CINXE.COM
Search results for: heavy metal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: heavy metal</title> <meta name="description" content="Search results for: heavy metal"> <meta name="keywords" content="heavy metal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heavy metal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heavy metal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3561</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heavy metal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3561</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3560</span> Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hui">Zhang Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Caiqiu"> Wu Caiqiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Xuyin"> Yuan Xuyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Jie"> Qiu Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hanpei"> Zhang Hanpei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20contamination" title="heavy metal contamination">heavy metal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=roadside" title=" roadside"> roadside</a>, <a href="https://publications.waset.org/abstracts/search?q=highway" title=" highway"> highway</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemerow%20Pollution%20Index" title=" Nemerow Pollution Index"> Nemerow Pollution Index</a> </p> <a href="https://publications.waset.org/abstracts/12506/assessment-of-heavy-metal-contamination-in-roadside-soils-along-shenyang-dalian-highway-in-liaoning-province-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3559</span> Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantip%20Kayee">Pantip Kayee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwadee%20Yaponha"> Yuwadee Yaponha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiranit%20Pongtubthai"> Jiranit Pongtubthai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/10681/removal-of-heavy-metals-in-wastewater-treatment-system-of-suan-sunandha-rajabhat-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3558</span> The Determination of Heavy Metal in Herb Used in Dusit Community to Develop a Sustainable Quality of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinnawat%20Satsananan">Chinnawat Satsananan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to find amount of heavy metal in herb used in Dusit community and compare of heavy metal in each part by quantity in herb and standard determination in Thai herb books to develop a sustainable quality of life, the result of study in 14 herbs do not find sample of heavy metal., by quantity of heavy contamination of 4 kinds: Cd, Co, Fe and Pb have lower than standard of 2 organizations: Thai herb standard, and World Health Organization, from the test 14 herbs have Fe in every part of herbs and all 14 kinds has Fe that is necessary for our health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbs%20plants" title="herbs plants">herbs plants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusit%20district" title=" Dusit district"> Dusit district</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20quality%20of%20life" title=" sustainable quality of life"> sustainable quality of life</a> </p> <a href="https://publications.waset.org/abstracts/9431/the-determination-of-heavy-metal-in-herb-used-in-dusit-community-to-develop-a-sustainable-quality-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3557</span> Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Ata">Sadia Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Anila%20Tabassum"> Anila Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Samina%20ghafoor"> Samina ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20ul%20Mohsin"> Ijaz ul Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Muktar"> Azam Muktar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title=" adsorption isotherms"> adsorption isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater "> wastewater </a> </p> <a href="https://publications.waset.org/abstracts/23452/synthesis-of-nio-and-zno-nanoparticles-and-charactiration-for-the-eradication-of-lead-pb-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3556</span> Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Y%C4%B1lmaz%20Gel">Özge Yılmaz Gel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7"> Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=Derin%20Dalg%C4%B1%C3%A7"> Derin Dalgıç</a>, <a href="https://publications.waset.org/abstracts/search?q=Ela%20Mia%20Sevilla%20Levi"> Ela Mia Sevilla Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbance" title="absorbance">absorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20heavy%20metals" title=" removal of heavy metals"> removal of heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20peels" title=" fruit peels"> fruit peels</a> </p> <a href="https://publications.waset.org/abstracts/160535/removal-of-heavy-metals-from-water-in-the-presence-of-organic-wastes-fruit-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3555</span> [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kam">E. Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20U.