CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 52 results for author: <span class="mathjax">Monroe, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Monroe%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Monroe, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Monroe%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Monroe, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span> [<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v1-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v1-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'none'; document.getElementById('2408.14071v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18597">arXiv:2406.18597</a> <span> [<a href="https://arxiv.org/pdf/2406.18597">pdf</a>, <a href="https://arxiv.org/format/2406.18597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Relative Measurement and Extrapolation of the Scintillation Quenching Factor of $伪$-Particles in Liquid Argon using DEAP-3600 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a> , et al. (79 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18597v2-abstract-short" style="display: inline;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18597v2-abstract-full" style="display: none;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace amounts in the DEAP-3600 detector and quantified the uncertainty of extrapolating the quenching factor to the low-energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'none'; document.getElementById('2406.18597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (added 1 figure, revised 3 figures), 2 tables, revised sections 3, 4, 5. Accepted in Eur. Phys. J. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18492">arXiv:2404.18492</a> <span> [<a href="https://arxiv.org/pdf/2404.18492">pdf</a>, <a href="https://arxiv.org/format/2404.18492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/09/P09021">10.1088/1748-0221/19/09/P09021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18492v1-abstract-short" style="display: inline;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surround… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18492v1-abstract-full" style="display: none;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'none'; document.getElementById('2404.18492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P09021 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00181">arXiv:2402.00181</a> <span> [<a href="https://arxiv.org/pdf/2402.00181">pdf</a>, <a href="https://arxiv.org/format/2402.00181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-024-03142-w">10.1007/s10909-024-03142-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Autti%2C+S">S. Autti</a>, <a href="/search/physics?searchtype=author&query=Casey%2C+A">A. Casey</a>, <a href="/search/physics?searchtype=author&query=Eng%2C+N">N. Eng</a>, <a href="/search/physics?searchtype=author&query=Darvishi%2C+N">N. Darvishi</a>, <a href="/search/physics?searchtype=author&query=Franchini%2C+P">P. Franchini</a>, <a href="/search/physics?searchtype=author&query=Haley%2C+R+P">R. P. Haley</a>, <a href="/search/physics?searchtype=author&query=Heikkinen%2C+P+J">P. J. Heikkinen</a>, <a href="/search/physics?searchtype=author&query=Kemp%2C+A">A. Kemp</a>, <a href="/search/physics?searchtype=author&query=Leason%2C+E">E. Leason</a>, <a href="/search/physics?searchtype=author&query=Levitin%2C+L+V">L. V. Levitin</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=March-Russel%2C+J">J. March-Russel</a>, <a href="/search/physics?searchtype=author&query=Noble%2C+M+T">M. T. Noble</a>, <a href="/search/physics?searchtype=author&query=Prance%2C+J+R">J. R. Prance</a>, <a href="/search/physics?searchtype=author&query=Rojas%2C+X">X. Rojas</a>, <a href="/search/physics?searchtype=author&query=Salmon%2C+T">T. Salmon</a>, <a href="/search/physics?searchtype=author&query=Saunders%2C+J">J. Saunders</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+R">R. Smith</a>, <a href="/search/physics?searchtype=author&query=Thompson%2C+M+D">M. D. Thompson</a>, <a href="/search/physics?searchtype=author&query=Tsepelin%2C+V">V. Tsepelin</a>, <a href="/search/physics?searchtype=author&query=West%2C+S+M">S. M. West</a>, <a href="/search/physics?searchtype=author&query=Whitehead%2C+L">L. Whitehead</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">K. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zmeev%2C+D+E">D. E. Zmeev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00181v2-abstract-short" style="display: inline;"> We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00181v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00181v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00181v2-abstract-full" style="display: none;"> We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background and must be precisely modelled, using a combination of material screening and Monte Carlo simulations. However, the results presented here are of wider interest for experiments and quantum devices sensitive to minute heat leaks and spurious events, thus we present heat leak per unit mass or surface area for every material studied. This can inform material choices for other experiments, especially if underground operation is considered where the radiogenic backgrounds will dominate even at shallow depths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00181v2-abstract-full').style.display = 'none'; document.getElementById('2402.00181v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics, Special Issue: Quantum Fluids and Solids (QFS2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18647">arXiv:2311.18647</a> <span> [<a href="https://arxiv.org/pdf/2311.18647">pdf</a>, <a href="https://arxiv.org/format/2311.18647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05057">10.1088/1748-0221/19/05/P05057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-term temporal stability of the DarkSide-50 dark matter detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+D">The DarkSide-50 Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Biery%2C+K">K. Biery</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Bussino%2C+S">S. Bussino</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cadoni%2C+M">M. Cadoni</a>, <a href="/search/physics?searchtype=author&query=Calaprice%2C+F">F. Calaprice</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campos%2C+M+D">M. D. Campos</a>, <a href="/search/physics?searchtype=author&query=Canci%2C+N">N. Canci</a>, <a href="/search/physics?searchtype=author&query=Caravati%2C+M">M. Caravati</a>, <a href="/search/physics?searchtype=author&query=Cargioli%2C+N">N. Cargioli</a>, <a href="/search/physics?searchtype=author&query=Cariello%2C+M">M. Cariello</a>, <a href="/search/physics?searchtype=author&query=Carlini%2C+M">M. Carlini</a>, <a href="/search/physics?searchtype=author&query=Cataudella%2C+V">V. Cataudella</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18647v3-abstract-short" style="display: inline;"> The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time project… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18647v3-abstract-full').style.display = 'inline'; document.getElementById('2311.18647v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18647v3-abstract-full" style="display: none;"> The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18647v3-abstract-full').style.display = 'none'; document.getElementById('2311.18647v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P05057 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02452">arXiv:2311.02452</a> <span> [<a href="https://arxiv.org/pdf/2311.02452">pdf</a>, <a href="https://arxiv.org/format/2311.02452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Long nanomechanical resonators with circular cross-section </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Autti%2C+S">Samuli Autti</a>, <a href="/search/physics?searchtype=author&query=Casey%2C+A">Andrew Casey</a>, <a href="/search/physics?searchtype=author&query=Connelly%2C+M">Marie Connelly</a>, <a href="/search/physics?searchtype=author&query=Darvishi%2C+N">Neda Darvishi</a>, <a href="/search/physics?searchtype=author&query=Franchini%2C+P">Paolo Franchini</a>, <a href="/search/physics?searchtype=author&query=Gorman%2C+J">James Gorman</a>, <a href="/search/physics?searchtype=author&query=Haley%2C+R+P">Richard P. Haley</a>, <a href="/search/physics?searchtype=author&query=Heikkinen%2C+P+J">Petri J. Heikkinen</a>, <a href="/search/physics?searchtype=author&query=Kemp%2C+A">Ashlea Kemp</a>, <a href="/search/physics?searchtype=author&query=Leason%2C+E">Elizabeth Leason</a>, <a href="/search/physics?searchtype=author&query=March-Russell%2C+J">John March-Russell</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Noble%2C+T">Theo Noble</a>, <a href="/search/physics?searchtype=author&query=Pickett%2C+G+R">George R. Pickett</a>, <a href="/search/physics?searchtype=author&query=Prance%2C+J+R">Jonathan R. Prance</a>, <a href="/search/physics?searchtype=author&query=Rojas%2C+X">Xavier Rojas</a>, <a href="/search/physics?searchtype=author&query=Salmon%2C+T">Tineke Salmon</a>, <a href="/search/physics?searchtype=author&query=Saunders%2C+J">John Saunders</a>, <a href="/search/physics?searchtype=author&query=Slater%2C+J">Jack Slater</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+R">Robert Smith</a>, <a href="/search/physics?searchtype=author&query=Thompson%2C+M+D">Michael D. Thompson</a>, <a href="/search/physics?searchtype=author&query=West%2C+S+M">Stephen M. West</a>, <a href="/search/physics?searchtype=author&query=Whitehead%2C+L">Luke Whitehead</a>, <a href="/search/physics?searchtype=author&query=Zavjalov%2C+V+V">Vladislav V. Zavjalov</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kuang Zhang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02452v1-abstract-short" style="display: inline;"> Fabrication of superconducting nanomechanical resonators for quantum research, detectors and devices traditionally relies on a lithographic process, resulting in oscillators with sharp edges and a suspended length limited to a few 100 micrometres. We report a low-investment top-down approach to fabricating NbTi nanowire resonators with suspended lengths up to several millimetres and diameters down… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02452v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02452v1-abstract-full" style="display: none;"> Fabrication of superconducting nanomechanical resonators for quantum research, detectors and devices traditionally relies on a lithographic process, resulting in oscillators with sharp edges and a suspended length limited to a few 100 micrometres. We report a low-investment top-down approach to fabricating NbTi nanowire resonators with suspended lengths up to several millimetres and diameters down to 100 nanometres. The nanowires possess high critical currents and fields, making them a natural choice for magnetomotive actuation and sensing. This fabrication technique is independent of the substrate material, dimensions and layout and can readily be adapted to fabricate nanowire resonators from any metal or alloy with suitable ductility and yield strength. Our work thus opens access to a new class of nanomechanical devices with applications including microscopic and mesoscopic investigations of quantum fluids, detecting dark matter and fundamental materials research in one-dimensional superconductors in vacuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02452v1-abstract-full').style.display = 'none'; document.getElementById('2311.02452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15454">arXiv:2307.15454</a> <span> [<a href="https://arxiv.org/pdf/2307.15454">pdf</a>, <a href="https://arxiv.org/format/2307.15454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Directionality of nuclear recoils in a liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+D">The DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barrado-Olmedo%2C+A">A. Barrado-Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a> , et al. (243 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15454v1-abstract-short" style="display: inline;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scint… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15454v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15454v1-abstract-full" style="display: none;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'none'; document.getElementById('2307.15454v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, submitted to Eur. Phys. J. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84:24 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08822">arXiv:2305.08822</a> <span> [<a href="https://arxiv.org/pdf/2305.08822">pdf</a>, <a href="https://arxiv.org/format/2305.08822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First operation of an ALICE OROC operated in high pressure Ar-CO$_{2}$ and Ar-CH$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ritchie-Yates%2C+A">A. Ritchie-Yates</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">A. Deisting</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G">G. Barker</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Chen-Wishart%2C+Z">Z. Chen-Wishart</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+L">L. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Dunne%2C+P">P. Dunne</a>, <a href="/search/physics?searchtype=author&query=Eeles%2C+J">J. Eeles</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+P">P. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A+C">A. C. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+N">N. Khan</a>, <a href="/search/physics?searchtype=author&query=Klustov%C3%A1%2C+A">A. Klustov谩</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Nowak%2C+J">J. Nowak</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+P">P. Singh</a>, <a href="/search/physics?searchtype=author&query=Waldron%2C+A+V">A. V. Waldron</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">J. Walding</a>, <a href="/search/physics?searchtype=author&query=Warsame%2C+L">L. Warsame</a>, <a href="/search/physics?searchtype=author&query=Wascko%2C+M+O">M. O. Wascko</a>, <a href="/search/physics?searchtype=author&query=Xiotidis%2C+I">I. Xiotidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08822v1-abstract-short" style="display: inline;"> New neutrino-nucleus interaction cross-section measurements are required to improve nuclear models sufficiently for future long-baseline neutrino experiments to meet their sensitivity goals. A time projection chamber (TPC) filled with a high-pressure gas is a promising detector to characterise the neutrino sources planned for such experiments. A gas-filled TPC is ideal for measuring low-energy par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08822v1-abstract-full').style.display = 'inline'; document.getElementById('2305.08822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08822v1-abstract-full" style="display: none;"> New neutrino-nucleus interaction cross-section measurements are required to improve nuclear models sufficiently for future long-baseline neutrino experiments to meet their sensitivity goals. A time projection chamber (TPC) filled with a high-pressure gas is a promising detector to characterise the neutrino sources planned for such experiments. A gas-filled TPC is ideal for measuring low-energy particles as they travel much further in gas than solid or liquid neutrino detectors. Using a high-pressure gas increases the target density, resulting in more neutrino interactions. This paper will examine the suitability of multiwire proportional chambers (MWPCs) taken from the ALICE TPC to be used as the readout chambers of a high-pressure gas TPC. These chambers were previously operated at atmospheric pressure. We tested one such MWPC at up to almost 5 bar absolute (barA) with the UK high-pressure test stand at Royal Holloway, University of London. This paper reports the successful operation of an ALICE TPC outer readout chamber (OROC) at pressures up to 4.8 bar absolute with Ar-CH$_{4}$ mixtures with a CH$_{4}$ content between 2.8% and 5.0%, and so far up to 4 bar absolute with Ar-CO$_{2}$ (90-10). We measured the charge gain of this OROC using signals induced by an $^{55}$Fe source. The largest gain achieved at 4.8 bar was $64\pm2)\cdot10^{3}$ at stable conditions with an anode wire voltage of 2990 V in Ar-CH$_{4}$ (95.9-4.1). In Ar-CO$_{2}$ a gain of $(4.2\pm0.1)\cdot10^{3}$ was observed at an anode voltage of 2975 V at 4 barA gas pressure. Based on all our gain measurements, we extrapolate that, at the 10 barA pressure necessary to fit 1 tonne of gas into the ALICE TPC volume, a gain of 5000 in Ar-CO$_{2}$ (90-10) (10000 in Ar-CH$_{4}$ with $\sim\!