CINXE.COM
Sintering - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Sintering - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e471f8d7-6aba-4561-8d45-b57e8321ae37","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Sintering","wgTitle":"Sintering","wgCurRevisionId":1252207161,"wgRevisionId":1252207161,"wgArticleId":145020,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","CS1 errors: missing periodical","Articles with short description","Short description is different from Wikidata","Articles lacking in-text citations from October 2022","All articles lacking in-text citations","Articles containing Middle High German (ca. 1050-1500)-language text","Articles needing additional references from July 2023","All articles needing additional references","All articles with specifically marked weasel-worded phrases", "Articles with specifically marked weasel-worded phrases from August 2022","All articles that may contain original research","Articles that may contain original research from September 2024","Wikipedia articles needing clarification from September 2012","Pages displaying short descriptions of redirect targets via Module:Annotated link","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Industrial processes","Metalworking","Plastics industry","Metallurgical processes"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Sintering","wgRelevantArticleId":145020,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{ "pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q844613","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading", "ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/2/27/LDClinkerScaled.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1169"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/LDClinkerScaled.jpg/800px-LDClinkerScaled.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="779"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/LDClinkerScaled.jpg/640px-LDClinkerScaled.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="624"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Sintering - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Sintering"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Sintering&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Sintering"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Sintering rootpage-Sintering skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Sintering" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Sintering" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Sintering" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Sintering" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-General_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#General_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>General sintering</span> </div> </a> <ul id="toc-General_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ceramic_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ceramic_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Ceramic sintering</span> </div> </a> <ul id="toc-Ceramic_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sintering_of_metallic_powders" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sintering_of_metallic_powders"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Sintering of metallic powders</span> </div> </a> <button aria-controls="toc-Sintering_of_metallic_powders-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Sintering of metallic powders subsection</span> </button> <ul id="toc-Sintering_of_metallic_powders-sublist" class="vector-toc-list"> <li id="toc-Advantages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Advantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Advantages</span> </div> </a> <ul id="toc-Advantages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disadvantages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Disadvantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Disadvantages</span> </div> </a> <ul id="toc-Disadvantages-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Plastics_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Plastics_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Plastics sintering</span> </div> </a> <ul id="toc-Plastics_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Liquid_phase_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Liquid_phase_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Liquid phase sintering</span> </div> </a> <ul id="toc-Liquid_phase_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electric_current_assisted_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Electric_current_assisted_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Electric current assisted sintering</span> </div> </a> <button aria-controls="toc-Electric_current_assisted_sintering-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Electric current assisted sintering subsection</span> </button> <ul id="toc-Electric_current_assisted_sintering-sublist" class="vector-toc-list"> <li id="toc-Spark_plasma_sintering" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spark_plasma_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Spark plasma sintering</span> </div> </a> <ul id="toc-Spark_plasma_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electro_sinter_forging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electro_sinter_forging"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Electro sinter forging</span> </div> </a> <ul id="toc-Electro_sinter_forging-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Pressureless_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pressureless_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Pressureless sintering</span> </div> </a> <ul id="toc-Pressureless_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Microwave_sintering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Microwave_sintering"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Microwave sintering</span> </div> </a> <ul id="toc-Microwave_sintering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Densification,_vitrification_and_grain_growth" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Densification,_vitrification_and_grain_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Densification, vitrification and grain growth</span> </div> </a> <button aria-controls="toc-Densification,_vitrification_and_grain_growth-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Densification, vitrification and grain growth subsection</span> </button> <ul id="toc-Densification,_vitrification_and_grain_growth-sublist" class="vector-toc-list"> <li id="toc-Sintering_mechanisms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sintering_mechanisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Sintering mechanisms</span> </div> </a> <ul id="toc-Sintering_mechanisms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grain_growth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grain_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Grain growth</span> </div> </a> <ul id="toc-Grain_growth-sublist" class="vector-toc-list"> <li id="toc-Grain_boundary_energy/tension" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Grain_boundary_energy/tension"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2.1</span> <span>Grain boundary energy/tension</span> </div> </a> <ul id="toc-Grain_boundary_energy/tension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mechanical_equilibrium" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mechanical_equilibrium"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2.2</span> <span>Mechanical equilibrium</span> </div> </a> <ul id="toc-Mechanical_equilibrium-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Reducing_grain_growth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reducing_grain_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Reducing grain growth</span> </div> </a> <ul id="toc-Reducing_grain_growth-sublist" class="vector-toc-list"> <li id="toc-Solute_ions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Solute_ions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.1</span> <span>Solute ions</span> </div> </a> <ul id="toc-Solute_ions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fine_second_phase_particles" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Fine_second_phase_particles"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.2</span> <span>Fine second phase particles</span> </div> </a> <ul id="toc-Fine_second_phase_particles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Sintering_of_catalysts" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sintering_of_catalysts"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Sintering of catalysts</span> </div> </a> <ul id="toc-Sintering_of_catalysts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Sintering</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 35 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-35" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">35 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%84%D8%A8%D9%8A%D8%AF" title="تلبيد – Arabic" lang="ar" hreflang="ar" data-title="تلبيد" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Sinteritzaci%C3%B3" title="Sinterització – Catalan" lang="ca" hreflang="ca" data-title="Sinterització" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Sp%C3%A9k%C3%A1n%C3%AD" title="Spékání – Czech" lang="cs" hreflang="cs" data-title="Spékání" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Sintring" title="Sintring – Danish" lang="da" hreflang="da" data-title="Sintring" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Sintern" title="Sintern – German" lang="de" hreflang="de" data-title="Sintern" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Paagutamine" title="Paagutamine – Estonian" lang="et" hreflang="et" data-title="Paagutamine" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%8D%CE%BD%CF%84%CE%B7%CE%BE%CE%B7" title="Σύντηξη – Greek" lang="el" hreflang="el" data-title="Σύντηξη" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Sinterizaci%C3%B3n" title="Sinterización – Spanish" lang="es" hreflang="es" data-title="Sinterización" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%81%E2%80%8C%D8%AC%D9%88%D8%B4%DB%8C" title="تفجوشی – Persian" lang="fa" hreflang="fa" data-title="تفجوشی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Frittage" title="Frittage – French" lang="fr" hreflang="fr" data-title="Frittage" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Sint%C3%A9ar%C3%BA" title="Sintéarú – Irish" lang="ga" hreflang="ga" data-title="Sintéarú" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Sinterizaci%C3%B3n" title="Sinterización – Galician" lang="gl" hreflang="gl" data-title="Sinterización" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EA%B2%B0" title="소결 – Korean" lang="ko" hreflang="ko" data-title="소결" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%9F%E0%A4%B0%E0%A4%A3" title="सिन्टरण – Hindi" lang="hi" hreflang="hi" data-title="सिन्टरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Sinteriranje" title="Sinteriranje – Croatian" lang="hr" hreflang="hr" data-title="Sinteriranje" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Penyinteran" title="Penyinteran – Indonesian" lang="id" hreflang="id" data-title="Penyinteran" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Sinterizzazione" title="Sinterizzazione – Italian" lang="it" hreflang="it" data-title="Sinterizzazione" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%99%D7%A0%D7%98%D7%95%D7%A8" title="סינטור – Hebrew" lang="he" hreflang="he" data-title="סינטור" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Sinteren" title="Sinteren – Dutch" lang="nl" hreflang="nl" data-title="Sinteren" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%84%BC%E7%B5%90" title="焼結 – Japanese" lang="ja" hreflang="ja" data-title="焼結" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Sintring" title="Sintring – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Sintring" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Spiekanie" title="Spiekanie – Polish" lang="pl" hreflang="pl" data-title="Spiekanie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Sinteriza%C3%A7%C3%A3o" title="Sinterização – Portuguese" lang="pt" hreflang="pt" data-title="Sinterização" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Sinterizare" title="Sinterizare – Romanian" lang="ro" hreflang="ro" data-title="Sinterizare" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D0%BA%D0%B0%D0%BD%D0%B8%D0%B5" title="Спекание – Russian" lang="ru" hreflang="ru" data-title="Спекание" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Sintering" title="Sintering – Simple English" lang="en-simple" hreflang="en-simple" data-title="Sintering" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Sintranje" title="Sintranje – Slovenian" lang="sl" hreflang="sl" data-title="Sintranje" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%B3%DB%8C%D9%86%D8%AA%D8%B1%DB%8C%D9%86%DA%AF" title="سینترینگ – Central Kurdish" lang="ckb" hreflang="ckb" data-title="سینترینگ" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Sinteriranje" title="Sinteriranje – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Sinteriranje" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Sintraus" title="Sintraus – Finnish" lang="fi" hreflang="fi" data-title="Sintraus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Sintring" title="Sintring – Swedish" lang="sv" hreflang="sv" data-title="Sintring" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D1%96%D0%BA%D0%B0%D0%BD%D0%BD%D1%8F" title="Спікання – Ukrainian" lang="uk" hreflang="uk" data-title="Спікання" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thi%C3%AAu_k%E1%BA%BFt" title="Thiêu kết – Vietnamese" lang="vi" hreflang="vi" data-title="Thiêu kết" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%87%92%E7%B5%90" title="燒結 – Cantonese" lang="yue" hreflang="yue" data-title="燒結" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%87%92%E7%B5%90" title="燒結 – Chinese" lang="zh" hreflang="zh" data-title="燒結" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q844613#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sintering" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Sintering" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sintering"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sintering&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sintering&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Sintering"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sintering&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sintering&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Sintering" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Sintering" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Sintering&oldid=1252207161" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Sintering&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Sintering&id=1252207161&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSintering"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSintering"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Sintering&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Sintering&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Sintering" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q844613" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Process of forming and bonding material by heat or pressure</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Sinter_(disambiguation)" class="mw-redirect mw-disambig" title="Sinter (disambiguation)">Sinter (disambiguation)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">October 2022</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sintering_diagram_vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Sintering_diagram_vector.svg/220px-Sintering_diagram_vector.svg.png" decoding="async" width="220" height="86" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Sintering_diagram_vector.svg/330px-Sintering_diagram_vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Sintering_diagram_vector.svg/440px-Sintering_diagram_vector.svg.png 2x" data-file-width="425" data-file-height="167" /></a><figcaption>Heat and compaction fuse small particles into a dense bulk</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:LDClinkerScaled.