CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;31 of 31 results for author: <span class="mathjax">Zhang, X Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Zhang%2C+X+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, X Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+X+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, X Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06127">arXiv:2411.06127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06127">pdf</a>, <a href="https://arxiv.org/ps/2411.06127">ps</a>, <a href="https://arxiv.org/format/2411.06127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dynamic manifestation of exception points in a non-Hermitian continuous model with an imaginary periodic potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y+T">Y. T. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06127v1-abstract-short" style="display: inline;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06127v1-abstract-full" style="display: none;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be effectively achieved through particle loss in recent quantum simulation setups. Leveraging the discrete Fourier transform, the dynamics of EPs within the low-energy sector can be well modeled by a Stark ladder system under the influence of a non-Hermitian tilted potential. To illustrate this, we systematically investigate continuous systems with finite imaginary potential wells and demonstrate the distinctive EP dynamics across different orders. Our investigation sheds light on EP behaviors, potentially catalyzing further exploration of EP phenomena across a variety of quantum simulation setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'none'; document.getElementById('2411.06127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00268">arXiv:2406.00268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00268">pdf</a>, <a href="https://arxiv.org/format/2406.00268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184314">10.1103/PhysRevB.109.184314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization in a non-equilibrium quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00268v1-abstract-short" style="display: inline;"> The dynamics described by the non-Hermitian Hamiltonian typically capture the short-term behavior of open quantum systems before quantum jumps occur. In contrast, the long-term dynamics, characterized by the Lindblad master equation (LME), drive the system towards a non-equilibrium steady state (NESS), which is an eigenstate with zero energy of the Liouvillian superoperator, denoted as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00268v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00268v1-abstract-full" style="display: none;"> The dynamics described by the non-Hermitian Hamiltonian typically capture the short-term behavior of open quantum systems before quantum jumps occur. In contrast, the long-term dynamics, characterized by the Lindblad master equation (LME), drive the system towards a non-equilibrium steady state (NESS), which is an eigenstate with zero energy of the Liouvillian superoperator, denoted as $\mathcal{L}$. Conventionally, these two types of evolutions exhibit distinct dynamical behaviors. However, in this study, we challenge this common belief and demonstrate that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of a critical two-level open quantum system. The criticality of the system arises from the exceptional point (EP) of the effective non-Hermitian Hamiltonian. Additionally, the NESS is identical to the coalescent state of the effective non-Hermitian Hamiltonian. We apply this finding to a series of critical open quantum systems and show that a local dissipation channel can induce collective alignment of all spins in the same direction. This direction can be well controlled by modulating the quantum jump operator. The corresponding NESS is a product state and maintains long-time coherence, facilitating quantum control in open many-body systems. This discovery paves the way for a better understanding of the long-term dynamics of critical open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00268v1-abstract-full').style.display = 'none'; document.getElementById('2406.00268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184314 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08056">arXiv:2311.08056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08056">pdf</a>, <a href="https://arxiv.org/format/2311.08056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L201111">10.1103/PhysRevB.110.L201111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emerging topological characterization in non-equilibrium states of quenched Kitaev chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08056v3-abstract-short" style="display: inline;"> Topological characteristics of quantum systems are typically determined by the closing of a gap, while the dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT). In this paper, we illustrate that the system dynamics can be elucidated by considering the precession of a collection of free-pseudo spins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08056v3-abstract-full').style.display = 'inline'; document.getElementById('2311.08056v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08056v3-abstract-full" style="display: none;"> Topological characteristics of quantum systems are typically determined by the closing of a gap, while the dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT). In this paper, we illustrate that the system dynamics can be elucidated by considering the precession of a collection of free-pseudo spins under a magnetic field based on the exact results of extended Kitaev chains. The topology of the driven Hamiltonian is determined by the average winding number of the nonequilibrium state. Furthermore, we establish that the singularity of the DQPT arises from two perpendicular pseudo-spin vectors associated with the pre- and post-quenched Hamiltonians. Moreover, we investigate the distinct behaviors of the dynamic pairing order parameter in both topological and non-topological regions. These findings offer valuable insights into the non-equilibrium behavior of topological superconductors, contributing to the understanding of the resilience of topological properties in driven quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08056v3-abstract-full').style.display = 'none'; document.getElementById('2311.08056v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7 pages, 3+5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 110, L201111 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15040">arXiv:2106.15040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15040">pdf</a>, <a href="https://arxiv.org/format/2106.15040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.094301">10.1103/PhysRevB.104.094301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the superfluid-insulator phase transition by a non-Hermitian external field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15040v1-abstract-short" style="display: inline;"> We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian perturbation, which coalesces the degenerate ground state within the $U(1)$ symmetry breaking phase. We show that the dynamical response of the system is strongly sensitive to the underlying quantum phase transition (QPT) from a Mott insulator to a superfluid state. The Uhlmann fidelity in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15040v1-abstract-full').style.display = 'inline'; document.getElementById('2106.15040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15040v1-abstract-full" style="display: none;"> We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian perturbation, which coalesces the degenerate ground state within the $U(1)$ symmetry breaking phase. We show that the dynamical response of the system is strongly sensitive to the underlying quantum phase transition (QPT) from a Mott insulator to a superfluid state. The Uhlmann