machine learning interatomic potentials by incorporating explicit polarizable long-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13820v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13820v1-abstract-full" style="display: none;"> Long-range interactions are crucial in determining the behavior of chemical systems in various environments. Accurate predictions of physical and chemical phenomena at the atomic level hinge on accurate modeling of these interactions. Here, we present a framework that substantially enhances the predictive power of machine learning interatomic potentials by incorporating explicit polarizable long-range interactions with an equivariant graph neural network short-range potential. The pretrained universal model, applicable across the entire periodic table, can achieve first-principles accuracy. This versatile model has been further applied to diverse areas of research, including the study of mechanical properties, ionic diffusivity in solid-state electrolytes, ferroelectricity, and interfacial reactions, demonstrating its broad applicability and robustness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13820v1-abstract-full').style.display = 'none'; document.getElementById('2410.13820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13535">arXiv:2410.13535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13535">pdf</a>, <a href="https://arxiv.org/format/2410.13535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Million-atom heat transport simulations of polycrystalline graphene approaching first-principles accuracy enabled by neuroevolution potential on desktop GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoye Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Benrui Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+X">Xiaoming Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13535v2-abstract-short" style="display: inline;"> First-principles molecular dynamics simulations of heat transport in systems with large-scale structural features are challenging due to their high computational cost. Here, using polycrystalline graphene as a case study, we demonstrate the feasibility of simulating heat transport with near first-principles accuracy in systems containing over 1.4 million atoms, achievable even with consumer deskto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13535v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13535v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13535v2-abstract-full" style="display: none;"> First-principles molecular dynamics simulations of heat transport in systems with large-scale structural features are challenging due to their high computational cost. Here, using polycrystalline graphene as a case study, we demonstrate the feasibility of simulating heat transport with near first-principles accuracy in systems containing over 1.4 million atoms, achievable even with consumer desktop GPUs. This is enabled by the highly efficient neuroevolution potential (NEP) approach, as implemented in the open-source GPUMD package. Leveraging the NEP model&#39;s accuracy and efficiency, we quantify the reduction in thermal conductivity of polycrystalline graphene due to grain boundaries with varying grain sizes, resolving contributions from in-plane and out-of-plane (flexural) phonon modes. Additionally, we find that grain boundaries can lead to finite thermal conductivity even under significant tensile strain, in contrast to the divergent behavior observed in pristine graphene under similar conditions, indicating that grain boundaries may play a crucial role in thermal transport in low-dimensional momentum-conserving systems. These findings could offer insights for interpreting experimental observations, given the widespread presence of both large-scale grain boundaries and external strains in real materials. The demonstrated ability to simulate millions of atoms with near-first-principles accuracy on consumer desktop GPUs using the NEP approach will help make large-scale high-fidelity atomistic simulations more accessible to the broader research community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13535v2-abstract-full').style.display = 'none'; document.getElementById('2410.13535v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, a labeling typo in the previous Fig. 6 has been corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07396">arXiv:2410.07396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07396">pdf</a>, <a href="https://arxiv.org/format/2410.07396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Rocking, Rolling, and Hopping: Exploring the Multi-motion Capabilities of Rigid and Soft Ellipsoidal Actuators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shih-Yuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driscoll%2C+M+M">Michelle M. Driscoll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07396v1-abstract-short" style="display: inline;"> The problem of a rigid disk rolling down a ramp is a classic problem given to students in introductory mechanics courses. In contrast, systematic studies on the rolling behavior of an ellipse have only recently emerged. Unlike a rolling disk, here the geometric center remains at a constant height from the floor, the center of a rotating ellipse changes nonlinearly due to its eccentric shape. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07396v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07396v1-abstract-full" style="display: none;"> The problem of a rigid disk rolling down a ramp is a classic problem given to students in introductory mechanics courses. In contrast, systematic studies on the rolling behavior of an ellipse have only recently emerged. Unlike a rolling disk, here the geometric center remains at a constant height from the floor, the center of a rotating ellipse changes nonlinearly due to its eccentric shape. This eccentricity introduces new modes of motion beyond rolling, including rocking and hopping. Leveraging this multi-motion behavior, we design an ellipsoidal actuator which exhibits both rolling and hopping behaviors in response to changes in the applied angular velocity. Using a simple geometric framework, we successfully capture the motion of the actuator as a force-driven rigid ellipsoid on a non-slip flat surface, and identify the critical angular velocity for the rolling-to-hopping transition. Furthermore, by adding deformability to the actuator, we unlock new functionalities, enabling soft actuators that can climb slopes and work together to collectively ascend stairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07396v1-abstract-full').style.display = 'none'; document.getElementById('2410.07396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06859">arXiv:2410.06859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06859">pdf</a>, <a href="https://arxiv.org/format/2410.06859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic Blackbody Absorption: Transcending Causality Limits through Instability-Induced Softness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Min Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+S">Sichao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+N">Nicholas Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuyu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06859v1-abstract-short" style="display: inline;"> By coupling unstable components, we demonstrate a novel approach that reduces static modulus to zero, eliminating causality-imposed absorption limitations in acoustics. Our heuristic model simulations achieve ultra-broadband absorption over 99% for wavelengths greater than 132 times the absorber thickness. Theoretical analysis further proves this strategy can approach ideal blackbody behavior with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06859v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06859v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06859v1-abstract-full" style="display: none;"> By coupling unstable components, we demonstrate a novel approach that reduces static modulus to zero, eliminating causality-imposed absorption limitations in acoustics. Our heuristic model simulations achieve ultra-broadband absorption over 99% for wavelengths greater than 132 times the absorber thickness. Theoretical analysis further proves this strategy can approach ideal blackbody behavior with infinitesimal thickness. These findings suggest fundamental physical laws no longer prevent true blackbody absorption realization; the only remaining obstacle is the material limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06859v1-abstract-full').style.display = 'none'; document.getElementById('2410.06859v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04849">arXiv:2410.04849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04849">pdf</a>, <a href="https://arxiv.org/format/2410.04849">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuning of perpendicular magnetic anisotropy in Bi-substituted yttrium iron garnet films by He$^+$ ion irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Sreeveni Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mansell%2C+R">Rhodri Mansell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flaj%C5%A1man%2C+L">Luk谩拧 Flaj拧man</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+L">Lide Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Jagt%2C+J+W">Johannes W. van der Jagt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Song Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravelosona%2C+D">Dafin茅 Ravelosona</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diez%2C+L+H">Liza Herrera Diez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Dijken%2C+S">Sebastiaan van Dijken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04849v1-abstract-short" style="display: inline;"> We report the continuous tuning of magnetic anisotropy in perpendicularly magnetized bismuth-substituted yttrium iron garnet (Bi-YIG) films via He$^+$ ion irradiation. Our findings indicate that the magnetization direction of epitaxial Bi-YIG films on sGGG substrates transitions from out-of-plane in the as-grown state to in-plane after He+ ion irradiation at a fluence exceeding $2\times 10^{14}$ i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04849v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04849v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04849v1-abstract-full" style="display: none;"> We report the continuous tuning of magnetic anisotropy in perpendicularly magnetized bismuth-substituted yttrium iron garnet (Bi-YIG) films via He$^+$ ion irradiation. Our findings indicate that the magnetization direction of epitaxial Bi-YIG films on sGGG substrates transitions from out-of-plane in the as-grown state to in-plane after He+ ion irradiation at a fluence exceeding $2\times 10^{14}$ ions/cm$^2$. The reorientation is attributed to the relaxation of tensile film strain, which reduces the perpendicular magnetic anisotropy without affecting the saturation magnetization. The Gilbert damping parameter and the inhomogeneous broadening of the ferromagnetic resonance linewidth show only minimal increases with ion irradiation. Additionally, at a fluence of $5\times 10^{13}$ ions/cm$^2$, we observe the formation of magnetic bubble domains in the Bi-YIG films. Micromagnetic simulations estimate a Dzyaloshinskii-Moriya interaction of 0.006 mJ/m$^2$, which is insufficient for stabilizing N茅el-type skyrmions. Finally, we demonstrate that the effects of He$^+$ ion irradiation can be largely reversed through thermal annealing in an oxygen atmosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04849v1-abstract-full').style.display = 'none'; document.getElementById('2410.04849v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04396">arXiv:2410.04396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> General recipe for immediate entanglement death-birth transitions via Bell states: environmental Heisenberg exchange as an example </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Son-Hsien Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S+G">Seng Ghee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Che-Chun Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04396v2-abstract-short" style="display: inline;"> Environment is known to play a dual role in both extinguishing and establishing entanglement, leading to entanglement sudden death (ESD) and entanglement sudden birth (ESB). In this paper, we propose a recipe for the initial states of two qubits to undergo ESD, ESB, or transition of finite duration (TFD) between them. While this recipe is \emph{generally independent of the interaction}, a spin-sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04396v2-abstract-full').style.display = 'inline'; document.getElementById('2410.04396v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04396v2-abstract-full" style="display: none;"> Environment is known to play a dual role in both extinguishing and establishing entanglement, leading to entanglement sudden death (ESD) and entanglement sudden birth (ESB). In this paper, we propose a recipe for the initial states of two qubits to undergo ESD, ESB, or transition of finite duration (TFD) between them. While this recipe is \emph{generally independent of the interaction}, a spin-star model with environmental Heisenberg exchange is chosen for illustration. Utilizing the Bell states, we introduce the entanglement switch parameter (ESP), whose sign indicates whether the qubit bipartite entanglement is switched on or off. The classical (quantum) weighting of the Bell states encodes the ESP for initial mixed (pure) states. When more than two Bell states are adopted, the ESP permits states to penetrate through the entanglement-unentanglement boundary. In this case, the penetrability of a small ESP ensures the immediate occurrence of ESD or ESB and indicates the TFD if the local time-even symmetry in the entanglement monotone is also satisfied. When no more than two Bell states are employed, the penetrability is lost, and TFD is only identified in some mixed states but not in pure states; here for pure states, the environmental quantum degrees of freedom are associated with the number of Bell states. Thanks to the simplicity of this model, analytic results are provided. We also analyze the symmetries that can convert or alter ESD into ESB, and vice versa. The recipe enhances the controllability of entanglement dynamics and facilitates entanglement engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04396v2-abstract-full').style.display = 'none'; document.getElementById('2410.04396v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17633">arXiv:2409.17633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of terahertz conductivity in a gated monolayer semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qixin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Ruishi Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zuocheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abeysinghe%2C+D">Dishan Abeysinghe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzundal%2C+C">Can Uzundal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jingxu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17633v1-abstract-short" style="display: inline;"> Two-dimensional semiconductors and their moir茅 superlattices have emerged as important platforms for investigating correlated electrons. However, many key properties of these systems, such as the frequency-dependent conductivity, remain experimentally inaccessible because of the mesoscopic sample size. Here we report a technique to directly measure the complex conductivity of electrostatically gat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17633v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17633v1-abstract-full" style="display: none;"> Two-dimensional semiconductors and their moir茅 superlattices have emerged as important platforms for investigating correlated electrons. However, many key properties of these systems, such as the frequency-dependent conductivity, remain experimentally inaccessible because of the mesoscopic sample size. Here we report a technique to directly measure the complex conductivity of electrostatically gated two-dimensional semiconductors in the terahertz frequency range. Applying this technique to a WSe2 monolayer encapsulated in hBN, we observe clear Drude-like response between 0.1 and 1 THz, in a density range challenging to access even in DC transport. Our work opens a new avenue for studying tunable van der Waals heterostructures using terahertz spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17633v1-abstract-full').style.display = 'none'; document.getElementById('2409.17633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16975">arXiv:2409.16975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16975">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Computational electron-phonon superconductivity: from theoretical physics to material science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiya Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+F">Feng Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shunqing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+K">Kai-Ming Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antropov%2C+V">Vladimir Antropov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yang Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16975v1-abstract-short" style="display: inline;"> The search for room-temperature superconductors is a major challenge in modern physics. The discovery of copper-oxide superconductors in 1986 brought hope but also revealed complex mechanisms that are difficult to analyze and compute. In contrast, the traditional electron-phonon coupling (EPC) mechanism facilitated the practical realization of superconductivity in metallic hydrogen. Since 2015, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16975v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16975v1-abstract-full" style="display: none;"> The search for room-temperature superconductors is a major challenge in modern physics. The discovery of copper-oxide superconductors in 1986 brought hope but also revealed complex mechanisms that are difficult to analyze and compute. In contrast, the traditional electron-phonon coupling (EPC) mechanism facilitated the practical realization of superconductivity in metallic hydrogen. Since 2015, the discovery of new hydrogen compounds has shown that EPC can enable room-temperature superconductivity under high pressures, driving extensive research. Advances in computational capabilities, especially exascale computing, now allow for the exploration of millions of materials. This paper reviews newly predicted superconducting systems in 2023-2024, focusing on hydrides, boron-carbon systems, and compounds with nitrogen, carbon, and pure metals. Although many computationally predicted high-Tc superconductors were not experimentally confirmed, some low-temperature superconductors were successfully synthesized. This paper provides a review of these developments and future research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16975v1-abstract-full').style.display = 'none'; document.getElementById('2409.16975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14041">arXiv:2409.14041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14041">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two Distinct Oxidation Dispersion Mechanisms in Pd-CeO2 Mediated by Thermodynamic and Kinetic Behaviors of Single Pd Species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Chen Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fangwen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Linjiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Chaobin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaojuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhong-Kang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+W">Wentao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hangsheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14041v1-abstract-short" style="display: inline;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14041v1-abstract-full" style="display: none;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron microscopy (ESTEM), first-principles calculations, and a global optimization algorithm, we unraveled the pre-oxidation dispersion and direct dispersion mechanisms in the Pd/CeO2 (100) system, mediated by the thermodynamic and kinetic behaviors of single Pd species. We discovered that at lower temperatures, the Pd nanoparticles first undergo oxidation followed by the dispersion of PdO, while at higher temperatures, the entire dispersion process of Pd remains in a metallic state. The distinct dispersion mechanisms at different temperatures are driven by the thermodynamic and kinetic differences of environment-dependent single Pd species. The nonmobile Pd1O4 species stabilized at lower temperatures obstructs the direct dispersion of Pd nanoparticles, instead triggering a sequence of pre-oxidation followed by limited dispersion. In contrast, the highly mobile Pd1O2 species at higher temperatures facilitates the complete and direct dispersion of Pd nanoparticles. This research illuminates the essential physical mechanisms of oxidative dispersion from both thermodynamic and kinetic perspectives, potentially enabling strategies for precisely controlling the state of highly dispersed catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'none'; document.getElementById('2409.14041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09450">arXiv:2409.09450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09450">pdf</a>, <a href="https://arxiv.org/format/2409.09450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hydrodynamics in Semidilute Polyelectrolyte Solutions and Complex Coacervates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shensheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen-Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09450v1-abstract-short" style="display: inline;"> It is generally assumed that hydrodynamics in dense polyelectrolyte (PE) solutions, such as semidilute PE solutions and PE complex coacervates, is heavily screened and inconsequential. Here, using mesoscale molecular dynamics that explicitly accounts for hydrodynamics, we show that segmental dynamics in the subdiffusive regime show strong signatures of hydrodynamic interactions that persist well b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09450v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09450v1-abstract-full" style="display: none;"> It is generally assumed that hydrodynamics in dense polyelectrolyte (PE) solutions, such as semidilute PE solutions and PE complex coacervates, is heavily screened and inconsequential. Here, using mesoscale molecular dynamics that explicitly accounts for hydrodynamics, we show that segmental dynamics in the subdiffusive regime show strong signatures of hydrodynamic interactions that persist well beyond the correlation length of semidilute PE solutions with moderately short chains. The strong hydrodynamic effects are also observed in coacervate systems containing moderately short chains, even with PE concentration as high as $30\%$. Our work fills a gap in the existing simulation literature on dense PE solutions and hints at the importance of hydrodynamics in the transport and rheological properties in broader polymer/polyelectrolyte solution systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09450v1-abstract-full').style.display = 'none'; document.getElementById('2409.09450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08836">arXiv:2409.08836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08836">pdf</a>, <a href="https://arxiv.org/ps/2409.08836">ps</a>, <a href="https://arxiv.org/format/2409.08836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermoelectrical potential and derivation of Kelvin relation for thermoelectric materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sikun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Hongxin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haidong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zengyuan Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08836v1-abstract-short" style="display: inline;"> Current research on thermoelectricity is primarily focused on the exploration of materials with enhanced performance, resulting in a lack of fundamental understanding of the thermoelectric effect. Such circumstance is not conducive to the further improvement of the efficiency of thermoelectric conversion. Moreover, available physical images of the derivation of the Kelvin relations are ambiguous.