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/LDClinkerScaled.jpg/220px-LDClinkerScaled.jpg" decoding="async" width="220" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/LDClinkerScaled.jpg/330px-LDClinkerScaled.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/LDClinkerScaled.jpg/440px-LDClinkerScaled.jpg 2x" data-file-width="933" data-file-height="909" /></a><figcaption><a href="/wiki/Clinker_(cement)" class="mw-redirect" title="Clinker (cement)">Clinker</a> nodules produced by sintering</figcaption></figure> <p><b>Sintering</b> or <b>frittage</b> is the process of compacting and forming a <a href="/wiki/Solid" title="Solid">solid</a> mass of material by <a href="/wiki/Pressure" title="Pressure">pressure</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> or heat<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> without <a href="/wiki/Melting" title="Melting">melting</a> it to the point of <a href="/wiki/Liquefaction" title="Liquefaction">liquefaction</a>. Sintering happens as part of a <a href="/wiki/Manufacturing" title="Manufacturing">manufacturing</a> process used with <a href="/wiki/Metal" title="Metal">metals</a>, <a href="/wiki/Ceramic" title="Ceramic">ceramics</a>, <a href="/wiki/Plastic" title="Plastic">plastics</a>, and other materials. The atoms/molecules in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece. </p><p>Since the sintering temperature does not have to reach the <a href="/wiki/Melting_point" title="Melting point">melting point</a> of the material, sintering is often chosen as the shaping process for materials with extremely high melting points, such as <a href="/wiki/Tungsten" title="Tungsten">tungsten</a> and <a href="/wiki/Molybdenum" title="Molybdenum">molybdenum</a>. The study of sintering in <a href="/wiki/Metallurgy" title="Metallurgy">metallurgical</a> powder-related processes is known as <a href="/wiki/Powder_metallurgy" title="Powder metallurgy">powder metallurgy</a>. </p><p>An example of sintering can be observed when ice cubes in a glass of water adhere to each other, which is driven by the temperature difference between the water and the ice. Examples of pressure-driven sintering are the compacting of snowfall to a glacier, or the formation of a hard snowball by pressing loose snow together. </p><p>The material produced by sintering is called <i>sinter</i>. The word <i>sinter</i> comes from the <a href="/wiki/Middle_High_German" title="Middle High German">Middle High German</a> <span title="Middle High German (ca. 1050-1500)-language text"><i lang="gmh">sinter</i></span>, a <a href="/wiki/Cognate" title="Cognate">cognate</a> of English <i><a href="https://en.wiktionary.org/wiki/cinder" class="extiw" title="wikt:cinder">cinder</a></i>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="General_sintering">General sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=1" title="Edit section: General sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sintering_Tool_Cross_Section_and_Part.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Sintering_Tool_Cross_Section_and_Part.jpg/220px-Sintering_Tool_Cross_Section_and_Part.jpg" decoding="async" width="220" height="109" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Sintering_Tool_Cross_Section_and_Part.jpg/330px-Sintering_Tool_Cross_Section_and_Part.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Sintering_Tool_Cross_Section_and_Part.jpg/440px-Sintering_Tool_Cross_Section_and_Part.jpg 2x" data-file-width="1566" data-file-height="776" /></a><figcaption>Cross section of a sintering tool and the sintered part</figcaption></figure> <p>Sintering is generally considered successful when the process reduces <a href="/wiki/Porosity" title="Porosity">porosity</a> and enhances properties such as strength, <a href="/wiki/Electrical_conductivity" class="mw-redirect" title="Electrical conductivity">electrical conductivity</a>, <a href="/wiki/Translucency" class="mw-redirect" title="Translucency">translucency</a> and <a href="/wiki/Thermal_conductivity" class="mw-redirect" title="Thermal conductivity">thermal conductivity</a>. In some special cases, sintering is carefully applied to enhance the strength of a material while preserving porosity (e.g. in filters or catalysts, where gas adsorption is a priority). During the sintering process, atomic diffusion drives powder surface elimination in different stages, starting at the formation of necks between powders to final elimination of small pores at the end of the process. </p><p>The driving force for densification is the change in <a href="/wiki/Free_energy_(thermodynamics)" class="mw-redirect" title="Free energy (thermodynamics)">free energy</a> from the decrease in surface area and lowering of the surface free energy by the replacement of solid-vapor interfaces. It forms new but lower-energy solid-solid interfaces with a net decrease in total free energy. On a microscopic scale, material transfer is affected by the change in pressure and differences in free energy across the curved surface. If the size of the particle is small (and its curvature is high), these effects become very large in magnitude. The change in energy is much higher when the radius of curvature is less than a few micrometers, which is one of the main reasons why much ceramic technology is based on the use of fine-particle materials.<sup id="cite_ref-Kingery_3-0" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>The ratio of bond area to particle size is a determining factor for properties such as strength and electrical conductivity. To yield the desired bond area, temperature and initial grain size are precisely controlled over the sintering process. At steady state, the particle radius and the vapor pressure are proportional to (p<sub>0</sub>)<sup>2/3</sup> and to (p<sub>0</sub>)<sup>1/3</sup>, respectively.<sup id="cite_ref-Kingery_3-1" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>The source of power for solid-state processes is the change in free or chemical potential energy between the neck and the surface of the particle. This energy creates a transfer of material through the fastest means possible; if transfer were to take place from the particle volume or the grain boundary between particles, particle count would decrease and pores would be destroyed. Pore elimination is fastest in samples with many pores of uniform size because the boundary diffusion distance is smallest. during the latter portions of the process, boundary and lattice diffusion from the boundary become important.<sup id="cite_ref-Kingery_3-2" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Control of temperature is very important to the sintering process, since grain-boundary diffusion and volume diffusion rely heavily upon temperature, particle size, particle distribution, material composition, and often other properties of the sintering environment itself.<sup id="cite_ref-Kingery_3-3" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ceramic_sintering">Ceramic sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=2" title="Edit section: Ceramic sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Sintering" title="Special:EditPage/Sintering">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">July 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Sintering is part of the firing process used in the manufacture of <a href="/wiki/Pottery" title="Pottery">pottery</a> and other ceramic objects. Sintering and <a href="/wiki/Vitrification" title="Vitrification">vitrification</a> (which requires higher temperatures) are the two main mechanisms behind the strength and stability of ceramics. Sintered ceramic objects are made from substances such as <a href="/wiki/Glass" title="Glass">glass</a>, <a href="/wiki/Alumina" class="mw-redirect" title="Alumina">alumina</a>, <a href="/wiki/Zirconia" class="mw-redirect" title="Zirconia">zirconia</a>, <a href="/wiki/Silica" class="mw-redirect" title="Silica">silica</a>, <a href="/wiki/Magnesia_(mineral)" class="mw-redirect" title="Magnesia (mineral)">magnesia</a>, <a href="/wiki/Lime_(mineral)" class="mw-redirect" title="Lime (mineral)">lime</a>, <a href="/wiki/Beryllium_oxide" title="Beryllium oxide">beryllium oxide</a>, and <a href="/wiki/Ferric_oxide" class="mw-redirect" title="Ferric oxide">ferric oxide</a>. Some ceramic raw materials have a lower <a href="/wiki/Chemical_affinity" title="Chemical affinity">affinity</a> for water and a lower <a href="/wiki/Plasticity_index" class="mw-redirect" title="Plasticity index">plasticity index</a> than <a href="/wiki/Clay" title="Clay">clay</a>, requiring organic additives in the stages before sintering. </p><p>Sintering begins when sufficient temperatures have been reached to mobilize the active elements in the ceramic material, which can start below their melting point (typically at 50–80% of their melting point<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>), e.g. as <a href="/wiki/Premelting" title="Premelting">premelting</a>. When sufficient sintering has taken place, the ceramic body will no longer break down in water; additional sintering can reduce the porosity of the ceramic, increase the bond area between ceramic particles, and increase the material strength.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>Industrial procedures to create ceramic objects via sintering of powders generally include:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <ul><li>mixing water, <a href="/wiki/Binder_(material)" title="Binder (material)">binder</a>, <a href="/wiki/Deflocculant" class="mw-redirect" title="Deflocculant">deflocculant</a>, and unfired ceramic powder to form a <a href="/wiki/Slurry" title="Slurry">slurry</a></li> <li><a href="/wiki/Spray_drying" title="Spray drying">spray-drying</a> the slurry</li> <li>putting the spray dried powder into a mold and pressing it to form a green body (an unsintered ceramic item)</li> <li>heating the green body at low temperature to burn off the binder</li> <li>sintering at a high temperature to fuse the ceramic particles together.</li></ul> <p>All the characteristic temperatures associated with phase transformation, glass transitions, and melting points, occurring during a sinterisation cycle of a particular ceramic's formulation (i.e., tails and frits) can be easily obtained by observing the expansion-temperature curves during <a href="/wiki/Optical_dilatometer" title="Optical dilatometer">optical dilatometer</a> thermal analysis. In fact, sinterisation is associated with a remarkable shrinkage of the material because glass phases flow once their transition temperature is reached, and start consolidating the powdery structure and considerably reducing the porosity of the material. </p><p>Sintering is performed at high temperature. Additionally, a second and/or third external force (such as pressure, electric current) could be used. A commonly used second external force is pressure. Sintering performed by only heating is generally termed "pressureless sintering", which is possible with graded metal-ceramic composites, utilising a nanoparticle sintering aid and bulk molding technology. A variant used for 3D shapes is called <a href="/wiki/Hot_isostatic_pressing" title="Hot isostatic pressing">hot isostatic pressing</a>. </p><p>To allow efficient stacking of product in the furnace during sintering and to prevent parts sticking together, many manufacturers separate ware using ceramic powder separator sheets. These sheets are available in various materials such as alumina, zirconia and magnesia. They are additionally categorized by fine, medium and coarse particle sizes. By matching the material and particle size to the ware being sintered, surface damage and contamination can be reduced while maximizing furnace loading. </p> <div class="mw-heading mw-heading2"><h2 id="Sintering_of_metallic_powders">Sintering of metallic powders</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=3" title="Edit section: Sintering of metallic powders"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Iron_powder.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Iron_powder.JPG/220px-Iron_powder.JPG" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Iron_powder.JPG/330px-Iron_powder.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Iron_powder.JPG/440px-Iron_powder.JPG 2x" data-file-width="3072" data-file-height="2304" /></a><figcaption><a href="/wiki/Iron_powder" title="Iron powder">Iron powder</a></figcaption></figure> <p>Most, if not all,<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Avoid_weasel_words" class="mw-redirect" title="Wikipedia:Avoid weasel words"><span title="The material near this tag possibly uses too vague attribution or weasel words. (August 2022)">which?