fidelity in the superfluid phase decays to a steady value determined by the order of the exceptional point (EP) within the subspace spanned by the degenerate ground states but remains almost unchanged in the Mott insulating phase. It demonstrates that the phase diagram at zero temperature is preserved even though a local probing field is applied. Specifically, two celebrated models including the Bose-Hubbard model and the Jaynes-Cummings-Hubbard model are employed to demonstrate this property in the finite-size system, wherein fluctuations of the boson and polariton number are observed based on EP dynamics. This work presents an alternative approach to probe the superfluid-insulator QPT at non-zero temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15040v1-abstract-full').style.display = 'none'; document.getElementById('2106.15040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 094301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06167">arXiv:2009.06167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06167">pdf</a>, <a href="https://arxiv.org/format/2009.06167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.174303">10.1103/PhysRevB.102.174303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical preparation of a steady ODLRO state in the Hubbard model with local non-Hermitian impurity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06167v1-abstract-short" style="display: inline;"> The cooperation between non-Hermiticity and interaction brings about a lot of counterintuitive behaviors, which are impossible to exist in the framework of the Hermitian system. We study the effect of a non-Hermitian impurity on the Hubbard model in the context of $畏$ symmetry. We show that the non-Hermitian Hubbard Hamiltonian can respect a full real spectrum even if a local non-Hermitian impurit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06167v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06167v1-abstract-full" style="display: none;"> The cooperation between non-Hermiticity and interaction brings about a lot of counterintuitive behaviors, which are impossible to exist in the framework of the Hermitian system. We study the effect of a non-Hermitian impurity on the Hubbard model in the context of $畏$ symmetry. We show that the non-Hermitian Hubbard Hamiltonian can respect a full real spectrum even if a local non-Hermitian impurity is applied to. The balance between dissipation of single fermion and on-site pair fluctuation results in a highest-order coalescing state with off-diagonal long-range order (ODLRO). Based on the characteristic of High-order EP, the critical non-Hermitian Hubbard model allows the generation of such a steady superconducting-like state through the time evolution from an arbitrary initial state, including the vacuum state. Remarkably, this dynamic scheme is insensitive to the on-site interaction and entirely independent of the locations of particle dissipation and pair fluctuation. Our results lay the groundwork for the dynamical generation of a steady ODLRO state through the critical non-Hermitian strongly correlated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06167v1-abstract-full').style.display = 'none'; document.getElementById('2009.06167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 174303 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01324">arXiv:2006.01324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01324">pdf</a>, <a href="https://arxiv.org/format/2006.01324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.224301">10.1103/PhysRevB.101.224301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic magnetization in non-Hermitian quantum spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01324v1-abstract-short" style="display: inline;"> We report a global effect induced by the local complex field, associated with the spin-exchange interaction. High-order exceptional point up to ($N+1$)-level coalescence is created at the critical local complex field applied to the $N$-size quantum spin chain. The ($N+1$)-order coalescent level is a saturated ferromagnetic ground state in the isotropic spin system. Remarkably, the final state alwa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01324v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01324v1-abstract-full" style="display: none;"> We report a global effect induced by the local complex field, associated with the spin-exchange interaction. High-order exceptional point up to ($N+1$)-level coalescence is created at the critical local complex field applied to the $N$-size quantum spin chain. The ($N+1$)-order coalescent level is a saturated ferromagnetic ground state in the isotropic spin system. Remarkably, the final state always approaches the ground state for an arbitrary initial state with any number of spin flips; even if the initial state is orthogonal to the ground state. Furthermore, the switch of macroscopic magnetization is solely driven by the time and forms a hysteresis loop in the time domain. The retentivity and coercivity of the hysteresis loop mainly rely on the non-Hermiticity. Our findings highlight the cooperation of non-Hermiticity and the interaction in quantum spin system, suggest a dynamical framework to realize magnetization, and thus pave the way for the non-Hermitian quantum spin system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01324v1-abstract-full').style.display = 'none'; document.getElementById('2006.01324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 224301 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.07510">arXiv:2003.07510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.07510">pdf</a>, <a href="https://arxiv.org/format/2003.07510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.033820">10.1103/PhysRevA.101.033820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-order exceptional points in supersymmetric arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S+M">S. M. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.07510v1-abstract-short" style="display: inline;"> We employ the intertwining operator technique to synthesize a supersymmetric (SUSY) array of arbitrary size $N$. The synthesized SUSY system is equivalent to a spin-$(N-1)/2$ under an effective magnetic field. By considering an additional imaginary magnetic field, we obtain a generalized parity-time-symmetric non-Hermitian Hamiltonian that describes a SUSY array of coupled resonators or waveguides&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07510v1-abstract-full').style.display = 'inline'; document.getElementById('2003.07510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.07510v1-abstract-full" style="display: none;"> We employ the intertwining operator technique to synthesize a supersymmetric (SUSY) array of arbitrary size $N$. The synthesized SUSY system is equivalent to a spin-$(N-1)/2$ under an effective magnetic field. By considering an additional imaginary magnetic field, we obtain a generalized parity-time-symmetric non-Hermitian Hamiltonian that describes a SUSY array of coupled resonators or waveguides under a gradient gain and loss; all the $N$ energy levels coalesce at an exceptional point (EP), forming the isotropic high-order EP with $N$ states coalescence (EPN). Near the EPN, the scaling exponent of phase rigidity for each eigenstate is $(N-1)/2$; the eigen frequency response to the perturbation $蔚$ acting on the resonator or waveguide couplings is $蔚^{1/N}$. Our findings reveal the importance of the intertwining operator technique for the spectral engineering and exemplify the practical application in non-Hermitian physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07510v1-abstract-full').style.display = 'none'; document.getElementById('2003.07510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 033820 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06073">arXiv:1808.06073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06073">pdf</a>, <a