CINXE.COM
Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3 - Synthetic Biology and Engineering - Full-Text HTML - SCIEPublish
<!DOCTYPE html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="ie=edge" /> <title>Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3 - Synthetic Biology and Engineering - Full-Text HTML - SCIEPublish</title> <meta name="keywords" content="SCIE Publishing, SCIEPublish, open access, fast publication" /> <meta name="description" content="SCIEPublish is an international open-access journal publishing service provider run by SCIE Publishing Limited, dedicated to supporting and inspiring scientists or institutions/societies who aspire to publish high-quality journals." /> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0"> <meta name="title" content="Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3"> <link rel="image_src" href="https://www.sciepublish.com/uploads/2024/05/28/171687534826sk.jpg"> <meta name="dc.title" content="Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3"> <meta name="dc.creator" content="Moe Hagiwara"> <meta name="dc.creator" content="Chinatsu Maehara"> <meta name="dc.creator" content="Miho Takemura"> <meta name="dc.creator" content="Norihiko Misawa"> <meta name="dc.creator" content="Kazutoshi Shindo"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Synthetic Biology and Engineering 2023, Vol. 1, Page 10002"> <meta name="dc.date" content="2023-02-07"> <meta name="dc.identifier" content="10.35534/sbe.2023.10002"> <meta name="dc.publisher" content="SCIEPublish"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/4.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="Planococcus maritimus strain iso-3 was previously isolated from intertidal sediment in the North Sea and was found to produce a highly modified C30-carotenoid, methyl-5-glucosyl-5,6-dihydro-4,4’-diapolycopenoate, as the final product. In this study, we analyzed the function of the carotenoid terminal oxidase crtP (renamed cruO) and aldehyde dehydrogenase aldH genes in P. maritimus strain iso-3 and elucidated the carotenoid biosynthetic pathway for this strain at the gene level. We produced four novel C30-carotenoids with potent singlet oxygen-quenching activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic acid and its three intermediates, which were obtained using E. coli cells carrying the cruO (and aldH) gene(s) in addition to the known P. maritimus carotenogenic genes."> <meta name="dc.subject" content="C30-carotenoids"> <meta name="dc.subject" content="Marine bacterium"> <meta name="dc.subject" content="Planococcus"> <meta name="dc.subject" content="Diapolycopenoic acid"> <meta name="dc.subject" content="Singlet oxygen-quenching activity"> <meta name="prism.issn" content="2958-9053"> <meta name="prism.publicationName" content="Synthetic Biology and Engineering"> <meta name="prism.publicationDate" content="2023-02-07"> <meta name="prism.volume" content="1"> <meta name="prism.number" content="1"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="10002"> <meta name="citation_issn" content="2958-9053"> <meta name="citation_journal_title" content="Synthetic Biology and Engineering"> <meta name="citation_publisher" content="SCIEPublish"> <meta name="citation_title" content="Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3"> <meta name="citation_publication_date" content="2023/02"> <meta name="citation_online_date" content="2023/02/07"> <meta name="citation_volume" content="1"> <meta name="citation_issue" content="1"> <meta name="citation_firstpage" content="10002"> <meta name="citation_author" content="Hagiwara, Moe"> <meta name="citation_author" content="Maehara, Chinatsu"> <meta name="citation_author" content="Takemura, Miho"> <meta name="citation_author" content="Misawa, Norihiko"> <meta name="citation_author" content="Shindo, Kazutoshi"> <meta name="citation_doi" content="10.35534/sbe.2023.10002"> <meta name="citation_abstract_html_url" content="https://www.sciepublish.com/article/pii/17"> <meta