CINXE.COM

Search results for: Nemerow Pollution Index

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Nemerow Pollution Index</title> <meta name="description" content="Search results for: Nemerow Pollution Index"> <meta name="keywords" content="Nemerow Pollution Index"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Nemerow Pollution Index" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Nemerow Pollution Index"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5264</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Nemerow Pollution Index</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5264</span> Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eladham%20Fadl%20M.%20E.%20Fadl">Mohamed Eladham Fadl M. E. Fadl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks"> health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20techniques" title=" GIS techniques"> GIS techniques</a> </p> <a href="https://publications.waset.org/abstracts/56750/spatial-variability-of-soil-pollution-and-health-risks-due-to-long-term-wastewater-irrigation-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5263</span> The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan">T. H. Derdzyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan"> G. A. Gevorgyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20industrial%20activity" title=" metallurgical industrial activity"> metallurgical industrial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollutionl" title=" heavy metal pollutionl"> heavy metal pollutionl</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzyme%20activity" title=" soil enzyme activity"> soil enzyme activity</a> </p> <a href="https://publications.waset.org/abstracts/25371/the-investigation-of-enzymatic-activity-in-the-soils-under-the-impact-of-metallurgical-industrial-activity-in-lori-marz-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5262</span> Assessment of the Soils Pollution Level of the Open Mine and Tailing Dump of Surrounding Territories of Akhtala Ore Processing Combine by Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For assessment of the soils pollution level of the open mine and tailing dump of surrounding territories of Akhtala ore processing combine by heavy metals in 2013 collected soil samples and analyzed for different heavy metals, such as Cu, Zn, Pb, Ni and Cd. The main soil type in the study sites was the mountain cambisol. To classify soil pollution level contamination indices like Contamination factors (Cf), Degree of contamination (Cd), Pollution load index (PLI) and Geoaccumulation index (I-geo) are calculated. The distribution pattern of trace metals in the soil profile according to I geo, Cf and Cd values shows that the soil is very polluted. And also the PLI values for the 19 sites were >1, which indicates deterioration of site quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soils%20pollution" title="soils pollution">soils pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/13828/assessment-of-the-soils-pollution-level-of-the-open-mine-and-tailing-dump-of-surrounding-territories-of-akhtala-ore-processing-combine-by-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5261</span> Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hui">Zhang Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Caiqiu"> Wu Caiqiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Xuyin"> Yuan Xuyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Jie"> Qiu Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hanpei"> Zhang Hanpei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20contamination" title="heavy metal contamination">heavy metal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=roadside" title=" roadside"> roadside</a>, <a href="https://publications.waset.org/abstracts/search?q=highway" title=" highway"> highway</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index" title=" Nemerow Pollution Index"> Nemerow Pollution Index</a> </p> <a href="https://publications.waset.org/abstracts/12506/assessment-of-heavy-metal-contamination-in-roadside-soils-along-shenyang-dalian-highway-in-liaoning-province-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5260</span> Trees for Air Pollution Tolerance to Develop Green Belts as an Ecological Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Al%20Maawali">Rahma Al Maawali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hameed%20Sulaiman"> Hameed Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution both from point and non-point sources is difficult to control once released in to the atmosphere. There is no engineering method known available to ameliorate the dispersed pollutants. The only suitable approach is the ecological method of constructing green belts in and around the pollution sources. Air pollution in Muscat, Oman is a serious concern due to ever increasing vehicles on roads. Identifying the air pollution tolerance levels of species is important for implementing pollution control strategies in the urban areas of Muscat. Hence, in the present study, Air Pollution Tolerance Index (APTI) for ten avenue tree species was evaluated by analyzing four bio-chemical parameters, plus their Anticipated Performance Index (API) in field conditions. Based on the two indices, <em>Ficus benghalensis</em> was the most suitable one with the highest performance score. <em>Conocarpus erectuse, Phoenix dactylifera</em>, and <em>Pithcellobium dulce </em>were found to be good performers and are recommended for extensive planting. <em>Azadirachta indica</em> which is preferred for its dense canopy is qualified in the moderate category. The rest of the tree species expressed lower API score of less than 51, hence cannot be considered as suitable species for pollution mitigation plantation projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20tolerance%20index%20%28APTI%29" title="air pollution tolerance index (APTI)">air pollution tolerance index (APTI)</a>, <a href="https://publications.waset.org/abstracts/search?q=avenue%20tree%20species" title=" avenue tree species"> avenue tree species</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-chemical%20parameters" title=" bio-chemical parameters"> bio-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=muscat" title=" muscat"> muscat</a> </p> <a href="https://publications.waset.org/abstracts/56371/trees-for-air-pollution-tolerance-to-develop-green-belts-as-an-ecological-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5259</span> The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan"> G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Movsesyan"> H. S. Movsesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Ghazaryan"> N. P. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Grigoryan"> K. V. Grigoryan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zangezur%20copper%20and%20molybdenum%20combine" title=" Zangezur copper and molybdenum combine"> Zangezur copper and molybdenum combine</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution%20degree" title=" heavy metal pollution degree"> heavy metal pollution degree</a> </p> <a href="https://publications.waset.org/abstracts/25256/the-evaluation-of-heavy-metal-pollution-degree-in-the-soils-around-the-zangezur-copper-and-molybdenum-combine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5258</span> Pollution-Sources, Controls, and Impact Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Acharya">Aditi Acharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/27061/pollution-sources-controls-and-impact-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5257</span> Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubunmi%20S.%20Shittu">Olubunmi S. Shittu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20J.%20Ayodele"> Olufemi J. Ayodele</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustus%20O.%20A.%20Ilori"> Augustus O. A. Ilori</a>, <a href="https://publications.waset.org/abstracts/search?q=Abidemi%20O.%20Filani"> Abidemi O. Filani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adetola%20T.%20Afuye"> Adetola T. Afuye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni &gt; Mn &gt; Pb &gt; Cr &gt; Cu &gt; Cd &gt; Fe during the dry season, and Fe &gt; Cr &gt; Cu &gt; Pb &gt; Ni &gt; Cd &gt; Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (I<em><sub>geo</sub></em>) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mC<sub>d</sub>) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title="contamination factor">contamination factor</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a> </p> <a href="https://publications.waset.org/abstracts/73809/heavy-metal-contamination-of-a-dumpsite-environment-as-assessed-with-pollution-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5256</span> Groundwater Vulnerability of Halabja-Khurmal Sub-Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanja%20F.%20Rauf">Lanja F. Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahalddin%20S.%20Ali"> Salahalddin S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari"> Nadhir Al-Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20vulnerability" title="groundwater vulnerability">groundwater vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20DRASTIC" title=" modified DRASTIC"> modified DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20pollution" title=" nitrate pollution"> nitrate pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title=" water quality index"> water quality index</a> </p> <a href="https://publications.waset.org/abstracts/154484/groundwater-vulnerability-of-halabja-khurmal-sub-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5255</span> ECO ROADS: A Solution to the Vehicular Pollution on Roads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Garg">Harshit Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakshi%20Gupta"> Shakshi Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major problems in today’s world is the growing pollution. The cause for all environmental problems is the increasing pollution rate. Looking upon the statistics, one can find out that most of the pollution is caused by the vehicular pollution which is more than 70 % of the total pollution, effecting the environment as well as human health proportionally. One is aware of the fact that vehicles run on roads so why not having the roads which could adsorb that pollution, not only once but a number of times. Every problem has a solution which can be solved by the state of art of technology, that is one can use the innovative ideas and thoughts to make technology as a solution to the problem of vehicular pollution on roads. Solving the problem up to a certain limit/ percentage can be formulated into a new term called ECO ROADS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=roads" title=" roads"> roads</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainibility" title=" sustainibility"> sustainibility</a> </p> <a href="https://publications.waset.org/abstracts/35026/eco-roads-a-solution-to-the-vehicular-pollution-on-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5254</span> Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Bawa">Usman Bawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asellus" title="Asellus">Asellus</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic%20index" title=" biotic index"> biotic index</a>, <a href="https://publications.waset.org/abstracts/search?q=Gammarus" title=" Gammarus"> Gammarus</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20invertebrates" title=" macro invertebrates"> macro invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title=" organic pollution"> organic pollution</a> </p> <a href="https://publications.waset.org/abstracts/22849/gammarus-asellus-ratio-as-an-index-of-organic-pollution-a-case-study-in-markeaton-kedleston-hall-and-allestree-park-lakes-derby-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5253</span> A Statistical Approach to Air Pollution in Mexico City and It&#039;s Impacts on Well-Being</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20B.%20Carrera-Aguilar">Ana B. Carrera-Aguilar </a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20T.%20Sepulveda-Hirose"> Rodrigo T. Sepulveda-Hirose</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Bernal-Gurrusquieta"> Diego A. Bernal-Gurrusquieta</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20A.