</span></a></i>]</sup> metals can be sintered. This applies especially to pure metals produced in vacuum which suffer no surface contamination. Sintering under atmospheric pressure requires the use of a protective gas, quite often <a href="/wiki/Endothermic_gas" title="Endothermic gas">endothermic gas</a>. Sintering, with subsequent reworking, can produce a great range of material properties. Changes in density, <a href="/wiki/Alloy" title="Alloy">alloying</a>, and heat treatments can alter the physical characteristics of various products. For instance, the <a href="/wiki/Young%27s_modulus" title="Young's modulus">Young's modulus</a> <i>E<sub>n</sub></i> of sintered <a href="/wiki/Iron" title="Iron">iron</a> powders remains somewhat insensitive to sintering time, alloying, or particle size in the original powder for lower sintering temperatures, but depends upon the density of the final product: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}/E=(D/d)^{3.4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>E</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3.4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}/E=(D/d)^{3.4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31fccb941d744904c687467f3367fcde8a44b8f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.416ex; height:3.176ex;" alt="{\displaystyle E_{n}/E=(D/d)^{3.4}}"></span> where <i>D</i> is the density, <i>E</i> is Young's modulus and <i>d</i> is the maximum density of iron. </p><p>Sintering is static when a metal powder under certain external conditions may exhibit coalescence, and yet reverts to its normal behavior when such conditions are removed. In most cases, the density of a collection of grains increases as material flows into voids, causing a decrease in overall volume. Mass movements that occur during sintering consist of the reduction of total porosity by repacking, followed by material transport due to <a href="/wiki/Evaporation" title="Evaporation">evaporation</a> and <a href="/wiki/Condensation" title="Condensation">condensation</a> from <a href="/wiki/Diffusion" title="Diffusion">diffusion</a>. In the final stages, metal atoms move along crystal boundaries to the walls of internal pores, redistributing mass from the internal bulk of the object and smoothing pore walls. <a href="/wiki/Surface_tension" title="Surface tension">Surface tension</a> is the driving force for this movement. </p><p>A special form of sintering (which is still considered part of powder metallurgy) is <a class="mw-selflink-fragment" href="#Liquid_phase_sintering">liquid-state sintering</a> in which at least one but not all elements are in a liquid state. Liquid-state sintering is required for making <a href="/wiki/Cemented_carbide" title="Cemented carbide">cemented carbide</a> and <a href="/wiki/Tungsten_carbide" title="Tungsten carbide">tungsten carbide</a>. </p><p>Sintered <a href="/wiki/Bronze" title="Bronze">bronze</a> in particular is frequently used as a material for <a href="/wiki/Bearing_(mechanical)" title="Bearing (mechanical)">bearings</a>, since its porosity allows lubricants to flow through it or remain captured within it. Sintered copper may be used as a wicking structure in certain types of <a href="/wiki/Heat_pipe" title="Heat pipe">heat pipe</a> construction, where the porosity allows a liquid agent to move through the porous material via <a href="/wiki/Capillary_action" title="Capillary action">capillary action</a>. For materials that have high melting points such as <a href="/wiki/Molybdenum" title="Molybdenum">molybdenum</a>, <a href="/wiki/Tungsten" title="Tungsten">tungsten</a>, <a href="/wiki/Rhenium" title="Rhenium">rhenium</a>, <a href="/wiki/Tantalum" title="Tantalum">tantalum</a>, <a href="/wiki/Osmium" title="Osmium">osmium</a> and <a href="/wiki/Carbon" title="Carbon">carbon</a>, sintering is one of the few viable manufacturing processes. In these cases, very low porosity is desirable and can often be achieved. </p><p>Sintered metal powder is used to make <a href="/wiki/Frangibility" title="Frangibility">frangible</a> shotgun shells called <a href="/wiki/Breaching_round" title="Breaching round">breaching rounds</a>, as used by military and SWAT teams to quickly force entry into a locked room. These shotgun shells are designed to destroy door deadbolts, locks and hinges without risking lives by ricocheting or by flying on at lethal speed through the door. They work by destroying the object they hit and then dispersing into a relatively harmless powder. </p><p>Sintered bronze and stainless steel are used as filter materials in applications requiring high temperature resistance while retaining the ability to regenerate the filter element. For example, sintered stainless steel elements are employed for filtering steam in food and pharmaceutical applications, and sintered bronze in aircraft hydraulic systems. </p><p>Sintering of powders containing precious metals such as <a href="/wiki/Silver" title="Silver">silver</a> and <a href="/wiki/Gold" title="Gold">gold</a> is used to make small jewelry items. Evaporative self-assembly of colloidal silver nanocubes into supercrystals has been shown to allow the sintering of electrical joints at temperatures lower than 200 °C.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Advantages">Advantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=4" title="Edit section: Advantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Particular advantages of the powder technology include: </p> <ol><li>Very high levels of <a href="/wiki/Purity_(disambiguation)" class="mw-redirect mw-disambig" title="Purity (disambiguation)">purity</a> and uniformity in starting materials</li> <li>Preservation of purity, due to the simpler subsequent <a href="/wiki/Manufacturing" title="Manufacturing">fabrication</a> process (fewer steps) that it makes possible</li> <li>Stabilization of the details of repetitive operations, by control of <a href="/wiki/Crystallite" title="Crystallite">grain</a> size during the input stages</li> <li>Absence of binding contact between segregated powder particles – or "inclusions" (called stringering) – as often occurs in melting processes</li> <li>No <a href="/wiki/Deformation_(engineering)" title="Deformation (engineering)">deformation</a> needed to produce directional elongation of grains</li> <li>Capability to produce materials of controlled, uniform porosity.</li> <li>Capability to produce nearly net-shaped objects.</li> <li>Capability to produce materials which cannot be produced by any other technology.</li> <li>Capability to fabricate high-strength material like turbine blades.</li> <li>After sintering the mechanical strength to handling becomes higher.</li></ol> <p>The literature contains many references on sintering dissimilar materials to produce solid/solid-phase compounds or solid/melt mixtures at the processing stage. Almost any substance can be obtained in powder form, through either chemical, mechanical or physical processes, so basically any material can be obtained through sintering. When pure elements are sintered, the leftover powder is still pure, so it can be recycled. </p> <div class="mw-heading mw-heading3"><h3 id="Disadvantages">Disadvantages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=5" title="Edit section: Disadvantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Particular disadvantages of the powder technology include:<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:No_original_research" title="Wikipedia:No original research"><span title="The material near this tag possibly contains original research. (September 2024)">original research?</span></a></i>]</sup> </p> <ol><li>sintering cannot create uniform sizes</li> <li>micro- and nanostructures produced before sintering are often destroyed.</li></ol> <div class="mw-heading mw-heading2"><h2 id="Plastics_sintering">Plastics sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=6" title="Edit section: Plastics sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Plastic materials are formed by sintering for applications that require materials of specific porosity. Sintered plastic porous components are used in filtration and to control fluid and gas flows. Sintered plastics are used in applications requiring caustic fluid separation processes such as the nibs in whiteboard markers, inhaler filters, and vents for caps and liners on packaging materials.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Sintered <a href="/wiki/Ultra_high_molecular_weight_polyethylene" class="mw-redirect" title="Ultra high molecular weight polyethylene">ultra high molecular weight polyethylene</a> materials are used as ski and snowboard base materials. The porous texture allows wax to be retained within the structure of the base material, thus providing a more durable wax coating. </p> <div class="mw-heading mw-heading2"><h2 id="Liquid_phase_sintering">Liquid phase sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=7" title="Edit section: Liquid phase sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For materials that are difficult to sinter, a process called <a href="/wiki/Liquid_phase_sintering" title="Liquid phase sintering">liquid phase sintering</a> is commonly used. Materials for which liquid phase sintering is common are <a href="/wiki/Silicon_nitride" title="Silicon nitride">Si<sub>3</sub>N<sub>4</sub></a>, <a href="/wiki/Tungsten_carbide" title="Tungsten carbide">WC</a>, <a href="/wiki/Silicon_carbide" title="Silicon carbide">SiC</a>, and more. Liquid phase sintering is the process of adding an additive to the powder which will melt before the matrix phase. The process of liquid phase sintering has three stages: </p> <ul><li><b>rearrangement</b> – As the liquid melts capillary action will pull the liquid into pores and also cause grains to rearrange into a more favorable packing arrangement.</li> <li><b>solution-precipitation</b> – In areas where capillary pressures are high (particles are close together) atoms will preferentially go into solution and then precipitate in areas of lower chemical potential where particles are not close or in contact. This is called contact flattening. This densifies the system in a way similar to grain boundary diffusion in solid state sintering. <a href="/wiki/Ostwald_ripening" title="Ostwald ripening">Ostwald ripening</a> will also occur where smaller particles will go into solution preferentially and precipitate on larger particles leading to densification.</li> <li><b>final densification</b> – densification of solid skeletal network, liquid movement from efficiently packed regions into pores.</li></ul> <p>For liquid phase sintering to be practical the major phase should be at least slightly soluble in the liquid phase and the additive should melt before any major sintering of the solid particulate network occurs, otherwise rearrangement of grains will not occur. Liquid phase sintering was successfully applied to improve <a href="/wiki/Grain_growth" title="Grain growth">grain growth</a> of thin semiconductor layers from <a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticle</a> precursor films.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Electric_current_assisted_sintering">Electric current assisted sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=8" title="Edit section: Electric current assisted sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>These techniques employ electric currents to drive or enhance sintering.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> English engineer A. G. Bloxam registered in 1906 the first <a href="/wiki/Patent" title="Patent">patent</a> on sintering powders using <a href="/wiki/Direct_current" title="Direct current">direct current</a> in <a href="/wiki/Vacuum" title="Vacuum">vacuum</a>. The primary purpose of his inventions was the industrial scale production of filaments for <a href="/wiki/Incandescent_light_bulb" title="Incandescent light bulb">incandescent lamps</a> by compacting <a href="/wiki/Tungsten" title="Tungsten">tungsten</a> or <a href="/wiki/Molybdenum" title="Molybdenum">molybdenum</a> particles. The applied current was particularly effective in reducing surface <a href="/wiki/Oxide" title="Oxide">oxides</a> that increased the <a href="/wiki/Emissivity" title="Emissivity">emissivity</a> of the filaments.<sup id="cite_ref-grasso_12-0" class="reference"><a href="#cite_note-grasso-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>In 1913, Weintraub and Rush patented a modified sintering method which combined electric current with <a href="/wiki/Pressure" title="Pressure">pressure</a>. The benefits of this method were proved for the sintering of <a href="/wiki/Refractory_metals" title="Refractory metals">refractory metals</a> as well as conductive <a href="/wiki/Carbide" title="Carbide">carbide</a> or <a href="/wiki/Nitride" title="Nitride">nitride</a> powders. The starting <a href="/wiki/Boron" title="Boron">boron</a>–<a href="/wiki/Carbon" title="Carbon">carbon</a> or <a href="/wiki/Silicon" title="Silicon">silicon</a>–carbon powders were placed in an <a href="/wiki/Insulator_(electrical)" class="mw-redirect" title="Insulator (electrical)">electrically insulating</a> tube and compressed by two rods which also served as <a href="/wiki/Electrode" title="Electrode">electrodes</a> for the current. The estimated sintering temperature was 2000 °C.<sup id="cite_ref-grasso_12-1" class="reference"><a href="#cite_note-grasso-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>In the United States, sintering was first patented by Duval d'Adrian in 1922. His three-step process aimed at producing heat-resistant blocks from such oxide materials as <a href="/wiki/Zirconium_dioxide" title="Zirconium dioxide">zirconia</a>, <a href="/wiki/Thorium_dioxide" title="Thorium dioxide">thoria</a> or <a href="/wiki/Tantalum_pentoxide" title="Tantalum pentoxide">tantalia</a>. The steps were: (i) <a href="/wiki/Molding_(process)" title="Molding (process)">molding</a> the powder; (ii) <a href="/wiki/Annealing_(metallurgy)" class="mw-redirect" title="Annealing (metallurgy)">annealing</a> it at about 2500 °C to make it conducting; (iii) applying current-pressure sintering as in the method by Weintraub and Rush.<sup id="cite_ref-grasso_12-2" class="reference"><a href="#cite_note-grasso-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Sintering that uses an <a href="/wiki/Electric_arc" title="Electric arc">arc</a> produced via a <a href="/wiki/Capacitance" title="Capacitance">capacitance</a> discharge to eliminate oxides before direct current heating, was patented by G. F. Taylor in 1932. This originated sintering methods employing pulsed or <a href="/wiki/Alternating_current" title="Alternating current">alternating current</a>, eventually superimposed to a direct current. Those techniques have been developed over many decades and summarized in more than 640 patents.<sup id="cite_ref-grasso_12-3" class="reference"><a href="#cite_note-grasso-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Of these technologies the most well known is resistance sintering (also called <a href="/wiki/Hot_pressing" title="Hot pressing">hot pressing</a>) and <a href="/wiki/Spark_plasma_sintering" title="Spark plasma sintering">spark plasma sintering</a>, while <a href="/wiki/Electro_sinter_forging" title="Electro sinter forging">electro sinter forging</a> is the latest advancement in this field. </p> <div class="mw-heading mw-heading3"><h3 id="Spark_plasma_sintering">Spark plasma sintering</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=9" title="Edit section: Spark plasma sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Spark_plasma_sintering" title="Spark plasma sintering">spark plasma sintering</a> (SPS), external pressure and an electric field are applied simultaneously to enhance the densification of the metallic/ceramic powder compacts. However, after commercialization it was determined there is no plasma, so the proper name is spark sintering as coined by Lenel. The electric field driven densification supplements sintering with a form of hot pressing, to enable lower temperatures and taking less time than typical sintering.<sup id="cite_ref-Tuan_13-0" class="reference"><a href="#cite_note-Tuan-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> For a number of years, it was speculated that the existence of sparks or plasma between particles could aid sintering; however, Hulbert and coworkers systematically proved that the electric parameters used during spark plasma sintering make it (highly) unlikely.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> In light of this, the name "spark plasma sintering" has been rendered obsolete. Terms such as field assisted sintering technique (FAST), electric field assisted sintering (EFAS), and direct current sintering (DCS) have been implemented by the sintering community.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Using a <a href="/wiki/Direct_current" title="Direct current">direct current</a> (DC) pulse as the electric current, spark plasma, spark impact pressure, joule heating, and an electrical field diffusion effect would be created.<sup id="cite_ref-Palmer_16-0" class="reference"><a href="#cite_note-Palmer-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> By modifying the graphite die design and its assembly, it is possible to perform <a href="/wiki/Pressureless_sintering" class="mw-redirect" title="Pressureless sintering">pressureless sintering</a> in spark plasma sintering facility. This modified die design setup is reported to synergize the advantages of both conventional pressureless sintering and spark plasma sintering techniques.