name="citation_pdf_url" content="https://www.sciepublish.com/index/article/view_full_text/id/17"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.sciepublish.com/index/article/view_full_text/id/17"> <meta name="fulltext_pdf" content="https://www.sciepublish.com/index/article/view_full_text/id/17"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.sciepublish.com/article/pii/17"> <meta name="citation_fulltext_html_url" content="https://www.sciepublish.com/article/pii/17"> <meta name="fulltext_html" content="https://www.sciepublish.com/article/pii/17"> <meta property="og:site_name" content="SCIEPUBLISH" /> <meta property="og:type" content="Article" /> <meta property="og:url" content="https://www.sciepublish.com/article/pii/17" /> <meta property="og:title" content="Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3" /> <meta property="og:description" content="Planococcus maritimus strain iso-3 was previously isolated from intertidal sediment in the North Sea and was found to produce a highly modified C30-carotenoid, methyl-5-glucosyl-5,6-dihydro-4,4’-diapolycopenoate, as the final product. In this study, we analyzed the function of the carotenoid terminal oxidase crtP (renamed cruO) and aldehyde dehydrogenase aldH genes in P. maritimus strain iso-3 and elucidated the carotenoid biosynthetic pathway for this strain at the gene level. We produced four novel C30-carotenoids with potent singlet oxygen-quenching activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic acid and its three intermediates, which were obtained using E. coli cells carrying the cruO (and aldH) gene(s) in addition to the known P. maritimus carotenogenic genes." /> <meta property="og:image" content="https://www.sciepublish.com/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg" /> <meta property="og:image:secure_url" content="https://www.sciepublish.com/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg" /> <meta name="twitter:site" content="@sciepublish"> <meta name="twitter:image" content="https://www.sciepublish.com/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg" /> <meta name="twitter:card" content="summary_large_image"> <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" /> <link rel="stylesheet" href="/static/css/bootstrap.css" /> <link rel="stylesheet" href="/static/font/bootstrap-icons.css"> <link rel="stylesheet" href="/static/css/lightbox.css" /> <link rel="stylesheet" href="/static/css/theme.css?74" /> <link rel="stylesheet" href="/static/css/common.css?90" /> <link rel="stylesheet" href="/static/css/ckeditorStyle.css?2" /> <link rel="stylesheet" href="/static/css/select-mania.min.css" /> <script src="/static/js/jquery-3.7.1.min.js"></script> <script src="/static/js/lightbox.js"></script> <script src="/static/js/bootstrap.bundle.min.js"></script> <script src="/static/js/select-mania.js"></script> <link rel="stylesheet" href="/static/katex/katex.min.css"> <script src="/static/katex/katex.min.js"></script> <script src="/static/katex/contrib/auto-render.min.js"></script> <style> .katex{ font-size: 1.5rem!important; } .tooltip-inner{ /* min-width: 40rem; */ width: auto; max-width: 40rem; padding: 1rem; text-align: left; } .tooltip-inner .html-fig_img, .tooltip-inner .html-figpopup-table { padding: 1.5rem 1.5rem 1rem; background-color: #FFFeFa; border: 1px solid #e9ded8; border-radius: 5px; margin: 1.5rem 0 2rem; } .tooltip-inner .html-figpopup-table{margin-top:1rem;} .tooltip-inner .html-fig_img img, .tooltip-inner .html-figpopup-table img{ width: 100%; } .centered-div { max-width: 60%; position: fixed; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 1000; background-color: rgba(255, 255, 255, 1); padding: 20px; border: 1px solid #ccc; box-shadow: 0 2px 5px rgba(0,0,0,0.2); } .topic-collection a{ display: block; font-size: .85rem; line-height: 1.5; } topic-collection h6.article-menu-collapse{ font-weight: 700; } .popover-content { width: 500px; } .popover { max-width:95%; } </style> </head> <body class="header-no-fixed"> <header> <nav class="navbar navbar-expand-lg navbar-light my-body-container"> <div