href="https://arxiv.org/format/1808.06073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.012113">10.1103/PhysRevA.99.012113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial topological Zak phase and dynamical confinement in non-Hermitian bipartite system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06073v1-abstract-short" style="display: inline;"> Unlike a Chern number in $2$D and $3$D topological system, Zak phase takes a subtle role to characterize the topological phase in $1$D. On the one hand, it is not a gauge invariant, on the other hand, the Zak phase difference between two quantum phases can be used to identify the topological phase transitions. A non-Hermitian system may inherit some characters of a Hermitian system, such as entire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06073v1-abstract-full').style.display = 'inline'; document.getElementById('1808.06073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06073v1-abstract-full" style="display: none;"> Unlike a Chern number in $2$D and $3$D topological system, Zak phase takes a subtle role to characterize the topological phase in $1$D. On the one hand, it is not a gauge invariant, on the other hand, the Zak phase difference between two quantum phases can be used to identify the topological phase transitions. A non-Hermitian system may inherit some characters of a Hermitian system, such as entirely real spectrum, unitary evolution, topological energy band, etc. In this paper, we study the influence of non-Hermitian term on the Zak phase for a class of non-Hermitian systems. We show exactly that the real part of the Zak phase remains unchanged in a bipartite lattice. In a concrete example, $1$D Su-Schrieffer-Heeger (SSH) model, we find that the real part of Zak phase can be obtained by an adiabatic process. To demonstrate this finding, we investigate a scattering problem for a time-dependent scattering center, which is a magnetic-flux-driven non-Hermitian SSH ring. Owing to the nature of the Zak phase, the intriguing features of this design are the wave-vector independence and allow two distinct behaviors, perfect transmission or confinement, depending on the timing of a flux impulse threading the ring. When the flux is added during a wavepacket travelling within the ring, the wavepacket is confined in the scatter partially. Otherwise, it exhibits perfect transmission through the scatter. Our finding extends the understanding and broaden the possible application of geometric phase in a non-Hermitian system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06073v1-abstract-full').style.display = 'none'; document.getElementById('1808.06073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 012113 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08883">arXiv:1807.08883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08883">pdf</a>, <a href="https://arxiv.org/ps/1807.08883">ps</a>, <a href="https://arxiv.org/format/1807.08883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/ab0ede">10.1088/1751-8121/ab0ede <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical correspondence of the exceptional points in the finite non-Hermitian system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08883v1-abstract-short" style="display: inline;"> We systematically study the topology of the exceptional point (EP) in the finite non-Hermitian system. Based on the concrete form of the Berry connection, we demonstrate that the exceptional line (EL), at which the eigenstates coalesce, can act as a vortex filament. The direction of the EL can be identified by the corresponding Berry curvature. In this context, such a correspondence makes the topo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08883v1-abstract-full').style.display = 'inline'; document.getElementById('1807.08883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08883v1-abstract-full" style="display: none;"> We systematically study the topology of the exceptional point (EP) in the finite non-Hermitian system. Based on the concrete form of the Berry connection, we demonstrate that the exceptional line (EL), at which the eigenstates coalesce, can act as a vortex filament. The direction of the EL can be identified by the corresponding Berry curvature. In this context, such a correspondence makes the topology of the EL clear at a glance. As an example, we apply this finding to the non-Hermitian Rice-Mele (RM) model, the non-Hermiticity of which arises from the staggered on-site complex potential. The boundary ELs are topological, but the non-boundary ELs are not. Each non-boundary EL corresponds to two critical momenta that make opposite contributions to the Berry connection. Therefore, the Berry connection of the many-particle quantum state can have classical correspondence, which is determined merely by the boundary ELs. Furthermore, the non-zero Berry phase, which experiences a closed path in the parameter space, is dependent on how the curve surrounds the boundary EL. This also provides an alternative way to investigate the topology of the EP and its physical correspondence in a finite non-Hermitian system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08883v1-abstract-full').style.display = 'none'; document.getElementById('1807.08883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02599">arXiv:1806.02599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02599">pdf</a>, <a href="https://arxiv.org/format/1806.02599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.085306">10.1103/PhysRevB.98.085306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical signature of moire pattern in non-Hermitian ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X+M">X. M. Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02599v1-abstract-short" style="display: inline;"> We study the dynamical behavior of a non-Hermitian moire superlattice system, which consists of two-coupled SSH chains with staggered imaginary on-site potentials. There are two main spatial regions, in which systems are in unbroken symmetric phases with fully real spectrum, appearing periodically along the ladder. We show that the two quantum phases are dimerized and tetramerized, which determine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02599v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02599v1-abstract-full" style="display: none;"> We study the dynamical behavior of a non-Hermitian moire superlattice system, which consists of two-coupled SSH chains with staggered imaginary on-site potentials. There are two main spatial regions, in which systems are in unbroken symmetric phases with fully real spectrum, appearing periodically along the ladder. We show that the two quantum phases are dimerized and tetramerized, which determine the distinct dynamical behaviors. Dirac probability can oscillate periodically, increase quadratically and increase exponentially, which correspond to the unbroken phase, exceptional point and the broken phase of the tetramerized region. In comparison, the Dirac probability can exhibit high-frequency oscillation in the dimerized region. These phenomena demonstrate the dynamical signature and provide insightful information of the moire pattern in the non-Hermitian regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02599v1-abstract-full').style.display = 'none'; document.getElementById('1806.02599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 085306 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09975">arXiv:1804.09975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09975">pdf</a>, <a href="https://arxiv.org/ps/1804.09975">ps</a>, <a href="https://arxiv.org/format/1804.09975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.042120">10.1103/PhysRevA.98.042120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical topological invariant for non-Hermitian Rice-Mele model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09975v1-abstract-short" style="display: inline;"> We study a non-Hermitian Rice-Mele model without breaking time-reversal symmetry, with the non-Hermiticity arising from imbalanced hopping