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electro_sinter_forging">Electro sinter forging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=10" title="Edit section: Electro sinter forging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Electro_sinter_forging" title="Electro sinter forging">Electro sinter forging</a> is an electric current assisted sintering (ECAS) technology originated from <a href="/wiki/Capacitor_discharge_sintering" title="Capacitor discharge sintering">capacitor discharge sintering</a>. It is used for the production of diamond metal matrix composites and is under evaluation for the production of hard metals,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> <a href="/wiki/NiTiNOL" class="mw-redirect" title="NiTiNOL">nitinol</a><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> and other metals and intermetallics. It is characterized by a very low sintering time, allowing machines to sinter at the same speed as a compaction press. </p> <div class="mw-heading mw-heading2"><h2 id="Pressureless_sintering">Pressureless sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=11" title="Edit section: Pressureless sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pressureless sintering is the sintering of a powder compact (sometimes at very high temperatures, depending on the powder) without applied pressure. This avoids density variations in the final component, which occurs with more traditional hot pressing methods.<sup id="cite_ref-Microstructure_Evolution_20-0" class="reference"><a href="#cite_note-Microstructure_Evolution-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>The powder compact (if a ceramic) can be created by <a href="/wiki/Slip_casting" title="Slip casting">slip casting</a>, <a href="/wiki/Injection_moulding" title="Injection moulding">injection moulding</a>, and <a href="/wiki/Isostatic_press" class="mw-redirect" title="Isostatic press">cold isostatic pressing</a>. After presintering, the final green compact can be machined to its final shape before being sintered. </p><p>Three different heating schedules can be performed with pressureless sintering: constant-rate of heating (CRH), rate-controlled sintering (RCS), and two-step sintering (TSS). The microstructure and grain size of the ceramics may vary depending on the material and method used.<sup id="cite_ref-Microstructure_Evolution_20-1" class="reference"><a href="#cite_note-Microstructure_Evolution-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Constant-rate of heating (CRH), also known as temperature-controlled sintering, consists of heating the green compact at a constant rate up to the sintering temperature.<sup id="cite_ref-Effect_of_sintering_21-0" class="reference"><a href="#cite_note-Effect_of_sintering-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> Experiments with zirconia have been performed to optimize the sintering temperature and sintering rate for CRH method. Results showed that the grain sizes were identical when the samples were sintered to the same density, proving that grain size is a function of specimen density rather than CRH temperature mode. </p><p>In rate-controlled sintering (RCS), the densification rate in the open-porosity phase is lower than in the CRH method.<sup id="cite_ref-Effect_of_sintering_21-1" class="reference"><a href="#cite_note-Effect_of_sintering-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> By definition, the relative density, ρ<sub>rel</sub>, in the open-porosity phase is lower than 90%. Although this should prevent separation of pores from grain boundaries, it has been proven statistically that RCS did not produce smaller grain sizes than CRH for alumina, zirconia, and ceria samples.<sup id="cite_ref-Microstructure_Evolution_20-2" class="reference"><a href="#cite_note-Microstructure_Evolution-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Two-step sintering (TSS) uses two different sintering temperatures. The first sintering temperature should guarantee a relative density higher than 75% of theoretical sample density. This will remove supercritical pores from the body. The sample will then be cooled down and held at the second sintering temperature until densification is completed. Grains of cubic zirconia and cubic strontium titanate were significantly refined by TSS compared to CRH. However, the grain size changes in other ceramic materials, like tetragonal zirconia and hexagonal alumina, were not statistically significant.<sup id="cite_ref-Microstructure_Evolution_20-3" class="reference"><a href="#cite_note-Microstructure_Evolution-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Microwave_sintering">Microwave sintering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=12" title="Edit section: Microwave sintering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Microwave" title="Microwave">microwave</a> sintering, heat is sometimes generated internally within the material, rather than via surface radiative heat transfer from an external heat source. Some materials fail to couple and others exhibit run-away behavior, so it is restricted in usefulness. A benefit of microwave sintering is faster heating for small loads, meaning less time is needed to reach the sintering temperature, less heating energy is required and there are improvements in the product properties.<sup id="cite_ref-OghbaeiMirzaee2010_22-0" class="reference"><a href="#cite_note-OghbaeiMirzaee2010-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>A failing of microwave sintering is that it generally sinters only one compact at a time, so overall productivity turns out to be poor except for situations involving one of a kind sintering, such as for artists. As microwaves can only penetrate a short distance in materials with a high <a href="/wiki/Electrical_conductivity" class="mw-redirect" title="Electrical conductivity">conductivity</a> and a high <a href="/wiki/Permeability_(electromagnetism)" title="Permeability (electromagnetism)">permeability</a>, microwave sintering requires the sample to be delivered in powders with a particle size around the penetration depth of microwaves in the particular material. The sintering process and side-reactions run several times faster during microwave sintering at the same temperature, which results in different properties for the sintered product.<sup id="cite_ref-OghbaeiMirzaee2010_22-1" class="reference"><a href="#cite_note-OghbaeiMirzaee2010-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>This technique is acknowledged to be quite effective in maintaining fine grains/nano sized grains in sintered <a href="/wiki/Bioceramic" title="Bioceramic">bioceramics</a>. Magnesium phosphates and calcium phosphates are the examples which have been processed through the microwave sintering technique.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Densification,_vitrification_and_grain_growth"><span id="Densification.2C_vitrification_and_grain_growth"></span>Densification, vitrification and grain growth</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=13" title="Edit section: Densification, vitrification and grain growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sintering in practice is the control of both densification and <a href="/wiki/Grain_growth" title="Grain growth">grain growth</a>. Densification is the act of reducing porosity in a sample, thereby making it denser. Grain growth is the process of grain boundary motion and <a href="/wiki/Ostwald_ripening" title="Ostwald ripening">Ostwald ripening</a> to increase the average grain size. Many properties (<a href="/wiki/Mechanical_strength" class="mw-redirect" title="Mechanical strength">mechanical strength</a>, electrical breakdown strength, etc.) benefit from both a high relative <a href="/wiki/Density" title="Density">density</a> and a small grain size. Therefore, being able to control these properties during processing is of high technical importance. Since densification of powders requires high temperatures, grain growth naturally occurs during sintering. Reduction of this process is key for many engineering ceramics. Under certain conditions of chemistry and orientation, some grains may grow rapidly at the expense of their neighbours during sintering. This phenomenon, known as <a href="/wiki/Abnormal_grain_growth" title="Abnormal grain growth">abnormal grain growth</a> (AGG), results in a bimodal grain size distribution that has consequences for the mechanical, dielectric and thermal performance of the sintered material. </p><p>For densification to occur at a quick pace it is essential to have (1) an amount of liquid phase that is large in size, (2) a near complete solubility of the solid in the liquid, and (3) wetting of the solid by the liquid. The power behind the densification is derived from the capillary pressure of the liquid phase located between the fine solid particles. When the liquid phase wets the solid particles, each space between the particles becomes a capillary in which a substantial capillary pressure is developed. For submicrometre particle sizes, capillaries with diameters in the range of 0.1 to 1 micrometres develop pressures in the range of 175 pounds per square inch (1,210 kPa) to 1,750 pounds per square inch (12,100 kPa) for silicate liquids and in the range of 975 pounds per square inch (6,720 kPa) to 9,750 pounds per square inch (67,200 kPa) for a metal such as liquid cobalt.<sup id="cite_ref-Kingery_3-4" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Densification requires constant <a href="/wiki/Capillary_pressure" title="Capillary pressure">capillary pressure</a> where just solution-precipitation material transfer would not produce densification. For further densification, additional particle movement while the particle undergoes grain-growth and grain-shape changes occurs. Shrinkage would result when the liquid slips between particles and increases pressure at points of contact causing the material to move away from the contact areas, forcing particle centers to draw near each other.<sup id="cite_ref-Kingery_3-5" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>The sintering of liquid-phase materials involves a fine-grained solid phase to create the needed capillary pressures proportional to its diameter, and the liquid concentration must also create the required capillary pressure within range, else the process ceases. The vitrification rate is dependent upon the pore size, the viscosity and amount of liquid phase present leading to the viscosity of the overall composition, and the surface tension. Temperature dependence for densification controls the process because at higher temperatures viscosity decreases and increases liquid content. Therefore, when changes to the composition and processing are made, it will affect the vitrification process.<sup id="cite_ref-Kingery_3-6" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sintering_mechanisms">Sintering mechanisms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=14" title="Edit section: Sintering mechanisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sintering occurs by diffusion of atoms through the microstructure. This diffusion is caused by a gradient of <a href="/wiki/Chemical_potential" title="Chemical potential">chemical potential</a> – atoms move from an area of higher chemical potential to an area of lower chemical potential. The different paths the atoms take to get from one spot to another are the "sintering mechanisms" or "matter transport mechanisms". </p><p>In solid state sintering, the six common mechanisms are:<sup id="cite_ref-Kingery_3-7" class="reference"><a href="#cite_note-Kingery-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <ol><li>surface diffusion – diffusion of atoms along the surface of a particle</li> <li>vapor transport – evaporation of atoms which condense on a different surface</li> <li>lattice diffusion from surface – atoms from surface diffuse through lattice</li> <li>lattice diffusion from grain boundary – atom from grain boundary diffuses through lattice</li> <li>grain boundary diffusion – atoms diffuse along grain boundary</li> <li>plastic deformation – dislocation motion causes flow of matter.</li></ol> <p>Mechanisms 1–3 above are non-densifying (i.e. do not cause the pores and the overall ceramic body to shrink) but can still increase the area of the bond or "neck" between grains; they take atoms from the surface and rearrange them onto another surface or part of the same surface. Mechanisms 4–6 are densifying – atoms are moved from the bulk material or the grain boundaries to the surface of pores, thereby eliminating porosity and increasing the density of the sample. </p> <div class="mw-heading mw-heading3"><h3 id="Grain_growth">Grain growth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=15" title="Edit section: Grain growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Grain_growth" title="Grain growth">Grain growth</a></div> <p>A <a href="/wiki/Grain_boundary" title="Grain boundary">grain boundary</a> (GB) is the transition area or interface between adjacent <a href="/wiki/Crystallites" class="mw-redirect" title="Crystallites">crystallites</a> (or grains) of the same chemical and <a href="/wiki/Crystal_lattice" class="mw-redirect" title="Crystal lattice">lattice</a> composition, not to be confused with a <a href="/wiki/Phase_boundary" title="Phase boundary">phase boundary</a>. The adjacent grains do not have the same orientation of the lattice, thus giving the atoms in GB shifted positions relative to the lattice in the <a href="/wiki/Crystal" title="Crystal">crystals</a>. Due to the shifted positioning of the atoms in the GB they have a higher energy state when compared with the atoms in the crystal lattice of the grains. It is this imperfection that makes it possible to selectively etch the GBs when one wants the microstructure to be visible.<sup id="cite_ref-Smallman_24-0" class="reference"><a href="#cite_note-Smallman-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p>Striving to minimize its energy leads to the coarsening of the <a href="/wiki/Microstructure" title="Microstructure">microstructure</a> to reach a metastable state within the specimen. This involves minimizing its GB area and changing its <a href="/wiki/Topological" class="mw-redirect" title="Topological">topological</a> structure to minimize its energy. This grain growth can either be <a href="/wiki/Grain_growth#Normal_vs_abnormal" title="Grain growth">normal or abnormal</a>, a normal grain growth is characterized by the uniform growth and size of all the grains in the specimen. <a href="/wiki/Abnormal_grain_growth" title="Abnormal grain growth">Abnormal grain growth</a> is when a few grains grow much larger than the remaining majority.<sup id="cite_ref-Fundamentals_of_Materials_Science_25-0" class="reference"><a href="#cite_note-Fundamentals_of_Materials_Science-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Grain_boundary_energy/tension"><span id="Grain_boundary_energy.2Ftension"></span>Grain boundary energy/tension</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=16" title="Edit section: Grain boundary energy/tension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The atoms in the GB are normally in a higher energy state than their equivalent in the bulk material. This is due to their more stretched bonds, which gives rise to a GB tension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2e45b750471761b2f1634f3ba6e1c7f25a702ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.099ex; height:2.009ex;" alt="{\displaystyle \sigma _{GB}}"></span>. This extra energy that the atoms possess is called the grain boundary energy, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{GB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{GB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a1e1d460c53d42f58afe243fc12ae4528fbca1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.976ex; height:2.176ex;" alt="{\displaystyle \gamma _{GB}}"></span>. The grain will want to minimize this extra energy, thus striving to make the grain boundary area smaller and this change requires energy.