class="navbar-left"> <a href="/" class="uk-navbar-item" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <div class="nav-form-search"> <form class="form-search" method="get" action="/index/search/index.html"> <input class="search-input" type="text" name="search" placeholder="What are you looking for?" autofocus /> <button type="submit">Search</button> </form> </div> <ul class="navbar-nav uk-navbar-nav"> <li class="nav-item "> <a class="nav-link" href="/">Home</a> </li> <li class="nav-item "> <a class="nav-link" href="/About_SCIEPublish">About</a> </li> <li class="nav-item uk-active"> <a class="nav-link" href="/index/journals/index">Journals</a> </li> <li class="nav-item "> <a class="nav-link" href="/news/list">News</a> </li> </ul> <a class="js-navbar-toggle sc-icon-button sc-transition" title="Search" href="#"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </a> <a class="uk-button sc-transition" href="/my/submitting">Publish with us</a> <a class="text-login" title="Sign in" href="/index/user/login.html"> Sign in </a> </div> </nav> </header> <section class="breadcrumbs pt-3"> <div class="my-body-container"> <nav aria-label="breadcrumb"> <ol class="breadcrumb p-0 mb-0"> <li class="breadcrumb-item" title="Home"> <a href="/">Home</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Journals"> <a href="/index/journals/index">Journals</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="sbe"> <a href="/journals/sbe">sbe</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Volume 1"> <a href="/journals/sbe/roll/1">Volume 1</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Issue 1"> <a href="/journals/sbe/roll/1/1">Issue 1</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item active" aria-current="page" title='10.35534/sbe.2023.10002'>10.35534/sbe.2023.10002</li> </ol> </nav> </div> </section> <section class="fixed-title"> <div class="my-body-container d-flex align-items-center border-bottom border-dark pt-2 pb-2"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/sbe"> <div class="cover-img"> <img src="/uploads/2024/05/28/171687534826sk.jpg" alt="Synthetic Biology and Engineering-logo" /> </div> <h6 class="flex-grow-1 pl-2" title="Synthetic Biology and Engineering">Synthetic Biology and Engineering</h6> </a> </div> <h2 class="journals-text" title="Production of Highly Modified C<sub>30</sub>-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from <em>Planococcus maritimus</em> Strain iso-3">Production of Highly Modified C<sub>30</sub>-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from <em>Planococcus maritimus</em> Strain iso-3</h2> </div> </section> <section class="page-items mt-3"> <div class="d-flex my-body-container border-dark border-top pt-4 collapse show" id="rightCollapse"> <div class="left-items-260 mr-3"> <div class="left-content d-flex"> <div class="left-content-item"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/sbe"> <div class="cover-img"> <img src="/uploads/2024/05/28/171687534826sk.jpg" alt="Synthetic Biology and Engineering-logo" /> </div> <h6 class="flex-grow-1 pl-2">Synthetic Biology and Engineering</h6> </a> </div> <div class="btn-bottom"> <a class="sc-btn-submit d-flex align-items-center justify-content-center mt-3" href="/my/submitting/journal/25"> Submit to SBE <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right ml-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> <a class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center mt-2" href="/index/article/download_article/id/17.html"> <span>Download PDF</span> </a> <a class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center mt-2" href="/index/article/download_sup/id/17.html"> <span>Download Supplementary</span> </a> <!-- Modal --> <div class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center border-0 mt-2" data-toggle="modal" data-target="#citeModal"> Cite This Article </div> </div> <!