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08836v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08836v1-abstract-full" style="display: none;"> Current research on thermoelectricity is primarily focused on the exploration of materials with enhanced performance, resulting in a lack of fundamental understanding of the thermoelectric effect. Such circumstance is not conducive to the further improvement of the efficiency of thermoelectric conversion. Moreover, available physical images of the derivation of the Kelvin relations are ambiguous. Derivation processes are complex and need a deeper understanding of thermoelectric conversion phenomena. In this paper, a new physical quantity &#39;thermoelectrical potential&#39; from the physical nature of the thermoelectric conversion is proposed. The quantity is expressed as the product of the Seebeck coefficient and the absolute temperature, i.e., ST. Based on the thermoelectrical potential, we clarify the conversion of the various forms of energy in the thermoelectric effect by presenting a clear physical picture. Results from the analysis of the physical mechanism of the Seebeck effect indicate that the thermoelectrical potential, rather than the temperature gradient field, exerts a force on the charge carriers in the thermoelectric material. Based on thermoelectric potential, the Peltier effects at different material interfaces can be macroscopically described. The Kelvin relation is rederived using the proposed quantity, which simplified the derivation process and elucidated the physical picture of the thermoelectrical conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08836v1-abstract-full').style.display = 'none'; document.getElementById('2409.08836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06286">arXiv:2409.06286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ac33d9">10.1088/1361-6463/ac33d9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mimicking synaptic plasticity with wedged Pt/Co/Pt spin-orbit torque device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahul%2C+M">Mishra Rahul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Huanjian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyunsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06286v1-abstract-short" style="display: inline;"> We fabricated a wedge-shaped Pt/Co/Pt device with perpendicular magnetic anisotropy and manifested that the Co magnetization can be solely switched by spin-orbit torque without any magnetic field. Similar to the synaptic weight, we observed that the state of Co magnetization (presented by the anomalous Hall resistance RH) of the wedged Pt/Co/Pt device can be tuned continuously with a large number&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06286v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06286v1-abstract-full" style="display: none;"> We fabricated a wedge-shaped Pt/Co/Pt device with perpendicular magnetic anisotropy and manifested that the Co magnetization can be solely switched by spin-orbit torque without any magnetic field. Similar to the synaptic weight, we observed that the state of Co magnetization (presented by the anomalous Hall resistance RH) of the wedged Pt/Co/Pt device can be tuned continuously with a large number of nonvolatile levels by applied pulse currents. Furthermore, we studied the synaptic plasticity of the wedged Pt/Co/Pt device, including the excitatory postsynaptic potentials or inhibitory postsynaptic potentials and spiking-time-dependent plasticity. The work elucidates the promise of the wedged Pt/Co/Pt device as a candidate for a new type of artificial synaptic device that is induced by a spin current and paves a substantial pathway toward the combination of spintronics and synaptic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06286v1-abstract-full').style.display = 'none'; document.getElementById('2409.06286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. D: Appl. Phys. 55, 095001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04430">arXiv:2409.04430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04430">pdf</a>, <a href="https://arxiv.org/format/2409.04430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+P">Penghua Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wenjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svensson%2C+L">Lucas Svensson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+E">Esm茅e Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fransson%2C+E">Erik Fransson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eriksson%2C+F">Fredrik Eriksson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+T">Ting Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jianbin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Bai Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erhart%2C+P">Paul Erhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04430v2-abstract-short" style="display: inline;"> Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nuclear quantum effects in materials. However, their computational intensity and reliance on multiple software packages often limit their applicability at large scales. Here, we present an integration of PIMD methods, including thermostatted ring-polymer molecular dynamics (TRPMD), into the open-source GPUMD p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04430v2-abstract-full').style.display = 'inline'; document.getElementById('2409.04430v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04430v2-abstract-full" style="display: none;"> Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nuclear quantum effects in materials. However, their computational intensity and reliance on multiple software packages often limit their applicability at large scales. Here, we present an integration of PIMD methods, including thermostatted ring-polymer molecular dynamics (TRPMD), into the open-source GPUMD package, combined with highly accurate and efficient machine-learned neuroevolution potential (NEP) models. This approach achieves almost the accuracy of first-principles calculations with the computational efficiency of empirical potentials, enabling large-scale atomistic simulations that incorporate nuclear quantum effects. We demonstrate the efficacy of the combined NEP-PIMD approach by examining various thermal properties of diverse materials, including lithium hydride (LiH), three porous metal-organic frameworks (MOFs), liquid water, and elemental aluminum. For LiH, our NEP-PIMD simulations successfully capture the isotope effect, reproducing the experimentally observed dependence of the lattice parameter on the reduced mass. For MOFs, our results reveal that achieving good agreement with experimental data requires consideration of both nuclear quantum effects and dispersive interactions. For water, our PIMD simulations capture the significant impact of nuclear quantum effects on its microscopic structure. For aluminum, the TRPMD method effectively captures thermal expansion and phonon properties, aligning well with quantum mechanical predictions. This efficient NEP-PIMD approach opens new avenues for exploring complex material properties influenced by nuclear quantum effects, with potential applications across a broad range of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04430v2-abstract-full').style.display = 'none'; document.getElementById('2409.04430v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures in the main text; 1 table and 8 figures in the SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03387">arXiv:2409.03387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient light upconversion via resonant exciton-exciton annihilation of dark excitons in few-layer transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Hsun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lo%2C+P">Ping-Yuan Lo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschen%2C+K+W">Kyle W. Boschen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+G">Guan-Hao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chun-Jui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holtzman%2C+L+N">Luke N. Holtzman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chih-En Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yung-Ning Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holbrook%2C+M">Madisen Holbrook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barmak%2C+K">Katayun Barmak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hone%2C+J">James Hone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawrylak%2C+P">Pawel Hawrylak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsueh%2C+H">Hung-Chung Hsueh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+A">Jeffrey A. Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shun-Jen Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrer%2C+M+S">Michael S. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Yu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03387v1-abstract-short" style="display: inline;"> In this work, we report a pronounced light upconversion in few-layer transition metal dichalcogenides. Our joint theory-experiment study attributes the upconversion photoluminescence to a resonant exciton-exciton annihilation involving a pair of dark excitons with opposite momenta, followed by the spontaneous emission of upconverted bright excitons, which can have a high upconversion efficiency. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03387v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03387v1-abstract-full" style="display: none;"> In this work, we report a pronounced light upconversion in few-layer transition metal dichalcogenides. Our joint theory-experiment study attributes the upconversion photoluminescence to a resonant exciton-exciton annihilation involving a pair of dark excitons with opposite momenta, followed by the spontaneous emission of upconverted bright excitons, which can have a high upconversion efficiency. Additionally, the upconversion photoluminescence is generic in MoS2, MoSe2, WS2, and WSe2, showing a high tuneability from green to ultraviolet light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03387v1-abstract-full').style.display = 'none'; document.getElementById('2409.03387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11765">arXiv:2408.11765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11765">pdf</a>, <a href="https://arxiv.org/format/2408.11765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the dynamical behaviors in a quasiperiodic mosaic lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+C">Chenguang Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11765v1-abstract-short" style="display: inline;"> Quasiperiodic mosaic systems have attracted significant attention due to their unique spectral properties with exactly known mobility edges, which do not vanish even in the large quasiperiodic potential strength region, although the width of energy window of extended states becomes very narrow and decreases with the increase of strength of the quasiperiodic potential.In this work we study the dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11765v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11765v1-abstract-full" style="display: none;"> Quasiperiodic mosaic systems have attracted significant attention due to their unique spectral properties with exactly known mobility edges, which do not vanish even in the large quasiperiodic potential strength region, although the width of energy window of extended states becomes very narrow and decreases with the increase of strength of the quasiperiodic potential.In this work we study the dynamics of a quasiperiodic mosaic lattice and unravel its peculiar dynamical properties. By scrutinizing the expansion dynamics of wave packet and the evolution of