%20Y%C3%BCm%C3%BCn"> Z. U. Yümün</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kurt"> D. Kurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g<sup>−1</sup>; Cr 112.868 ± 0.89 μg g<sup>−1</sup>; Cu 34.045 ± 0.53 μg g<sup>−1</sup>; Mn 481.43 ± 7.65 μg g<sup>−1</sup>; Ni 76.538 ± 3.81 μg g<sup>−1</sup>; Pb 11.059 ± 0.53 μg g<sup>−1 </sup>and Zn 140.133 ± 1.37 μg g<sup>−1</sup>, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aegean%20Sea" title=" Aegean Sea"> Aegean Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-OES" title=" ICP-OES"> ICP-OES</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/99378/keynote-talk-heavy-metals-in-marine-sediments-of-gulf-of-izmir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3554</span> Determination of Heavy Metal Concentration in Soil from Flood Affected Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Sayzwani%20Sukri">Nor Sayzwani Sukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Hajar%20Ya%E2%80%99acob"> Siti Hajar Ya’acob</a>, <a href="https://publications.waset.org/abstracts/search?q=Musfiroh%20Jani"> Musfiroh Jani</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Khaliz%20Kedri"> Farah Khaliz Kedri</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Syuhadah%20Subki"> Noor Syuhadah Subki</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhazman%20Hamzah"> Zulhazman Hamzah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=AAS" title=" AAS"> AAS</a> </p> <a href="https://publications.waset.org/abstracts/32044/determination-of-heavy-metal-concentration-in-soil-from-flood-affected-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3553</span> Application of Nanofibers in Heavy Metal (HM) Filtration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijeet%20Kumar">Abhijeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Palaniswamy%20N.%20K."> Palaniswamy N. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber%20composite" title=" nanofiber composite"> nanofiber composite</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20membranes" title=" filter membranes"> filter membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impaction" title=" impaction"> impaction</a> </p> <a href="https://publications.waset.org/abstracts/177806/application-of-nanofibers-in-heavy-metal-hm-filtration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3552</span> Wastewater Treatment from Heavy Metals by Nanofiltration and Ion Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Kagramanov">G. G. Kagramanov</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20N.%20Farnosova"> E. N. Farnosova</a>, <a href="https://publications.waset.org/abstracts/search?q=Linn%20Maung%20%20Maung"> Linn Maung Maung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technologies of ion exchange and nanofiltration can be used for treatment of wastewater containing copper and other heavy metal ions to decrease the environmental risks. Nanofiltration characteristics under water treatment of heavy metals have been studied. The influence of main technical process parameters - pressure, temperature, concentration and pH value of the initial solution on flux and rejection of nanofiltration membranes has been considered. And ion exchange capacities of resins in removal of heavy metal ions from wastewater have been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20capacity" title="exchange capacity">exchange capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20separation" title=" membrane separation"> membrane separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a> </p> <a href="https://publications.waset.org/abstracts/65267/wastewater-treatment-from-heavy-metals-by-nanofiltration-and-ion-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3551</span> Assessment of Heavy Metal Contamination in Ground Water in the Coastal Part of Cauvery Deltaic Region, South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnanachandrasamy%20G.">Gnanachandrasamy G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Y."> Zhou Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20T."> Ramkumar T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkatramanan%20S."> Venkatramanan S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20S."> Wang S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20Liping"> Mo Liping</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingru%20Zhang"> Jingru Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to assess the heavy metal contamination totally fourty five groundwater samples were collected from the coastal part of Cauvery deltaic region, South India, during monsoon season in the year of 2017. The study area lies between longitudes 79º15’ to 79º 50’ E and latitudes 10º10’ to 11º20’ N with total area of 2,569 km². The concentration of As, Ba, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals ranged between 0.007-117.8 µg/l for As, 8.503-1281 µg/l for Ba, 0.006-0.12 µg/l for Cd, 0.23-5.572µg/l for Cr, 0.44-17.9 µg/l for Co, 0.633-11.56 µg/l for Cu, 0.467-29.34 µg/l for Ni, 0.008-5.756 µg/l for Pb, 0.979 to 45.49 µg/l for Se, and 2.712-10480 µg/l for Zn in the groundwaters. A comparison of heavy metal concentration with WHO and BIS drinking water standards shows that Ni, Zn, As, Se, and Ba level is higher than the drinking water standards in some of the groundwater samples, and the concentrations of all the other heavy metals were lower than the drinking water standards. The present levels of heavy metal concentration in the studied area groundwaters are