%20Ramirez%20Casas"> Francisco A. Ramirez Casas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, Mexico City has presented high levels of atmospheric pollution; the city is also an example of inequality and poverty that impact metropolitan areas around the world. This combination of social and economic exclusion, coupled with high levels of pollution evidence the loss of well-being among the population. The effect of air pollution on quality of life is an area of study that has been overlooked. The purpose of this study is to find relations between air quality and quality of life in Mexico City through statistical analysis of a regression model and principal component analysis of several atmospheric contaminants (CO, NO₂, ozone, particulate matter, SO₂) and well-being indexes (HDI, poverty, inequality, life expectancy and health care index). The data correspond to official information (INEGI, SEDEMA, and CEPAL) for 2000-2018. Preliminary results show that the Human Development Index (HDI) is affected by the impacts of pollution, and its indicators are reduced in the presence of contaminants. It is necessary to promote a strong interest in this issue in Mexico City. Otherwise, the problem will not only remain but will worsen affecting those who have less and the population well-being in a generalized way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexico%20City" title=" Mexico City"> Mexico City</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics" title=" statistics"> statistics</a> </p> <a href="https://publications.waset.org/abstracts/109816/a-statistical-approach-to-air-pollution-in-mexico-city-and-its-impacts-on-well-being" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5252</span> Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Anji%20Reddy">M. Anji Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma%20Devi"> R. Uma Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20tolerance%20index" title="air pollution tolerance index">air pollution tolerance index</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-indicators" title=" bio-indicators"> bio-indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20vegetation" title=" eco-friendly vegetation"> eco-friendly vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20greenery" title=" urban greenery"> urban greenery</a> </p> <a href="https://publications.waset.org/abstracts/34265/urban-vegetative-planning-for-ambient-ozone-pollution-an-eco-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5251</span> Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang-Fa%20Liu">Chang-Fa Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ting%20Wang"> Yi-Ting Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Liu"> Yuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Feng%20Wei"> Hai-Feng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Fang"> Lei Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Li"> Jin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20assessment" title="ecological risk assessment">ecological risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=marsh" title=" marsh"> marsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangtai%20estuary" title=" Shuangtai estuary"> Shuangtai estuary</a> </p> <a href="https://publications.waset.org/abstracts/48963/potential-ecological-risk-assessment-of-selected-heavy-metals-in-sediments-of-tidal-flat-marsh-the-case-study-shuangtai-estuary-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5250</span> Spatial Variability of Heavy Metals in Sediments of Two Streams of the Olifants River System, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Addo-Bediako">Abraham Addo-Bediako</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophy%20Nukeri"> Sophy Nukeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tebatso%20Mmako"> Tebatso Mmako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many freshwater ecosystems have been subjected to prolonged and cumulative pollution as a result of human activities such as mining, agricultural, industrial and human settlements in their catchments. The objective of this study was to investigate spatial variability of heavy metal pollution of sediments and possible sources of pollutants in two streams of the Olifants River System, South Africa. Stream sediments were collected and analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn) concentrations using inductively coupled plasma-mass mass spectrometry (ICP-MS). In both rivers, As, Cd, Cu, Pb and Zn fell within the concentration ranges recommended by CCME and ANZECC, while the concentrations of Cr and Ni exceeded the standards; the results indicated that Cr and Ni in the sediments originated from human activities and not from natural geological background. The index of geo-accumulation (Igeo) was used to assess the degree of pollution. The results of the geo-accumulation index evaluation showed that Cr and Ni were present in the sediments of the rivers at moderately to extremely polluted levels, while As, Cd, Cu, Pb and Zn existed at unpolluted to moderately polluted levels. Generally, heavy metal concentrations increased along the gradient in the rivers. The high concentrations of Cr and Ni in both rivers are of great concern, as previously these two rivers were classified to be supplying the Olifants River with water of good quality. There is a critical need, therefore to monitor heavy metal concentrations and distributions, as well as a comprehensive plan to prevent health risks, especially those communities still reliant on untreated water from the rivers, as sediment pollution may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-accumulation%20index" title="geo-accumulation index">geo-accumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20pollution" title=" sediment pollution"> sediment pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/117190/spatial-variability-of-heavy-metals-in-sediments-of-two-streams-of-the-olifants-river-system-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5249</span> Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ravisankar">R. Ravisankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tholkappian%20A.