$ 4% CH$_{4}$ content) may be achieved with an OROC anode voltage of 4.2 V ($\sim\!$ 3.1 kV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08822v1-abstract-full').style.display = 'none'; document.getElementById('2305.08822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14639">arXiv:2302.14639</a> <span> [<a href="https://arxiv.org/pdf/2302.14639">pdf</a>, <a href="https://arxiv.org/format/2302.14639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11678-6">10.1140/epjc/s10052-023-11678-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Measurement of the Specific Activity of $^{39}$Ar in Atmospheric Argon with the DEAP-3600 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Baldwin%2C+M">M. Baldwin</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Burghardt%2C+P+M">P. M. Burghardt</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14639v2-abstract-short" style="display: inline;"> The specific activity of the beta decay of $^{39}$Ar in atmospheric argon is measured using the DEAP-3600 detector. DEAP-3600, located 2 km underground at SNOLAB, uses a total of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere to search for dark matter. This detector with very low background uses pulseshape discrimination to differentiate between nuclear recoils and electron recoi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14639v2-abstract-full').style.display = 'inline'; document.getElementById('2302.14639v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14639v2-abstract-full" style="display: none;"> The specific activity of the beta decay of $^{39}$Ar in atmospheric argon is measured using the DEAP-3600 detector. DEAP-3600, located 2 km underground at SNOLAB, uses a total of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere to search for dark matter. This detector with very low background uses pulseshape discrimination to differentiate between nuclear recoils and electron recoils and is well-suited to measure the decay of $^{39}$Ar. With 167 live-days of data, the measured specific activity at the time of atmospheric extraction is [0.964 $\pm$ 0.001 (stat) $\pm$ 0.024 (sys)] Bq/kg$_{\rm atmAr}$ which is consistent with results from other experiments. A cross-check analysis using different event selection criteria provides a consistent result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14639v2-abstract-full').style.display = 'none'; document.getElementById('2302.14639v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 642 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01177">arXiv:2209.01177</a> <span> [<a href="https://arxiv.org/pdf/2209.01177">pdf</a>, <a href="https://arxiv.org/format/2209.01177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.112006">10.1103/PhysRevD.107.112006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Berzin%2C+E">E. Berzin</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a> , et al. (274 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01177v2-abstract-short" style="display: inline;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01177v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01177v2-abstract-full" style="display: none;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c$^2$ considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'none'; document.getElementById('2209.01177v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 112006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11441">arXiv:2206.11441</a> <span> [<a href="https://arxiv.org/pdf/2206.11441">pdf</a>, <a href="https://arxiv.org/format/2206.11441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2022.3159175">10.1109/TNS.2022.3159175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contextual Isotope Ranking Criteria for Peak Identification in Gamma Spectroscopy Using a Large Database </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">Alexis Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Bertou%2C+X">Xavier Bertou</a>, <a href="/search/physics?searchtype=author&query=Canet%2C+C">Carles Canet</a>, <a href="/search/physics?searchtype=author&query=Cruz-P%C3%A9rez%2C+M+A">Miguel A. Cruz-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">Alexander Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">Adriana Dias</a>, <a href="/search/physics?searchtype=author&query=D%27Olivo%2C+J+C">Juan Carlos D'Olivo</a>, <a href="/search/physics?searchtype=author&query=Favela-P%C3%A9rez%2C+J+F">J. Francisco Favela-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%A9s%2C+E+A">Estela A. Garc茅s</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+A+G">Adiv Gonz谩lez Mu帽oz</a>, <a href="/search/physics?searchtype=author&query=Guerra-Pulido%2C+J+O">Jaime Octavio Guerra-Pulido</a>, <a href="/search/physics?searchtype=author&query=Mancera-Alejandrez%2C+J">Javier Mancera-Alejandrez</a>, <a href="/search/physics?searchtype=author&query=Mar%C3%ADn-L%C3%A1mbarri%2C+D+J">Daniel Jos茅 Mar铆n-L谩mbarri</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez-Montero%2C+M">Mauricio Mart铆nez-Montero</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Paling%2C+S">Sean Paling</a>, <a href="/search/physics?searchtype=author&query=Peeters%2C+S">Simon Peeters</a>, <a href="/search/physics?searchtype=author&query=Scovell%2C+P+R">Paul R. Scovell</a>, <a href="/search/physics?searchtype=author&query=T%C3%BCrkoglu%2C+C">Cenk T眉rkoglu</a>, <a href="/search/physics?searchtype=author&query=V%C3%A1zquez-J%C3%A1uregui%2C+E">Eric V谩zquez-J谩uregui</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">Joseph Walding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11441v1-abstract-short" style="display: inline;"> Isotope identification is a recurrent problem in gamma spectroscopy with high purity germanium detectors. In this work, new strategies are introduced to facilitate this type of analysis. Five criteria are used to identify the parent isotopes making a query on a large database of gamma-lines from a multitude of isotopes producing an output list whose entries are sorted so that the gamma-lines with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11441v1-abstract-full').style.display = 'inline'; document.getElementById('2206.11441v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11441v1-abstract-full" style="display: none;"> Isotope identification is a recurrent problem in gamma spectroscopy with high purity germanium detectors. In this work, new strategies are introduced to facilitate this type of analysis. Five criteria are used to identify the parent isotopes making a query on a large database of gamma-lines from a multitude of isotopes producing an output list whose entries are sorted so that the gamma-lines with the highest chance of being present in a sample are placed at the top. A metric to evaluate the performance of the different criteria is introduced and used to compare them. Two of the criteria are found to be superior than the others: one based on fuzzy logic, and another that makes use of the gamma relative emission probabilities. A program called histoGe implements these criteria using a SQLite database containing the gamma-lines of isotopes which was parsed from WWW Table of Radioactive Isotopes. histoGe is Free Software and is provided along with the database so they can be used to analyze spectra obtained with generic gamma-ray detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11441v1-abstract-full').style.display = 'none'; document.getElementById('2206.11441v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 tables, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Nuclear Science, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04147">arXiv:2205.04147</a> <span> [<a href="https://arxiv.org/pdf/2205.04147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s13201-022-01669-5">10.1007/s13201-022-01669-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Volume reduction of water samples to increase sensitivity for radioassay of lead contamination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">A. Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Canet%2C+C">C. Canet</a>, <a href="/search/physics?searchtype=author&query=Cruz-P%C3%A9rez%2C+M+A">M. A. Cruz-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">A. Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">A. Dias</a>, <a href="/search/physics?searchtype=author&query=D%27Olivo%2C+J+C">J. C. D'Olivo</a>, <a href="/search/physics?searchtype=author&query=Favela-P%C3%A9rez%2C+F">F. Favela-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%A9s%2C+E+A">E. A. Garc茅s</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+A+G">A. Gonz谩lez Mu帽oz</a>, <a href="/search/physics?searchtype=author&query=Guerra-Pulido%2C+J+O">J. O. Guerra-Pulido</a>, <a href="/search/physics?searchtype=author&query=Mancera-Alejandrez%2C+J">J. Mancera-Alejandrez</a>, <a href="/search/physics?searchtype=author&query=Mar%C3%ADn-L%C3%A1mbarri%2C+D+J">D. J. Mar铆n-L谩mbarri</a>, <a href="/search/physics?searchtype=author&query=Montero%2C+M+M">M. Martinez Montero</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J+R">J. R. Monroe</a>, <a href="/search/physics?searchtype=author&query=Paling%2C+S">S. Paling</a>, <a href="/search/physics?searchtype=author&query=Peeters%2C+S+J+M">S. J. M. Peeters</a>, <a href="/search/physics?searchtype=author&query=Scovell%2C+P+R">P. R. Scovell</a>, <a href="/search/physics?searchtype=author&query=T%C3%BCrko%C4%9Flu%2C+C">C. T眉rko臒lu</a>, <a href="/search/physics?searchtype=author&query=V%C3%A1zquez-J%C3%A1uregui%2C+E">E. V谩zquez-J谩uregui</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">J. Walding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04147v1-abstract-short" style="display: inline;"> The World Health Organisation (WHO) presents an upper limit for lead in drinking water of 10 parts per billion ppb. Typically, to reach this level of sensitivity, expensive metrology is required. To increase the sensitivity of low cost devices, this paper explores the prospects of using a volume reduction technique of a boiled water sample doped with Lead-210 ($^{210}Pb$), as a means to increase t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04147v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04147v1-abstract-full" style="display: none;"> The World Health Organisation (WHO) presents an upper limit for lead in drinking water of 10 parts per billion ppb. Typically, to reach this level of sensitivity, expensive metrology is required. To increase the sensitivity of low cost devices, this paper explores the prospects of using a volume reduction technique of a boiled water sample doped with Lead-210 ($^{210}Pb$), as a means to increase the solute's concentration. $^{210}$Pb is a radioactive lead isotope and its concentration in a water sample can be measured with e.g. High Purity Germanium (HPGe) detectors at the Boulby Underground Germanium Suite. Concentrations close to the WHO limit have not been examined. This paper presents a measurement of the volume reduction technique retaining $99\pm(9)\%$ of $^{210}$Pb starting from a concentration of $1.9\times10^{-6}$ ppb before reduction and resulting in $2.63\times10^{-4}$ ppb after reduction. This work also applies the volume reduction technique to London tap water and reports the radioassay results from gamma counting in HPGe detectors. Among other radio-isotopes, $^{40}$K, $^{210}$Pb, $^{131}$I and $^{177}$Lu were identified at measured concentrations of $2.83\times10^{3}$ ppb, $2.55\times10^{-7}$ ppb, $5.06\times10^{-10}$ ppb and $5.84\times10^{-10}$ ppb in the London tap water sample. This technique retained $90\pm50\%$ of $^{40}$K. Stable lead was inferred from the same water sample at a measured concentration of 0.012 ppb, prior to reduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04147v1-abstract-full').style.display = 'none'; document.getElementById('2205.04147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03348">arXiv:2201.03348</a> <span> [<a href="https://arxiv.org/pdf/2201.03348">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> PlomBOX -- development of a low-cost CMOS device for environmental monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">A. Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Posse%2C+E+A">E. Alba Posse</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+M">M. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Arnaldi%2C+H">H. Arnaldi</a>, <a href="/search/physics?searchtype=author&query=Asorey%2C+H">H. Asorey</a>, <a href="/search/physics?searchtype=author&query=Bertou%2C+X">X. Bertou</a>, <a href="/search/physics?searchtype=author&query=Colque%2C+A">A. Colque</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">A. Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">A. Dias</a>, <a href="/search/physics?searchtype=author&query=D%27Olivo%2C+J+C">J. C. D'Olivo</a>, <a href="/search/physics?searchtype=author&query=Favela-P%C3%A9rez%2C+F">F. Favela-P茅rez</a>, <a href="/search/physics?searchtype=author&query=G%C3%A1ndola%2C+Y">Y. G谩ndola</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%A9s%2C+E+A">E. A. Garc茅s</a>, <a href="/search/physics?searchtype=author&query=Gasulla%2C+J">J. Gasulla</a>, <a href="/search/physics?searchtype=author&query=Berisso%2C+M+G">M. G贸mez Berisso</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+A+G">A. Gonz谩lez Mu帽oz</a>, <a href="/search/physics?searchtype=author&query=Guerra-Pulido%2C+J+O">J. O. Guerra-Pulido</a>, <a href="/search/physics?searchtype=author&query=Gutierrez%2C+S">S. Gutierrez</a>, <a href="/search/physics?searchtype=author&query=Jois%2C+S">S. Jois</a>, <a href="/search/physics?searchtype=author&query=Lipovetzky%2C+J">J. Lipovetzky</a>, <a href="/search/physics?searchtype=author&query=Lovera%2C+J">J. Lovera</a>, <a href="/search/physics?searchtype=author&query=Lovino%2C+M+B">M. B. Lovino</a>, <a href="/search/physics?searchtype=author&query=Mar%C3%ADn-L%C3%A1mbarri%2C+D+J">D. J. Mar铆n-L谩mbarri</a>, <a href="/search/physics?searchtype=author&query=Marpegan%2C+L">L. Marpegan</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADn%2C+D">D. Mart铆n</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03348v1-abstract-short" style="display: inline;"> This paper reports on the development of a novel CMOS device employing lead-sensing bacteria to assay lead in drinking water. The objective of the PlomBOX project is to develop a low-cost sensor (拢10) which can expedite access to on-demand assay methods and thus help mitigate lead intake through contaminated drinking water. The project follows three development paths: a) Certain bacteria can fluor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03348v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03348v1-abstract-full" style="display: none;"> This paper reports on the development of a novel CMOS device employing lead-sensing bacteria to assay lead in drinking water. The objective of the PlomBOX project is to develop a low-cost sensor (拢10) which can expedite access to on-demand assay methods and thus help mitigate lead intake through contaminated drinking water. The project follows three development paths: a) Certain bacteria can fluoresce or change colour when in the presence of lead. A genetically modified strain of Escherichia coli sensitive to lead concentrations up to 10 ppb is being developed. This constitutes the biosensor that fluoresces in proportion to the presence of lead. b) Bacteria response is imaged using a microprocessor (ESP32) with a camera module. This constitutes the optical metrology component of the PlomBOX. c) Data acquisition and control of the PlomBOX is achieved through a Bluetooth connection with the PlomApp, a custom-developed mobile phone application. Data are sent from the PlomApp to a database where a bespoke automated analysis software provides a result of the lead concentration in a sample of water. This paper reports on the instrumentation challenges of developing the electronics for the PlomBOX and on the first prototype. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03348v1-abstract-full').style.display = 'none'; document.getElementById('2201.03348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13753">arXiv:2107.13753</a> <span> [<a href="https://arxiv.org/pdf/2107.13753">pdf</a>, <a href="https://arxiv.org/format/2107.13753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterisation of SiPM Photon Emission in the Dark </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=McLaughlin%2C+J+B">J. B. McLaughlin</a>, <a href="/search/physics?searchtype=author&query=Gallina%2C+G">G. Gallina</a>, <a href="/search/physics?searchtype=author&query=Reti%C3%A8re%2C+F">F. Reti猫re</a>, <a href="/search/physics?searchtype=author&query=Croix%2C+A+D+S">A. De St. Croix</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Mahtab%2C+M">M. Mahtab</a>, <a href="/search/physics?searchtype=author&query=Margetak%2C+P">P. Margetak</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+L">L. Martin</a>, <a href="/search/physics?searchtype=author&query=Massacret%2C+N">N. Massacret</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Patel%2C+M">M. Patel</a>, <a href="/search/physics?searchtype=author&query=Raymond%2C+K">K. Raymond</a>, <a href="/search/physics?searchtype=author&query=Roiseux%2C+J">J. Roiseux</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+L">L. Xie</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">G. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13753v3-abstract-short" style="display: inline;"> In this paper, we report on the photon emission of Silicon Photomultipliers (SiPMs) from avalanche pulses generated in dark condition, with the main objective of better understanding the associated systematics for next-generation, large area, SiPM-based physics experiments. A new apparatus for spectral and imaging analysis was developed at TRIUMF and used to measure the light emitted by the two Si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13753v3-abstract-full').style.display = 'inline'; document.getElementById('2107.13753v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13753v3-abstract-full" style="display: none;"> In this paper, we report on the photon emission of Silicon Photomultipliers (SiPMs) from avalanche pulses generated in dark condition, with the main objective of better understanding the associated systematics for next-generation, large area, SiPM-based physics experiments. A new apparatus for spectral and imaging analysis was developed at TRIUMF and used to measure the light emitted by the two SiPMs considered as photo-sensor candidates for the nEXO neutrinoless double-beta decay experiment: one Fondazione Bruno Kessler (FBK) VUV-HD Low Field (LF) Low After Pulse (Low AP) (VUV-HD3) SiPM, and one Hamamatsu Photonics K.K. (HPK) VUV4 Multi-Pixel Photon Counter (MPPC). Spectral measurements of their light emission were taken with varying over-voltage in the wavelength range of 450--1020\,nm. For the FBK VUV-HD3, at an over-voltage of $12.1\pm1.0$\,V, we measure a secondary photon yield (number of photons ($纬$) emitted per charge carrier ($e^{-}$)) of $(4.04\pm0.02)\times 10^{-6}$ $纬/e^{-}$. The emission spectrum of the FBK VUV-HD3 contains an interference pattern consistent with thin-film interference. Additionally, emission microscopy images (EMMIs) of the FBK VUV-HD3 show a small number of highly localized regions with increased light intensity (hotspots) randomly distributed over the SiPM surface area. For the HPK VUV4 MPPC, at an over-voltage of $10.7\pm1.0$\,V, we measure a secondary photon yield of $(8.71\pm0.04)\times 10^{-6}$ $纬/e^{-}$. In contrast to the FBK VUV-HD3, the emission spectra of the HPK VUV4 don't show an interference pattern -- most likely due to a thinner surface coating. EMMIs of the HPK VUV4 also reveal a larger number of hotspots compared to the FBK VUV-HD3, especially in one of the corners of the device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13753v3-abstract-full').style.display = 'none'; document.getElementById('2107.13753v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12202">arXiv:2103.12202</a> <span> [<a href="https://arxiv.org/pdf/2103.12202">pdf</a>, <a href="https://arxiv.org/format/2103.12202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09514-w">10.1140/epjc/s10052-021-09514-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulseshape discrimination against low-energy Ar-39 beta decays in liquid argon with 4.5 tonne-years of DEAP-3600 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Burghardt%2C+P+M">P. M. Burghardt</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Corning%2C+J+M">J. M. Corning</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12202v2-abstract-short" style="display: inline;"> The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12202v2-abstract-full').style.display = 'inline'; document.getElementById('2103.12202v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12202v2-abstract-full" style="display: none;"> The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the charge of a single photoelectron, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulseshape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12202v2-abstract-full').style.display = 'none'; document.getElementById('2103.12202v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 823 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06643">arXiv:2102.06643</a> <span> [<a href="https://arxiv.org/pdf/2102.06643">pdf</a>, <a href="https://arxiv.org/format/2102.06643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A High Pressure Time Projection Chamber with Optical Readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deisting%2C+A">Alexander Deisting</a>, <a href="/search/physics?searchtype=author&query=Waldron%2C+A+V">Abigail Victoria Waldron</a>, <a href="/search/physics?searchtype=author&query=Atkin%2C+E">Edward Atkin</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G">Gary Barker</a>, <a href="/search/physics?searchtype=author&query=Basharina-Freshville%2C+A">Anastasia Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+C">Christopher Betancourt</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S">Steven Boyd</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">Dominic Brailsford</a>, <a href="/search/physics?searchtype=author&query=Chen-Wishart%2C+Z">Zachary Chen-Wishart</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+L">Linda Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">Adriana Dias</a>, <a href="/search/physics?searchtype=author&query=Dunne%2C+P">Patrick Dunne</a>, <a href="/search/physics?searchtype=author&query=Haigh%2C+J">Jennifer Haigh</a>, <a href="/search/physics?searchtype=author&query=Hamacher-Baumann%2C+P">Philip Hamacher-Baumann</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+S">Sebastian Jones</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">Asher Kaboth</a>, <a href="/search/physics?searchtype=author&query=Korzenev%2C+A">Alexander Korzenev</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">William Ma</a>, <a href="/search/physics?searchtype=author&query=Mermod%2C+P">Philippe Mermod</a>, <a href="/search/physics?searchtype=author&query=Mironova%2C+M">Maria Mironova</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Nichol%2C+R">Ryan Nichol</a>, <a href="/search/physics?searchtype=author&query=Nonnenmacher%2C+T">Toby Nonnenmacher</a>, <a href="/search/physics?searchtype=author&query=Nowak%2C+J">Jaroslaw Nowak</a>, <a href="/search/physics?searchtype=author&query=Parker%2C+W">William Parker</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06643v2-abstract-short" style="display: inline;"> Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06643v2-abstract-full').style.display = 'inline'; document.getElementById('2102.06643v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06643v2-abstract-full" style="display: none;"> Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06643v2-abstract-full').style.display = 'none'; document.getElementById('2102.06643v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08686">arXiv:2101.08686</a> <span> [<a href="https://arxiv.org/pdf/2101.08686">pdf</a>, <a href="https://arxiv.org/format/2101.08686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09121-9">10.1140/epjc/s10052-021-09121-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating $^{39}$Ar from $^{40}$Ar by cryogenic distillation with Aria for dark matter searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DarkSide+Collaboration"> DarkSide Collaboration</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a> , et al. (287 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08686v2-abstract-short" style="display: inline;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08686v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08686v2-abstract-full" style="display: none;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $尾$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'none'; document.getElementById('2101.08686v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 81 (2021) 4, 359 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07819">arXiv:2011.07819</a> <span> [<a href="https://arxiv.org/pdf/2011.07819">pdf</a>, <a href="https://arxiv.org/format/2011.07819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/03/043">10.1088/1475-7516/2021/03/043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Buccino%2C+G">G. Buccino</a> , et al. (251 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07819v2-abstract-short" style="display: inline;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and AR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07819v2-abstract-full" style="display: none;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and ARGO, respectively. Thanks to the low-energy threshold of $\sim$0.5~keV$_{nr}$ achievable by exploiting the ionization channel, DarkSide-20k and ARGO have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M$_{\odot}$ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'none'; document.getElementById('2011.07819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 03 (2021) 043 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11757">arXiv:2009.11757</a> <span> [<a href="https://arxiv.org/pdf/2009.11757">pdf</a>, <a href="https://arxiv.org/format/2009.11757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/11/P11014">10.1088/1748-0221/15/11/P11014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Germanium Detectors for the First Underground Laboratory in Mexico </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">A. Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Alvarado-Mijangos%2C+S">S. Alvarado-Mijangos</a>, <a href="/search/physics?searchtype=author&query=Bertou%2C+X">X. Bertou</a>, <a href="/search/physics?searchtype=author&query=Canet%2C+C">C. Canet</a>, <a href="/search/physics?searchtype=author&query=Cruz-P%C3%A9rez%2C+M+A">M. A. Cruz-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">A. Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">A. Dias</a>, <a href="/search/physics?searchtype=author&query=D%27Olivo%2C+J+C">J. C. D'Olivo</a>, <a href="/search/physics?searchtype=author&query=Favela-P%C3%A9rez%2C+F">F. Favela-P茅rez</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%A9s%2C+E+A">E. A. Garc茅s</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+A+G">A. Gonz谩lez Mu帽oz</a>, <a href="/search/physics?searchtype=author&query=Guerra-Pulido%2C+J+O">J. O. Guerra-Pulido</a>, <a href="/search/physics?searchtype=author&query=Mancera-Alejandrez%2C+J">J. Mancera-Alejandrez</a>, <a href="/search/physics?searchtype=author&query=Mar%C3%ADn-L%C3%A1mbarri%2C+D+J">D. J. Mar铆n-L谩mbarri</a>, <a href="/search/physics?searchtype=author&query=Montero%2C+M+M">M. Mart铆nez Montero</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Ortega-Hern%C3%A1ndez%2C+C+I">C. Iv谩n Ortega-Hern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Paling%2C+S">S. Paling</a>, <a href="/search/physics?searchtype=author&query=Peeters%2C+S">S. Peeters</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez%2C+D+R+E">D. Ru铆z Esparza Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Scovell%2C+P+R">P. R. Scovell</a>, <a href="/search/physics?searchtype=author&query=T%C3%BCrko%C4%9Flu%2C+C">C. T眉rko臒lu</a>, <a href="/search/physics?searchtype=author&query=V%C3%A1zquez-J%C3%A1uregui%2C+E">E. V谩zquez-J谩uregui</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">J. Walding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11757v1-abstract-short" style="display: inline;"> This article reports the characterization of two High Purity Germanium detectors performed by extracting and comparing their efficiencies using experimental data and Monte Carlo simulations. The efficiencies were calculated for pointlike $纬$-ray sources as well as for extended calibration sources. Characteristics of the detectors such as energy linearity, energy resolution, and full energy peak ef… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11757v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11757v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11757v1-abstract-full" style="display: none;"> This article reports the characterization of two High Purity Germanium detectors performed by extracting and comparing their efficiencies using experimental data and Monte Carlo simulations. The efficiencies were calculated for pointlike $纬$-ray sources as well as for extended calibration sources. Characteristics of the detectors such as energy linearity, energy resolution, and full energy peak efficiencies are reported from measurements performed on surface laboratories. The detectors will be deployed in a $纬$-ray assay facility that will be located in the first underground laboratory in Mexico, Laboratorio Subterr谩neo de Mineral del Chico (LABChico), in the Comarca Minera UNESCO Global Geopark <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11757v1-abstract-full').style.display = 