density distribution, we unveil that the long-time density distribution display obviously different behaviors at odd and even sites in the large quasiperiodic potential strength region. Particularly, the time scale of dynamics exhibits an inverse relationship with the quasiperiodic potential strength. To understand these behaviors, we derive an effective Hamiltonian in the large quasiperiodic potential strength region, which is composed of decoupled Hamiltonians defined on the odd and even sites, respectively. While all eigenstates of the effective Hamiltonian defined on even sites are localized, the eigenstates of effective Hamiltonian defined on odd sites include both localized and extended eigenstates. Our results demonstrate that the effective Hamiltonian can describe the dynamical behaviors well in the large quasiperiodic potential strength region and provides an intuitive framework for understanding the peculiar dynamical behaviors in the quasiperiodic mosaic lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11765v1-abstract-full').style.display = 'none'; document.getElementById('2408.11765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11658">arXiv:2408.11658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11658">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit-splitting-driven nonlinear Hall effect in NbIrTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Ji-Eun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuzhang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+M">Minseong Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+J">Jinwoong Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+M">Minhyun Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+K">Ki-Hoon Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+D">Dong-Soo Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J+W">Jun Woo Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+D">Young Duck Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrovic%2C+C">Cedomir Petrovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S+Y">Se Young Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+C">Chaun Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11658v1-abstract-short" style="display: inline;"> The Berry curvature dipole (BCD) serves as a one of the fundamental contributors to emergence of the nonlinear Hall effect (NLHE). Despite intense interest due to its potential for new technologies reaching beyond the quantum efficiency limit, the interplay between BCD and NLHE has been barely understood yet in the absence of a systematic study on the electronic band structure. Here, we report NLH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11658v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11658v1-abstract-full" style="display: none;"> The Berry curvature dipole (BCD) serves as a one of the fundamental contributors to emergence of the nonlinear Hall effect (NLHE). Despite intense interest due to its potential for new technologies reaching beyond the quantum efficiency limit, the interplay between BCD and NLHE has been barely understood yet in the absence of a systematic study on the electronic band structure. Here, we report NLHE realized in NbIrTe4 that persists above room temperature coupled with a sign change in the Hall conductivity at 150 K. First-principles calculations combined with angle-resolved photoemission spectroscopy (ARPES) measurements show that BCD tuned by the partial occupancy of spin-orbit split bands via temperature is responsible for the temperature-dependent NLHE. Our findings highlight the correlation between BCD and the electronic band structure, providing a viable route to create and engineer the non-trivial Hall effect by tuning the geometric properties of quasiparticles in transition-metal chalcogen compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11658v1-abstract-full').style.display = 'none'; document.getElementById('2408.11658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 3971 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11652">arXiv:2408.11652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11652">pdf</a>, <a href="https://arxiv.org/format/2408.11652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/12/127302">10.1088/0256-307X/41/12/127302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum entanglement and non-Hermiticity in free-fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Li-Mei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11652v3-abstract-short" style="display: inline;"> This topical review article reports rapid progress on the generalization and application of entanglement in non-Hermitian free-fermion quantum systems. We begin by examining the realization of non-Hermitian quantum systems through the Lindblad master equation, alongside a review of typical non-Hermitian free-fermion systems that exhibit unique features. A pedagogical discussion is provided on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11652v3-abstract-full').style.display = 'inline'; document.getElementById('2408.11652v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11652v3-abstract-full" style="display: none;"> This topical review article reports rapid progress on the generalization and application of entanglement in non-Hermitian free-fermion quantum systems. We begin by examining the realization of non-Hermitian quantum systems through the Lindblad master equation, alongside a review of typical non-Hermitian free-fermion systems that exhibit unique features. A pedagogical discussion is provided on the relationship between entanglement quantities and the correlation matrix in Hermitian systems. Building on this foundation, we focus on how entanglement concepts are extended to non-Hermitian systems from their Hermitian free-fermion counterparts, with a review of the general properties that emerge. Finally, we highlight various concrete studies, demonstrating that entanglement entropy remains a powerful diagnostic tool for characterizing non-Hermitian physics. The entanglement spectrum also reflects the topological characteristics of non-Hermitian topological systems, while unique non-Hermitian entanglement behaviors are also discussed. The review is concluded with several future directions. Through this review, we hope to provide a useful guide for researchers who are interested in entanglement in non-Hermitian quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11652v3-abstract-full').style.display = 'none'; document.getElementById('2408.11652v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A Topical Review of the Interplay of Entanglement and Non-Hermitian Physics (to appear in the Special Issue of Non-Hermitian Physics in Chin. Phys. Lett.). version 3; ~15p, 1figure, texts and refs. updated, approximate to final version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters (2024 online) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06777">arXiv:2408.06777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06777">pdf</a>, <a href="https://arxiv.org/format/2408.06777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Density-Dependent Gauge Field with Raman Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xiang-Can Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zong-Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+X">Xiaotian Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06777v2-abstract-short" style="display: inline;"> The study of the gauge field is an everlasting topic in modern physics. Spin-orbit coupling is a powerful tool in ultracold atomic systems, resulting in an artificial gauge field that can be easily manipulated and observed in a tabletop environment. Combining optical lattices and atom-atom interaction, the artificial gauge field can be made density-dependent. In this work, we investigate a one-dim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06777v2-abstract-full').style.display = 'inline'; document.getElementById('2408.06777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06777v2-abstract-full" style="display: none;"> The study of the gauge field is an everlasting topic in modern physics. Spin-orbit coupling is a powerful tool in ultracold atomic systems, resulting in an artificial gauge field that can be easily manipulated and observed in a tabletop environment. Combining optical lattices and atom-atom interaction, the artificial gauge field can be made density-dependent. In this work, we investigate a one-dimensional Bose-Hubbard model with spin-orbit coupling, where a density-dependent gauge field emerges spontaneously in low-energy physics. First, we focus on the two-body quantum walk dynamics and give an interpretation of the phenomena with resonant tunneling. Then, we calculate the mean-field phase diagram using the two-site Gutzwiller ansatz. Two types of superfluid phase and a Mott insulator phase are found. Finally, we discuss the experimental realization protocol with Raman lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06777v2-abstract-full').style.display = 'none'; document.getElementById('2408.06777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05971">arXiv:2408.05971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05971">pdf</a>, <a href="https://arxiv.org/format/2408.05971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetism Mechanism in a Geometrically Frustrated Triangular Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qianqian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05971v1-abstract-short" style="display: inline;"> We study the emergent itinerant ferromagnetism and propose its underlying mechanism in the geometrically frustrated triangular lattice. Based on large-scale density matrix renormalization group simulations and unrestricted Hartree-Fock mean-field analysis, we identify itinerant ferromagnetic phases in the intermediate-$U$ Hubbard model with finite doping and reveal the kinetic mechanisms assisted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05971v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05971v1-abstract-full" style="display: none;"> We study the emergent itinerant ferromagnetism and propose its underlying mechanism in the geometrically frustrated triangular lattice. Based on large-scale density matrix renormalization group simulations and unrestricted Hartree-Fock mean-field analysis, we identify itinerant ferromagnetic phases in the intermediate-$U$ Hubbard model with finite doping and reveal the kinetic mechanisms assisted by geometric frustration. Notably, we find that the doublon-singlon exchange process among other microscopic charge hoppings solely drives the fully polarized ferromagnetism for geometrically frustrated triangular lattice. Additionally, we establish the whole magnetic phase diagram and illustrate itinerant ferromagnetism within a finite range of electron doping for finite on-site Coulomb repulsion. The comparison of local spin correlations with recent cold-atom experiments is also discussed. Our work enhances the understanding of ferromagnetism mechanisms at intermediate coupling strength and finite doping concentrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05971v1-abstract-full').style.display = 'none'; document.getElementById('2408.05971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7 pages; 4+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02886">arXiv:2408.02886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02886">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strain-modulated Intercalated Phases of Pb Monolayer with Dual Periodicity in SiC(0001)-Graphene Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolmer%2C+M">Marek Kolmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tringides%2C+M+C">Michael C. Tringides</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02886v1-abstract-short" style="display: inline;"> Intercalation of metal atoms at the SiC(0001)-graphene (Gr) interface can provide confined 2D metal layers with interesting properties. The intercalated Pb monolayer (ML) has shown the coexistence of the Gr(10x10)-moire and a stripe phase, which still lacks understanding. Using density functional theory calculation and thermal annealing with