<sup id="cite_ref-Fundamentals_of_Materials_Science_25-1" class="reference"><a href="#cite_note-Fundamentals_of_Materials_Science-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>"Or, in other words, a force has to be applied, in the plane of the grain boundary and acting along a line in the grain-boundary area, in order to extend the grain-boundary area in the direction of the force. The force per unit length, i.e. tension/stress, along the line mentioned is σGB. On the basis of this reasoning it would follow that: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (work done)</mtext> </mrow> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (energy change)</mtext> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2bf5c2babbf3ee100ab5d936564abdf73ead25" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:46.812ex; height:2.843ex;" alt="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}"></span> </p><p>with dA as the increase of grain-boundary area per unit length along the line in the grain-boundary area considered."<sup id="cite_ref-Fundamentals_of_Materials_Science_25-2" class="reference"><a href="#cite_note-Fundamentals_of_Materials_Science-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup>[pg 478]</sup> </p><p>The GB tension can also be thought of as the attractive forces between the atoms at the surface and the tension between these atoms is due to the fact that there is a larger interatomic distance between them at the surface compared to the bulk (i.e. <a href="/wiki/Surface_tension" title="Surface tension">surface tension</a>). When the surface area becomes bigger the bonds stretch more and the GB tension increases. To counteract this increase in tension there must be a transport of atoms to the surface keeping the GB tension constant. This diffusion of atoms accounts for the constant surface tension in liquids. Then the argument, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (work done)</mtext> </mrow> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (energy change)</mtext> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2bf5c2babbf3ee100ab5d936564abdf73ead25" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:46.812ex; height:2.843ex;" alt="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=\gamma _{GB}dA{\text{ (energy change)}}\,\!}"></span> </p><p>holds true. For solids, on the other hand, diffusion of atoms to the surface might not be sufficient and the surface tension can vary with an increase in surface area.<sup id="cite_ref-Sintering_26-0" class="reference"><a href="#cite_note-Sintering-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p><p>For a solid, one can derive an expression for the change in Gibbs free energy, dG, upon the change of GB area, dA. dG is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=dG{\text{ (energy change)}}=\gamma _{GB}dA+Ad\gamma _{GB}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (work done)</mtext> </mrow> <mo>=</mo> <mi>d</mi> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> (energy change)</mtext> </mrow> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>A</mi> <mo>+</mo> <mi>A</mi> <mi>d</mi> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=dG{\text{ (energy change)}}=\gamma _{GB}dA+Ad\gamma _{GB}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d94bc33a3689c77a20028a9b8c807e0b8340859" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:62.728ex; height:2.843ex;" alt="{\displaystyle \sigma _{GB}dA{\text{ (work done)}}=dG{\text{ (energy change)}}=\gamma _{GB}dA+Ad\gamma _{GB}\,\!}"></span> </p><p>which gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}=\gamma _{GB}+{\frac {Ad\gamma _{GB}}{dA}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mi>d</mi> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>A</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}=\gamma _{GB}+{\frac {Ad\gamma _{GB}}{dA}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37f915682dd1c0a07e85f303cc6a8d91e408ecc8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-right: -0.387ex; width:22.171ex; height:5.676ex;" alt="{\displaystyle \sigma _{GB}=\gamma _{GB}+{\frac {Ad\gamma _{GB}}{dA}}\,\!}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{GB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{GB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2e45b750471761b2f1634f3ba6e1c7f25a702ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.099ex; height:2.009ex;" alt="{\displaystyle \sigma _{GB}}"></span> is normally expressed in units of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {N}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {N}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c04234fea6a0adb122fd899bbae54bb0158c733b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.9ex; height:5.176ex;" alt="{\displaystyle {\frac {N}{m}}}"></span> while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{GB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{GB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a1e1d460c53d42f58afe243fc12ae4528fbca1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.976ex; height:2.176ex;" alt="{\displaystyle \gamma _{GB}}"></span> is normally expressed in units of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {J}{m^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>J</mi> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {J}{m^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b02fae82bfa98c630d942a6b2b7c4361e68eb6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:3.931ex; height:5.509ex;" alt="{\displaystyle {\frac {J}{m^{2}}}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (J=Nm)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>J</mi> <mo>=</mo> <mi>N</mi> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (J=Nm)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08289b5a97656de2bd9f56ecb3673784e4557f22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.483ex; height:2.843ex;" alt="{\displaystyle (J=Nm)}"></span> since they are different physical properties.<sup id="cite_ref-Fundamentals_of_Materials_Science_25-3" class="reference"><a href="#cite_note-Fundamentals_of_Materials_Science-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Mechanical_equilibrium">Mechanical equilibrium</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=17" title="Edit section: Mechanical equilibrium"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a two-dimensional <a href="/wiki/Isotropic_material" class="mw-redirect" title="Isotropic material">isotropic material</a> the grain boundary tension would be the same for the grains. This would give angle of 120° at GB junction where three grains meet. This would give the structure a <a href="/wiki/Hexagonal" class="mw-redirect" title="Hexagonal">hexagonal</a> pattern which is the <a href="/wiki/Metastable" class="mw-redirect" title="Metastable">metastable</a> state (or <a href="/wiki/Mechanical_equilibrium" title="Mechanical equilibrium">mechanical equilibrium</a>) of the 2D specimen. A consequence of this is that, to keep trying to be as close to the equilibrium as possible, grains with fewer sides than six will bend the GB to try keep the 120° angle between each other. This results in a curved boundary with its <a href="/wiki/Curvature" title="Curvature">curvature</a> towards itself. A grain with six sides will, as mentioned, have straight boundaries, while a grain with more than six sides will have curved boundaries with its curvature away from itself. A grain with six boundaries (i.e. hexagonal structure) is in a metastable state (i.e. local equilibrium) within the 2D structure.<sup id="cite_ref-Fundamentals_of_Materials_Science_25-4" class="reference"><a href="#cite_note-Fundamentals_of_Materials_Science-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> In three dimensions structural details are similar but much more complex and the <a href="/wiki/Metastable" class="mw-redirect" title="Metastable">metastable</a> structure for a grain is a non-regular 14-sided <a href="/wiki/Polyhedra" class="mw-redirect" title="Polyhedra">polyhedra</a> with doubly curved faces. In practice all arrays of grains are always unstable and thus always grow until prevented by a counterforce.<sup id="cite_ref-Physical_Metallurgy_ch_28_27-0" class="reference"><a href="#cite_note-Physical_Metallurgy_ch_28-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>Grains strive to minimize their energy, and a curved boundary has a higher energy than a straight boundary. This means that the grain boundary will migrate towards the curvature.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title=""the the curvature" is wrong, but I'm not sure how to fix it (September 2012)">clarification needed</span></a></i>]</sup> The consequence of this is that grains with less than 6 sides will decrease in size while grains with more than 6 sides will increase in size.<sup id="cite_ref-Ceramic_materials_ch_sintering_28-0" class="reference"><a href="#cite_note-Ceramic_materials_ch_sintering-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>Grain growth occurs due to motion of atoms across a grain boundary. Convex surfaces have a higher chemical potential than concave surfaces, therefore grain boundaries will move toward their center of curvature. As smaller particles tend to have a higher radius of curvature and this results in smaller grains losing atoms to larger grains and shrinking. This is a process called Ostwald ripening. Large grains grow at the expense of small grains. </p><p>Grain growth in a simple model is found to follow: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{m}=G_{0}^{m}+Kt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo>+</mo> <mi>K</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{m}=G_{0}^{m}+Kt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f3179b550b3060eb7247b0b90961053bd3677ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.848ex; height:3.009ex;" alt="{\displaystyle G^{m}=G_{0}^{m}+Kt}"></span> </p><p>Here <i>G</i> is final average grain size, <i>G<sub>0</sub></i> is the initial average grain size, <i>t</i> is time, <i>m</i> is a factor between 2 and 4, and <i>K</i> is a factor given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=K_{0}e^{\frac {-Q}{RT}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>Q</mi> </mrow> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=K_{0}e^{\frac {-Q}{RT}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09eb160297fcd455293db02f820f03ad782baba2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.437ex; height:4.176ex;" alt="{\displaystyle K=K_{0}e^{\frac {-Q}{RT}}}"></span> </p><p>Here <i>Q</i> is the molar activation energy, <i>R</i> is the ideal gas constant, <i>T</i> is absolute temperature, and <i>K<sub>0</sub></i> is a material dependent factor. In most materials the sintered grain size is proportional to the inverse square root of the fractional porosity, implying that pores are the most effective retardant for grain growth during sintering. </p> <div class="mw-heading mw-heading3"><h3 id="Reducing_grain_growth">Reducing grain growth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=18" title="Edit section: Reducing grain growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Solute_ions">Solute ions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=19" title="Edit section: Solute ions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a <a href="/wiki/Dopant" title="Dopant">dopant</a> is added to the material (example: Nd in BaTiO<sub>3</sub>) the impurity will tend to stick to the grain boundaries. As the grain boundary tries to move (as atoms jump from the convex to concave surface) the change in concentration of the dopant at the grain boundary will impose a drag on the boundary. The original concentration of solute around the grain boundary will be asymmetrical in most cases. As the grain boundary tries to move, the concentration on the side opposite of motion will have a higher concentration and therefore have a higher chemical potential. This increased chemical potential will act as a backforce to the original chemical potential gradient that is the reason for grain boundary movement. This decrease in net chemical potential will decrease the grain boundary velocity and therefore grain growth. </p> <div class="mw-heading mw-heading4"><h4 id="Fine_second_phase_particles">Fine second phase particles</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=20" title="Edit section: Fine second phase particles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If particles of a second phase which are insoluble in the matrix phase are added to the powder in the form of a much finer powder, then this will decrease grain boundary movement. When the grain boundary tries to move past the inclusion diffusion of atoms from one grain to the other, it will be hindered by the insoluble particle. This is because it is beneficial for particles to reside in the grain boundaries and they exert a force in opposite direction compared to grain boundary migration. This effect is called the Zener effect after the man who estimated this drag force to </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=\pi r\lambda \sin(2\theta )\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mi>π<!-- π --></mi> <mi>r</mi> <mi>λ<!-- λ --></mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=\pi r\lambda \sin(2\theta )\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fd9c26bf2939ced5f19edc34cfd9893d5656a95" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:16.267ex; height:2.843ex;" alt="{\displaystyle F=\pi r\lambda \sin(2\theta )\,\!}"></span> where r is the radius of the particle and λ the interfacial energy of the boundary if there are N particles per unit volume their volume fraction f is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\frac {4}{3}}\pi r^{3}N\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mi>π<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>N</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\frac {4}{3}}\pi r^{3}N\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/822ac27b014255d5bf78422d03eed89f252dda63" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-right: -0.387ex; width:12.261ex; height:5.176ex;" alt="{\displaystyle f={\frac {4}{3}}\pi r^{3}N\,\!}"></span> </p><p>assuming they are randomly distributed. A boundary of unit area will intersect all particles within a volume of 2r which is 2Nr particles. So the number of particles n intersecting a unit area of grain boundary is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n={\frac {3f}{2\pi r^{2}}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>f</mi> </mrow> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n={\frac {3f}{2\pi r^{2}}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ab3623d3b672c5eb399d36f5def842faf163ec9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-right: -0.387ex; width:10.314ex; height:5.676ex;" alt="{\displaystyle n={\frac {3f}{2\pi r^{2}}}\,\!}"></span> </p><p>Now, assuming that the grains only grow due to the influence of curvature, the driving force of growth is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\lambda }{R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>λ<!