rates. The Berry connection, Berry curvature and Chern number are introduced in the context of biorthonormal inner product. It is shown that for a bulk system, although the Berry connection can be complex numbers, the Chern number is still quantized, as topolog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09975v1-abstract-full').style.display = 'inline'; document.getElementById('1804.09975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09975v1-abstract-full" style="display: none;"> We study a non-Hermitian Rice-Mele model without breaking time-reversal symmetry, with the non-Hermiticity arising from imbalanced hopping rates. The Berry connection, Berry curvature and Chern number are introduced in the context of biorthonormal inner product. It is shown that for a bulk system, although the Berry connection can be complex numbers, the Chern number is still quantized, as topological invariant. For an opened chain system, the mid-gap edge modes are obtained exactly, obeying the bulk-edge correspondence. Furthermore, we also introduce a local current in the context of biorthonormal inner product to measure the pumping charge generated by a cyclic adiabatic evolution. Analytical analysis and numerical simulation of the time evolution of the mid-gap states show that the pumping charge can be a dynamical topological invariant in correspondence with the Chern number. It indicates that the geometric concepts for Hermitian topological insulator can be extended to the non-Hermitian regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09975v1-abstract-full').style.display = 'none'; document.getElementById('1804.09975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 042120 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.05666">arXiv:1801.05666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.05666">pdf</a>, <a href="https://arxiv.org/ps/1801.05666">ps</a>, <a href="https://arxiv.org/format/1801.05666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.043818">10.1103/PhysRevA.97.043818 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optomechanical transistor with mechanical gain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+L">Lin Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.05666v1-abstract-short" style="display: inline;"> We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05666v1-abstract-full').style.display = 'inline'; document.getElementById('1801.05666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.05666v1-abstract-full" style="display: none;"> We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultra-long delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05666v1-abstract-full').style.display = 'none'; document.getElementById('1801.05666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 043818 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10238">arXiv:1709.10238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10238">pdf</a>, <a href="https://arxiv.org/ps/1709.10238">ps</a>, <a href="https://arxiv.org/format/1709.10238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/aa850f">10.1088/1751-8121/aa850f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral singularity in composite systems and simulation of a resonant lasing cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G+R">G. R. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10238v1-abstract-short" style="display: inline;"> We investigate herein the existence of spectral singularities (SSs) in composite systems that consist of two separate scattering centers A and B embedded in one-dimensional free space, with at least one scattering center being non-Hermitian. We show that such composite systems have an SS at $k_{c}$ if the reflection amplitudes $r^{A}\left( k_{c}\right) $ and $r^{B}\left( k_{c}\right) $ of the two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10238v1-abstract-full').style.display = 'inline'; document.getElementById('1709.10238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10238v1-abstract-full" style="display: none;"> We investigate herein the existence of spectral singularities (SSs) in composite systems that consist of two separate scattering centers A and B embedded in one-dimensional free space, with at least one scattering center being non-Hermitian. We show that such composite systems have an SS at $k_{c}$ if the reflection amplitudes $r^{A}\left( k_{c}\right) $ and $r^{B}\left( k_{c}\right) $ of the two scattering centers satisfy the condition $r_{\mathrm{R}% }^{A}\left( k_{c}\right) r_{\mathrm{L}}^{B}\left( k_{c}\right) e^{i2k_{c}\left( x_{B}-x_{A}\right) }=1$. We also extend the condition to the system with multi-scattering centers. As an application, we construct a simple system to simulate a resonant lasing cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10238v1-abstract-full').style.display = 'none'; document.getElementById('1709.10238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 50, 405302 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.04718">arXiv:1707.04718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.04718">pdf</a>, <a href="https://arxiv.org/ps/1707.04718">ps</a>, <a href="https://arxiv.org/format/1707.04718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.115436">10.1103/PhysRevB.97.115436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological phases in Kitaev chain with imbalanced pairing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.04718v1-abstract-short" style="display: inline;"> We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. Exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04718v1-abstract-full').style.display = 'inline'; document.getElementById('1707.04718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.04718v1-abstract-full" style="display: none;"> We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. Exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of groundstates occur, associating with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist for the open chain within unbroken time-reversal symmetric region, demonstrating the bulk-edge correspondence in such a non-Hermitian system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04718v1-abstract-full').style.display = 'none'; document.getElementById('1707.04718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 115436 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.08635">arXiv:1705.08635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.08635">pdf</a>, <a href="https://arxiv.org/ps/1705.08635">ps</a>, <a href="https://arxiv.org/format/1705.08635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.018907">10.1364/OE.25.018907 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical unidirectional amplification in a three-mode optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y+Y">Y. Y. Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+L">Lin Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.08635v2-abstract-short" style="display: inline;"> We study the directional amplification of an optical probe field in a three-mode optomechanical system, where the mechanical resonator interacts with two linearly-coupled optical cavities and the cavities are driven by strong optical pump fields. The optical probe field is injected into one of the cavity modes, and at the same time, the mechanical resonator is subject to a mechanical drive with th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08635v2-abstract-full').style.display = 'inline'; document.getElementById('1705.08635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.08635v2-abstract-full" style="display: none;"> We study the directional amplification of an optical probe field in a three-mode optomechanical system, where the mechanical resonator interacts with two linearly-coupled optical cavities and the cavities are driven by strong optical pump fields. The optical probe field is injected into one of the cavity modes, and at the same time, the mechanical resonator is subject to a mechanical drive with the driving frequency equal to the frequency difference between the optical probe and pump fields. We show that the transmission of the probe field can be amplified in one direction and de-amplified in the opposite direction. This directional amplification or de-amplification results from the constructive or destruction interference between different transmission paths in this three-mode optomechanical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08635v2-abstract-full').style.display = 'none'; document.getElementById('1705.08635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 25, 18907 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03951">arXiv:1606.03951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.03951">pdf</a>, <a href="https://arxiv.org/ps/1606.03951">ps</a>, <a href="https://arxiv.org/format/1606.03951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.042133">10.1103/PhysRevA.94.042133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range entangled zero-mode state in a non-Hermitian lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+S">S. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03951v2-abstract-short" style="display: inline;"> In contrast to a Hermitian system, in which zero modes are usually degenerate and localized edge state in the thermodynamic limit, the zero mode of a finite non-Hermitian system can be a single nontrivial long-range entangled state at the exceptional point (EP). In this work, we demonstrate this feature with a concrete example based on exact solutions. Numerical simulations show that the entangled&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03951v2-abstract-full').style.display = 'inline'; document.getElementById('1606.03951v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03951v2-abstract-full" style="display: none;"> In contrast to a Hermitian system, in which zero modes are usually degenerate and localized edge state in the thermodynamic limit, the zero mode of a finite non-Hermitian system can be a single nontrivial long-range entangled state at the exceptional point (EP). In this work, we demonstrate this feature with a concrete example based on exact solutions. Numerical simulations show that the entangled state can be generated through the dynamic process with a high fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03951v2-abstract-full').style.display = 'none'; document.getElementById('1606.03951v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 042133 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.08747">arXiv:1602.08747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.08747">pdf</a>, <a href="https://arxiv.org/format/1602.08747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep20976">10.1038/srep20976 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reciprocal and unidirectional scattering of parity-time symmetric structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.08747v1-abstract-short" style="display: inline;"> Parity-time (PT) symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the PT symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in PT -symmetric system is closely related to the type of PT symmetry, that is, the axia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08747v1-abstract-full').style.display = 'inline'; document.getElementById('1602.08747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.08747v1-abstract-full" style="display: none;"> Parity-time (PT) symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the PT symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in PT -symmetric system is closely related to the type of PT symmetry, that is, the axial (reflection) PT symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity (P) and time-reversal (T) symmetry but keep the parity-time (PT) symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) PT-symmetric ring center. The explorations of symmetry and asymmetry from PT symmetry may shed light on novel one-way optical devices and application of PT metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08747v1-abstract-full').style.display = 'none'; document.getElementById('1602.08747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 Pages, 5 figures + SI of 4 Pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 6, 20976 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.07454">arXiv:1504.07454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.07454">pdf</a>, <a href="https://arxiv.org/ps/1504.07454">ps</a>, <a href="https://arxiv.org/format/1504.07454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep18323">10.1038/srep18323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EPR pairing dynamics in Hubbard model with resonant $U$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.07454v1-abstract-short" style="display: inline;"> We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength $U$. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07454v1-abstract-full').style.display = 'inline'; document.getElementById('1504.07454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.07454v1-abstract-full" style="display: none;"> We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength $U$. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the strength depending on $U$ and relative group velocity $\upsilon _{r}$. This can be applied to create distant EPR pair, through a collision process for two fermions with opposite spins in the case of $\left\vert \upsilon _{r}/U\right\vert =1$,\ without the need for temporal control and measurement process. Multiple collision process for many particles is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07454v1-abstract-full').style.display = 'none'; document.getElementById('1504.07454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 6, 18323 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08446">arXiv:1503.08446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08446">pdf</a>, <a href="https://arxiv.org/ps/1503.08446">ps</a>, <a href="https://arxiv.org/format/1503.08446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep27189">10.1038/srep27189 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quench field sensitivity of two-particle correlation in a Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+S">S. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08446v1-abstract-short" style="display: inline;"> Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one-dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08446v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08446v1-abstract-full" style="display: none;"> Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one-dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08446v1-abstract-full').style.display = 'none'; document.getElementById('1503.08446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 6, 27189 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03607">arXiv:1501.03607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.03607">pdf</a>, <a href="https://arxiv.org/ps/1501.03607">ps</a>, <a href="https://arxiv.org/format/1501.03607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.012117">10.1103/PhysRevA.92.012117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplitude control of a quantum state in a non-Hermitian Rice-Mele model driven by an external field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+S">S. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03607v2-abstract-short" style="display: inline;"> In the Hermitian regime, a Berry phase is always the real number. It may be imaginary for a non-Hermitian system, which leads to amplitude amplification or attenuation of an evolved quantum state. We study the dynamics of the non-Hermitian Rice-Mele model driven by a time-dependent external field. The exact results show that it can have full real spectrum for any value of the field. Several rigoro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03607v2-abstract-full').style.display = 'inline'; document.getElementById('1501.03607v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03607v2-abstract-full" style="display: none;"> In the Hermitian regime, a Berry phase is always the real number. It may be imaginary for a non-Hermitian system, which leads to amplitude amplification or attenuation of an evolved quantum state. We study the dynamics of the non-Hermitian Rice-Mele model driven by a time-dependent external field. The exact results show that it can have full real spectrum for any value of the field. Several rigorous results are presented for the Berry phase with respect to the varying field. We show that the Berry phase is the same complex constant for any initial state in a single sub-band. Numerical simulation indicates that the amplitude control of a state can be accomplished by a quasi-adiabatic process within a short time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03607v2-abstract-full').style.display = 'none'; document.getElementById('1501.03607v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 92, 012117 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.8275">arXiv:1412.8275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.8275">pdf</a>, <a href="https://arxiv.org/ps/1412.8275">ps</a>, <a href="https://arxiv.org/format/1412.8275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.063411">10.1103/PhysRevA.90.063411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sudden death of particle-pair Bloch oscillation and unidirectional propagation in a one-dimensional driven optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+S">S. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.8275v2-abstract-short" style="display: inline;"> We study the dynamics of bound pairs in the extended Hubbard model driven by a linear external field. It is shown that two interacting bosons or singlet fermions with nonzero on-site and nearest-neighbor interaction strengths can always form bound pairs in the absence of an external field. There are two bands of bound pairs, one of which may have incomplete wave vectors when it has an overlap with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8275v2-abstract-full').style.display = 'inline'; document.getElementById('1412.8275v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.8275v2-abstract-full" style="display: none;"> We study the dynamics of bound pairs in the extended Hubbard model driven by a linear external field. It is shown that two interacting bosons or singlet fermions with nonzero on-site and nearest-neighbor interaction strengths can always form bound pairs in the absence of an external field. There are two bands of bound pairs, one of which may have incomplete wave vectors when it has an overlap with the scattering band, referred to as an imperfect band. In the presence of the external field, the dynamics of the bound pair in the perfect band exhibits distinct Bloch-Zener oscillation (BZO), while in the imperfect band the oscillation presents a sudden death. The pair becomes uncorrelated after the sudden death and the BZO never comes back. Such dynamical behaviors are robust even for the weak-coupling regime and thus can be used to characterize the phase diagram of the bound states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8275v2-abstract-full').style.display = 'none'; document.getElementById('1412.8275v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 90, 063411 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.7630">arXiv:1412.7630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.7630">pdf</a>, <a href="https://arxiv.org/ps/1412.7630">ps</a>, <a href="https://arxiv.org/format/1412.7630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.012116">10.1103/PhysRevA.91.012116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transmission phase lapse in the non-Hermitian Aharonov-Bohm interferometer near the spectral singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.7630v3-abstract-short" style="display: inline;"> We study the effect of PT-symmetric imaginary potentials embedded in the two arms of an Aharonov-Bohm interferometer on the transmission phase by finding an exact solution for a concrete tight-binding system. It is observed that the spectral singularity always occurs at k=${\pm}$蟺/2 for a wide range of fluxes and imaginary potentials. Critical behavior associated with the physics of the spectral s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7630v3-abstract-full').style.display = 'inline'; document.getElementById('1412.7630v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.7630v3-abstract-full" style="display: none;"> We study the effect of PT-symmetric imaginary potentials embedded in the two arms of an Aharonov-Bohm interferometer on the transmission phase by finding an exact solution for a concrete tight-binding system. It is observed that the spectral singularity always occurs at k=${\pm}$蟺/2 for a wide range of fluxes and imaginary potentials. Critical behavior associated with the physics of the spectral singularity is also investigated. It is demonstrated that the quasi-spectral singularity corresponds to a transmission maximum and the transmission phase jumps abruptly by 蟺 when the system is swept through this point. Moreover, We find that there exists a pulse-like phase lapse when the imaginary potential approaches the boundary value of the spectral singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7630v3-abstract-full').style.display = 'none'; document.getElementById('1412.7630v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, Accepted by PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 91, 012116 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.0420">arXiv:1409.0420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.0420">pdf</a>, <a href="https://arxiv.org/ps/1409.0420">ps</a>, <a href="https://arxiv.org/format/1409.0420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.032101">10.1103/PhysRevA.91.032101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric transmission through a flux-controlled non-Hermitian scattering center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.0420v1-abstract-short" style="display: inline;"> We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the aim of realizing quantum diode in a non-Hermitian system. It is shown that a $\mathcal{PT}$ symmetric non-Hermitian scattering center always has symmetric transmission although the dynamics within the isolated center can be unidirectional, espec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.0420v1-abstract-full').style.display = 'inline'; document.getElementById('1409.0420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.0420v1-abstract-full" style="display: none;"> We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the aim of realizing quantum diode in a non-Hermitian system. It is shown that a $\mathcal{PT}$ symmetric non-Hermitian scattering center always has symmetric transmission although the dynamics within the isolated center can be unidirectional, especially at its exceptional point. We propose a concrete scheme based on a flux-controlled non-Hermitian scattering center, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux. The analytical solution shows that such a complex scattering center acts as a diode at the resonant energy level of the spectral singularity, exhibiting perfect unidirectionality of the transmission. The connections between the phenomena of the asymmetric transmission and reflectionless absorption are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.0420v1-abstract-full').style.display = 'none'; document.getElementById('1409.0420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 91, 032101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.0805">arXiv:1404.0805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.0805">pdf</a>, <a href="https://arxiv.org/ps/1404.0805">ps</a>, <a href="https://arxiv.org/format/1404.0805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.012103">10.1103/PhysRevA.90.012103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conventional