ab initio molecular dynamics, we have studied the format&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02886v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02886v1-abstract-full" style="display: none;"> Intercalation of metal atoms at the SiC(0001)-graphene (Gr) interface can provide confined 2D metal layers with interesting properties. The intercalated Pb monolayer (ML) has shown the coexistence of the Gr(10x10)-moire and a stripe phase, which still lacks understanding. Using density functional theory calculation and thermal annealing with ab initio molecular dynamics, we have studied the formation energy of SiC(0001)/Pb/Gr for different coverages of intercalated Pb. Near the coverage of a Pb(111)-like ML mimicking the (10x10)-moire, we find a slightly more stable stripe structure, where one half of the structure has compressive strain with Pb occupying the Si-top sites and the other half has tensile strain with Pb off the Si-top sites. This stripe structure along the Gr zigzag direction has a periodicity of 2.3 nm across the [1-210] direction agreeing with the previous observations using scanning tunneling microscopy. Analysis with electron density difference and density of states show the tensile region has a more metallic character than the compressive region, while both are dominated by the charge transfer from the Pb ML to SiC(0001). The small energy difference between the stripe and Pb(111)-like structures means the two phases are almost degenerate and can coexist, which explains the experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02886v1-abstract-full').style.display = 'none'; document.getElementById('2408.02886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01685">arXiv:2408.01685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01685">pdf</a>, <a href="https://arxiv.org/format/2408.01685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Contrasting electron-phonon interaction between electron- and hole-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qinda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berntsen%2C+M+H">Magnus H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grubi%C5%A1i%C4%87-%C4%8Cabo%2C+A">Antonija Grubi拧i膰-膶abo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dendzik%2C+M">Maciej Dendzik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">Thiagarajan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01685v1-abstract-short" style="display: inline;"> Spin- and charge-lattice interactions are potential key factors in the microscopic mechanism of high-temperature superconductivity in cuprates. Although both interactions can dramatically shape the low-energy electronic structure, their phenomenological roles in superconductivity are usually investigated independently. Employing angle-resolved photoemission spectroscopy, we reveal the spectroscopi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01685v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01685v1-abstract-full" style="display: none;"> Spin- and charge-lattice interactions are potential key factors in the microscopic mechanism of high-temperature superconductivity in cuprates. Although both interactions can dramatically shape the low-energy electronic structure, their phenomenological roles in superconductivity are usually investigated independently. Employing angle-resolved photoemission spectroscopy, we reveal the spectroscopic fingerprint of short-range antiferromagnetic order in conjunction with enhanced electron-phonon interaction in the electron-doped cuprate superconductor $\mathrm{Nd_{1.85}Ce_{0.15}CuO_4}$. The observed mode coupling exhibits a strong momentum dependence that is in striking contrast to the node-antinode dichotomy previously observed in the hole-doped cuprates. Our results reveal an intimate relationship between electron-phonon coupling and antiferromagnetic fluctuations, which collectively sets the stage for unconventional superconductivity in the electron-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01685v1-abstract-full').style.display = 'none'; document.getElementById('2408.01685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00548">arXiv:2408.00548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00548">pdf</a>, <a href="https://arxiv.org/format/2408.00548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Flat-band Fulde-Ferrell-Larkin-Ovchinnikov State from Quantum Geometry Discrepancy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Ruo-Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin-Xin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00548v1-abstract-short" style="display: inline;"> The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, a finite-momentum superconducting pairing state, has been extensively studied from the perspective of mismatched Fermi surfaces of paired electrons. In this work, we propose a distinctive mechanism to realize FFLO states by creating an imbalance in the quantum geometry of paired electrons on an isolated flat band, which we term &#34;Quantum Geometry D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00548v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00548v1-abstract-full" style="display: none;"> The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, a finite-momentum superconducting pairing state, has been extensively studied from the perspective of mismatched Fermi surfaces of paired electrons. In this work, we propose a distinctive mechanism to realize FFLO states by creating an imbalance in the quantum geometry of paired electrons on an isolated flat band, which we term &#34;Quantum Geometry Discrepancy (QGD)&#34;. Based on a flat-band electronic Hamiltonian with continuously tunable quantum metrics for each spin species, we analytically investigate the QGD-induced FFLO instability near the superconducting critical temperature through the band-projection method. To obtain the phase diagram of the BCS-FFLO transition driven by QGD, we perform numerical calculations using self-consistent mean-field theory, which aligns well with the analytical results. Additionally, we discuss the stability of the flat-band FFLO state when a finite band dispersion is turned on. We point out that QGD serves as a new protocol for stabilizing the FFLO states in flat-band superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00548v1-abstract-full').style.display = 'none'; document.getElementById('2408.00548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20807">arXiv:2407.20807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20807">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Radiation Hardness of InAs/GaAs Quantum Dot Lasers for Space Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Manyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+W">Wenkang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+S">Shujie Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jinpeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xiaotian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Z">Zhibo Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jinling Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Chaoyuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siming Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanguo Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20807v1-abstract-short" style="display: inline;"> Semiconductor lasers have great potential for space laser communication. However, excessive radiation in space can cause laser failure. Quantum dot (QD) lasers are more resistant to radiation compared to quantum well (QW) and bulk lasers due to better carrier confinement and a smaller active region. Therefore, it is crucial to find the most radiation-tolerant QD structures and compare the radiatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20807v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20807v1-abstract-full" style="display: none;"> Semiconductor lasers have great potential for space laser communication. However, excessive radiation in space can cause laser failure. Quantum dot (QD) lasers are more resistant to radiation compared to quantum well (QW) and bulk lasers due to better carrier confinement and a smaller active region. Therefore, it is crucial to find the most radiation-tolerant QD structures and compare the radiation tolerance of QD and QW structures at different radiation fluences where the QDs can show their advantages in the best way. Proton and 60Co 纬-ray radiation tests were conducted on different InAs/GaAs QD and InGaAs/GaAs QW materials and devices. The results show that the QD samples were more radiation-tolerant than QW samples within a certain fluence range, and more radiation-tolerant QD structures were identified. Dislocations were found near the QWs but not the QDs after 1 x 1011 cm-2 radiation. Defects were created in all samples after 7 x 1013 cm-2 proton radiation. Additionally, 60Co 纬-rays radiation tests ranging from 10 to 12000 Gy were conducted, and all the samples exhibited good tolerance to total radiation dose effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20807v1-abstract-full').style.display = 'none'; document.getElementById('2407.20807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19780">arXiv:2407.19780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19780">pdf</a>, <a href="https://arxiv.org/format/2407.19780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.165130">10.1103/PhysRevB.110.165130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kibble-Zurek behavior in a topological phase transition with a quadratic band crossing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huan Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+X">Xiaotian Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19780v2-abstract-short" style="display: inline;"> Kibble-Zurek (KZ) mechanism describes the scaling behavior when driving a system across a continuous symmetry-breaking transition. Previous studies have shown that the KZ-like scaling behavior also lies in the topological transitions in the Qi-Wu-Zhang model (2D) and the Su-Schrieffer-Heeger model (1D), although symmetry breaking does not exist here. Both models with linear band crossings give tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19780v2-abstract-full').style.display = 'inline'; document.getElementById('2407.19780v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19780v2-abstract-full" style="display: none;"> Kibble-Zurek (KZ) mechanism describes the scaling behavior when driving a system across a continuous symmetry-breaking transition. Previous studies have shown that the KZ-like scaling behavior also lies in the topological transitions in the Qi-Wu-Zhang model (2D) and the Su-Schrieffer-Heeger model (1D), although symmetry breaking does not exist here. Both models with linear band crossings give that $谓=1$ and $z=1$. We wonder whether different critical exponents can be acquired in topological transitions beyond linear band crossing. In this work, we look into the KZ behavior in a topological 2D checkerboard lattice with a quadratic band crossing. We investigate from dual perspectives: momentum distribution of the Berry curvature in clean systems for simplicity, and real-space analysis of domain-like local Chern marker configurations in disordered systems, which is a more intuitive analog to conventional KZ description. In equilibrium, we find the correlation length diverges with a power $谓\simeq 1/2$. Then, by slowly quenching the system across the topological phase transition, we find that the freeze-out time $t_\mathrm{f}$ and the unfrozen length scale $尉(t_\mathrm{f})$ both satisfy the KZ scaling, verifying $z\simeq 2$. We subsequently explore KZ behavior in topological phase transitions with other higher-order band crossing and find the relationship between the critical exponents and the order. Our results extend the understanding of the KZ mechanism and non-equilibrium topological phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19780v2-abstract-full').style.display = 'none'; document.getElementById('2407.19780v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 165130 