moderate to severe to public health and environmental concerns and need attention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cauvery%20delta" title="cauvery delta">cauvery delta</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a> </p> <a href="https://publications.waset.org/abstracts/89034/assessment-of-heavy-metal-contamination-in-ground-water-in-the-coastal-part-of-cauvery-deltaic-region-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3550</span> Heavy Metal of Soil in Wastewater, Irrigated Agricultural Soil in a Surrounding Area of the Nhue River, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Lan%20Huong%20Nguyen">Thi Lan Huong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Motohei%20Kanayama"> Motohei Kanayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Higashi"> Takahiro Higashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Chinh%20Le"> Van Chinh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Thu%20Ha%20Doan"> Thu Ha Doan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Daochu"> Anh Daochu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste from industrial sources, serves as sources of water for irrigating farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals in the soils. Soil samples were collected from the different locations from upstream to downstream of the Nhue River to evaluate heavy metal pollution. The results showed that the concentrations of all heavy metals in the soil samples in the farmland area were much higher than the background level in that area (1.2-2.6 mg/kg for Cd, 42-60 mg/kg for Cr, 22-62mg/kg for Cu, 30-86 mg/kg for Pb, 119-245 mg/kg for Zn, and 26-57 mg/kg for Ni), and exceeded the level of Vietnamese standard for agricultural soil for all heavy metals Cd, Cu, Pb, and Zn except soil samples at upstream and downstream of the Nhue River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhue%20River" title=" Nhue River"> Nhue River</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20irrigation" title=" wastewater irrigation"> wastewater irrigation</a> </p> <a href="https://publications.waset.org/abstracts/3345/heavy-metal-of-soil-in-wastewater-irrigated-agricultural-soil-in-a-surrounding-area-of-the-nhue-river-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3549</span> A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Argiri">A. Argiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Molla"> A. Molla</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzouvalekas"> Tzouvalekas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Skoufogianni"> E. Skoufogianni</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Danalatos"> N. Danalatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Greece" title="Greece">Greece</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/131745/a-study-of-soil-heavy-metal-pollution-in-the-manganese-mining-in-drama-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3548</span> Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan">G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20mine" title=" copper mine"> copper mine</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution%20of%20soil" title=" heavy metal pollution of soil"> heavy metal pollution of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks "> health risks </a> </p> <a href="https://publications.waset.org/abstracts/25590/heavy-metal-pollution-of-the-soils-around-the-mining-area-near-shamlugh-town-armenia-and-related-risks-to-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3547</span> Geochemical Evaluation of Weathering-Induced Release of Trace Metals from the Maastritchian Shales in Parts of Bida an Anambra Basins, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetunji%20Olusegun%20Aderigibigbe">Adetunji Olusegun Aderigibigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shales, especially black shales, are of great geological significance, in the study of heavy/trace metal contamination. This is due to their abundance in occurrence and high concentration of heavy metals embedded which are released during their weathering. Heavy metals constitute one of the most dangerous pollution known to human because they are toxic (i.e., carcinogenic), non-biodegradable and can enter the global eco-biological circle. In the past, heavy metal contamination in aquatic environment and agricultural top soil has been attributed to industrial wastes, mining extractions and pollution from traffic vehicles; only a few studies have focused on weathering of shale as possible source of heavy metal contamination. Based on the above background, this study attempts to establish weathering of shale as possible source of trace/heavy metal contaminations. This was done by carefully selecting fresh and their corresponding weathered shale samples from selected localities in Bida and Anambra Basins. The samples were analysed in Activation Laboratories Ltd; Ontario, Canada for trace/heavy metal. It was observed that some major and trace metals were released during weathering, i.e., some were depleted and some enriched. By this contamination of water zones and agricultural top soils are not only traceable to biogenic processes but geogenic inputs (weathering of shale) as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20samples" title=" fresh samples"> fresh