%20Chandrasekaran"> Tholkappian A. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Raghu"> Y. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy"> K. K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20R.%20Prasad"> M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24170/heavy-metal-contamination-in-sediments-of-north-east-coast-of-tamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5248</span> Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrasekaran">Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravisankar%20N.%20Harikrishnan"> Ravisankar N. Harikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajalakshmi"> Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy%20M.%20V.%20R.%20Prasad"> K. K. Satapathy M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24169/heavy-metal-pollution-in-soils-of-yelagirihillstamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5247</span> Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingchun%20Liu">Bingchun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Chann%20Chang"> Pei-Chann Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Huang"> Natasha Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dun%20Li"> Dun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China&#39;s Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20classification" title=" air quality classification"> air quality classification</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20index" title=" air quality index"> air quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20gain" title=" information gain"> information gain</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-validation" title=" cross-validation"> cross-validation</a> </p> <a href="https://publications.waset.org/abstracts/97145/multi-level-air-quality-classification-in-china-using-information-gain-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5246</span> The Correlation between Air Pollution and Tourette Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengnan%20Sun">Mengnan Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is unclear about the association between air pollution and Tourette Syndrome (TS), although people have suspected that air pollution might trigger TS. TS is a type of neural system disease usually found among children. The number of TS patients has significantly increased in recent decades, suggesting an importance and urgency to examine the possible triggers or conditions that are associated with TS. In this study, the correlation between air pollution and three allergic diseases---asthma, allergic conjunctivitis (AC), and allergic rhinitis (AR)---is examined. Then, a correlation between these allergic diseases and TS is proved. In this way, this study establishes a positive correlation between air pollution and TS. Measures the public can take to help TS patients are also analyzed at the end of this article. The article hopes to raise people’s awareness to reduce air pollution for the good of TS patients or people with other disorders that are associated with air pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=allergic%20diseases" title=" allergic diseases"> allergic diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Tourette%20Syndrome" title=" Tourette Syndrome"> Tourette Syndrome</a> </p> <a href="https://publications.waset.org/abstracts/179234/the-correlation-between-air-pollution-and-tourette-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5245</span> Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan">G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20mine" title=" copper mine"> copper mine</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution%20of%20soil" title=" heavy metal pollution of soil"> heavy metal pollution of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks "> health risks </a> </p> <a href="https://publications.waset.org/abstracts/25590/heavy-metal-pollution-of-the-soils-around-the-mining-area-near-shamlugh-town-armenia-and-related-risks-to-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5244</span> Spatial Distribution, Characteristics, and Pollution Risk Assessment of Microplastics in Sediments from Karnaphuli River Estuary, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Refat%20Jahan%20Rakiba">Md. Refat Jahan Rakiba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belal%20Hossaina"> M. Belal Hossaina</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumarc"> Rakesh Kumarc</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Akram%20Ullaha"> Md. Akram Ullaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Al%20Nahiand"> Sultan Al Nahiand</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmun%20Naher%20Rimaa"> Nazmun Naher Rimaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasrina%20Rabia%20Choudhury"> Tasrina Rabia Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Islam%20Libaf"> Samia Islam Libaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Yub"> Jimmy Yub</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayeen%20Uddin%20Khandakerg"> Mayeen Uddin Khandakerg</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmoneim%20Suliemanh"> Abdelmoneim Suliemanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mahmoud%20Sayedi"> Mohamed Mahmoud Sayedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics (MPs) have become an emerging global pollutant due to their wide spread and dispersion and potential threats to marine ecosystems. However, studies on MPs of estuarine and coastal ecosystems of Bangladesh are very limited or not available. In this study, we conducted the first study on the abundance, distribution, characteristics and potential risk assessment of microplastics in the sediment of Karnaphuli River estuary, Bangladesh. Microplastic particles were extracted from sediments of 30 stations along the estuary by density separation, and then enumerated and characterize by using steromicroscope and Fourier Transform Infrared (FT-IR) spectroscopy. In the collected sediment, the number of MPs varied from 22.29 - 59.5 items kg−1 of dry weight (DW) with an average of 1177 particles kg−1 DW. The mean abundance was higher in the downstream and left bank of estuary where the predominant shape, colour, and size of MPs were films (35%), white (19%), and >5000 μm (19%), respectively. The main polymer types were polyethylene terephthalate, polystyrene, polyethylene, cellulose, and nylon. MPs were found to pose risks (low to high) in the sediment of the estuary, with the highest risk occuring at one station near a sewage outlet, according to the results of risk analyses using the pollution risk index (PRI), polymer risk index (H), contamination factors (CFs), and pollution load index (PLI). The single value index, PLI clearly demonastated that all sampling sites were considerably polluted (as PLI >1) with microplastics. H values showed toxic polymers even in lower proportions possess higher polymeric hazard scores and vice versa. This investigation uncovered new insights on the status of MPs in the sediments of Karnaphuli River estuary, laying the groundwork for future research and control of microplastic pollution and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20risk%20assessment" title=" pollution risk assessment"> pollution risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Karnaphuli%20esttuary" title=" Karnaphuli esttuary"> Karnaphuli esttuary</a> </p> <a href="https://publications.waset.org/abstracts/178036/spatial-distribution-characteristics-and-pollution-risk-assessment-of-microplastics-in-sediments-from-karnaphuli-river-estuary-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5243</span> A Comparative Study of Localized Rainfall and Air Pollution between the Urban Area of Sungai Penchala with Sub-Urban and Green Area in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20N.%20Ahmad">Mohd N. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Lariyah%20Mohd%20Sidek"> Lariyah Mohd Sidek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study had shown that Sungai Penchala (urban) was experiencing localized rainfall and hazardous air pollution due to urbanization. The high rainfall that partly added by localized rain had been seen as a threat of causing the flash floods and water quality deterioration in the area. The air pollution that consisted of mainly particulate matter (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) gave an alarming air pollution index (API) to the surrounding area. Comparison among urban area (Sungai Penchala), sub-urban (Gombak), and green areas (Jerantut plus Temerloh) with respect to the rainfall parameters and air pollutants, it was found that the degree of intensities of the parameters was positively related with the urbanization. The air pollutants especially NO2, SO2, and CO were in tandem with the increase of the rainfall. Specifically, if the water catchment area is physically near to the urban area, then the authorities need to look into related urban development program by considering the management of emitted pollutants with respect to the ecological setting of the urban area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urbanization" title="urbanization">urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20area%20localized%20rainfall" title=" green area localized rainfall"> green area localized rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-urban%20area" title=" sub-urban area"> sub-urban area</a> </p> <a href="https://publications.waset.org/abstracts/7841/a-comparative-study-of-localized-rainfall-and-air-pollution-between-the-urban-area-of-sungai-penchala-with-sub-urban-and-green-area-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5242</span> Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Tavakoli">Mahsa Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Hojjati"> Seyed Mohammad Hojjati</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Kooch"> Yahya Kooch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20&times;20 m<sup>2</sup>) were established by systematic-randomly (60&times;60 m<sup>2</sup>) in an area of 4 ha (200&times;200 m<sup>2</sup>-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80&times;80m<sup>2</sup> (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS<sup>+ </sup>software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97<strong><span dir="RTL">&plusmn;</span></strong>0.30, Cd: 184.47<strong><span dir="RTL">&plusmn;</span></strong>6.26 mg.kg<sup>-1</sup>) in comparison to control area (Pb: 9.42<strong><span dir="RTL">&plusmn;</span></strong>0.17, Cd: 131.71<strong><span dir="RTL">&plusmn;</span></strong>15.77 mg.kg<sup>-1</sup>). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traditional%20coal%20mining" title="traditional coal mining">traditional coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20indicators" title=" pollution indicators"> pollution indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title=" geostatistics"> geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=Caspian%20forest" title=" Caspian forest"> Caspian forest</a> </p> <a href="https://publications.waset.org/abstracts/100588/lead-and-cadmium-spatial-pattern-and-risk-assessment-around-coal-mine-in-hyrcanian-forest-north-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5241</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5240</span> Pollution Assessment and Potential Ecological Risk of Some Traces Metals in the Surface Sediments of the Gulf of Tunis, North Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha%C3%AFfa%20Ben%20Mna">Haïfa Ben Mna</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayed%20Added"> Ayed Added</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the trace metals contamination status in the Gulf of Tunis, forty one sediment samples were analyzed using different approaches. According to certain contamination and ecological risk indices (Contamination Factor, Geoaccumulation index and Ecological risk index), Hg has the highest contamination level while pollution by Ni, Pb, Cd and Cr was absent. The highest concentrations of trace metals were found in sediments collected from the offshore and coastal areas located opposite