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16954">arXiv:2407.16954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16954">pdf</a>, <a href="https://arxiv.org/ps/2407.16954">ps</a>, <a href="https://arxiv.org/format/2407.16954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous valley Hall effect in electric-potential-difference antiferromagnetic $\mathrm{Cr_2CHCl}$ monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+D">Dun-Cheng Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shaobo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16954v1-abstract-short" style="display: inline;"> The antiferromagnetic (AFM) valleytronics can be intrinsically more energy-saving and fast-operating in device applications. In general, the lacking spontaneous spin-splitting hinders the implementation and detection of anomalous valley Hall effect (AVHE). Here, we propose to implement AVHE in electric-potential-difference antiferromagnetic $\mathrm{Cr_2CHCl}$ monolayer with excellent stability, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16954v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16954v1-abstract-full" style="display: none;"> The antiferromagnetic (AFM) valleytronics can be intrinsically more energy-saving and fast-operating in device applications. In general, the lacking spontaneous spin-splitting hinders the implementation and detection of anomalous valley Hall effect (AVHE). Here, we propose to implement AVHE in electric-potential-difference antiferromagnetic $\mathrm{Cr_2CHCl}$ monolayer with excellent stability, where the spontaneous spin-splitting can be induced due to layer-dependent electrostatic potential caused by out-of-plane built-in electric field. From a symmetry perspective, the introduction of Janus structure breaks the combined symmetry ($PT$ symmetry) of spatial inversion ($P$) and time reversal ($T$), which gives rise to spin-splitting. Both unstarined and strained monolayer $\mathrm{Cr_2CHCl}$ possess valley splitting of larger than 51 meV, which is higher than the thermal energy of room temperature (25 meV). The layer-locked Berry curvature gives rise to layer-locked AVHE. Our work reveals a route to achieve AVHE in AFM monolayer with spontaneous spin-splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16954v1-abstract-full').style.display = 'none'; document.getElementById('2407.16954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. arXiv admin note: text overlap with arXiv:2404.17596, arXiv:2312.07202, arXiv:2405.18826</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02767">arXiv:2407.02767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02767">pdf</a>, <a href="https://arxiv.org/format/2407.02767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Comparison of Short-Range Order in GeSn Grown by Molecular Beam Epitaxy and Chemical Vapor Deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yunfan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Haochen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eldose%2C+N+M">Nirosh M. Eldose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+J">Jin-Hee Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Concepcion%2C+O">Omar Concepcion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaochen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bikmukhametov%2C+I">Ilias Bikmukhametov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akey%2C+A">Austin Akey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cline%2C+C+T">Cory T. Cline</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Covian%2C+A+C">Alejandra Cuervo Covian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yuping Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buca%2C+D">Dan Buca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shui-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salamo%2C+G+J">Gregory J. Salamo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02767v1-abstract-short" style="display: inline;"> Atomic short-range order (SRO) in direct-bandgap GeSn for infrared photonics has recently attracted attention due to its notable impact on band structures. However, the SRO in GeSn thin films grown by different methods have hardly been compared. This paper compares SRO in GeSn thin films of similar compositions grown by molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) using atom pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02767v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02767v1-abstract-full" style="display: none;"> Atomic short-range order (SRO) in direct-bandgap GeSn for infrared photonics has recently attracted attention due to its notable impact on band structures. However, the SRO in GeSn thin films grown by different methods have hardly been compared. This paper compares SRO in GeSn thin films of similar compositions grown by molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) using atom probe tomography. An $\sim$15% stronger preference for Sn-Sn 1$^{st}$ nearest neighbor (1NN) is observed in MBE GeSn than CVD GeSn for both thin film and quantum well samples with Sn composition ranging from 7 to 20%. Interestingly, samples grown by different deposition tools under the same method (either MBE or CVD) showed remarkable consistency in Sn-Sn 1NN SRO, while MBE vs. CVD showed clear differences. Supported by theoretical modeling, we consider that this difference in SRO originates from the impact of surface termination, where MBE surfaces are exposed to ultrahigh vacuum while CVD surfaces are terminated by H to a good extent. This finding not only suggests engineering surface termination or surfactants during the growth as a potential approach to control SRO in GeSn, but also provides insight into the underlying reasons for very different growth temperature between MBE and CVD that directly impact the strain relaxation behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02767v1-abstract-full').style.display = 'none'; document.getElementById('2407.02767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00628">arXiv:2407.00628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00628">pdf</a>, <a href="https://arxiv.org/format/2407.00628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Chirality-Induced Majorana Polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Song Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+H">Hua-Hua Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00628v1-abstract-short" style="display: inline;"> To realize Majorana fermions having novel physical features has been developed as a key while difficult task in topological superconductor. Here we have proposed another platform to generate Majorana zero modes (MZMs), which is constructed by a single opened circular helix molecules (CHM) coupled with a s-wave superconductor (with magnetic field) or by an interlinked-CHMs chain coupled with a phas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00628v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00628v1-abstract-full" style="display: none;"> To realize Majorana fermions having novel physical features has been developed as a key while difficult task in topological superconductor. Here we have proposed another platform to generate Majorana zero modes (MZMs), which is constructed by a single opened circular helix molecules (CHM) coupled with a s-wave superconductor (with magnetic field) or by an interlinked-CHMs chain coupled with a phase-bias s-wave superconducting heterostructure (without any magnetic field). The MZMs achieved here are tightly associated with the structural chirality in CHMs. Importantly, the left and right handedness may result in completely opposite Majorana polarization (MP), and the local MP is associated to the chiraliy-induced spin polarization. These properties provides us multiple effective ways to detect and regulate the MZMs by using the chirality-induced spin selectivity (CISS) effect and the related spin-polarized currents in chiral materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00628v1-abstract-full').style.display = 'none'; document.getElementById('2407.00628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18041">arXiv:2406.18041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18041">pdf</a>, <a href="https://arxiv.org/format/2406.18041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134301">10.1103/PhysRevB.110.134301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of the Gibbs ensemble as a steady state in Lindbladian dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Shi-Kang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18041v2-abstract-short" style="display: inline;"> We explicitly construct unique non-equilibrium steady state (NESS) of Lindblad master equation characterized by a Gibbs ensemble $蟻_{\text{NESS}} \propto e^{-尾\tilde{H}}$, where the effective Hamiltonian $\tilde{H}$ consists only of $U(1)$ conserved charges of the original Hamiltonian. Specifically, when the original Hamiltonian has multiple charges, it is possible to couple them with bathes at di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18041v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18041v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18041v2-abstract-full" style="display: none;"> We explicitly construct unique non-equilibrium steady state (NESS) of Lindblad master equation characterized by a Gibbs ensemble $蟻_{\text{NESS}} \propto e^{-尾\tilde{H}}$, where the effective Hamiltonian $\tilde{H}$ consists only of $U(1)$ conserved charges of the original Hamiltonian. Specifically, when the original Hamiltonian has multiple charges, it is possible to couple them with bathes at different temperature respectively, but still leads to an equilibrium state. To access the Gibbs NESS, the jump operators need to be properly chosen to fulfill quantum detailed balance condition (qDBC). These jump operators are ladder operators for $\tilde{H}$ and jump process they generate form a vertex-weighted directed acyclic graph (wDAG). By studying the XX model and Fredkin model, we showcase how the Gibbs state emerges as the unique steady state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18041v2-abstract-full').style.display = 'none'; document.getElementById('2406.18041v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated: 10 pages, 6 figures. Added journal reference. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16771">arXiv:2406.16771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16771">pdf</a>, <a href="https://arxiv.org/format/2406.16771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01219-8">10.1038/s41928-024-01219-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An antiferromagnetic diode effect in even-layered MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yacoby%2C+A">Amir Yacoby</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16771v2-abstract-short" style="display: inline;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16771v2-abstract-full" style="display: none;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric superconductors, realizing the superconducting diode effect. Here, we show that, even in a centrosymmetric crystal without directional charge separation, the spins of an antiferromagnet (AFM) can generate a spatial directionality, leading to an AFM diode effect. We observe large second-harmonic transport in a nonlinear electronic device enabled by the compensated AFM state of even-layered MnBi2Te4. We also report a novel electrical sum-frequency generation (SFG), which has been rarely explored in contrast to the well-known optical SFG in wide-gap insulators. We demonstrate that the AFM enables an in-plane field-effect transistor and harvesting of wireless electromagnetic energy. The electrical SFG establishes a powerful method to study nonlinear electronics built by quantum materials. The AFM diode effect paves the way for potential device concepts including AFM logic circuits, self-powered AFM spintronics, and other applications that potentially bridge nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'none'; document.getElementById('2406.16771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33+8 pages, 14+2 figures. arXiv admin note: text overlap with