quantum phase transition driven by complex parameter in non-Hermitian PT-symmetric Ising model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.0805v1-abstract-short" style="display: inline;"> A conventional quantum phase transition (QPT) can be accessed by varying a real parameter at absolute zero temperature. Motivated by the discovery of the pseudo-Hermiticity of non-Hermitian systems, we explore the QPT in non-Hermitian PT-symmetric Ising model, which is driven by a staggered complex transverse field. Exact solution shows that the Laplacian of the groundstate energy density, with re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.0805v1-abstract-full').style.display = 'inline'; document.getElementById('1404.0805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.0805v1-abstract-full" style="display: none;"> A conventional quantum phase transition (QPT) can be accessed by varying a real parameter at absolute zero temperature. Motivated by the discovery of the pseudo-Hermiticity of non-Hermitian systems, we explore the QPT in non-Hermitian PT-symmetric Ising model, which is driven by a staggered complex transverse field. Exact solution shows that the Laplacian of the groundstate energy density, with respect to real and imaginary components of the transverse field, diverges on the boundary in the complex plane. The phase diagram indicate that the imaginary transverse field has the effect of shrinking the paramagnet phase. In addition, we also investigate the connection between the geometric phase and the QPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.0805v1-abstract-full').style.display = 'none'; document.getElementById('1404.0805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 90, 012103 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3108">arXiv:1401.3108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3108">pdf</a>, <a href="https://arxiv.org/ps/1401.3108">ps</a>, <a href="https://arxiv.org/format/1401.3108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2014.06.022">10.1016/j.aop.2014.06.022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete particle-pair annihilation as a dynamical signature of the spectral singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G+R">G. R. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3108v1-abstract-short" style="display: inline;"> Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3108v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3108v1-abstract-full" style="display: none;"> Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on the spin configuration of two particles. In both cases, the residual amplitude can vanish when the relative group velocity of two single-particle Gaussian wave packets with equal width reaches the magnitude of the interaction strength, exhibiting complete particle-pair annihilation at the spectral singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3108v1-abstract-full').style.display = 'none'; document.getElementById('1401.3108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annals of Physics, 349, 288-296 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.4057">arXiv:1308.4057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.4057">pdf</a>, <a href="https://arxiv.org/ps/1308.4057">ps</a>, <a href="https://arxiv.org/format/1308.4057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.88.042108">10.1103/PhysRevA.88.042108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric phase and phase diagram for non-Hermitian quantum XY model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.4057v1-abstract-short" style="display: inline;"> We study the geometric phase for the ground state of a generalized one-dimensional non-Hermitian quantum XY model, which has transverse-field-dependent intrinsic rotation-time reversal symmetry. Based on the exact solution, this model is shown to have full real spectrum in multiple regions for the finite size system. The result indicates that the phase diagram or exceptional boundary, which separa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4057v1-abstract-full').style.display = 'inline'; document.getElementById('1308.4057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.4057v1-abstract-full" style="display: none;"> We study the geometric phase for the ground state of a generalized one-dimensional non-Hermitian quantum XY model, which has transverse-field-dependent intrinsic rotation-time reversal symmetry. Based on the exact solution, this model is shown to have full real spectrum in multiple regions for the finite size system. The result indicates that the phase diagram or exceptional boundary, which separates the unbroken and broken symmetry regions corresponds to the divergence of the Berry curvature. The scaling behaviors of the groundstate energy and Berry curvature are obtained in an analytical manner for a concrete system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4057v1-abstract-full').style.display = 'none'; document.getElementById('1308.4057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 88, 042108 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.1969">arXiv:1306.1969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.1969">pdf</a>, <a href="https://arxiv.org/ps/1306.1969">ps</a>, <a href="https://arxiv.org/format/1306.1969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2013.08.012">10.1016/j.aop.2013.08.012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-independent reflectionless transmission in the non-Hermitian time-reversal symmetric system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.1969v1-abstract-short" style="display: inline;"> We theoretically study the non-Hermitian systems, the non-Hermiticity of which arises from the unequal hopping amplitude (UHA) dimers. The distinguishing features of these models are that they have full real spectra if all of the eigenvectors are time-reversal (T) symmetric rather than parity-time-reversal (PT) symmetric, and that their Hermitian counterparts are shown to be an experimentally acce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1969v1-abstract-full').style.display = 'inline'; document.getElementById('1306.1969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.1969v1-abstract-full" style="display: none;"> We theoretically study the non-Hermitian systems, the non-Hermiticity of which arises from the unequal hopping amplitude (UHA) dimers. The distinguishing features of these models are that they have full real spectra if all of the eigenvectors are time-reversal (T) symmetric rather than parity-time-reversal (PT) symmetric, and that their Hermitian counterparts are shown to be an experimentally accessible system, which have the same topological structures as that of the original ones but modulated hopping amplitudes within the unbroken region. Under the reflectionless transmission condition, the scattering behavior of momentum-independent reflectionless transmission (RT) can be achieved in the concerned non-Hermitian system. This peculiar feature indicates that, for a certain class of non-Hermitian systems with a balanced combination of the RT dimers, the defects can appear fully invisible to an outside observer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1969v1-abstract-full').style.display = 'none'; document.getElementById('1306.1969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures. arXiv admin note: text overlap with arXiv:1008.5306 by other authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annals of Physics, 339, 109-121 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.0086">arXiv:1212.0086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.0086">pdf</a>, <a href="https://arxiv.org/ps/1212.0086">ps</a>, <a href="https://arxiv.org/format/1212.0086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.042118">10.1103/PhysRevA.87.042118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-sustained emission in semi-infinite non-Hermitian systems at the exceptional