'none'; document.getElementById('2009.11757v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11227">arXiv:2009.11227</a> <span> [<a href="https://arxiv.org/pdf/2009.11227">pdf</a>, <a href="https://arxiv.org/format/2009.11227">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dosimetry and calorimetry performance of a scientific CMOS camera for environmental monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">Alexis Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Bertou%2C+X">Xavier Bertou</a>, <a href="/search/physics?searchtype=author&query=Canet%2C+C">Carles Canet</a>, <a href="/search/physics?searchtype=author&query=Cruz-Perez%2C+M+A">Miguel Angel Cruz-Perez</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">Alexander Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">Adriana Dias</a>, <a href="/search/physics?searchtype=author&query=D%27Olivo%2C+J+C">Juan Carlos D'Olivo</a>, <a href="/search/physics?searchtype=author&query=Favela-Perez%2C+F">Francisco Favela-Perez</a>, <a href="/search/physics?searchtype=author&query=Garces%2C+E+A">Estela A. Garces</a>, <a href="/search/physics?searchtype=author&query=Munoz%2C+A+G">Adiv Gonzalez Munoz</a>, <a href="/search/physics?searchtype=author&query=Guerra-Pulido%2C+J+O">Jaime Octavio Guerra-Pulido</a>, <a href="/search/physics?searchtype=author&query=Mancera-Alejandrez%2C+J">Javier Mancera-Alejandrez</a>, <a href="/search/physics?searchtype=author&query=Marin-Lambarri%2C+D+J">Daniel Jose Marin-Lambarri</a>, <a href="/search/physics?searchtype=author&query=Montero%2C+M+M">Mauricio Martinez Montero</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Paling%2C+S">Sean Paling</a>, <a href="/search/physics?searchtype=author&query=Peeters%2C+S+J+M">Simon J. M. Peeters</a>, <a href="/search/physics?searchtype=author&query=Scovell%2C+P">Paul Scovell</a>, <a href="/search/physics?searchtype=author&query=Turkoglu%2C+C">Cenk Turkoglu</a>, <a href="/search/physics?searchtype=author&query=Vazquez-Jauregui%2C+E">Eric Vazquez-Jauregui</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">Joseph Walding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11227v1-abstract-short" style="display: inline;"> This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g. Lead-210, producing $纬$-emissions with energies ranging from 10 keV to several 100 keV when they decay; this range is detectable in silicon sensors. In this paper we test a CMOS camera (Oxford Instruments Neo 5.5) for its general performance a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11227v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11227v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11227v1-abstract-full" style="display: none;"> This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g. Lead-210, producing $纬$-emissions with energies ranging from 10 keV to several 100 keV when they decay; this range is detectable in silicon sensors. In this paper we test a CMOS camera (Oxford Instruments Neo 5.5) for its general performance as a detector of x-rays and low energy $纬$-rays and assess its sensitivity relative to the World Health Organization upper limit on lead in drinking water. Energies from 6 keV to 60 keV are examined. The CMOS camera has a linear energy response over this range and its energy resolution is for the most part slightly better than 2 %. The Neo sCMOS is not sensitive to x-rays with energies below $\sim\!\!10 keV$. The smallest detectable rate is 40$\pm$3 mHz, corresponding to an incident activity on the chip of 7$\pm$4 Bq. The estimation of the incident activity sensitivity from the detected activity relies on geometric acceptance and the measured efficiency vs. energy. We report the efficiency measurement, which is 0.08$\pm$0.02 % (0.0011$\pm$0.0002 %) at 26.3 keV (59.5 keV). Taking calorimetric information into account we measure a minimal detectable rate of 4$\pm$1 mHz (1.5$\pm$0.1 mHz) for 26.3 keV (59.5 keV) $纬$-rays, which corresponds to an incident activity of 1.0$\pm$0.6 Bq (57$\pm$33 Bq). Toy Monte Carlo and Geant4 simulations agree with these results. These results show this CMOS sensor is well-suited as a $纬$- and x-ray detector with sensitivity at the few to 100 ppb level for Lead-210 in a sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11227v1-abstract-full').style.display = 'none'; document.getElementById('2009.11227v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.15609">arXiv:2007.15609</a> <span> [<a href="https://arxiv.org/pdf/2007.15609">pdf</a>, <a href="https://arxiv.org/format/2007.15609">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/instruments4030021">10.3390/instruments4030021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+S+B">S. B. Jones</a>, <a href="/search/physics?searchtype=author&query=Nonnenmacher%2C+T+S">T. S. Nonnenmacher</a>, <a href="/search/physics?searchtype=author&query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+C">C. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S+B">S. B. Boyd</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Chen-Wishart%2C+Z">Z. Chen-Wishart</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+L">L. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Deisting%2C+A">A. Deisting</a>, <a href="/search/physics?searchtype=author&query=Dias%2C+A">A. Dias</a>, <a href="/search/physics?searchtype=author&query=Dunne%2C+P">P. Dunne</a>, <a href="/search/physics?searchtype=author&query=Haigh%2C+J">J. Haigh</a>, <a href="/search/physics?searchtype=author&query=Hamacher-Baumann%2C+P">P. Hamacher-Baumann</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Korzenev%2C+A">A. Korzenev</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">W. Ma</a>, <a href="/search/physics?searchtype=author&query=Mermod%2C+P">P. Mermod</a>, <a href="/search/physics?searchtype=author&query=Mironova%2C+M">M. Mironova</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Nichol%2C+R">R. Nichol</a>, <a href="/search/physics?searchtype=author&query=Nowak%2C+J">J. Nowak</a>, <a href="/search/physics?searchtype=author&query=Parker%2C+W">W. Parker</a>, <a href="/search/physics?searchtype=author&query=Ritchie-Yates%2C+H">H. Ritchie-Yates</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.15609v1-abstract-short" style="display: inline;"> We present studies of proton fluxes in the T10 beamline at CERN. A prototype high pressure gas time projection chamber (TPC) was exposed to the beam of protons and other particles, using the 0.8 GeV/c momentum setting in T10, in order to make cross section measurements of low energy protons in argon. To explore the energy region comparable to hadrons produced by GeV-scale neutrino interactions at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15609v1-abstract-full').style.display = 'inline'; document.getElementById('2007.15609v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.15609v1-abstract-full" style="display: none;"> We present studies of proton fluxes in the T10 beamline at CERN. A prototype high pressure gas time projection chamber (TPC) was exposed to the beam of protons and other particles, using the 0.8 GeV/c momentum setting in T10, in order to make cross section measurements of low energy protons in argon. To explore the energy region comparable to hadrons produced by GeV-scale neutrino interactions at oscillation experiments, i.e., near 0.1 GeV of kinetic energy, methods of moderating the T10 beam were employed: the dual technique of moderating the beam with acrylic blocks and measuring scattered protons off the beam axis was used to decrease the kinetic energy of incident protons, as well as change the proton/minimum ionising particle (MIP) composition of the incident flux. Measurements of the beam properties were made using time of flight systems upstream and downstream of the TPC. The kinetic energy of protons reaching the TPC was successfully changed from $\sim0.3$ GeV without moderator blocks to less than 0.1 GeV with four moderator blocks (40 cm path length). The flux of both protons and MIPs off the beam axis was increased. The ratio of protons to MIPs vary as a function of the off-axis angle allowing for possible optimisation of the detector to select the type of required particles. Simulation informed by the time of flight measurements show that with four moderator blocks placed in the beamline, ($5.6 \pm 0.1$) protons with energies below 0.1 GeV per spill traversed the active TPC region. Measurements of the beam composition and energy are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15609v1-abstract-full').style.display = 'none'; document.getElementById('2007.15609v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Instruments (2020), 4, 21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02024">arXiv:2004.02024</a> <span> [<a href="https://arxiv.org/pdf/2004.02024">pdf</a>, <a href="https://arxiv.org/format/2004.02024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08801-2">10.1140/epjc/s10052-020-08801-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DarkSide+collaboration"> The DarkSide collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Abdelhakim%2C+S">S. Abdelhakim</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Asunskis%2C+A">A. Asunskis</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Barbaryan%2C+V">V. Barbaryan</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02024v2-abstract-short" style="display: inline;"> Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The "standard" EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02024v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02024v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02024v2-abstract-full" style="display: none;"> Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The "standard" EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms ("neutral bremsstrahlung", NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02024v2-abstract-full').style.display = 'none'; document.getElementById('2004.02024v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2021) 81: 153 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09855">arXiv:2001.09855</a> <span> [<a href="https://arxiv.org/pdf/2001.09855">pdf</a>, <a href="https://arxiv.org/format/2001.09855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7789-x">10.1140/epjc/s10052-020-7789-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The liquid-argon scintillation pulseshape in DEAP-3600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+collaboration"> The DEAP collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+G+R+A+M">G. R. Araujoand M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Corning%2C+J+M">J. M. Corning</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+S+J+D+K">S. J. Daughertyand K. Dering</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+F+A+D+a">F. A. Duncan andM. Dunford</a>, <a href="/search/physics?searchtype=author&query=Erlandson%2C+A">A. Erlandson</a>, <a href="/search/physics?searchtype=author&query=Fatemighomi%2C+N">N. Fatemighomi</a>, <a href="/search/physics?searchtype=author&query=Fiorillo%2C+G">G. Fiorillo</a>, <a href="/search/physics?searchtype=author&query=Flower%2C+A">A. Flower</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+R+J">R. J. Ford</a>, <a href="/search/physics?searchtype=author&query=Gagnon%2C+R">R. Gagnon</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09855v2-abstract-short" style="display: inline;"> DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09855v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09855v2-abstract-full" style="display: none;"> DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of a) LAr scintillation physics, including the so-called intermediate component, b) the time response of the TPB wavelength shifter, including delayed TPB emission at $\mathcal O$(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10\% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09855v2-abstract-full').style.display = 'none'; document.getElementById('2001.09855v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 303 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08106">arXiv:2001.08106</a> <span> [<a href="https://arxiv.org/pdf/2001.08106">pdf</a>, <a href="https://arxiv.org/format/2001.08106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/P02024">10.1088/1748-0221/15/02/P02024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DarkSide+Collaboration"> The DarkSide Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Abdelhakim%2C+S">S. Abdelhakim</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Asunskis%2C+A">A. Asunskis</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a> , et al. (306 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08106v1-abstract-short" style="display: inline;"> Large liquid argon detectors offer one of the best avenues for the detection of galactic weakly interacting massive particles (WIMPs) via their scattering on atomic nuclei. The liquid argon target allows exquisite discrimination between nuclear and electron recoil signals via pulse-shape discrimination of the scintillation signals. Atmospheric argon (AAr), however, has a naturally occurring radioa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08106v1-abstract-full').style.display = 'inline'; document.getElementById('2001.08106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08106v1-abstract-full" style="display: none;"> Large liquid argon detectors offer one of the best avenues for the detection of galactic weakly interacting massive particles (WIMPs) via their scattering on atomic nuclei. The liquid argon target allows exquisite discrimination between nuclear and electron recoil signals via pulse-shape discrimination of the scintillation signals. Atmospheric argon (AAr), however, has a naturally occurring radioactive isotope, $^{39}$Ar, a $尾$ emitter of cosmogenic origin. For large detectors, the atmospheric $^{39}$Ar activity poses pile-up concerns. The use of argon extracted from underground wells, deprived of $^{39}$Ar, is key to the physics potential of these experiments. The DarkSide-20k dark matter search experiment will operate a dual-phase time projection chamber with 50 tonnes of radio-pure underground argon (UAr), that was shown to be depleted of $^{39}$Ar with respect to AAr by a factor larger than 1400. Assessing the $^{39}$Ar content of the UAr during extraction is crucial for the success of DarkSide-20k, as well as for future experiments of the Global Argon Dark Matter Collaboration (GADMC). This will be carried out by the DArT in ArDM experiment, a small chamber made with extremely radio-pure materials that will be placed at the centre of the ArDM detector, in the Canfranc Underground Laboratory (LSC) in Spain. The ArDM LAr volume acts as an active veto for background radioactivity, mostly $纬$-rays from the ArDM detector materials and the surrounding rock. This article describes the DArT in ArDM project, including the chamber design and construction, and reviews the background required to achieve the expected performance of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08106v1-abstract-full').style.display = 'none'; document.getElementById('2001.08106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. Corresponding author: E. S谩nchez Garc铆a</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06706">arXiv:1903.06706</a> <span> [<a href="https://arxiv.org/pdf/1903.06706">pdf</a>, <a href="https://arxiv.org/format/1903.06706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12867-2">10.1140/epja/i2019-12867-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triplet