samples</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=shales" title=" shales"> shales</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=weathered%20samples" title=" weathered samples"> weathered samples</a> </p> <a href="https://publications.waset.org/abstracts/109970/geochemical-evaluation-of-weathering-induced-release-of-trace-metals-from-the-maastritchian-shales-in-parts-of-bida-an-anambra-basins-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3546</span> Heavy Metals in PM2.5 Aerosols in Urban Sites of Győr, Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Csan%C3%A1di">Zs. Csanádi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy"> A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Erd%C5%91s"> J. Erdős</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt"><span lang="EN-US">Atmospheric concentrations of some heavy metal compounds (Pb, Cd, Ni) and the metalloid As were identified and determined in airborne PM2.5 particles in urban sites of Győr, northwest area of Hungary. PM2.5 aerosol samples were collected in two different sampling sites and the trace metal(loid) (Pb, Ni, Cd and As) content were analyzed by atomic absorption spectroscopy. The concentration of PM2.5 fraction was varied between 12.22 and 36.92 μg/m<sup>3</sup> at the two sampling sites. The trend of heavy metal mean concentrations regarding the mean value of the two urban sites of Győr was found in decreasing order of Pb > Ni > Cd. The mean values were 7.59 ng/m<sup>3</sup> for Pb, 0.34 ng/m<sup>3</sup> for Ni and 0.11 ng/m<sup>3</sup> for Cd, respectively. The metalloid As could be detected only in 3.57% of the total collected samples. The levels of PM2.5 bounded heavy metals were determined and compared with other cities located in Hungary.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a> </p> <a href="https://publications.waset.org/abstracts/67030/heavy-metals-in-pm25-aerosols-in-urban-sites-of-gyor-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3545</span> Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gevorgyan">G. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khudaverdyan"> S. Khudaverdyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vaseashta"> A. Vaseashta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Sevan%20basin" title=" Lake Sevan basin"> Lake Sevan basin</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20mining%20activity" title=" gold mining activity"> gold mining activity</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20ecosystems" title=" river ecosystems"> river ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution" title=" heavy metal pollution"> heavy metal pollution</a> </p> <a href="https://publications.waset.org/abstracts/30069/investigation-of-the-heavy-metal-pollution-of-the-river-ecosystems-in-the-lake-sevan-basin-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3544</span> Detection of Selected Heavy Metals in Raw Milk: Lahore, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huma%20Naeem">Huma Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif-Ur-Rehman%20Kashif"> Saif-Ur-Rehman Kashif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nawaz%20Chaudhry"> Muhammad Nawaz Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk plays a significant role in the dietary requirements of human beings as it is a single source that provides various essential nutrients. A study was conducted to evaluate the heavy metal concentration in the raw milk marketed in Data Gunj Baksh Town of Lahore. A total of 180 samples of raw milk were collected in pre-monsoon, monsoon and post-monsoon season from five colonies of Data Gunj Baksh Town, Lahore. The milk samples were subjected to heavy metal analysis (Cr, Cu) by atomic absorption spectrophotometer. Results indicated high levels of Cr and Cu in post-monsoon seasons. Heavy metals were detected in milk in all samples under study and exceeded the standards given by FAO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrophotometer" title="atomic absorption spectrophotometer">atomic absorption spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/26373/detection-of-selected-heavy-metals-in-raw-milk-lahore-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3543</span> Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hani">Abbas Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Jassasizadeh"> Maryam Jassasizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title="geostatistics">geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20kriging" title=" ordinary kriging"> ordinary kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Khark" title=" Khark"> Khark</a> </p> <a href="https://publications.waset.org/abstracts/96079/spatial-distribution-of-heavy-metals-in-khark-island-iran-using-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3542</span> Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megha">Megha</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha"> Diksha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Rani"> Seema Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Kaur"> Balwinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Kaur"> Harminder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20water%20samples" title=" environmental water samples"> environmental water samples</a> </p> <a href="https://publications.waset.org/abstracts/172188/modified-fe3o4-nanoparticles-for-electrochemical-sensing-of-heavy-metal-ions-pb2-hg2-and-cd2-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3541</span> Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ravisankar">R. Ravisankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tholkappian%20A.