arXiv:2306.09575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 7, 751-759 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16157">arXiv:2406.16157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16157">pdf</a>, <a href="https://arxiv.org/format/2406.16157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Reaching quantum critical point by adding nonmagnetic disorder in single crystals of (Ca$_{x}$Sr$_{1-x}$)$_{3}$Rh$_{4}$Sn$_{13}$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krenkel%2C+E+H">Elizabeth H. Krenkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanatar%2C+M+A">Makariy A. Tanatar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grasset%2C+R">Romain Grasset</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%C5%84czykowski%2C+M">Marcin Ko艅czykowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuzhang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrovic%2C+C">Cedomir Petrovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levchenko%2C+A">Alex Levchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">Ruslan Prozorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16157v1-abstract-short" style="display: inline;"> The quasi-skutterudites (Ca$_{x}$Sr$_{1-x}$)$_{3}$(Rh, Ir)$_{4}$Sn$_{13}$ show a rare nonmagnetic quantum critical point associated with the second-order charge-density-wave (CDW) and structural distortion transition extended under the superconducting &#34;dome&#34;. So far, the non-thermal tuning parameters for accessing the QCP included changing stoichiometry, pressure, and a magnetic field. Here we add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16157v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16157v1-abstract-full" style="display: none;"> The quasi-skutterudites (Ca$_{x}$Sr$_{1-x}$)$_{3}$(Rh, Ir)$_{4}$Sn$_{13}$ show a rare nonmagnetic quantum critical point associated with the second-order charge-density-wave (CDW) and structural distortion transition extended under the superconducting &#34;dome&#34;. So far, the non-thermal tuning parameters for accessing the QCP included changing stoichiometry, pressure, and a magnetic field. Here we add another parameter -- a nonmagnetic point-like disorder induced by 2.5 MeV electron irradiation. The non-Fermi liquid regime was inferred from the analysis of the temperature-dependent resistivity, $蟻\left(T\right)$, in single crystals of (Ca$_{x}$Sr$_{1-x}$)$_{3}$Rh$_{4}$Sn$_{13}$. Starting at compositions below the known QCP concentration of $x_c=0.9$, added disorder resulted in a progressively larger linear term and a reduced quadratic term in $蟻\left(T\right)$. This behavior is supported by theoretical analysis based on the idea of superconducting fluctuations encompassing the crossover from quantum to thermal regimes. Our results strongly support the concept that the nonmagnetic disorder can drive the system toward the quantum critical regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16157v1-abstract-full').style.display = 'none'; document.getElementById('2406.16157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15224">arXiv:2406.15224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15224">pdf</a>, <a href="https://arxiv.org/format/2406.15224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Unconstrained dynamic gel swelling generates transient surface deformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=VanZanten%2C+A">Alyssa VanZanten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shih-Yuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driscoll%2C+M+M">Michelle M. Driscoll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szczepanski%2C+C+R">Caroline R. Szczepanski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15224v1-abstract-short" style="display: inline;"> Polymer gels are comprised of a three-dimensional, cross-linked network that can typically withstand the mechanical deformation associated with both swelling and de-swelling. Thus, gels can be designed with smart behaviors that require both stress generation and dissipation, making them well-suited to many applications including membrane technology, water capture devices, and drug delivery systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15224v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15224v1-abstract-full" style="display: none;"> Polymer gels are comprised of a three-dimensional, cross-linked network that can typically withstand the mechanical deformation associated with both swelling and de-swelling. Thus, gels can be designed with smart behaviors that require both stress generation and dissipation, making them well-suited to many applications including membrane technology, water capture devices, and drug delivery systems. In contrast to the fully swelled equilibrium state, limited research characterizes the unsteady-state swelling regime prior to equilibrium. It is in this regime where unique surface deformations can occur. Here we show how internal network constraints and external diffusive pressure can be leveraged to manipulate swelling kinetics and surface deformations in poly(ethylene glycol) gels during unconstrained, three-dimensional swelling. We find that increasing cross-linker molecular weight and swelling in ethanol, as opposed to water, are both effective routes to increase the time it takes to reach equilibrium but do so through different mechanisms. Networks with fewer internal constraints, manipulated via cross-linker chain-length, imbibe more solvent over a longer time. In contrast, swelling in ethanol reduces the amount of solvent imbibed by the network while increasing the time to reach equilibrium. Measurements of surface patterns during swelling establishes that an immediate, fast relaxation at the surface occurs during the first five minutes of swelling. However, the density and persistence of these features varies with solvent quality. These results serve establish a framework for how soft materials undergo dynamic deformation. Engineering transient surface properties while mitigating unwanted instabilities opens the door for emerging technologies such as smart anti-fouling and sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15224v1-abstract-full').style.display = 'none'; document.getElementById('2406.15224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10769">arXiv:2406.10769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10769">pdf</a>, <a href="https://arxiv.org/format/2406.10769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.144205">10.1103/PhysRevB.110.144205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact complex mobility edges and flagellate spectra for non-Hermitian quasicrystals with exponential hoppings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiaqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10769v1-abstract-short" style="display: inline;"> We propose a class of general non-Hermitian quasiperiodic lattice models with exponential hoppings and analytically determine the genuine complex mobility edges by solving its dual counterpart exactly utilizing Avila&#39;s global theory. Our analytical formula unveils that the complex mobility edges usually form a loop structure in the complex energy plane. By shifting the eigenenergy a constant $t$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10769v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10769v1-abstract-full" style="display: none;"> We propose a class of general non-Hermitian quasiperiodic lattice models with exponential hoppings and analytically determine the genuine complex mobility edges by solving its dual counterpart exactly utilizing Avila&#39;s global theory. Our analytical formula unveils that the complex mobility edges usually form a loop structure in the complex energy plane. By shifting the eigenenergy a constant $t$, the complex mobility edges of the family of models with different hopping parameter $t$ can be described by a unified formula, formally independent of $t$. By scanning the hopping parameter, we demonstrate the existence of a type of intriguing flagellate-like spectra in complex energy plane, in which the localized states and extended states are well separated by the complex mobility edges. Our result provides a firm ground for understanding the complex mobility edges in non-Hermitian quasiperiodic lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10769v1-abstract-full').style.display = 'none'; document.getElementById('2406.10769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 144205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08554">arXiv:2406.08554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08554">pdf</a>, <a href="https://arxiv.org/format/2406.08554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A">Abid Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaish%2C+P">Prateek Vaish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+Y">Yaoqi Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kowshik%2C+N">Nikhil Kowshik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M+S">Michael S. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batton%2C+C+H">Clay H. Batton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotskoff%2C+G+M">Grant M. Rotskoff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mullinax%2C+J+W">J. Wayne Mullinax</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+B+K">Bryan K. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubenstein%2C+B+M">Brenda M. Rubenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tubman%2C+N+M">Norm M. Tubman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08554v1-abstract-short" style="display: inline;"> The ability to perform ab initio molecular dynamics simulations using potential energies calculated on quantum computers would allow virtually exact dynamics for chemical and biochemical systems, with substantial impacts on the fields of catalysis and biophysics. However, noisy hardware, the costs of computing gradients, and the number of qubits required to simulate large systems present major cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08554v1-abstract-full" style="display: none;"> The ability to perform ab initio molecular dynamics simulations using potential energies calculated on quantum computers would allow virtually exact dynamics for chemical and biochemical systems, with substantial impacts on the fields of catalysis and biophysics. However, noisy hardware, the costs of computing gradients, and the number of qubits required to simulate large systems present major challenges to realizing the potential of dynamical simulations using quantum hardware. Here, we demonstrate that some of these issues can be mitigated by recent advances in machine learning. By combining transfer learning with techniques for building machine-learned potential energy surfaces, we propose a new path forward for molecular dynamics simulations on quantum hardware. We use transfer learning to reduce the number of energy evaluations that use quantum hardware by first training models on larger, less accurate classical datasets and then refining them on smaller, more accurate quantum datasets. We demonstrate this approach by training machine learning models to predict a molecule&#39;s potential energy using Behler-Parrinello neural networks. When successfully trained, the model enables energy gradient predictions necessary for dynamics simulations that cannot be readily obtained directly from quantum hardware. To reduce the quantum resources needed, the model is initially trained with data derived from low-cost techniques, such as Density Functional Theory, and subsequently refined with a smaller dataset obtained from the optimization of the Unitary Coupled Cluster ansatz. We show that this approach significantly reduces the size of the quantum training dataset while capturing the high accuracies needed for quantum chemistry simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08554v1-abstract-full').style.display = 'none'; document.getElementById('2406.08554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1- pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08289">arXiv:2406.08289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08289">pdf</a>, <a