-- λ --></mi> </mrow> <mi>R</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\lambda }{R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2567893094d83ae1b4ce1de6ec878aa8508c6ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.354ex; height:5.509ex;" alt="{\displaystyle {\frac {2\lambda }{R}}}"></span> where (for homogeneous grain structure) R approximates to the mean diameter of the grains. With this the critical diameter that has to be reached before the grains ceases to grow: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle nF_{max}={\frac {2\lambda }{D_{crit}}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>λ<!-- λ --></mi> </mrow> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>r</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle nF_{max}={\frac {2\lambda }{D_{crit}}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4b3f9534c572e63088315017b88c7f45d53879a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:15.467ex; height:5.843ex;" alt="{\displaystyle nF_{max}={\frac {2\lambda }{D_{crit}}}\,\!}"></span> This can be reduced to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{crit}={\frac {4r}{3f}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>r</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>r</mi> </mrow> <mrow> <mn>3</mn> <mi>f</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{crit}={\frac {4r}{3f}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05956ac92b3b93641b0bad54c47192bd6fbeb4c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.387ex; width:11.534ex; height:5.676ex;" alt="{\displaystyle D_{crit}={\frac {4r}{3f}}\,\!}"></span> </p><p>so the critical diameter of the grains is dependent on the size and volume fraction of the particles at the grain boundaries.<sup id="cite_ref-Physical_Metallurgy_29-0" class="reference"><a href="#cite_note-Physical_Metallurgy-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>It has also been shown that small bubbles or cavities can act as inclusion </p><p>More complicated interactions which slow grain boundary motion include interactions of the surface energies of the two grains and the inclusion and are discussed in detail by C.S. Smith.<sup id="cite_ref-C._S._Smith_30-0" class="reference"><a href="#cite_note-C._S._Smith-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sintering_of_catalysts">Sintering of catalysts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=21" title="Edit section: Sintering of catalysts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sintering is an important cause for loss of <a href="/wiki/Catalyst" class="mw-redirect" title="Catalyst">catalytic activity</a>, especially on supported metal catalysts. It decreases the surface area of the catalyst and changes the surface structure.<sup id="cite_ref-Kuczynski2012_31-0" class="reference"><a href="#cite_note-Kuczynski2012-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> For a porous catalytic surface, the pores may collapse due to sintering, resulting in loss of surface area. Sintering is in general an irreversible process.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p><p>Small catalyst particles have the highest possible relative surface area and high reaction temperature, both factors that generally increase the reactivity of a catalyst. However, these factors are also the circumstances under which sintering occurs.<sup id="cite_ref-Harris1986_33-0" class="reference"><a href="#cite_note-Harris1986-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> Specific materials may also increase the rate of sintering. On the other hand, by <a href="/wiki/Alloy" title="Alloy">alloying</a> catalysts with other materials, sintering can be reduced. <a href="/wiki/Rare-earth_metals" class="mw-redirect" title="Rare-earth metals">Rare-earth metals</a> in particular have been shown to reduce sintering of metal catalysts when alloyed.<sup id="cite_ref-Figueiredo2012_34-0" class="reference"><a href="#cite_note-Figueiredo2012-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>For many <a href="/wiki/Catalyst_support" title="Catalyst support">supported metal catalysts</a>, sintering starts to become a significant effect at temperatures over 500 °C (932 °F).<sup id="cite_ref-Kuczynski2012_31-1" class="reference"><a href="#cite_note-Kuczynski2012-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Catalysts that operate at higher temperatures, such as a <a href="/wiki/Catalytic_converter" title="Catalytic converter">car catalyst</a>, use structural improvements to reduce or prevent sintering. These improvements are in general in the form of a support made from an inert and thermally stable material such as <a href="/wiki/Silica" class="mw-redirect" title="Silica">silica</a>, <a href="/wiki/Carbon" title="Carbon">carbon</a> or <a href="/wiki/Alumina" class="mw-redirect" title="Alumina">alumina</a>.<sup id="cite_ref-ChorkendorffNiemantsverdriet2006_35-0" class="reference"><a href="#cite_note-ChorkendorffNiemantsverdriet2006-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Abnormal_grain_growth" title="Abnormal grain growth">Abnormal grain growth</a> – Phenomenon of certain material grains growing faster than others</li> <li><a href="/wiki/Capacitor_discharge_sintering" title="Capacitor discharge sintering">Capacitor discharge sintering</a> – Fast electric current assisted sintering process</li> <li><a href="/wiki/Ceramic_engineering" title="Ceramic engineering">Ceramic engineering</a> – Science and technology of creating objects from inorganic, non-metallic materials</li> <li><a href="/wiki/Direct_metal_laser_sintering" class="mw-redirect" title="Direct metal laser sintering">Direct metal laser sintering</a> – 3D printing technique<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Energetically_modified_cement" title="Energetically modified cement">Energetically modified cement</a> – Class of cements, mechanically processed to transform reactivity</li> <li><a href="/wiki/Frit" title="Frit">Frit</a> – Fused, quenched and granulated ceramic</li> <li><a href="/wiki/High-temperature_superconductivity" title="High-temperature superconductivity">High-temperature superconductivity</a> – Superconductive behavior at temperatures much higher than absolute zero</li> <li><a href="/wiki/Metal_clay" title="Metal clay">Metal clay</a> – Craft material of metal particles and a plastic binder</li> <li><a href="/wiki/Room-temperature_densification_method" title="Room-temperature densification method">Room-temperature densification method</a> – method used for the fabrication of Li2MoO4 ceramics instead of conventional thermal sintering<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Selective_laser_sintering" title="Selective laser sintering">Selective laser sintering</a> – 3D printing technique, a <a href="/wiki/Rapid_prototyping" title="Rapid prototyping">rapid prototyping</a> technology, that includes Direct Metal Laser Sintering (DMLS).</li> <li><a href="/wiki/Spark_plasma_sintering" title="Spark plasma sintering">Spark plasma sintering</a> – sintering technique<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/W._David_Kingery" title="W. David Kingery">W. David Kingery</a> – Ceramic engineer – a pioneer of sintering methods</li> <li><a href="/wiki/Yttria-stabilized_zirconia" title="Yttria-stabilized zirconia">Yttria-stabilized zirconia</a> – Ceramic with room temperature stable cubic crystal structure</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://thefreedictionary.com/sintered#:~:text=adj,pressure">"sintered"</a>. <i><a href="/wiki/The_Free_Dictionary" title="The Free Dictionary">The Free Dictionary</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=sintered&rft.btitle=The+Free+Dictionary&rft_id=https%3A%2F%2Fthefreedictionary.com%2Fsintered%23%3A~%3Atext%3Dadj%2Cpressure&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/sinter">"sinter"</a>. <i><a href="/wiki/Merriam-Webster" title="Merriam-Webster">Merriam-Webster.com Dictionary</a></i>. Merriam-Webster<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-10-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Merriam-Webster.com+Dictionary&rft.atitle=sinter&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fsinter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Kingery-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kingery_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kingery_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kingery_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Kingery_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Kingery_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Kingery_3-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Kingery_3-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Kingery_3-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKingeryBowenUhlmann1976" class="citation book cs1">Kingery, W. David; Bowen, H. K.; Uhlmann, Donald R. (April 1976). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoce0000king"><i>Introduction to Ceramics</i></a></span> (2nd ed.). <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-47860-1" title="Special:BookSources/0-471-47860-1"><bdi>0-471-47860-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Ceramics&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons%2C+Academic+Press&rft.date=1976-04&rft.isbn=0-471-47860-1&rft.aulast=Kingery&rft.aufirst=W.+David&rft.au=Bowen%2C+H.+K.&rft.au=Uhlmann%2C+Donald+R.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoce0000king&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLericheCambierHampshire2017" class="citation cs2">Leriche, Anne; Cambier, Francis; Hampshire, Stuart (2017), <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/B9780128035818102887">"Sintering of Ceramics"</a>, <i>Reference Module in Materials Science and Materials Engineering</i>, Elsevier, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fb978-0-12-803581-8.10288-7">10.1016/b978-0-12-803581-8.10288-7</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-803581-8" title="Special:BookSources/978-0-12-803581-8"><bdi>978-0-12-803581-8</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-07-04</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reference+Module+in+Materials+Science+and+Materials+Engineering&rft.atitle=Sintering+of+Ceramics&rft.date=2017&rft_id=info%3Adoi%2F10.1016%2Fb978-0-12-803581-8.10288-7&rft.isbn=978-0-12-803581-8&rft.aulast=Leriche&rft.aufirst=Anne&rft.au=Cambier%2C+Francis&rft.au=Hampshire%2C+Stuart&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FB9780128035818102887&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansen" class="citation web cs1">Hansen, Tony. <a rel="nofollow" class="external text" href="https://digitalfire.com/glossary/sintering">"Sintering"</a>. <i>digitalfire.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-07-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=digitalfire.com&rft.atitle=Sintering&rft.aulast=Hansen&rft.aufirst=Tony&rft_id=https%3A%2F%2Fdigitalfire.com%2Fglossary%2Fsintering&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFadmin2023" class="citation web cs1">admin (2023-02-02). <a rel="nofollow" class="external text" href="https://www.wundermold.com/what-stages-powder-sintering-process/">"Ceramic Sintering Explained"</a>. <i>Wunder-Mold</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-07-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wunder-Mold&rft.atitle=Ceramic+Sintering+Explained&rft.date=2023-02-02&rft.au=admin&rft_id=https%3A%2F%2Fwww.wundermold.com%2Fwhat-stages-powder-sintering-process%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBronchyRoachMendizabalFeautrier2022" class="citation journal cs1">Bronchy, M.; Roach, L.; Mendizabal, L.; Feautrier, C.; Durand, E.; Heintz, J.-M.; Duguet, E.; Tréguer-Delapierre, M. (18 January 2022). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-03558577">"Improved Low Temperature Sinter Bonding Using Silver Nanocube Superlattices"</a>. <i>J. Phys. Chem. C</i>. <b>126</b> (3): 1644–1650. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.jpcc.1c09125">10.1021/acs.jpcc.1c09125</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1932-7455">1932-7455</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1932-7447">1932-7447</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Phys.+Chem.+C&rft.atitle=Improved+Low+Temperature+Sinter+Bonding+Using+Silver+Nanocube+Superlattices&rft.volume=126&rft.issue=3&rft.pages=1644-1650&rft.date=2022-01-18&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info%3Adoi%2F10.1021%2Facs.jpcc.1c09125&rft.aulast=Bronchy&rft.aufirst=M.&rft.au=Roach%2C+L.&rft.au=Mendizabal%2C+L.&rft.au=Feautrier%2C+C.&rft.au=Durand%2C+E.&rft.au=Heintz%2C+J.-M.&rft.au=Duguet%2C+E.&rft.au=Tr%C3%A9guer-Delapierre%2C+M.&rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-03558577&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.porex.com">"Porex Custom Plastics: Porous Plastics & Porous Polymers"</a>. <i>www.porex.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-03-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.porex.com&rft.atitle=Porex+Custom+Plastics%3A+Porous+Plastics+%26+Porous+Polymers&rft_id=http%3A%2F%2Fwww.porex.com&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUhl2014" class="citation journal cs1">Uhl, A.R.; et al. (2014). <a rel="nofollow" class="external text" href="https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A7088">"Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe<sub>2</sub> solar cell absorbers"</a>. <i>Progress in Photovoltaics: Research and Applications</i>. <b>23</b> (9): 1110–1119. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpip.2529">10.1002/pip.2529</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:97768071">97768071</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Photovoltaics%3A+Research+and+Applications&rft.atitle=Liquid-selenium-enhanced+grain+growth+of+nanoparticle+precursor+layers+for+CuInSe%3Csub%3E2%3C%2Fsub%3E+solar+cell+absorbers&rft.volume=23&rft.issue=9&rft.pages=1110-1119&rft.date=2014&rft_id=info%3Adoi%2F10.1002%2Fpip.2529&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A97768071%23id-name%3DS2CID&rft.aulast=Uhl&rft.aufirst=A.R.&rft_id=https%3A%2F%2Fwww.dora.lib4ri.ch%2Fempa%2Fislandora%2Fobject%2Fempa%253A7088&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrrùLicheriLocciCincotti2009" class="citation journal cs1">Orrù, Roberto; Licheri, Roberta; Locci, Antonio Mario; Cincotti, Alberto; Cao, Giacomo (February 2009). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0927796X08000995">"Consolidation/synthesis of materials by electric current activated/assisted sintering"</a>. <i>Materials Science and Engineering: R: Reports</i>. <b>63</b> (4–6): 127–287. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mser.2008.09.003">10.1016/j.mser.2008.09.003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Materials+Science+and+Engineering%3A+R%3A+Reports&rft.atitle=Consolidation%2Fsynthesis+of+materials+by+electric+current+activated%2Fassisted+sintering&rft.volume=63&rft.issue=4%E2%80%936&rft.pages=127-287&rft.date=2009-02&rft_id=info%3Adoi%2F10.1016%2Fj.mser.2008.09.003&rft.aulast=Orr%C3%B9&rft.aufirst=Roberto&rft.au=Licheri%2C+Roberta&rft.au=Locci%2C+Antonio+Mario&rft.au=Cincotti%2C+Alberto&rft.au=Cao%2C+Giacomo&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0927796X08000995&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrassoSakkaMaizza2009" class="citation journal cs1">Grasso, Salvatore; Sakka, Yoshio; Maizza, Giovanni (October 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090538">"Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008"</a>. <i>Science and Technology of Advanced Materials</i>. <b>10</b> (5): 053001. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1468-6996%2F10%2F5%2F053001">10.1088/1468-6996/10/5/053001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1468-6996">1468-6996</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090538">5090538</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27877308">27877308</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+and+Technology+of+Advanced+Materials&rft.atitle=Electric+current+activated%2Fassisted+sintering+%28ECAS%29%3A+a+review+of+patents+1906%E2%80%932008&rft.volume=10&rft.issue=5&rft.pages=053001&rft.date=2009-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090538%23id-name%3DPMC&rft.issn=1468-6996&rft_id=info%3Apmid%2F27877308&rft_id=info%3Adoi%2F10.1088%2F1468-6996%2F10%2F5%2F053001&rft.aulast=Grasso&rft.aufirst=Salvatore&rft.au=Sakka%2C+Yoshio&rft.au=Maizza%2C+Giovanni&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090538&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-grasso-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-grasso_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-grasso_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-grasso_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-grasso_12-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrassoSakkaMaizza2009" class="citation journal cs1">Grasso, S; Sakka, Y; Maizza, G (2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090538">"Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008"</a>. <i>Sci. Technol. Adv. Mater</i>. <b>10</b> (5): 053001. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1468-6996%2F10%2F5%2F053001">10.1088/1468-6996/10/5/053001</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090538">5090538</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27877308">27877308</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sci.+Technol.+Adv.+Mater.&rft.atitle=Electric+current+activated%2Fassisted+sintering+%28ECAS%29%3A+a+review+of+patents+1906%E2%80%932008&rft.volume=10&rft.issue=5&rft.pages=053001&rft.date=2009&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090538%23id-name%3DPMC&rft_id=info%3Apmid%2F27877308&rft_id=info%3Adoi%2F10.1088%2F1468-6996%2F10%2F5%2F053001&rft.aulast=Grasso&rft.aufirst=S&rft.au=Sakka%2C+Y&rft.au=Maizza%2C+G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5090538&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Tuan-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tuan_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTuanGuo2004" class="citation book cs1">Tuan, W.H.; Guo, J.K. (2004). <i>Multi-phased ceramic materials: processing and potential</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-40516-X" title="Special:BookSources/3-540-40516-X"><bdi>3-540-40516-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Multi-phased+ceramic+materials%3A+processing+and+potential&rft.pub=Springer&rft.date=2004&rft.isbn=3-540-40516-X&rft.aulast=Tuan&rft.aufirst=W.H.&rft.au=Guo%2C+J.K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHulbert2008" class="citation journal cs1">Hulbert, D. M.; et al. (2008). <a rel="nofollow" class="external text" href="http://www.escholarship.org/uc/item/2c14z63t">"The Absence of Plasma in' Spark Plasma Sintering'<span class="cs1-kern-right"></span>"</a>. <i>Journal of Applied Physics</i>. <b>104</b> (3): 033305–033305–7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JAP...104c3305H">2008JAP...104c3305H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2963701">10.1063/1.2963701</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54726651">54726651</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=The+Absence+of+Plasma+in%27+Spark+Plasma+Sintering%27&rft.volume=104&rft.issue=3&rft.pages=033305-033305-7&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54726651%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1063%2F1.2963701&rft_id=info%3Abibcode%2F2008JAP...104c3305H&rft.aulast=Hulbert&rft.aufirst=D.+M.&rft_id=http%3A%2F%2Fwww.escholarship.org%2Fuc%2Fitem%2F2c14z63t&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Anselmi-Tamburini, U. et al. in Sintering: Nanodensification and Field Assisted Processes (Castro, R. & van Benthem, K.) (Springer Verlag, 2012).</span> </li> <li id="cite_note-Palmer-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Palmer_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalmerWilde2008" class="citation book cs1">Palmer, R.E.; Wilde, G. (December 22, 2008). <i>Mechanical Properties of Nanocomposite Materials</i>. EBL Database: Elsevier Ltd. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-044965-4" title="Special:BookSources/978-0-08-044965-4"><bdi>978-0-08-044965-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mechanical+Properties+of+Nanocomposite+Materials&rft.place=EBL+Database&rft.pub=Elsevier+Ltd.&rft.date=2008-12-22&rft.isbn=978-0-08-044965-4&rft.aulast=Palmer&rft.aufirst=R.E.&rft.au=Wilde%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFK._SairamJ.K._SonberT.S.R.Ch._MurthyA.K._Sahu2016" class="citation journal cs1">K. Sairam; J.K. Sonber; T.S.R.Ch. Murthy; A.K. Sahu; R.D. Bedse; J.K. Chakravartty (2016). "Pressureless sintering of chromium diboride using spark plasma sintering facility". <i>International Journal of Refractory Metals and Hard Materials</i>. <b>58</b>: 165–171. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijrmhm.2016.05.002">10.1016/j.ijrmhm.2016.05.002</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Refractory+Metals+and+Hard+Materials&rft.atitle=Pressureless+sintering+of+chromium+diboride+using+spark+plasma+sintering+facility&rft.volume=58&rft.pages=165-171&rft.date=2016&rft_id=info%3Adoi%2F10.1016%2Fj.ijrmhm.2016.05.002&rft.au=K.+Sairam&rft.au=J.K.+Sonber&rft.au=T.S.R.Ch.+Murthy&rft.au=A.K.+Sahu&rft.au=R.D.+Bedse&rft.au=J.K.+Chakravartty&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Fais, A. "Discharge sintering of hard metal cutting tools". <i>International Powder Metallurgy Congress and Exhibition</i>, Euro PM 2013</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalagnaFaisBrunelliPeruzzo2016" class="citation journal cs1">Balagna, Cristina; Fais, Alessandro; Brunelli, Katya; Peruzzo, Luca; Horynová, Miroslava; Čelko, Ladislav; Spriano, Silvia (2016). "Electro-sinter-forged Ni–Ti alloy". <i>Intermetallics</i>. <b>68</b>: 31–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.intermet.2015.08.016">10.1016/j.intermet.2015.08.016</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Intermetallics&rft.atitle=Electro-sinter-forged+Ni%E2%80%93Ti+alloy&rft.volume=68&rft.pages=31-41&rft.date=2016&rft_id=info%3Adoi%2F10.1016%2Fj.intermet.2015.08.016&rft.aulast=Balagna&rft.aufirst=Cristina&rft.au=Fais%2C+Alessandro&rft.au=Brunelli%2C+Katya&rft.au=Peruzzo%2C+Luca&rft.au=Horynov%C3%A1%2C+Miroslava&rft.au=%C4%8Celko%2C+Ladislav&rft.au=Spriano%2C+Silvia&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Microstructure_Evolution-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Microstructure_Evolution_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Microstructure_Evolution_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Microstructure_Evolution_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Microstructure_Evolution_20-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaca2009" class="citation journal cs1">Maca, Karel (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.2298%2Fpac0902013m">"Microstructure evolution during pressureless sintering of bulk oxide ceramics"</a>. <i>Processing and Application of Ceramics</i>. <b>3</b> (1–2): 13–17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2298%2Fpac0902013m">10.2298/pac0902013m</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Processing+and+Application+of+Ceramics&rft.atitle=Microstructure+evolution+during+pressureless+sintering+of+bulk+oxide+ceramics&rft.volume=3&rft.issue=1%E2%80%932&rft.pages=13-17&rft.date=2009&rft_id=info%3Adoi%2F10.2298%2Fpac0902013m&rft.aulast=Maca&rft.aufirst=Karel&rft_id=https%3A%2F%2Fdoi.org%2F10.2298%252Fpac0902013m&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Effect_of_sintering-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-Effect_of_sintering_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Effect_of_sintering_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacaSimonikova2005" class="citation journal cs1">Maca, Karl; Simonikova, Sarka (2005). "Effect of sintering schedule on grain size of oxide ceramics". <i>Journal of Materials Science</i>. <b>40</b> (21): 5581–5589. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JMatS..40.5581M">2005JMatS..40.5581M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10853-005-1332-1">10.1007/s10853-005-1332-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137157248">137157248</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Science&rft.atitle=Effect+of+sintering+schedule+on+grain+size+of+oxide+ceramics&rft.volume=40&rft.issue=21&rft.pages=5581-5589&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137157248%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10853-005-1332-1&rft_id=info%3Abibcode%2F2005JMatS..40.5581M&rft.aulast=Maca&rft.aufirst=Karl&rft.au=Simonikova%2C+Sarka&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-OghbaeiMirzaee2010-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-OghbaeiMirzaee2010_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OghbaeiMirzaee2010_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOghbaeiMirzaee2010" class="citation journal cs1">Oghbaei, Morteza; Mirzaee, Omid (2010). "Microwave versus conventional sintering: A review of fundamentals, advantages and applications". <i>Journal of Alloys and Compounds</i>. <b>494</b> (1–2): 175–189. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jallcom.2010.01.068">10.1016/j.jallcom.2010.01.068</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Alloys+and+Compounds&rft.atitle=Microwave+versus+conventional+sintering%3A+A+review+of+fundamentals%2C+advantages+and+applications&rft.volume=494&rft.issue=1%E2%80%932&rft.pages=175-189&rft.date=2010&rft_id=info%3Adoi%2F10.1016%2Fj.jallcom.2010.01.068&rft.aulast=Oghbaei&rft.aufirst=Morteza&rft.au=Mirzaee%2C+Omid&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBabaieRenBhaduri2016" class="citation journal cs1">Babaie, Elham; Ren, Yufu; Bhaduri, Sarit B. (23 March 2016). "Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization". <i>Journal of Materials Research</i>. <b>31</b> (8): 995–1003. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JMatR..31..995B">2016JMatR..31..995B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2Fjmr.2016.84">10.1557/jmr.2016.84</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139007302">139007302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Research&rft.atitle=Microwave+sintering+of+fine+grained+MgP+and+Mg+substitutes+with+amorphous+tricalcium+phosphate%3A+Structural%2C+and+mechanical+characterization&rft.volume=31&rft.issue=8&rft.pages=995-1003&rft.date=2016-03-23&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139007302%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1557%2Fjmr.2016.84&rft_id=info%3Abibcode%2F2016JMatR..31..995B&rft.aulast=Babaie&rft.aufirst=Elham&rft.au=Ren%2C+Yufu&rft.au=Bhaduri%2C+Sarit+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Smallman-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Smallman_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmallman_R._E.1999" class="citation book cs1">Smallman R. E., Bishop, Ray J (1999). <i>Modern physical metallurgy and materials engineering: science, process, applications</i>. Oxford : Butterworth-Heinemann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-4564-5" title="Special:BookSources/978-0-7506-4564-5"><bdi>978-0-7506-4564-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+physical+metallurgy+and+materials+engineering%3A+science%2C+process%2C+applications&rft.pub=Oxford+%3A+Butterworth-Heinemann&rft.date=1999&rft.isbn=978-0-7506-4564-5&rft.aulast=Smallman+R.+E.&rft.aufirst=Bishop%2C+Ray+J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-Fundamentals_of_Materials_Science-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fundamentals_of_Materials_Science_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fundamentals_of_Materials_Science_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fundamentals_of_Materials_Science_25-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Fundamentals_of_Materials_Science_25-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Fundamentals_of_Materials_Science_25-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMittemeijer2010" class="citation book cs1">Mittemeijer, Eric J. (2010). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsmate00mitt_322"><i>Fundamentals of Materials Science The Microstructure–Property Relationship Using Metals as Model Systems</i></a></span>. Springer Heidelberg Dordrecht London New York. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsmate00mitt_322/page/n479">463</a>–496. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-10499-2" title="Special:BookSources/978-3-642-10499-2"><bdi>978-3-642-10499-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Materials+Science+The+Microstructure%E2%80%93Property+Relationship+Using+Metals+as+Model+Systems&rft.pages=463-496&rft.pub=Springer+Heidelberg+Dordrecht+London+New+York&rft.date=2010&rft.isbn=978-3-642-10499-2&rft.aulast=Mittemeijer&rft.aufirst=Eric+J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffundamentalsmate00mitt_322&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Sintering-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sintering_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKang2005" class="citation book cs1">Kang, Suk-Joong L. (2005). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/sinteringdensifi00kang_089"><i>Sintering: Densification, Grain Growth, and Microstructure</i></a></span>. Elsevier Ltd. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/sinteringdensifi00kang_089/page/n21">9</a>–18. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-6385-4" title="Special:BookSources/978-0-7506-6385-4"><bdi>978-0-7506-6385-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sintering%3A+Densification%2C+Grain+Growth%2C+and+Microstructure&rft.pages=9-18&rft.pub=Elsevier+Ltd.&rft.date=2005&rft.isbn=978-0-7506-6385-4&rft.aulast=Kang&rft.aufirst=Suk-Joong+L.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsinteringdensifi00kang_089&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Physical_Metallurgy_ch_28-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Physical_Metallurgy_ch_28_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCahn,_Robert_W._and_Haasen,_Peter1996" class="citation book cs1">Cahn, Robert W. and Haasen, Peter (1996). <i>Physical Metallurgy</i> (Fourth ed.). Elsevier Science. pp. 2399–2500. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-89875-3" title="Special:BookSources/978-0-444-89875-3"><bdi>978-0-444-89875-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physical+Metallurgy&rft.pages=2399-2500&rft.edition=Fourth&rft.pub=Elsevier+Science&rft.date=1996&rft.isbn=978-0-444-89875-3&rft.au=Cahn%2C+Robert+W.+and+Haasen%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-Ceramic_materials_ch_sintering-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ceramic_materials_ch_sintering_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarterNorton2007" class="citation book cs1">Carter, C. Barry; Norton, M. Grant (2007). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/ceramicmaterials00cart"><i>Ceramic Materials: Science and Engineering</i></a></span>. Springer Science+Business Media, LLC. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/ceramicmaterials00cart/page/n425">427</a>–443. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-46270-7" title="Special:BookSources/978-0-387-46270-7"><bdi>978-0-387-46270-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ceramic+Materials%3A+Science+and+Engineering&rft.pages=427-443&rft.pub=Springer+Science%2BBusiness+Media%2C+LLC.&rft.date=2007&rft.isbn=978-0-387-46270-7&rft.aulast=Carter&rft.aufirst=C.+Barry&rft.au=Norton%2C+M.+Grant&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fceramicmaterials00cart&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Physical_Metallurgy-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Physical_Metallurgy_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCahn,_Robert_W._and_Haasen,_Peter1996" class="citation book cs1">Cahn, Robert W. and Haasen, Peter (1996). <i>Physical Metallurgy</i> (Fourth ed.). Elsevier Science. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-89875-3" title="Special:BookSources/978-0-444-89875-3"><bdi>978-0-444-89875-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physical+Metallurgy&rft.edition=Fourth&rft.pub=Elsevier+Science&rft.date=1996&rft.isbn=978-0-444-89875-3&rft.au=Cahn%2C+Robert+W.+and+Haasen%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-C._S._Smith-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-C._S._Smith_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith1948" class="citation journal cs1">Smith, Cyril S. (February 1948). "Introduction to Grains, Phases and Interphases: an Introduction to Microstructure".</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introduction+to+Grains%2C+Phases+and+Interphases%3A+an+Introduction+to+Microstructure&rft.date=1948-02&rft.aulast=Smith&rft.aufirst=Cyril+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Cite journal requires <code class="cs1-code">|journal=</code> (<a href="/wiki/Help:CS1_errors#missing_periodical" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-Kuczynski2012-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kuczynski2012_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kuczynski2012_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._Kuczynski2012" class="citation book cs1">G. Kuczynski (6 December 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mI3kBwAAQBAJ"><i>Sintering and Catalysis</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4684-0934-5" title="Special:BookSources/978-1-4684-0934-5"><bdi>978-1-4684-0934-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sintering+and+Catalysis&rft.pub=Springer+Science+%26+Business+Media&rft.date=2012-12-06&rft.isbn=978-1-4684-0934-5&rft.au=G.+Kuczynski&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmI3kBwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartholomew2001" class="citation journal cs1">Bartholomew, Calvin H (2001). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/223902508">"Mechanisms of catalyst deactivation"</a>. <i>Applied Catalysis A: General</i>. <b>212</b> (1–2): 17–60. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0926-860X%2800%2900843-7">10.1016/S0926-860X(00)00843-7</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Catalysis+A%3A+General&rft.atitle=Mechanisms+of+catalyst+deactivation&rft.volume=212&rft.issue=1%E2%80%932&rft.pages=17-60&rft.date=2001&rft_id=info%3Adoi%2F10.1016%2FS0926-860X%2800%2900843-7&rft.aulast=Bartholomew&rft.aufirst=Calvin+H&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F223902508&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Harris1986-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Harris1986_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarris1986" class="citation journal cs1">Harris, P (1986). "The sintering of platinum particles in an alumina-supported catalyst: Further transmission electron microscopy studies". <i>Journal of Catalysis</i>. <b>97</b> (2): 527–542. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0021-9517%2886%2990024-2">10.1016/0021-9517(86)90024-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Catalysis&rft.atitle=The+sintering+of+platinum+particles+in+an+alumina-supported+catalyst%3A+Further+transmission+electron+microscopy+studies&rft.volume=97&rft.issue=2&rft.pages=527-542&rft.date=1986&rft_id=info%3Adoi%2F10.1016%2F0021-9517%2886%2990024-2&rft.aulast=Harris&rft.aufirst=P&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-Figueiredo2012-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Figueiredo2012_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFigueiredo,_J._L.2012" class="citation book cs1">Figueiredo, J. L. (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=b-HzCAAAQBAJ&pg=PA11"><i>Progress in Catalyst Deactivation: Proceedings of the NATO Advanced Study Institute on Catalyst Deactivation, Algarve, Portugal, May 18–29, 1981</i></a>. Springer Science & Business Media. p. 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-94-009-7597-2" title="Special:BookSources/978-94-009-7597-2"><bdi>978-94-009-7597-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Progress+in+Catalyst+Deactivation%3A+Proceedings+of+the+NATO+Advanced+Study+Institute+on+Catalyst+Deactivation%2C+Algarve%2C+Portugal%2C+May+18%E2%80%9329%2C+1981&rft.pages=11&rft.pub=Springer+Science+%26+Business+Media&rft.date=2012&rft.isbn=978-94-009-7597-2&rft.au=Figueiredo%2C+J.+L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Db-HzCAAAQBAJ%26pg%3DPA11&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> <li id="cite_note-ChorkendorffNiemantsverdriet2006-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-ChorkendorffNiemantsverdriet2006_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChorkendorff,_I.Niemantsverdriet,_J._W.2006" class="citation book cs1">Chorkendorff, I.; Niemantsverdriet, J. W. (6 March 2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=p34rVviEVWsC"><i>Concepts of Modern Catalysis and Kinetics</i></a>. John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-527-60564-4" title="Special:BookSources/978-3-527-60564-4"><bdi>978-3-527-60564-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concepts+of+Modern+Catalysis+and+Kinetics&rft.pub=John+Wiley+%26+Sons&rft.date=2006-03-06&rft.isbn=978-3-527-60564-4&rft.au=Chorkendorff%2C+I.&rft.au=Niemantsverdriet%2C+J.+W.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dp34rVviEVWsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=24" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChiangBirnieKingery1996" class="citation book cs1">Chiang, Yet-Ming; Birnie, Dunbar P.; Kingery, W. David (May 1996). <i>Physical Ceramics: Principles for Ceramic Science and Engineering</i>. John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-59873-9" title="Special:BookSources/0-471-59873-9"><bdi>0-471-59873-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physical+Ceramics%3A+Principles+for+Ceramic+Science+and+Engineering&rft.pub=John+Wiley+%26+Sons&rft.date=1996-05&rft.isbn=0-471-59873-9&rft.aulast=Chiang&rft.aufirst=Yet-Ming&rft.au=Birnie%2C+Dunbar+P.&rft.au=Kingery%2C+W.+David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenHannink,_R.Swain,_M.V.1989" class="citation book cs1">Green, D.J.; Hannink, R.; Swain, M.V. (1989). <i>Transformation Toughening of Ceramics</i>. Boca Raton: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8493-6594-5" title="Special:BookSources/0-8493-6594-5"><bdi>0-8493-6594-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transformation+Toughening+of+Ceramics&rft.place=Boca+Raton&rft.pub=CRC+Press&rft.date=1989&rft.isbn=0-8493-6594-5&rft.aulast=Green&rft.aufirst=D.J.&rft.au=Hannink%2C+R.&rft.au=Swain%2C+M.V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGerman1996" class="citation book cs1">German, R.M. (1996). <i>Sintering Theory and Practice</i>. John Wiley & Sons, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-05786-X" title="Special:BookSources/0-471-05786-X"><bdi>0-471-05786-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sintering+Theory+and+Practice&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.date=1996&rft.isbn=0-471-05786-X&rft.aulast=German&rft.aufirst=R.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKang2005" class="citation book cs1">Kang, Suk-Joong L. (2005). <i>Sintering</i> (1st ed.). Oxford: <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>, Butterworth Heinemann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7506-6385-5" title="Special:BookSources/0-7506-6385-5"><bdi>0-7506-6385-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sintering&rft.place=Oxford&rft.edition=1st&rft.pub=Elsevier%2C+Butterworth+Heinemann&rft.date=2005&rft.isbn=0-7506-6385-5&rft.aulast=Kang&rft.aufirst=Suk-Joong+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASintering" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sintering&action=edit&section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Special:Search/sintering" class="extiw" title="wiktionary:Special:Search/sintering">sintering</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.roentzsch.org/SintPP/index.html">Particle-Particle-Sintering – a 3D lattice kinetic Monte Carlo simulation</a></li> <li><a rel="nofollow" class="external text" href="http://www.roentzsch.org/SintSP/index.html">Sphere-Plate-Sintering – a 3D lattice kinetic Monte Carlo simulation</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q844613#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Sintern"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4140299-6">Germany</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Sintering"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85122934">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Frittage (métallurgie)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11969497k">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Frittage (métallurgie)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11969497k">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00572101">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Sinterización"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX541495">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&local_base=lnc10&doc_number=000149231&P_CON_LNG=ENG">Latvia</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007546145405171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐gzd6v Cached time: 20241122140844 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.983 seconds Real time usage: 1.255 seconds Preprocessor visited node count: 5932/1000000 Post‐expand include size: 105670/2097152 bytes Template argument size: 4090/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 149259/5000000 bytes Lua time usage: 0.647/10.000 seconds Lua memory usage: 18763902/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1051.335 1 -total 28.90% 303.801 1 Template:Reflist 14.48% 152.224 13 Template:Annotated_link 12.08% 126.987 1 Template:Authority_control 10.96% 115.193 1 Template:Lang 8.72% 91.713 1 Template:Short_description 8.34% 87.699 16 Template:Cite_book 8.22% 86.398 1 Template:Cite_encyclopedia 8.05% 84.618 15 Template:Cite_journal 5.55% 58.346 1 Template:More_footnotes --> <!-- Saved in parser cache with key enwiki:pcache:idhash:145020-0!canonical and timestamp 20241122140844 and revision id 1252207161. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Sintering&oldid=1252207161">https://en.wikipedia.org/w/index.php?title=Sintering&oldid=1252207161</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Industrial_processes" title="Category:Industrial processes">Industrial processes</a></li><li><a href="/wiki/Category:Metalworking" title="Category:Metalworking">Metalworking</a></li><li><a href="/wiki/Category:Plastics_industry" title="Category:Plastics industry">Plastics industry</a></li><li><a href="/wiki/Category:Metallurgical_processes" title="Category:Metallurgical processes">Metallurgical processes</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1_errors:_missing_periodical" title="Category:CS1 errors: missing periodical">CS1 errors: missing periodical</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_October_2022" title="Category:Articles lacking in-text citations from October 2022">Articles lacking in-text citations from October 2022</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:Articles_containing_Middle_High_German_(ca._1050-1500)-language_text" title="Category:Articles containing Middle High German (ca. 1050-1500)-language text">Articles containing Middle High German (ca. 1050-1500)-language text</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_July_2023" title="Category:Articles needing additional references from July 2023">Articles needing additional references from July 2023</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_articles_with_specifically_marked_weasel-worded_phrases" title="Category:All articles with specifically marked weasel-worded phrases">All articles with specifically marked weasel-worded phrases</a></li><li><a href="/wiki/Category:Articles_with_specifically_marked_weasel-worded_phrases_from_August_2022" title="Category:Articles with specifically marked weasel-worded phrases from August 2022">Articles with specifically marked weasel-worded phrases from August 2022</a></li><li><a href="/wiki/Category:All_articles_that_may_contain_original_research" title="Category:All articles that may contain original research">All articles that may contain original research</a></li><li><a href="/wiki/Category:Articles_that_may_contain_original_research_from_September_2024" title="Category:Articles that may contain original research from September 2024">Articles that may contain original research from September 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_September_2012" title="Category:Wikipedia articles needing clarification from September 2012">Wikipedia articles needing clarification from September 2012</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 October 2024, at 09:16<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Sintering&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-dnxpp","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"0.983","walltime":"1.255","ppvisitednodes":{"value":5932,"limit":1000000},"postexpandincludesize":{"value":105670,"limit":2097152},"templateargumentsize":{"value":4090,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":149259,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1051.335 1 -total"," 28.90% 303.801 1 Template:Reflist"," 14.48% 152.224 13 Template:Annotated_link"," 12.08% 126.987 1 Template:Authority_control"," 10.96% 115.193 1 Template:Lang"," 8.72% 91.713 1 Template:Short_description"," 8.34% 87.699 16 Template:Cite_book"," 8.22% 86.398 1 Template:Cite_encyclopedia"," 8.05% 84.618 15 Template:Cite_journal"," 5.55% 58.346 1 Template:More_footnotes"]},"scribunto":{"limitreport-timeusage":{"value":"0.647","limit":"10.000"},"limitreport-memusage":{"value":18763902,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-gzd6v","timestamp":"20241122140844","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Sintering","url":"https:\/\/en.wikipedia.org\/wiki\/Sintering","sameAs":"http:\/\/www.wikidata.org\/entity\/Q844613","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q844613","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-11-07T23:27:10Z","dateModified":"2024-10-20T09:16:19Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/27\/LDClinkerScaled.jpg","headline":"process of compacting granular material into a coherent solid by heat or pressure, without melting"}</script> </body> </html>