-- collapse --> <div class="article-menu-collapse d-flex justify-content-between mt-2"> <h6 class="mb-0 d-flex align-items-center">Contents</h6> <div class="btn-collapse pt-2 pb-2 pl-2" data-toggle="collapse" data-target="#articleMenuCollapse" aria-expanded="true" aria-controls="articleMenuCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> </div> </div> <div class="articleMenuCollapse-column p-0" id="articleMenuCollapse"> <div class="menu pt-2"> <div class="list-group" id="article-menu-float"> <a class="list-group-item list-group-item-action" href="#link-introduction">1. Introduction</a> <a class="list-group-item list-group-item-action" href="#link-materials-and-methods">2. Materials and Methods</a> <a class="list-group-item list-group-item-action" href="#link-theory-calculation">3. Results and Discussion</a> <a class="list-group-item list-group-item-action" href="#link-results">4. Conclusions</a> <a class="list-group-item list-group-item-action" href="#link-discussion">Supplementary Materials</a> <a class="list-group-item list-group-item-action" href="#link-conclusions">Author Contributions</a> <a class="list-group-item list-group-item-action" href="#link-supplementary-materials">Ethics Statement</a> <a class="list-group-item list-group-item-action" href="#link-appendix">Informed Consent Statement</a> <a class="list-group-item list-group-item-action" href="#link-funding">Funding</a> <a class="list-group-item list-group-item-action" href="#link-declaration-competing-interest">Declaration of Competing Interest</a> <a class="list-group-item list-group-item-action" href="#html-references_list">References</a> </div> </div> </div> </div> <span class="btn-out" data-toggle="collapse" data-target="#rightCollapse" aria-expanded="true" aria-controls="rightCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="currentColor" class="bi bi-chevron-bar-left" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M11.854 3.646a.5.5 0 0 1 0 .708L8.207 8l3.647 3.646a.5.5 0 0 1-.708.708l-4-4a.5.5 0 0 1 0-.708l4-4a.5.5 0 0 1 .708 0zM4.5 1a.5.5 0 0 0-.5.5v13a.5.5 0 0 0 1 0v-13a.5.5 0 0 0-.5-.5z"/> </svg> </span> </div> </div> <div class="blog-detailss-wrap flex-grow-1"> <div class="details__content pb-30"> <div class="articlelei access-tags d-flex justify-content-between"> <p class="mb-0 d-flex align-items-center"> <span class="btn-text classdise mr-1">Article</span> <span class="btn-text textdise">Open Access</span> </p> <div class="share-buttons social-share d-flex align-items-center mb-2" data-initialized="true"> Share This Article: <a href="" class="share-btn social-share-icon twitter-btn icon-twitter d-flex align-items-center justify-content-center" title="Share on Twitter"> <svg t="1713929395475" class="icon" viewBox="0 0 1399 1024" fill="currentColor" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742" width="20" height="20"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn social-share-icon facebook-btn icon-facebook d-flex align-items-center justify-content-center" title="Share on Facebook"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-facebook" viewBox="0 0 16 16"> <path d="M16 8.049c0-4.446-3.582-8.05-8-8.05C3.58 0-.002 3.603-.002 8.05c0 4.017 2.926 7.347 6.75 7.951v-5.625h-2.03V8.05H6.75V6.275c0-2.017 1.195-3.131 3.022-3.131.876 0 1.791.157 1.791.157v1.98h-1.009c-.993 0-1.303.621-1.303 1.258v1.51h2.218l-.354 2.326H9.25V16c3.824-.604 6.75-3.934 6.75-7.951z"/> </svg> </a> <a href="mailto:?subject=Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3&body=https%3A%2F%2Fwww.sciepublish.com%2Farticle%2Fpii%2F17" class="share-btn social-share-icon email-btn icon-email d-flex align-items-center justify-content-center" id="email-share-btn" title="Share on Email"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> <a href="" class="share-btn social-share-icon LinkedIn-btn icon-linkedin d-flex align-items-center justify-content-center" id="email-LinkedIn-btn" title="Share on LinkedIn"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="" class="share-btn social-share-icon wechat-btn icon-wechat d-flex align-items-center justify-content-center" id="wechat-share-btn" title="Share on WeChat"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> </a> </div> </div> <h1 