href="https://arxiv.org/format/2406.08289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Wobbling and Migrating Ferrofluid Droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aggarwal%2C+A">Aaveg Aggarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shih-Yuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirkinis%2C+E">Eleftherios Kirkinis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M+I">Mohammed Imran Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+B">Bei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driscoll%2C+M+M">Michelle M Driscoll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Cruz%2C+M+O">Monica Olvera de la Cruz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08289v1-abstract-short" style="display: inline;"> Active components incorporated in materials generate motion by inducing conformational changes in response to external fields. Magnetic fields are particularly interesting as they can actuate materials remotely. Millimeter-sized ferrofluid droplets placed on a solid surface, surrounded by an ambient gas phase, are shown here to migrate under a rotating magnetic field due to the periodic deformatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08289v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08289v1-abstract-full" style="display: none;"> Active components incorporated in materials generate motion by inducing conformational changes in response to external fields. Magnetic fields are particularly interesting as they can actuate materials remotely. Millimeter-sized ferrofluid droplets placed on a solid surface, surrounded by an ambient gas phase, are shown here to migrate under a rotating magnetic field due to the periodic deformation of the liquid-gas interface. This interface wobbling leads to droplet migration with speeds that increase as the amplitude and frequency of the magnetic field increase. In addition to migrating in a controlled manner, we demonstrate the ability of magnetic droplets to clean surface impurities and transport cargo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08289v1-abstract-full').style.display = 'none'; document.getElementById('2406.08289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11812">arXiv:2405.11812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11812">pdf</a>, <a href="https://arxiv.org/format/2405.11812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Lindbladian dynamics with loss of quantum jumps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Guo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11812v2-abstract-short" style="display: inline;"> The Lindblad master equation (LME) describing the Markovian dynamics of the quantum open system can be understood as the evolution of the effective non-Hermitian Hamiltonian balanced with random quantum jumps. Here we investigate the balance-breaking dynamics by partly eliminating jumps from postselection experiments. To describe this dynamics, a non-linear Lindblad master equation (NLME) is deriv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11812v2-abstract-full').style.display = 'inline'; document.getElementById('2405.11812v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11812v2-abstract-full" style="display: none;"> The Lindblad master equation (LME) describing the Markovian dynamics of the quantum open system can be understood as the evolution of the effective non-Hermitian Hamiltonian balanced with random quantum jumps. Here we investigate the balance-breaking dynamics by partly eliminating jumps from postselection experiments. To describe this dynamics, a non-linear Lindblad master equation (NLME) is derived from quantum trajectory method. However, the NLME shows significant advantages in analytical analysis over quantum trajectory method. Using the NLME, we classify the dynamics into two classes. In the trivial class, the process of reducing jumps is completely equivalent to weakening the coupling from the environment. In contrast, the nontrivial class presents more complex dynamics. We study a prototypical model within this class and demonstrate the existence of the postselected skin effect whose steady state is characterized by the accumulation of particles on one side. The steady-state distribution can be fitted by a scale-invariant tanh function which is different from the uniform distribution of LME. Furthermore, the NLME can give a reasonable framework for studying the interplay and competition between the non-Hermitian Hamiltonians and dissipative terms. We show this by capturing the characteristics of the trajectory-averaged entanglement entropy influenced by non-Hermitian skin effect and Zeno effect in the model of postselected skin effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11812v2-abstract-full').style.display = 'none'; document.getElementById('2405.11812v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06041">arXiv:2405.06041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06041">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate Tunable Asymmetric Ozone Adsorption on Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Z">Zhen Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wanlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhongxin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chenglong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Zuoquan Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhiting Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shanshan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yonglin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yapei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+P">Peng Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06041v1-abstract-short" style="display: inline;"> Molecular adsorption is pivotal in device fabrication and material synthesis for quantum technology. However, elucidating the behavior of physisorption poses technical challenges. Here graphene with ultrahigh sensitivity was utilized to detect ozone adsorption at cryogenic temperatures. Significant hole doping observed in graphene indicates a strong interaction between ozone and graphene. Interest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06041v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06041v1-abstract-full" style="display: none;"> Molecular adsorption is pivotal in device fabrication and material synthesis for quantum technology. However, elucidating the behavior of physisorption poses technical challenges. Here graphene with ultrahigh sensitivity was utilized to detect ozone adsorption at cryogenic temperatures. Significant hole doping observed in graphene indicates a strong interaction between ozone and graphene. Interestingly, the adsorption exhibits asymmetry with positive and negative gate voltages. The strong affinity of ozone provides a tool to modulate materials and devices, while the gate tunability of adsorption offers new insights into construction and manipulation of oxide quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06041v1-abstract-full').style.display = 'none'; document.getElementById('2405.06041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04967">arXiv:2405.04967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04967">pdf</a>, <a href="https://arxiv.org/format/2405.04967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Han Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chenxi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yichi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xixian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jielan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guanzhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zekun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuizhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeni%2C+C">Claudio Zeni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horton%2C+M">Matthew Horton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pinsler%2C+R">Robert Pinsler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowler%2C+A">Andrew Fowler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%BCgner%2C+D">Daniel Z眉gner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tian Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+J">Jake Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lixin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+L">Lingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+H">Hongxia Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Ziheng Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04967v2-abstract-short" style="display: inline;"> Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04967v2-abstract-full').style.display = 'inline'; document.getElementById('2405.04967v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04967v2-abstract-full" style="display: none;"> Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. Out-of-the-box, the model serves as a machine learning force field, and shows remarkable capabilities not only in predicting ground-state material structures and energetics, but also in simulating their behavior under realistic temperatures and pressures, signifying an up to ten-fold enhancement in precision compared to the prior best-in-class. This enables MatterSim to compute materials&#39; lattice dynamics, mechanical and thermodynamic properties, and beyond, to an accuracy comparable with first-principles methods. Specifically, MatterSim predicts Gibbs free energies for a wide range of inorganic solids with near-first-principles accuracy and achieves a 15 meV/atom resolution for temperatures up to 1000K compared with experiments. This opens an opportunity to predict experimental phase diagrams of materials at minimal computational cost. Moreover, MatterSim also serves as a platform for continuous learning and customization by integrating domain-specific data. The model can be fine-tuned for atomistic simulations at a desired level of theory or for direct structure-to-property predictions, achieving high data efficiency with a reduction in data requirements by up to 97%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04967v2-abstract-full').style.display = 'none'; document.getElementById('2405.04967v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03168">arXiv:2405.03168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03168">pdf</a>, <a href="https://arxiv.org/format/2405.03168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Fate of Two-Particle Bound States in the Continuum in non-Hermitian Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanxia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03168v1-abstract-short" style="display: inline;"> We unveil the existence of two-particle bound state in the continuum (BIC) in a one-dimensional interacting nonreciprocal lattice with a generalized boundary condition. By applying the Bethe-ansatz method, we can exactly solve the wavefunction and eigenvalue of the bound state in the continuum band, which enable us to precisely determine the phase diagrams of BIC. Our results demonstrate that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03168v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03168v1-abstract-full" style="display: none;"> We unveil the existence of two-particle bound state in the continuum (BIC) in a one-dimensional interacting nonreciprocal lattice with a generalized boundary condition. By applying the Bethe-ansatz method, we can exactly solve the wavefunction and eigenvalue of the bound state in the continuum band, which enable us to precisely determine the phase diagrams of BIC. Our results demonstrate that the non-reciprocal hopping can delocalize the bound state and thus shrink the region of BIC. By analyzing the wavefunction, we identify the existence of two types of BICs with different spatial distributions and analytically derive the corresponding threshold values for the breakdown of BICs. The BIC with similar properties is also found to exist in another system with an impurity potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03168v1-abstract-full').style.display = 'none'; document.getElementById('2405.03168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10