Lifetime in Gaseous Argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akashi-Ronquest%2C+M">Michael Akashi-Ronquest</a>, <a href="/search/physics?searchtype=author&query=Bacon%2C+A">Amanda Bacon</a>, <a href="/search/physics?searchtype=author&query=Benson%2C+C">Christopher Benson</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+K">Kolahal Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">Thomas Caldwell</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">Joseph A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Gastler%2C+D">Dan Gastler</a>, <a href="/search/physics?searchtype=author&query=Grado-White%2C+B">Brianna Grado-White</a>, <a href="/search/physics?searchtype=author&query=Griego%2C+J">Jeff Griego</a>, <a href="/search/physics?searchtype=author&query=Gold%2C+M">Michael Gold</a>, <a href="/search/physics?searchtype=author&query=Hime%2C+A">Andrew Hime</a>, <a href="/search/physics?searchtype=author&query=Jackson%2C+C+M">Christopher M. Jackson</a>, <a href="/search/physics?searchtype=author&query=Jaditz%2C+S">Stephen Jaditz</a>, <a href="/search/physics?searchtype=author&query=Kachulis%2C+C">Chris Kachulis</a>, <a href="/search/physics?searchtype=author&query=Kearns%2C+E">Edward Kearns</a>, <a href="/search/physics?searchtype=author&query=Klein%2C+J+R">Joshua R. Klein</a>, <a href="/search/physics?searchtype=author&query=Ledesma%2C+A">Antonio Ledesma</a>, <a href="/search/physics?searchtype=author&query=Linden%2C+S">Steve Linden</a>, <a href="/search/physics?searchtype=author&query=Lopez%2C+F">Frank Lopez</a>, <a href="/search/physics?searchtype=author&query=MacMullin%2C+S">Sean MacMullin</a>, <a href="/search/physics?searchtype=author&query=Mastbaum%2C+A">Andrew Mastbaum</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Nikkel%2C+J">James Nikkel</a>, <a href="/search/physics?searchtype=author&query=Oertel%2C+J">John Oertel</a>, <a href="/search/physics?searchtype=author&query=Gann%2C+G+D+O">Gabriel D. Orebi Gann</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06706v2-abstract-short" style="display: inline;"> MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas ($<$140 K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of 3.480 $\pm$ 0.001 (stat.) $\pm$ 0.064 (sys.) $渭$s was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06706v2-abstract-full').style.display = 'inline'; document.getElementById('1903.06706v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06706v2-abstract-full" style="display: none;"> MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas ($<$140 K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of 3.480 $\pm$ 0.001 (stat.) $\pm$ 0.064 (sys.) $渭$s was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever reported. The effect of quenching of separate components of the scintillation light is also investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06706v2-abstract-full').style.display = 'none'; document.getElementById('1903.06706v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04163">arXiv:1805.04163</a> <span> [<a href="https://arxiv.org/pdf/1805.04163">pdf</a>, <a href="https://arxiv.org/format/1805.04163">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Hyper-Kamiokande Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Proto-Collaboration%2C+H">Hyper-Kamiokande Proto-Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">Ke. Abe</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Aimi%2C+A">A. Aimi</a>, <a href="/search/physics?searchtype=author&query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&query=Aushev%2C+V">V. Aushev</a>, <a href="/search/physics?searchtype=author&query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&query=Berry%2C+T">T. Berry</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=Bravo-Bergu%C3%B1o%2C+D">D. Bravo-Bergu帽o</a>, <a href="/search/physics?searchtype=author&query=Blaszczyk%2C+F+d+M">F. d. M. Blaszczyk</a> , et al. (291 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04163v2-abstract-short" style="display: inline;"> On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04163v2-abstract-full').style.display = 'inline'; document.getElementById('1805.04163v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04163v2-abstract-full" style="display: none;"> On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04163v2-abstract-full').style.display = 'none'; document.getElementById('1805.04163v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">325 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06724">arXiv:1710.06724</a> <span> [<a href="https://arxiv.org/pdf/1710.06724">pdf</a>, <a href="https://arxiv.org/format/1710.06724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms15989">10.1038/ncomms15989 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the hidden interior of the Earth with directional neutrino measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Leyton%2C+M">Michael Leyton</a>, <a href="/search/physics?searchtype=author&query=Dye%2C+S">Stephen Dye</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06724v2-abstract-short" style="display: inline;"> Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06724v2-abstract-full').style.display = 'inline'; document.getElementById('1710.06724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06724v2-abstract-full" style="display: none;"> Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06724v2-abstract-full').style.display = 'none'; document.getElementById('1710.06724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 8:15989 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08145">arXiv:1707.08145</a> <span> [<a href="https://arxiv.org/pdf/1707.08145">pdf</a>, <a href="https://arxiv.org/format/1707.08145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjp/i2018-11973-4">10.1140/epjp/i2018-11973-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+I+B">A. I. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bertoldo%2C+E">E. Bertoldo</a>, <a href="/search/physics?searchtype=author&query=Bettarini%2C+S">S. Bettarini</a>, <a href="/search/physics?searchtype=author&query=Bisogni%2C+M+G">M. G. Bisogni</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonfini%2C+G">G. Bonfini</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bossa%2C+M">M. Bossa</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a> , et al. (260 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08145v1-abstract-short" style="display: inline;"> Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08145v1-abstract-full').style.display = 'inline'; document.getElementById('1707.08145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08145v1-abstract-full" style="display: none;"> Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominant $^{39}$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $\gt3\times10^9$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $谓$-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ. This will give sensitivity to WIMP-nucleon cross sections of $1.2\times10^{-47}$ cm$^2$ ($1.1\times10^{-46}$ cm$^2$) for WIMPs of $1$ TeV$/c^2$ ($10$ TeV$/c^2$) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background. DarkSide-20k could then extend its operation to a decade, increasing the exposure to 200 t yr, reaching a sensitivity of $7.4\times10^{-48}$ cm$^2$ ($6.9\times10^{-47}$ cm$^2$) for WIMPs of $1$ TeV$/c^2$ ($10$ TeV$/c^2$) mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08145v1-abstract-full').style.display = 'none'; document.getElementById('1707.08145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17-298-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Aalseth, C.E., Acerbi, F., Agnes, P. et al. Eur. Phys. J. Plus (2018) 133: 131 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10183">arXiv:1705.10183</a> <span> [<a href="https://arxiv.org/pdf/1705.10183">pdf</a>, <a href="https://arxiv.org/format/1705.10183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.12.058">10.1016/j.nima.2018.12.058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bishop%2C+D">D. Bishop</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Boorman%2C+G">G. Boorman</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bromwich%2C+T">T. Bromwich</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+S">S. Chan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chouinard%2C+R">R. Chouinard</a>, <a href="/search/physics?searchtype=author&query=Churchwell%2C+S">S. Churchwell</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Cranshaw%2C+D">D. Cranshaw</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Dittmeier%2C+S">S. Dittmeier</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Erlandson%2C+A">A. Erlandson</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10183v3-abstract-short" style="display: inline;"> The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detaile… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10183v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10183v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10183v3-abstract-full" style="display: none;"> The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10183v3-abstract-full').style.display = 'none'; document.getElementById('1705.10183v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 922, 373-384 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.07028">arXiv:1705.07028</a> <span> [<a href="https://arxiv.org/pdf/1705.07028">pdf</a>, <a href="https://arxiv.org/format/1705.07028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/09/P09030">10.1088/1748-0221/12/09/P09030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cryogenic Characterization of FBK RGB-HD SiPMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Ampudia%2C+P">P. Ampudia</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bertoldo%2C+E">E. Bertoldo</a>, <a href="/search/physics?searchtype=author&query=Bettarini%2C+S">S. Bettarini</a>, <a href="/search/physics?searchtype=author&query=Bisogni%2C+M+G">M. G. Bisogni</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonfini%2C+G">G. Bonfini</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bossa%2C+M">M. Bossa</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Bunker%2C+R">R. Bunker</a> , et al. (246 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.07028v3-abstract-short" style="display: inline;"> We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, the correlated noise, and the gain of the SiPMs at varying temperatures. A custom-made data acquisitio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07028v3-abstract-full').style.display = 'inline'; document.getElementById('1705.07028v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.07028v3-abstract-full" style="display: none;"> We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, the correlated noise, and the gain of the SiPMs at varying temperatures. A custom-made data acquisition system and analysis software were used to precisely characterize these parameters. We demonstrate that FBK RGB-HD SiPMs with low quenching resistance (RGB-HD-LR$_q$) can be operated from 40 K to 300 K with gains in the range $10^5$ to $10^6$ and noise rates on the order of a few Hz/mm$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.07028v3-abstract-full').style.display = 'none'; document.getElementById('1705.07028v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05965">arXiv:1705.05965</a> <span> [<a href="https://arxiv.org/pdf/1705.05965">pdf</a>, <a href="https://arxiv.org/format/1705.05965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.122002">10.1103/PhysRevD.95.122002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the directional sensitivity of DMTPC detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deaconu%2C+C">Cosmin Deaconu</a>, <a href="/search/physics?searchtype=author&query=Leyton%2C+M">Michael Leyton</a>, <a href="/search/physics?searchtype=author&query=Corliss%2C+R">Ross Corliss</a>, <a href="/search/physics?searchtype=author&query=Druitt%2C+G">Gabriela Druitt</a>, <a href="/search/physics?searchtype=author&query=Eggleston%2C+R">Richard Eggleston</a>, <a href="/search/physics?searchtype=author&query=Guerrero%2C+N">Natalia Guerrero</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+S">Shawn Henderson</a>, <a href="/search/physics?searchtype=author&query=Lopez%2C+J">Jeremy Lopez</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">Peter Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05965v2-abstract-short" style="display: inline;"> The Dark Matter Time Projection Chamber (DMTPC) is a direction-sensitive detector designed to measure the direction of recoiling $^{19}$F and $^{12}$C nuclei in low-pressure CF$_4$ gas using optical and charge readout systems. In this paper, we employ measurements from two DMTPC detectors, with operating pressures of 30-60 torr, to develop and validate a model of the directional response and perfo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05965v2-abstract-full').style.display = 'inline'; document.getElementById('1705.05965v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05965v2-abstract-full" style="display: none;"> The Dark Matter Time Projection Chamber (DMTPC) is a direction-sensitive detector designed to measure the direction of recoiling $^{19}$F and $^{12}$C nuclei in low-pressure CF$_4$ gas using optical and charge readout systems. In this paper, we employ measurements from two DMTPC detectors, with operating pressures of 30-60 torr, to develop and validate a model of the directional response and performance of such detectors as a function of recoil energy. Using our model as a benchmark, we formulate the necessary specifications for a scalable directional detector with sensitivity comparable to that of current-generation counting (non-directional) experiments, which measure only recoil energy. Assuming the performance of existing DMTPC detectors, as well as current limits on the spin-dependent WIMP-nucleus cross section, we find that a 10-20 kg scale direction-sensitive detector is capable of correlating the measured direction of nuclear recoils with the predicted direction of incident dark matter particles and providing decisive (3$蟽$) confirmation that a candidate signal from a non-directional experiment was indeed induced by elastic scattering of dark matter particles off of target nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05965v2-abstract-full').style.display = 'none'; document.getElementById('1705.05965v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures. Accepted for publication in Phys. Rev. D. Added color figures, switched to more compact layout, and fixed some references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 122002 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00696">arXiv:1705.00696</a> <span> [<a href="https://arxiv.org/pdf/1705.00696">pdf</a>, <a href="https://arxiv.org/ps/1705.00696">ps</a>, <a href="https://arxiv.org/format/1705.00696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.092005">10.1103/PhysRevD.96.092005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SNO+Collaboration"> SNO Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aharmim%2C+B">B. Aharmim</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+N">S. N. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+A+E">A. E. Anthony</a>, <a href="/search/physics?searchtype=author&query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&query=Bellerive%2C+A">A. Bellerive</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&query=Boudjemline%2C+K">K. Boudjemline</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+Y+D">Y. D. Chan</a>, <a href="/search/physics?searchtype=author&query=Chauhan%2C+D">D. Chauhan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Cox%2C+G+A">G. A. Cox</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">H. Deng</a>, <a href="/search/physics?searchtype=author&query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/physics?searchtype=author&query=Doe%2C+P+J">P. J. Doe</a>, <a href="/search/physics?searchtype=author&query=Doucas%2C+G">G. Doucas</a>, <a href="/search/physics?searchtype=author&query=Drouin%2C+P+-">P. -L. Drouin</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00696v1-abstract-short" style="display: inline;"> Tests on $B-L$ symmetry breaking models are important probes to search for new physics. One proposed model with $螖(B-L)=2$ involves the oscillations of a neutron to an antineutron. In this paper a new limit on this process is derived for the data acquired from all three operational phases of the Sudbury Neutrino Observatory experiment. The search was concentrated in oscillations occurring within t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00696v1-abstract-full').style.display = 'inline'; document.getElementById('1705.00696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00696v1-abstract-full" style="display: none;"> Tests on $B-L$ symmetry breaking models are important probes to search for new physics. One proposed model with $螖(B-L)=2$ involves the oscillations of a neutron to an antineutron. In this paper a new limit on this process is derived for the data acquired from all three operational phases of the Sudbury Neutrino Observatory experiment. The search was concentrated in oscillations occurring within the deuteron, and 23 events are observed against a background expectation of 30.5 events. These translate to a lower limit on the nuclear lifetime of $1.48\times 10^{31}$ years at 90% confidence level (CL) when no restriction is placed on the signal likelihood space (unbounded). Alternatively, a lower limit on the nuclear lifetime was found to be $1.18\times 10^{31}$ years at 90% CL when the signal was forced into a positive likelihood space (bounded). Values for the free oscillation time derived from various models are also provided in this article. This is the first search for neutron-antineutron oscillation with the deuteron as a target. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00696v1-abstract-full').style.display = 'none'; document.getElementById('1705.00696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 092005 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06204">arXiv:1703.06204</a> <span> [<a href="https://arxiv.org/pdf/1703.06204">pdf</a>, <a href="https://arxiv.org/ps/1703.06204">ps</a>, <a href="https://arxiv.org/format/1703.06204">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.08.035">10.1016/j.nima.2017.08.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A method for characterizing after-pulsing and dark noise of PMTs and SiPMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Retiere%2C+F">F. Retiere</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+B">B. Smith</a>, <a href="/search/physics?searchtype=author&query=Walding%2C+J">J. Walding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06204v2-abstract-short" style="display: inline;"> Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06204v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06204v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06204v2-abstract-full" style="display: none;"> Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method allows for a model-independent measurement of the after-pulsing timing distribution and dark noise rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06204v2-abstract-full').style.display = 'none'; document.getElementById('1703.06204v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Nucl. Instr. Meth. A. 11 pages, 8 figures. Added application of method to SiPM data in new version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06118">arXiv:1611.06118</a> <span> [<a href="https://arxiv.org/pdf/1611.06118">pdf</a>, <a href="https://arxiv.org/format/1611.06118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/pty044">10.1093/ptep/pty044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics Potentials with the Second Hyper-Kamiokande Detector in Korea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=proto-collaboration%2C+H">Hyper-Kamiokande proto-collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">Ke. Abe</a>, <a href="/search/physics?searchtype=author&query=Ahn%2C+S+H">S. H. Ahn</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Aimi%2C+A">A. Aimi</a>, <a href="/search/physics?searchtype=author&query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&query=Aushev%2C+V">V. Aushev</a>, <a href="/search/physics?searchtype=author&query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&query=Berry%2C+T">T. Berry</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=no%2C+D+B">D. Bravo-Bergu no</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06118v3-abstract-short" style="display: inline;"> Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{\textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later stage. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are sev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06118v3-abstract-full').style.display = 'inline'; document.getElementById('1611.06118v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06118v3-abstract-full" style="display: none;"> Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{\textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later stage. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are several candidate sites in Korea with baselines of 1,000$\sim$1,300~km and OAAs of 1$^{\textrm{o}}$$\sim$3$^{\textrm{o}}$. We conducted sensitivity studies on neutrino oscillation physics for a second detector, either in Japan (JD $\times$ 2) or Korea (JD + KD) and compared the results with a single detector in Japan. Leptonic CP violation sensitivity is improved especially when the CP is non-maximally violated. The larger matter effect at Korean candidate sites significantly enhances sensitivities to non-standard interactions of neutrinos and mass ordering determination. Current studies indicate the best sensitivity is obtained at Mt. Bisul (1,088~km baseline, $1.3^\circ$ OAA). Thanks to a larger (1,000~m) overburden than the first detector site, clear improvements to sensitivities for solar and supernova relic neutrino searches are expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06118v3-abstract-full').style.display = 'none'; document.getElementById('1611.06118v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">102 pages, 49 figures. Accepted by PTEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02396">arXiv:1610.02396</a> <span> [<a href="https://arxiv.org/pdf/1610.02396">pdf</a>, <a href="https://arxiv.org/format/1610.02396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2016.10.001">10.1016/j.physrep.2016.10.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Readout technologies for directional WIMP Dark Matter detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Battat%2C+J+B+R">J. B. R. Battat</a>, <a href="/search/physics?searchtype=author&query=Irastorza%2C+I+G">I. G. Irastorza</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Guler%2C+M+A">M. Ali Guler</a>, <a href="/search/physics?searchtype=author&query=Asada%2C+T">T. Asada</a>, <a href="/search/physics?searchtype=author&query=Baracchini%2C+E">E. Baracchini</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bosson%2C+G">G. Bosson</a>, <a href="/search/physics?searchtype=author&query=Bourrion%2C+O">O. Bourrion</a>, <a href="/search/physics?searchtype=author&query=Bouvier%2C+J">J. Bouvier</a>, <a href="/search/physics?searchtype=author&query=Buonaura%2C+A">A. Buonaura</a>, <a href="/search/physics?searchtype=author&query=Burdge%2C+K">K. Burdge</a>, <a href="/search/physics?searchtype=author&query=Cebrian%2C+S">S. Cebrian</a>, <a href="/search/physics?searchtype=author&query=Colas%2C+P">P. Colas</a>, <a href="/search/physics?searchtype=author&query=Consiglio%2C+L">L. Consiglio</a>, <a href="/search/physics?searchtype=author&query=Dafni%2C+T">T. Dafni</a>, <a href="/search/physics?searchtype=author&query=D%27Ambrosio%2C+N">N. D'Ambrosio</a>, <a href="/search/physics?searchtype=author&query=Deaconu%2C+C">C. Deaconu</a>, <a href="/search/physics?searchtype=author&query=De+Lellis%2C+G">G. De Lellis</a>, <a href="/search/physics?searchtype=author&query=Descombes%2C+T">T. Descombes</a>, <a href="/search/physics?searchtype=author&query=Di+Crescenzo%2C+A">A. Di Crescenzo</a>, <a href="/search/physics?searchtype=author&query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&query=Druitt%2C+G">G. Druitt</a>, <a href="/search/physics?searchtype=author&query=Eggleston%2C+R">R. Eggleston</a>, <a href="/search/physics?searchtype=author&query=Ferrer-Ribas%2C+E">E. Ferrer-Ribas</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02396v1-abstract-short" style="display: inline;"> The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02396v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02396v1-abstract-full" style="display: none;"> The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02396v1-abstract-full').style.display = 'none'; document.getElementById('1610.02396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, 26 figures, accepted by Physics Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports 662 (2016) pp. 1-46 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08114">arXiv:1606.08114</a> <span> [<a href="https://arxiv.org/pdf/1606.08114">pdf</a>, <a href="https://arxiv.org/format/1606.08114">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> TITUS: the Tokai Intermediate Tank for the Unoscillated Spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Barbato%2C+F+C+T">F. C. T. Barbato</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G">G. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Berry%2C+T">T. Berry</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&query=Cafagna%2C+F+S">F. S. Cafagna</a>, <a href="/search/physics?searchtype=author&query=Cartwright%2C+S">S. Cartwright</a>, <a href="/search/physics?searchtype=author&query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&query=Checchia%2C+C">C. Checchia</a>, <a href="/search/physics?searchtype=author&query=Cole%2C+A">A. Cole</a>, <a href="/search/physics?searchtype=author&query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&query=Cowan%2C+G+A">G. A. Cowan</a>, <a href="/search/physics?searchtype=author&query=Davenne%2C+T">T. Davenne</a>, <a href="/search/physics?searchtype=author&query=Dealtry%2C+T">T. Dealtry</a>, <a href="/search/physics?searchtype=author&query=Densham%2C+C">C. Densham</a>, <a href="/search/physics?searchtype=author&query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&query=Di+Lodovico%2C+F">F. Di Lodovico</a>, <a href="/search/physics?searchtype=author&query=Drakopoulou%2C+E">E. Drakopoulou</a>, <a href="/search/physics?searchtype=author&query=Dunne%2C+P">P. Dunne</a>, <a href="/search/physics?searchtype=author&query=Finch%2C+A">A. Finch</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08114v2-abstract-short" style="display: inline;"> The TITUS, Tokai Intermediate Tank for Unoscillated Spectrum, detector, is a proposed Gd-doped Water Cherenkov tank with a magnetised muon range detector downstream. It is located at J-PARC at about 2 km from the neutrino target and it is proposed as a potential near detector for the Hyper-Kamiokande experiment. Assuming a beam power of 1.3 MW and 27.05 x 10^{21} protons-on-target the sensitivity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08114v2-abstract-full').style.display = 'inline'; document.getElementById('1606.08114v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08114v2-abstract-full" style="display: none;"> The TITUS, Tokai Intermediate Tank for Unoscillated Spectrum, detector, is a proposed Gd-doped Water Cherenkov tank with a magnetised muon range detector downstream. It is located at J-PARC at about 2 km from the neutrino target and it is proposed as a potential near detector for the Hyper-Kamiokande experiment. Assuming a beam power of 1.3 MW and 27.05 x 10^{21} protons-on-target the sensitivity to CP and mixing parameters achieved by Hyper-Kamiokande with TITUS as a near detector is presented. Also, the potential of the detector for cross sections and Standard Model parameter determination, supernova neutrino and dark matter are shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08114v2-abstract-full').style.display = 'none'; document.getElementById('1606.08114v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">70 pages, 41 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.03781">arXiv:1602.03781</a> <span> [<a href="https://arxiv.org/pdf/1602.03781">pdf</a>, <a href="https://arxiv.org/ps/1602.03781">ps</a>, <a href="https://arxiv.org/format/1602.03781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2016.02.007">10.1016/j.physrep.2016.02.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A review of the discovery reach of directional Dark Matter detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mayet%2C+F">F. Mayet</a>, <a href="/search/physics?searchtype=author&query=Green%2C+A+M">A. M. Green</a>, <a href="/search/physics?searchtype=author&query=Battat%2C+J+B+R">J. B. R. Battat</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bozorgnia%2C+N">N. Bozorgnia</a>, <a href="/search/physics?searchtype=author&query=Gelmini%2C+G+B">G. B. Gelmini</a>, <a href="/search/physics?searchtype=author&query=Gondolo%2C+P">P. Gondolo</a>, <a href="/search/physics?searchtype=author&query=Kavanagh%2C+B+J">B. J. Kavanagh</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+K">S. K. Lee</a>, <a href="/search/physics?searchtype=author&query=Loomba%2C+D">D. Loomba</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+B">B. Morgan</a>, <a href="/search/physics?searchtype=author&query=O%27Hare%2C+C+A+J">C. A. J. O'Hare</a>, <a href="/search/physics?searchtype=author&query=Peter%2C+A+H+G">A. H. G. Peter</a>, <a href="/search/physics?searchtype=author&query=Phan%2C+N+S">N. S. Phan</a>, <a href="/search/physics?searchtype=author&query=Vahsen%2C+S+E">S. E. Vahsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.03781v2-abstract-short" style="display: inline;"> Cosmological observations indicate that most of the matter in the Universe is Dark Matter. Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs) can be detected directly, via its elastic scattering off target nuclei. Most current direct detection experiments only measure the energy of the recoiling nuclei. However, directional detection experiments are sensitive to the direction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03781v2-abstract-full').style.display = 'inline'; document.getElementById('1602.03781v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.03781v2-abstract-full" style="display: none;"> Cosmological observations indicate that most of the matter in the Universe is Dark Matter. Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs) can be detected directly, via its elastic scattering off target nuclei. Most current direct detection experiments only measure the energy of the recoiling nuclei. However, directional detection experiments are sensitive to the direction of the nuclear recoil as well. Due to the Sun's motion with respect to the Galactic rest frame, the directional recoil rate has a dipole feature, peaking around the direction of the Solar motion. This provides a powerful tool for demonstrating the Galactic origin of nuclear recoils and hence unambiguously detecting Dark Matter. Furthermore, the directional recoil distribution depends on the WIMP mass, scattering cross section and local velocity distribution. Therefore, with a large number of recoil events it will be possible to study the physics of Dark Matter in terms of particle and astrophysical properties. We review the potential of directional detectors for detecting and characterizing WIMPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03781v2-abstract-full').style.display = 'none'; document.getElementById('1602.03781v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 23 figures, to appear in Physics Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports 627 (2016) 1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04213">arXiv:1502.04213</a> <span> [<a href="https://arxiv.org/pdf/1502.04213">pdf</a>, <a href="https://arxiv.org/format/1502.04213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Grace%2C+E">Emily Grace</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">Alistair Butcher</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Nikkel%2C+J+A">James A. Nikkel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04213v4-abstract-short" style="display: inline;"> Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors.The index of refraction of liquid argon at the scin- tillation wavelength has not been measured, and current Rayleigh scattering length ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04213v4-abstract-full').style.display = 'inline'; document.getElementById('1502.04213v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04213v4-abstract-full" style="display: none;"> Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors.The index of refraction of liquid argon at the scin- tillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04213v4-abstract-full').style.display = 'none'; document.getElementById('1502.04213v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4673">arXiv:1412.4673</a> <span> [<a href="https://arxiv.org/pdf/1412.4673">pdf</a>, <a href="https://arxiv.org/format/1412.4673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Group%2C+H+W">Hyper-Kamiokande Working Group</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">T. Ariga</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Askins%2C+M">M. Askins</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&query=Ballett%2C+P">P. Ballett</a>, <a href="/search/physics?searchtype=author&query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Berry%2C+T">T. Berry</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=Blaszczyk%2C+F+d+M">F. d. M. Blaszczyk</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bolognesi%2C+S">S. Bolognesi</a> , et al. (224 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4673v2-abstract-short" style="display: inline;"> Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4673v2-abstract-full').style.display = 'inline'; document.getElementById('1412.4673v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4673v2-abstract-full" style="display: none;"> Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW $\times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56\times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the $CP$ phase $未_{CP}$ can be determined to better than 19 degrees for all possible values of $未_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3\,蟽$ ($5\,蟽$) for $76%$ ($58%$) of the $未_{CP}$ parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4673v2-abstract-full').style.display = 'none'; document.getElementById('1412.4673v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7673">arXiv:1410.7673</a> <span> [<a href="https://arxiv.org/pdf/1410.7673">pdf</a>, <a href="https://arxiv.org/format/1410.7673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysbps.2015.09.048">10.1016/j.nuclphysbps.2015.09.048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DEAP-3600 Dark Matter Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chouinard%2C+R">R. Chouinard</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=DiGioseffo%2C+J">J. DiGioseffo</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F">F. Duncan</a>, <a href="/search/physics?searchtype=author&query=Flower%2C+T">T. Flower</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+R">R. Ford</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Gorel%2C+P">P. Gorel</a>, <a href="/search/physics?searchtype=author&query=Graham%2C+K">K. Graham</a>, <a href="/search/physics?searchtype=author&query=Grant%2C+D+R">D. R. Grant</a>, <a href="/search/physics?searchtype=author&query=Guliyev%2C+E">E. Guliyev</a>, <a href="/search/physics?searchtype=author&query=Hallin%2C+A+L">A. L. Hallin</a>, <a href="/search/physics?searchtype=author&query=Hamstra%2C+M">M. Hamstra</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7673v2-abstract-short" style="display: inline;"> The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $尾$/$纬$ backgrounds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7673v2-abstract-full').style.display = 'inline'; document.getElementById('1410.7673v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7673v2-abstract-full" style="display: none;"> The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $尾$/$纬$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $伪$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7673v2-abstract-full').style.display = 'none'; document.getElementById('1410.7673v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">International Conference on High Energy Physics (ICHEP 2014), Valencia, 2014</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear and Particle Physics Proceedings 273-275 (2016) 340-346 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.1914">arXiv:1408.1914</a> <span> [<a href="https://arxiv.org/pdf/1408.1914">pdf</a>, <a href="https://arxiv.org/format/1408.1914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2014.12.006">10.1016/j.astropartphys.2014.12.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akashi-Ronquest%2C+M">M. Akashi-Ronquest</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bodmer%2C+M">M. Bodmer</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Buck%2C+B">B. Buck</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">T. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Coakley%2C+K">K. Coakley</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Gagnon%2C+R">R. Gagnon</a>, <a href="/search/physics?searchtype=author&query=Gastler%2C+D">D. Gastler</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+F">F. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gold%2C+M">M. Gold</a>, <a href="/search/physics?searchtype=author&query=Golovko%2C+V+V">V. V. Golovko</a>, <a href="/search/physics?searchtype=author&query=Gorel%2C+P">P. Gorel</a>, <a href="/search/physics?searchtype=author&query=Graham%2C+K">K. Graham</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.1914v2-abstract-short" style="display: inline;"> Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1914v2-abstract-full').style.display = 'inline'; document.getElementById('1408.1914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.1914v2-abstract-full" style="display: none;"> Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1914v2-abstract-full').style.display = 'none'; document.getElementById('1408.1914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.4842">arXiv:1403.4842</a> <span> [<a href="https://arxiv.org/pdf/1403.4842">pdf</a>, <a href="https://arxiv.org/format/1403.4842">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Update on the MiniCLEAN Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rielage%2C+K">K. Rielage</a>, <a href="/search/physics?searchtype=author&query=Akashi-Ronquest%2C+M">M. Akashi-Ronquest</a>, <a href="/search/physics?searchtype=author&query=Bodmer%2C+M">M. Bodmer</a>, <a href="/search/physics?searchtype=author&query=Bourque%2C+R">R. Bourque</a>, <a href="/search/physics?searchtype=author&query=Buck%2C+B">B. Buck</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">T. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Coakley%2C+K">K. Coakley</a>, <a href="/search/physics?searchtype=author&query=Flores%2C+E">E. Flores</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Gastler%2C+D">D. Gastler</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+F">F. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gold%2C+M">M. Gold</a>, <a href="/search/physics?searchtype=author&query=Grace%2C+E">E. Grace</a>, <a href="/search/physics?searchtype=author&query=Griego%2C+J">J. Griego</a>, <a href="/search/physics?searchtype=author&query=Guerrero%2C+N">N. Guerrero</a>, <a href="/search/physics?searchtype=author&query=Guiseppe%2C+V">V. Guiseppe</a>, <a href="/search/physics?searchtype=author&query=Henning%2C+R">R. Henning</a>, <a href="/search/physics?searchtype=author&query=Hime%2C+A">A. Hime</a>, <a href="/search/physics?searchtype=author&query=Jaditz%2C+S">S. Jaditz</a>, <a href="/search/physics?searchtype=author&query=Kachulis%2C+C">C. Kachulis</a>, <a href="/search/physics?searchtype=author&query=Kearns%2C+E">E. Kearns</a>, <a href="/search/physics?searchtype=author&query=Kelsey%2C+J">J. Kelsey</a>, <a href="/search/physics?searchtype=author&query=Klein%2C+J+R">J. R. Klein</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.4842v1-abstract-short" style="display: inline;"> The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4842v1-abstract-full').style.display = 'inline'; document.getElementById('1403.4842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.4842v1-abstract-full" style="display: none;"> The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A$^{2}$ dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize the light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional $^{39}$Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4842v1-abstract-full').style.display = 'none'; document.getElementById('1403.4842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the TAUP 2013 Conference (F. Avignone & W. Haxton, editors, Physics Procedia, Elsevier)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-14-21626 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.1549">arXiv:1403.1549</a> <span> [<a href="https://arxiv.org/pdf/1403.1549">pdf</a>, <a href="https://arxiv.org/format/1403.1549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2015.01.028">10.1016/j.nima.2015.01.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design of the MiniCLEAN dark matter search veto detector subsystem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abruzzio%2C+R">Robert Abruzzio</a>, <a href="/search/physics?searchtype=author&query=Buck%2C+B">Benjamin Buck</a>, <a href="/search/physics?searchtype=author&query=Jaditz%2C+S">Stephen Jaditz</a>, <a href="/search/physics?searchtype=author&query=Kelsey%2C+J">James Kelsey</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a>, <a href="/search/physics?searchtype=author&query=Palladino%2C+K">Kimberyl Palladino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.1549v1-abstract-short" style="display: inline;"> This paper describes the design of the active muon veto subsystem for the MiniCLEAN dark matter direct detection experiment at SNOLAB in Sudbury, Ontario, Canada. The water-filled veto is instrumented with 48 PMTs which are read out by front end electronics to time multiplex 48 photomultiplier channels into 6 digitizer channels and provide an instantaneous hit sum across the subsystem (N-Hit) for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1549v1-abstract-full').style.display = 'inline'; document.getElementById('1403.1549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.1549v1-abstract-full" style="display: none;"> This paper describes the design of the active muon veto subsystem for the MiniCLEAN dark matter direct detection experiment at SNOLAB in Sudbury, Ontario, Canada. The water-filled veto is instrumented with 48 PMTs which are read out by front end electronics to time multiplex 48 photomultiplier channels into 6 digitizer channels and provide an instantaneous hit sum across the subsystem (N-Hit) for the veto trigger. We describe the primary system components: the PMTs, the support structure, the front-end electronics, and the data acquisition system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1549v1-abstract-full').style.display = 'none'; document.getElementById('1403.1549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.5685">arXiv:1301.5685</a> <span> [<a href="https://arxiv.org/pdf/1301.5685">pdf</a>, <a href="https://arxiv.org/ps/1301.5685">ps</a>, <a href="https://arxiv.org/format/1301.5685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2012.08.073">10.1016/j.nima.2012.08.073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Rejection in the DMTPC Dark Matter Search Using Charge Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lopez%2C+J+P">J. P. Lopez</a>, <a href="/search/physics?searchtype=author&query=Dujmic%2C+D">D. Dujmic</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Battat%2C+J+B+R">J. B. R. Battat</a>, <a href="/search/physics?searchtype=author&query=Deaconu%2C+C">C. Deaconu</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">P. Fisher</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/physics?searchtype=author&query=Inglis%2C+A">A. Inglis</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Sciolla%2C+G">G. Sciolla</a>, <a href="/search/physics?searchtype=author&query=Tomita%2C+H">H. Tomita</a>, <a href="/search/physics?searchtype=author&query=Wellenstein%2C+H">H. Wellenstein</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+R">R. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.5685v2-abstract-short" style="display: inline;"> The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low pressure gas TPC for detecting Weakly Interacting Massive Particle (WIMP)-nucleon interactions. Optical readout with CCD cameras allows for the detection of the daily modulation of the direction of the dark matter wind. In order to reach sensitivities required for WIMP detection, the detector needs to minimize backgr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5685v2-abstract-full').style.display = 'inline'; document.getElementById('1301.5685v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.5685v2-abstract-full" style="display: none;"> The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low pressure gas TPC for detecting Weakly Interacting Massive Particle (WIMP)-nucleon interactions. Optical readout with CCD cameras allows for the detection of the daily modulation of the direction of the dark matter wind. In order to reach sensitivities required for WIMP detection, the detector needs to minimize backgrounds from electron recoils. This paper demonstrates that a simplified CCD analysis achieves $7.3\times10^{-5}$ rejection of electron recoils while a charge analysis yields an electron rejection factor of $3.3\times10^{-4}$ for events with $^{241}$Am-equivalent ionization energy loss between 40 keV and 200 keV. A combined charge and CCD analysis yields a background-limited upper limit of $1.1\times10^{-5}$ (90% confidence level) for the rejection of $纬$ and electron events. Backgrounds from alpha decays from the field cage are eliminated by introducing a veto electrode that surrounds the sensitive region in the TPC. CCD-specific backgrounds are reduced more than two orders of magnitude when requiring a coincidence with the charge readout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5685v2-abstract-full').style.display = 'none'; document.getElementById('1301.5685v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures. Preprint accepted by NIM A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instr.Meth. A696 (2012), 121-128 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.0220">arXiv:1111.0220</a> <span> [<a href="https://arxiv.org/pdf/1111.0220">pdf</a>, <a href="https://arxiv.org/format/1111.0220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3700603">10.1063/1.3700603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Status and Prospects of the DMTPC Directional Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Monroe%2C+J">Jocelyn Monroe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.0220v1-abstract-short" style="display: inline;"> The DMTPC directional dark matter detection experiment is a low-pressure CF4 gas time projection chamber, instrumented with charge and scintillation photon readout. This detector design strategy emphasizes reconstruction of WIMP-induced nuclear recoil tracks, in order to determine the direction of incident dark matter particles. Directional detection has the potential to make the definitive observ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.0220v1-abstract-full').style.display = 'inline'; document.getElementById('1111.0220v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.0220v1-abstract-full" style="display: none;"> The DMTPC directional dark matter detection experiment is a low-pressure CF4 gas time projection chamber, instrumented with charge and scintillation photon readout. This detector design strategy emphasizes reconstruction of WIMP-induced nuclear recoil tracks, in order to determine the direction of incident dark matter particles. Directional detection has the potential to make the definitive observation of dark matter using the unique angular signature of the dark matter wind, which is distinct from all known backgrounds. This talk will briefly review the experimental technique and current status of DMTPC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.0220v1-abstract-full').style.display = 'none'; document.getElementById('1111.0220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.3501">arXiv:1109.3501</a> <span> [<a href="https://arxiv.org/pdf/1109.3501">pdf</a>, <a href="https://arxiv.org/ps/1109.3501">ps</a>, <a href="https://arxiv.org/format/1109.3501">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2012.08.073">10.1016/j.nima.2012.08.073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Rejection in the DMTPC Dark Matter Search Using Charge Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lopez%2C+J+P">J. P. Lopez</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Battat%2C+J">J. Battat</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">T. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chernicoff%2C+M">M. Chernicoff</a>, <a href="/search/physics?searchtype=author&query=Deaconu%2C+C">C. Deaconu</a>, <a href="/search/physics?searchtype=author&query=Dujmic%2C+D">D. Dujmic</a>, <a href="/search/physics?searchtype=author&query=Dushkin%2C+A">A. Dushkin</a>, <a href="/search/physics?searchtype=author&query=Fedus%2C+W">W. Fedus</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">P. Fisher</a>, <a href="/search/physics?searchtype=author&query=Golub%2C+F">F. Golub</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/physics?searchtype=author&query=Inglis%2C+A">A. Inglis</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Kohse%2C+G">G. Kohse</a>, <a href="/search/physics?searchtype=author&query=Kirsch%2C+L">L. Kirsch</a>, <a href="/search/physics?searchtype=author&query=Lanza%2C+R">R. Lanza</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+A">A. Lee</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Ouyang%2C+H">H. Ouyang</a>, <a href="/search/physics?searchtype=author&query=Sahin%2C+T">T. Sahin</a>, <a href="/search/physics?searchtype=author&query=Sciolla%2C+G">G. Sciolla</a>, <a href="/search/physics?searchtype=author&query=Skvorodnev%2C+N">N. Skvorodnev</a>, <a href="/search/physics?searchtype=author&query=Tomita%2C+H">H. Tomita</a>, <a href="/search/physics?searchtype=author&query=Wellenstein%2C+H">H. Wellenstein</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.3501v1-abstract-short" style="display: inline;"> The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3501v1-abstract-full').style.display = 'inline'; document.getElementById('1109.3501v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.3501v1-abstract-full" style="display: none;"> The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the $e^-$ rejection factor of $5.6\times10^{-6}$ for recoils with energies between 40 and 200 keV$_{\mathrm{ee}}$. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3501v1-abstract-full').style.display = 'none'; document.getElementById('1109.3501v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures. For proceedings of DPF 2011 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2573">arXiv:1104.2573</a> <span> [<a href="https://arxiv.org/pdf/1104.2573">pdf</a>, <a href="https://arxiv.org/ps/1104.2573">ps</a>, <a href="https://arxiv.org/format/1104.2573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/13/7/073006">10.1088/1367-2630/13/7/073006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">H. Deng</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Habib%2C+S">S. Habib</a>, <a href="/search/physics?searchtype=author&query=Hallin%2C+A+L">A. L. Hallin</a>, <a href="/search/physics?searchtype=author&query=Hime%2C+A">A. Hime</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+M">M. Huang</a>, <a href="/search/physics?searchtype=author&query=Kraus%2C+C">C. Kraus</a>, <a href="/search/physics?searchtype=author&query=Leslie%2C+H+R">H. R. Leslie</a>, <a href="/search/physics?searchtype=author&query=Loach%2C+J+C">J. C. Loach</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+R">R. Martin</a>, <a href="/search/physics?searchtype=author&query=McGee%2C+S">S. McGee</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+M+L">M. L. Miller</a>, <a href="/search/physics?searchtype=author&query=Monreal%2C+B">B. Monreal</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Oblath%2C+N+S">N. S. Oblath</a>, <a href="/search/physics?searchtype=author&query=Peeters%2C+S+J+M">S. J. M. Peeters</a>, <a href="/search/physics?searchtype=author&query=Poon%2C+A+W+P">A. W. P. Poon</a>, <a href="/search/physics?searchtype=author&query=Prior%2C+G">G. Prior</a>, <a href="/search/physics?searchtype=author&query=Rielage%2C+K">K. Rielage</a>, <a href="/search/physics?searchtype=author&query=Robertson%2C+R+G+H">R. G. H. Robertson</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+M+W+E">M. W. E. Smith</a>, <a href="/search/physics?searchtype=author&query=Stonehill%2C+L+C">L. C. Stonehill</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2573v1-abstract-short" style="display: inline;"> The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2573v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2573v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2573v1-abstract-full" style="display: none;"> The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNO's third-phase 8B solar-neutrino measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2573v1-abstract-full').style.display = 'none'; document.getElementById('1104.2573v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages; submitted to the New Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LANL Report #: LA-UR-11-10284 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.3910">arXiv:0906.3910</a> <span> [<a href="https://arxiv.org/pdf/0906.3910">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2009.06.102">10.1016/j.nima.2009.06.102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Background-Free Direction-Sensitive Neutron Detector2 A Background-Free Direction-Sensitive Neutron Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Roccaro%2C+A">Alvaro Roccaro</a>, <a href="/search/physics?searchtype=author&query=Tomita%2C+H">H. Tomita</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Avery%2C+D">D. Avery</a>, <a href="/search/physics?searchtype=author&query=Inglis%2C+A">A. Inglis</a>, <a href="/search/physics?searchtype=author&query=Battat%2C+J">J. Battat</a>, <a href="/search/physics?searchtype=author&query=Dujmic%2C+D">D. Dujmic</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">P. Fisher</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Kohse%2C+G">G. Kohse</a>, <a href="/search/physics?searchtype=author&query=Lanza%2C+R">R. Lanza</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Sciolla%2C+G">G. Sciolla</a>, <a href="/search/physics?searchtype=author&query=Skvorodnev%2C+N">N. Skvorodnev</a>, <a href="/search/physics?searchtype=author&query=Wellenstein%2C+H">H. Wellenstein</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+R">R. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.3910v1-abstract-short" style="display: inline;"> We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.3910v1-abstract-full').style.display = 'inline'; document.getElementById('0906.3910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.3910v1-abstract-full" style="display: none;"> We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to thermal neutrons, fission neutrons, and high energy neutrons, with detection features distinctive for each energy range. It is capable of determining the location of a source of fission neutrons based on characteristics of elastic scattering of neutrons by helium nuclei. The detector we have constructed could identify one gram of reactor grade plutonium, one meter away, with less than one minute of observation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.3910v1-abstract-full').style.display = 'none'; document.getElementById('0906.3910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, Accepted by NIM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.2549">arXiv:0905.2549</a> <span> [<a href="https://arxiv.org/pdf/0905.2549">pdf</a>, <a href="https://arxiv.org/format/0905.2549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Transport properties of electrons in CF4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">T. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Roccaro%2C+A">A. Roccaro</a>, <a href="/search/physics?searchtype=author&query=Sahin%2C+T">T. Sahin</a>, <a href="/search/physics?searchtype=author&query=Yegoryan%2C+H">H. Yegoryan</a>, <a href="/search/physics?searchtype=author&query=Dujmic%2C+D">D. Dujmic</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Battat%2C+J">J. Battat</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">P. Fisher</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Kohse%2C+G">G. Kohse</a>, <a href="/search/physics?searchtype=author&query=Lanza%2C+R">R. Lanza</a>, <a href="/search/physics?searchtype=author&query=Lopez%2C+J">J. Lopez</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Sciolla%2C+G">G. Sciolla</a>, <a href="/search/physics?searchtype=author&query=Skvorodnev%2C+N">N. Skvorodnev</a>, <a href="/search/physics?searchtype=author&query=Tomita%2C+H">H. Tomita</a>, <a href="/search/physics?searchtype=author&query=Vanderspek%2C+R">R. Vanderspek</a>, <a href="/search/physics?searchtype=author&query=Wellenstein%2C+H">H. Wellenstein</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+R">R. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.2549v1-abstract-short" style="display: inline;"> Carbon-tetrafluoride (CF4) is used as a counting gas in particle detectors, but some of its properties that are of interest for large time-projection chambers are not well known. We measure the mean energy, which is proportional to the diffusion coefficent, and the attentuation coefficient of electron propagation in CF4 gas using a 10-liter dark matter detector prototype of the DMTPC project. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.2549v1-abstract-full" style="display: none;"> Carbon-tetrafluoride (CF4) is used as a counting gas in particle detectors, but some of its properties that are of interest for large time-projection chambers are not well known. We measure the mean energy, which is proportional to the diffusion coefficent, and the attentuation coefficient of electron propagation in CF4 gas using a 10-liter dark matter detector prototype of the DMTPC project. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.2549v1-abstract-full').style.display = 'none'; document.getElementById('0905.2549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.2769">arXiv:0810.2769</a> <span> [<a href="https://arxiv.org/pdf/0810.2769">pdf</a>, <a href="https://arxiv.org/format/0810.2769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> DMTPC-10L: Direction-Sensitive Dark Matter Detector Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dujmic%2C+D">D. Dujmic</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+P">P. Fisher</a>, <a href="/search/physics?searchtype=author&query=Lanza%2C+R">R. Lanza</a>, <a href="/search/physics?searchtype=author&query=Lopez%2C+J">J. Lopez</a>, <a href="/search/physics?searchtype=author&query=Kaboth%2C+A">A. Kaboth</a>, <a href="/search/physics?searchtype=author&query=Kohse%2C+G">G. Kohse</a>, <a href="/search/physics?searchtype=author&query=Monroe%2C+J">J. Monroe</a>, <a href="/search/physics?searchtype=author&query=Vanderspek%2C+R">R. Vanderspek</a>, <a href="/search/physics?searchtype=author&query=Sciolla%2C+G">G. Sciolla</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+R">R. Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Otis%2C+K">K. Otis</a>, <a href="/search/physics?searchtype=author&query=Roccaro%2C+A">A. Roccaro</a>, <a href="/search/physics?searchtype=author&query=Tomita%2C+H">H. Tomita</a>, <a href="/search/physics?searchtype=author&query=Skvorodnev%2C+N">N. Skvorodnev</a>, <a href="/search/physics?searchtype=author&query=Wellenstein%2C+H">H. Wellenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.2769v1-abstract-short" style="display: inline;"> The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. We describe a prototype detector that is able to reconstruct direction vectors of weakly interacting massive particles that may the dominant constituent of the dark matter in our galaxy. The detector uses a low-density gas (CF4) in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.2769v1-abstract-full').style.display = 'inline'; document.getElementById('0810.2769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.2769v1-abstract-full" style="display: none;"> The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. We describe a prototype detector that is able to reconstruct direction vectors of weakly interacting massive particles that may the dominant constituent of the dark matter in our galaxy. The detector uses a low-density gas (CF4) in a 10liter time-projection chamber with mesh-based electrodes and optical and charge readout. Initial results confirm good performance in the reconstruction of direction angle and sense ('head-tail') for low-momentum nuclear recoils. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.2769v1-abstract-full').style.display = 'none'; document.getElementById('0810.2769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 34th International Conference on High Energy Physics, Philadelphia, 2008</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Monroe%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>