class="mb-2 acquiesce-title">Production of Highly Modified C<sub>30</sub>-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from <em>Planococcus maritimus</em> Strain iso-3</h1> <div class="affiliation mb-1"> <div class="affiliation_author"> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Moe Hagiwara" target="_blank">Moe Hagiwara</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Chinatsu Maehara" target="_blank">Chinatsu Maehara</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Miho Takemura" target="_blank">Miho Takemura</a> <sup>2</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Norihiko Misawa" target="_blank">Norihiko Misawa</a> <sup>2,*</sup> <a href="mailto:n-misawa@ishikawa-pu.ac.jp"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Kazutoshi Shindo" target="_blank">Kazutoshi Shindo</a> <sup>1,*</sup> <a href="mailto:kshindo@fc.jwu.ac.jp"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> </span> </div> </div> <div class="d-flex mb-1"> <div class="information-collapse mr-4"> Author Information </div> <!-- <div class="information-collapse articleInformation"> Article Information </div> --> </div> <div class="articledz"> <div class="affiliation_zt"> <div class="information-item affiliation_at collapse pl-2 pr-2 pb-2"> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>1</sup></div> <div class="affiliation_name flex-grow-1"> Department of Food and Nutrition, Japan Women´s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>2</sup></div> <div class="affiliation_name flex-grow-1"> Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>*</sup></div> <div class="affiliation_name flex-grow-1"> Authors to whom correspondence should be addressed. </div> </div> </div> </div> <div class="d-flex align-items-center"> <div class="mr-2 d-flex align-items-center"><span>Views:</span><b class="ml-2">3889</b></div> <div class="mr-2 d-flex align-items-center"><span>Downloads:</span><b class="ml-2">372</b></div> <a tabindex="0" class="mr-2 align-items-center cursor-pointer" style="display: none;" data-bind="popover1" data-container="body" data-toggle="popover" data-trigger="focus" data-placement="bottom"> <span>Citations:</span> <b class="ml-2">0</b> </a> </div> <div class="information-item pb-3"> <div class="articledoi"> <em>Synthetic Biology and Engineering</em> <b>2023</b>, <em>1</em> (1), 10002; <a href="https://doi.org/10.35534/sbe.2023.10002" target="_blank">https://doi.org/10.35534/sbe.2023.10002</a> </div> <p class="d-flex fal-title mb-0"> <i class="fal fa-calendar-alt"></i> <span class="mr-3">Received: 12 December 2022</span> <span class="mr-3">Accepted: 03 February 2023</span> <span class="mr-3">Published: 07 February 2023</span> </p> </div> <div class="articleneir pull-item d-flex"> <a href="http://creativecommons.org/licenses/by/4.0/" itemprop="license" rel="license" data-license="by" class="pull-left pt-1"> <img src="/style/image/iconby.png" alt="Creative Commons"> </a> <p class="flex-grow-1 ml-2"> © 2023 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). </p> </div> <div class="meta-info text-break border-top border-dark pt-3 mt-3"> <div class="articleneir abstract"> <span>ABSTRACT:</span> <i>Planococcus maritimus</i> strain iso-3 was previously isolated from intertidal sediment in the North Sea and was found to produce a highly modified C<sub>30</sub>-carotenoid, methyl-5-glucosyl-5,6-dihydro-4,4’-diapolycopenoate, as the final product. In this study, we analyzed the function of the carotenoid terminal oxidase <i>crtP</i> (renamed <i>cruO</i>) and aldehyde dehydrogenase <i>aldH</i> genes in <i>P. maritimus</i> strain iso-3 and elucidated the carotenoid biosynthetic pathway for this strain at the gene level. We produced four novel C<sub>30</sub>-carotenoids with potent singlet oxygen-quenching activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic acid and its three intermediates, which were obtained using <i>E. coli</i> cells carrying the <i>cruO</i> (and <i>aldH</i>) gene(s) in addition to the known <i>P. maritimus</i> carotenogenic genes. </div> <div class="articleneir mt-2 keywords"> <span>Keywords:</span> C<sub>30</sub>-carotenoids; Marine bacterium; <i>Planococcus</i>; Diapolycopenoic acid; Singlet oxygen-quenching activity </div> <div class="article-item pt-4"> <h2 class="border-bottom"> <a id="link-introduction" class="anchor-66"></a> 1. Introduction </h2> <div class="link-introduction article-item-text pt-2">C<sub>30</sub>-Carotenoids are acyclic isoprenoid pigments composed of 30 carbons as the basic backbone structure and have been found only in non-photosynthetic bacteria [<a href='#B1' class='html-bibr' title='1'>1</a>]. The biosynthetically first yellow-colored C<sub>30</sub>-carotenoid 4,4′-diaponeurosporene is synthesized from farnesyl diphosphate (FPP) by way of 15-*cis*-4,4′-diapophytoene with the action of 4,4′-diapophytoene synthase (CrtM) and 4,4′-diapophytoene desaturase [CrtN (CrtNa)] (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>, [<a href='#B2' class='html-bibr' title='2'>2</a>,<a href='#B3' class='html-bibr' title='3'>3</a>]). This biosynthetic pathway is common in all C<sub>30</sub>-carotenogenic bacteria. *Planococcus maritimus* strain iso-3, a yellow marine bacterium belonging to the Firmicutes family, was isolated from intertidal sediment in the North Sea, which is industrially polluted [<a href='#B4' class='html-bibr' title='4'>4</a>]. This bacterium was shown to produce a highly modified C<sub>30</sub>-carotenoid, methyl 5-glucosyl-5,6-dihydro-4,4′-diapolycopenoate, as the final product [<a href='#B5' class='html-bibr' title='5'>5</a>]. We analyzed the structure and function of its carotenoid biosynthesis gene cluster through structural determination of carotenoids that were produced in *Escherichia coli* expressing combinations of the gene candidates found in the gene cluster [<a href='#B3' class='html-bibr' title='3'>3</a>]. It was consequently shown that 4,4′-diaponeurosporene was converted to 5-hydroxy-5,6-dihydro-4,4′-diaponeurosporene with carotenoid hydratase (CruF) that shared significant homology to the *Deinococcus* CruF [<a href='#B6' class='html-bibr' title='6'>6</a>], and then metabolized to 5-hydroxy-5,6-dihydro-4,4′-diapolycopene with 5-hydroxy-5,6-dihydro-4,4′-diaponeurosporene desaturase (CrtNb) (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>). The glucosyl transferase (*GT*) [<a href='#B7' class='html-bibr' title='7'>7</a>,<a href='#B8' class='html-bibr' title='8'>8</a>,<a href='#B9' class='html-bibr' title='9'>9</a>] has also been found in the *Planococcus carotenoid* gene cluster [<a href='#B3' class='html-bibr' title='3'>3</a>]. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure1'><img data-large='/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg' data-original='/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg' src='/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg'><a class='html-expand html-figpopup' href='#Figure1'></a></div></div><div class='html-fig_description'><b><a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>. </b>Elucidated carotenoid biosynthetic pathway of *Planococcus maritimus* strain iso-3. Only an *MT* gene is not obtained.</div></div>In this study, we analyzed the structure and function of the carotenoid oxidase *crtP* (renamed *cruO*) and aldehyde dehydrogenase *aldH* genes, which were newly isolated from places different from the above-mentioned gene cluster in *P. maritimus* iso-3 and elucidated the carotenoid biosynthetic pathway for 5-glucosyl-5,6-dihydro-4,4′-diapolycopen-4′-oic acid at the gene level. Additionally, we demonstrated four novel C<sub>30</sub>-carotenoids that were produced in *E. coli* expressing combinations of *P. maritimus* carotenoid biosynthesis genes with their singlet oxygen-quenching activities.