%20Chandrasekaran"> Tholkappian A. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Raghu"> Y. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy"> K. K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20R.%20Prasad"> M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24170/heavy-metal-contamination-in-sediments-of-north-east-coast-of-tamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3540</span> Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Lan%20Huong%20Nguyen">Thi Lan Huong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Motohei%20Kanayama"> Motohei Kanayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Higashi"> Takahiro Higashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Chinh%20Le"> Van Chinh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Thu%20Ha%20Doan"> Thu Ha Doan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Dao%20Chu"> Anh Dao Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20water" title=" stream water"> stream water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a> </p> <a href="https://publications.waset.org/abstracts/3344/assessment-of-the-water-quality-of-the-nhue-river-in-vietnam-and-its-suitability-for-irrigation-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3539</span> Wastewater Treatment Sludge as a Potential Source of Heavy Metal Contamination in Livestock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glynn%20K.%20Pindihama">Glynn K. Pindihama</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabelani%20Mudzielwana"> Rabelani Mudzielwana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndamulelo%20Lilimu"> Ndamulelo Lilimu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment effluents, particularly sludges, are known to be potential sources of heavy metal contamination in the environment, depending on how the sludge is managed. Maintenance of wastewater treatment infrastructure in developing countries such as South Africa has become an issue of grave concern, with many wastewater treatment facilities in dilapidating states. Among the problems is the vandalism of the periphery fence to many wastewater treatment facilities, resulting in livestock, such as cows from neighboring villages, grazing within the facilities. This raises human health risks since dried sludge from the treatment plants is usually spread on the grass around the plant, resulting in heavy metal contamination. Animal products such as meat and milk from these cows thus become an indirect route to heavy metals to humans. This study assessed heavy metals in sludges from 3 wastewater treatment plants in Limpopo Province of South Africa. In addition, cow dung and sludge liquors were collected from these plants and evaluated for their heavy metal content. The sludge and cow dung were microwave-digested using the aqua-regia method, and all samples were analyzed for heavy metals using ICP-OES. The loadings of heavy metals in the sludge were in the order Cu>Zn>Ni>Cr>Cd>As>Hg. In cow dung, the heavy metals were in the order Fe>Cu>Mn>Zn>Cr>Pb>Co>Cd. The levels of Zn and Cu in the sludge liquors where the animals were observed drinking were, in some cases, above the permissible limit for livestock consumption. Principal component and correlation analysis are yet to be done to determine if there is a correlation between the heavy metals in the cow dung and sludge and sludge liquors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title="cow dung">cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment%20plants" title=" wastewater treatment plants"> wastewater treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge." title=" sludge."> sludge.</a> </p> <a href="https://publications.waset.org/abstracts/184496/wastewater-treatment-sludge-as-a-potential-source-of-heavy-metal-contamination-in-livestock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3538</span> Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Makhanya">B. N. Makhanya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Ndulini"> S. F. Ndulini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mthembu"> M. S. Mthembu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20parameters" title=" physiochemical parameters"> physiochemical parameters</a> </p> <a href="https://publications.waset.org/abstracts/121955/heavy-metal-removal-by-green-microalgae-biofilms-from-industrial-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3537</span> Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Chaturvedi">Ritu Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Varun"> Mayank Varun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Paul"> M. S. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilization" title=" phytostabilization"> phytostabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/63409/effect-of-vesicular-arbuscular-mycorrhiza-on-phytoremedial-potential-and-physiological-changes-in-solanum-melongena-plants-grown-under-heavy-metal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3536</span> The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wed%20Albalawi">Wed Albalawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebtihaj%20Jambi"> Ebtihaj Jambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Albazi"> Maha Albazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shareefa%20AlGhamdi"> Shareefa AlGhamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20value" title=" pH value"> pH value</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20algae" title=" brown algae"> brown algae</a> </p> <a href="https://publications.waset.org/abstracts/175803/the-potential-effectiveness-of-marine-algae-in-removal-of-heavy-metal-from-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3535</span> Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrasekaran">Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravisankar%20N.%20Harikrishnan"> Ravisankar N. Harikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajalakshmi"> Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy%20M.%20V.%20R.%20Prasad"> K. K. Satapathy M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24169/heavy-metal-pollution-in-soils-of-yelagirihillstamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3534</span> Growing Vetiver (Chrysopogon zizanioides L.) on Contaminated Soils with Heavy Metals in Bulgaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Huu%20Q.%20Lee"> Huu Q. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field study was conducted to evaluate the efficacy of Vetiver (Chrysopogon zizanioides L.) for phytoremediation of contaminated soils. The experiment was performed on agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.5, 3.5, and 15 km) from the source of pollution. The concentrations of Pb, Zn, and Cd in vetiver (roots and leaves) were determined. Correlations between the content of the heavy metal mobile forms extracted with DTPA and their content in the roots and leaves of the Vetiver have been established. The Vetiver is tolerant to heavy metals and can be grown on soils contaminated with heavy metals. Plants are characterized by low ability to absorb and accumulate Pb, Cd, and Zn and have no signs of toxicity (chlorosis and necrosis) at 36.8 mg/kg Cd, 1158.8 mg/kg Pb and 1526.2 mg/kg Zn in the soil. Vetiver plants can be classified as Pb, Cd and Zn excluder, therefore, this plant has the suitable potential for the phytostabilization of heavy metal contaminated soils. Acknowledgements: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI 04/9). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soils" title="contaminated soils">contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=vetiver" title=" vetiver"> vetiver</a> </p> <a href="https://publications.waset.org/abstracts/79873/growing-vetiver-chrysopogon-zizanioides-l-on-contaminated-soils-with-heavy-metals-in-bulgaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3533</span> Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derin%20Ureten">Derin Ureten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbance" title=" adsorbance"> adsorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/163006/role-of-microplastics-on-reducing-heavy-metal-pollution-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3532</span> Speciation and Bioavailability of Heavy Metals in Greenhouse Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Topcuoglu">Bulent Topcuoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repeated amendments of organic matter and intensive use of fertilizers, metal-enriched chemicals and biocides may cause soil and environmental pollution in greenhouses. Specially, the impact of heavy metal pollution of soils on food metal content and underground water quality has become a public concern. Due to potential toxicity of heavy metals to human life and environment, determining the chemical form of heavy metals in greenhouse soils is an important approach of chemical characterization and can provide useful information on its mobility and bioavailability. A sequential extraction procedure was used to estimate the availability of heavy metals (Zn, Cd, Ni, Pb and Cr) in greenhouse soils of Antalya Aksu. Zn was predominantly associated with Fe-Mn oxide fraction, major portion of Cd associated with carbonate and organic matter fraction, a major portion of (>65 %) Ni and Cr were largely associated with Fe-Mn oxide and residual fractions and Pb was largely associated with organic matter and Fe-Mn oxide fractions. Results of the present study suggest that the mobility and bioavailability of metals probably increase in the following order: Cr < Pb < Ni < Cd < Zn. Among the elements studied, Zn and Cd appeared to be the most readily soluble and potentially bioavailable metals and these metals may carry a potential risk for metal transfer in food chain and contamination to ground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20speciation" title="metal speciation">metal speciation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20mobility" title=" metal mobility"> metal mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20soils" title=" greenhouse soils"> greenhouse soils</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/5068/speciation-and-bioavailability-of-heavy-metals-in-greenhouse-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heavy%20metal&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>