point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.0086v2-abstract-short" style="display: inline;"> Complex potential and non-Hermitian hopping amplitude are building blocks of a non-Hermitian quantum network. Appropriate configuration, such as PT-symmetric distribution, can lead to the full real spectrum. To investigate the underlying mechanism of this phenomenon, we study the phase diagram of a semi-infinite non-Hermitian system. It consists of a finite non-Hermitian cluster and a semi-infinit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0086v2-abstract-full').style.display = 'inline'; document.getElementById('1212.0086v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.0086v2-abstract-full" style="display: none;"> Complex potential and non-Hermitian hopping amplitude are building blocks of a non-Hermitian quantum network. Appropriate configuration, such as PT-symmetric distribution, can lead to the full real spectrum. To investigate the underlying mechanism of this phenomenon, we study the phase diagram of a semi-infinite non-Hermitian system. It consists of a finite non-Hermitian cluster and a semi-infinite lead. Based on the analysis of the solution of the concrete systems, it is shown that it can have the full real spectrum without any requirements on the symmetry and the wave function within the lead becomes a unidirectional plane wave at the exceptional point. This universal dynamical behavior is demonstrated as the persistent emission and reflectionless absorption of wave packets in the typical non-Hermitian systems containing the complex on-site potential and non-Hermitian hopping amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0086v2-abstract-full').style.display = 'none'; document.getElementById('1212.0086v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 87, 042118 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.5613">arXiv:1210.5613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.5613">pdf</a>, <a href="https://arxiv.org/ps/1210.5613">ps</a>, <a href="https://arxiv.org/format/1210.5613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.012114">10.1103/PhysRevA.87.012114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian anisotropic XY model with intrinsic rotation-time reversal symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.5613v1-abstract-short" style="display: inline;"> We systematically study the non-Hermitian version of the one-dimensional anisotropic XY model, which in its original form, is a unique exactly solvable quantum spin model for understanding the quantum phase transition. The distinguishing features of this model are that it has full real spectrum if all the eigenvectors are intrinsic rotation-time reversal (RT) symmetric rather than parity-time reve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.5613v1-abstract-full').style.display = 'inline'; document.getElementById('1210.5613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.5613v1-abstract-full" style="display: none;"> We systematically study the non-Hermitian version of the one-dimensional anisotropic XY model, which in its original form, is a unique exactly solvable quantum spin model for understanding the quantum phase transition. The distinguishing features of this model are that it has full real spectrum if all the eigenvectors are intrinsic rotation-time reversal (RT) symmetric rather than parity-time reversal (PT) symmetric, and that its Hermitian counterpart is shown approximately to be an experimentally accessible system, an isotropic XY spin chain with nearest neighbor coupling. Based on the exact solution, exceptional points which separated the unbroken and broken symmetry regions are obtained and lie on a hyperbola in the thermodynamic limit. It provides a nice paradigm to elucidate the complex quantum mechanics theory for a quantum spin system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.5613v1-abstract-full').style.display = 'none'; document.getElementById('1210.5613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 87, 012114 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.0087">arXiv:1106.0087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.0087">pdf</a>, <a href="https://arxiv.org/ps/1106.0087">ps</a>, <a href="https://arxiv.org/format/1106.0087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.85.012106">10.1103/PhysRevA.85.012106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perfect State Transfer in PT-symmetric Non-Hermitian Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.0087v2-abstract-short" style="display: inline;"> We systematically study the parity- and time-reversal (PT) symmetric non-Hermitian version of a quantum network proposed in the paper of Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)]. The nature of this model shows that it is a paradigm to demonstrate the complex relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterpart as well as a candidate in the experimental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.0087v2-abstract-full').style.display = 'inline'; document.getElementById('1106.0087v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.0087v2-abstract-full" style="display: none;"> We systematically study the parity- and time-reversal (PT) symmetric non-Hermitian version of a quantum network proposed in the paper of Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)]. The nature of this model shows that it is a paradigm to demonstrate the complex relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterpart as well as a candidate in the experimental realization to simulate PT-symmetry breaking. We also show that this model allows a conditional perfect state transfer within the unbroken PT-symmetry region but not an arbitrary one. This is due to the fact that the evolution operator at a certain period is equivalent to the PT operator for the real-valued wave function in the elaborate PT-symmetric Hilbert space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.0087v2-abstract-full').style.display = 'none'; document.getElementById('1106.0087v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 85, 012106 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.2723">arXiv:1005.2723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.2723">pdf</a>, <a href="https://arxiv.org/ps/1005.2723">ps</a>, <a href="https://arxiv.org/format/1005.2723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-014-5500-7">10.1007/s11433-014-5500-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SU(2) symmetry in a Hubbard model with spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.2723v2-abstract-short" style="display: inline;"> We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction. It is shown that, in the absence of the on-site interaction, the system possesses the SU(2) symmetry arising from the timereversal symmetry. The influence of the on-site interaction on the symmetry depends on the topology of the networks: The SU(2) symmetry is shown to be the spin rotation symmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2723v2-abstract-full').style.display = 'inline'; document.getElementById('1005.2723v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.2723v2-abstract-full" style="display: none;"> We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction. It is shown that, in the absence of the on-site interaction, the system possesses the SU(2) symmetry arising from the timereversal symmetry. The influence of the on-site interaction on the symmetry depends on the topology of the networks: The SU(2) symmetry is shown to be the spin rotation symmetry of a simply-connected lattice, so it still holds in the presence of the Hubbard correlation. In contrary, the on-site interaction breaks the SU(2) symmetry of a multi-connected lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2723v2-abstract-full').style.display = 'none'; document.getElementById('1005.2723v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci China-Phys Mech Astron, 2014, 57: 2086-2091 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10