the main exchange points with the gulf particularly, the Mejerda and Meliane Rivers, the Khalij Channel, Ghar El Melh and El Malah lagoons, Tunis Lake and Sebkhat Ariana. However, further ecological indices (Potential ecological risk index, Toxic unit and Mean effect-range median quotient) and comparison with sediment quality guidelines suggest that in addition to Mercury, Cr, Pb and Ni concentrations are detrimental to biota in both the offshore and areas near to the exchange points with the gulf. Moreover, in these areas the results from sequential extraction and individual contamination factor calculation pointed to the mobility and bioavailability of Cr, Pb and Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20assessment" title=" contamination assessment"> contamination assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk" title=" ecological risk"> ecological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunis%20gulf" title=" Tunis gulf"> Tunis gulf</a> </p> <a href="https://publications.waset.org/abstracts/164916/pollution-assessment-and-potential-ecological-risk-of-some-traces-metals-in-the-surface-sediments-of-the-gulf-of-tunis-north-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5239</span> Spatial Variability of Environmental Parameters and Its Relationship with an Environmental Injustice on the Bike Paths of Santiago, Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Mu%C3%B1oz">Alicia Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Oyola"> Pedro Oyola</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Henriquez"> Cristian Henriquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution in Santiago de Chile has a spatial variability due to different factors, including meteorological parameters and emission sources. Socioenvironmental aspects are also significant for pollution in the canopy layer since it influences the type of edification, vegetal mass proportion and other environmental conditions. This study analyzes spatially urban pollution in Santiago, specifically, from the bike path perspective. Bike paths are located in high traffic zones, as consequence, users are constantly exposed to urban pollution. Measurements were made at the higher polluted hour, three days a week, including three transit regimes, on the most polluted month of the year. The environmental parameters are fine particulate matter (Model 8520, DustTrak Aerosol Monitor, TSI), temperature and relative humidity; it was also considerate urban parameters as sky view factor and vegetal mass. Identification of an environmental injustice will be achieved with a spatial modeling, including all urban factors and environmental mediations with an economic index of population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy%20layer" title="canopy layer">canopy layer</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20injustice" title=" environmental injustice"> environmental injustice</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20modeling" title=" spatial modeling"> spatial modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20pollution" title=" urban pollution"> urban pollution</a> </p> <a href="https://publications.waset.org/abstracts/73253/spatial-variability-of-environmental-parameters-and-its-relationship-with-an-environmental-injustice-on-the-bike-paths-of-santiago-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5238</span> Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawfig%20Falani">Tawfig Falani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulalaziz%20Saleh"> Abdulalaziz Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollutants" title=" air pollutants"> air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20index%20%28AQI%29" title=" air quality index (AQI)"> air quality index (AQI)</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/185436/assessment-of-air-quality-status-using-pollution-indicators-in-industrial-zone-of-brega-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5237</span> Finding Viable Pollution Routes in an Urban Network under a Predefined Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Alexiou">Dimitra Alexiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefanos%20Katsavounis"> Stefanos Katsavounis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ria%20Kalfakakou"> Ria Kalfakakou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G= (V, E, D, P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances/cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-criteria" title="bi-criteria">bi-criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20paths" title=" shortest paths"> shortest paths</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a> </p> <a href="https://publications.waset.org/abstracts/7484/finding-viable-pollution-routes-in-an-urban-network-under-a-predefined-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5236</span> Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Zacharie%20Ekoa%20Bessa">Armel Zacharie Ekoa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Annick%20Kwewouo%20Janpou"> Annick Kwewouo Janpou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20ocean" title=" atlantic ocean"> atlantic ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/165141/heavy-metal-contamination-and-its-ecological-risks-in-the-beach-sediments-along-the-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5235</span> Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiona%20Curran-Cournane">Fiona Curran-Cournane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20index" title=" pollution index"> pollution index</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20and%20urban%20land%20use" title=" rural and urban land use"> rural and urban land use</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality" title=" soil quality "> soil quality </a> </p> <a href="https://publications.waset.org/abstracts/17073/soil-quality-state-and-trends-in-new-zealands-largest-city-after-fifteen-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=175">175</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=176">176</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10