</div> <h2 class="border-bottom"> <a id="link-materials-and-methods" class="anchor-66"></a> 2. Materials and Methods </h2> <div class="link-materials-and-methods article-item-text">*2.1. Bacterial Strains and Growth Conditions* *E. coli* K12 DH5α and JM101(DE3) cells were used for DNA manipulation and expression of carotenoid biosynthesis genes, respectively. These *E. coli* strains and their transformants were grown in 2 × YT (2YT) medium (16 g/L of tryptone, 10 g/L of yeast extract, 5 g/L of NaCl) containing 10 mg/L of tetracycline (as needed) at 37 °C or 21 °C. *2.2. DNA Isolation of Planococcus maritimus Strain iso-3* Genomic DNA was prepared from *P. maritimus* strain iso-3 according to the method described by Nishida et al. [<a href='#B10' class='html-bibr' title='10'>10</a>]. *2.3. Cloning of the crtP (cruO) and aldH Genes from P. maritimus Strain iso-3* Based on the sequences of the *crtP* and *aldH* genes in the genomes of *Planococcus faecalis* and *Planococcus plakortidis*, primers containing the restriction sites were designed, as shown in Table S1. The coding regions of individual genes were amplified by PCR (polymerase chain reaction) using genomic DNAs. PCR products were cloned into a plasmid vector and sequenced as described [<a href='#B3' class='html-bibr' title='3'>3</a>]. *2.4. Sequence Analysis* Homology search was performed using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Amino acid alignment was performed using MAFFT(http://www.mafft.ccbrc.jp/) and phylogenetic tree was constructed using the neighbor joining method, both as implemented on the GenomeNet (https://www.genome.jp/tools/ete/). *2.5. Expression of the crtP (cruO) and aldH Genes from P. maritimus Strain iso-3 in E. coli* The coding region of the *crtP* (*cruO*) gene from *P. maritimus* strain iso-3 was inserted into the plasmids pAC-HIMNFNb and pAC-HIMNFNbG [<a href='#B3' class='html-bibr' title='3'>3</a>]. These plasmids were designated pAC-HIMNFNbP and pAC-HIMNFNbGP, respectively (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>). The coding region of the *aldH* gene from *P. maritimus* strain iso-3 was independently inserted into pAC-HIMNFNbP and pAC-HIMNFNbGP. The resultant plasmids were named pAC-HIMNFNbPA and pAC-HIMNFNbGPA (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>). All plasmids were introduced into wild-type *E. coli* (JM101 (DE3)). The transformed *E. coli* strains were grown in 2YT medium at 37 °C. The following day, the culture was inoculated in a new 2YT medium (100 ml medium in a 500 ml Sakaguchi flask) and cultured at 21 °C for two days. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure2'><img data-large='/uploads/2023/03/20/9be4201bf4fd485eccf95a6b7897c012.jpg' data-original='/uploads/2023/03/20/9be4201bf4fd485eccf95a6b7897c012.jpg' src='/uploads/2023/03/20/9be4201bf4fd485eccf95a6b7897c012.jpg'><a class='html-expand html-figpopup' href='#Figure2'></a></div></div><div class='html-fig_description'><b><a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>. </b>Structure of plasmids constructed in this study.</div></div> *2.6. Extraction and High-Performance Liquid Chromatography (HPLC) Analysis of Carotenoids from E. coli Cells* Extraction of carotenoids from recombinant *E. coli* was performed as described by Fraser et al. [<a href='#B11' class='html-bibr' title='11'>11</a>]. *E. coli* cultures were centrifuged (8000*g* × 5 min). Cell pellets were extracted with methanol (MeOH) using a mixer for 5 min. Tris–HCl (50 mM, pH 7.5) and 1 M NaCl were added and mixed. Chloroform was added to the mixture and mixed for 5 min. After centrifugation, the chloroform phase was collected and dried through centrifugal evaporation. Dried residues were resuspended in ethyl acetate (EtOAc) and subjected to HPLC with a Waters Alliance 2695-2996 (PDA) system (Waters, Milford, MA, USA). HPLC was performed according to the method described by Yokoyama and Miki [<a href='#B12' class='html-bibr' title='12'>12</a>] using TSKgel ODS-80Ts (4.6 × 150 mm, 5 µm; Tosoh, Tokyo, Japan). Briefly, the extract was eluted at a flow rate of 1.0 mL/min at 25 °C with solvent A [water (H<sub>2</sub>O)-MeOH, 5:95] for 5 min, followed by a linear gradient from solvent A to solvent B (tetrahydrofuran-MeOH, 3:7) for 5 min and solvent B alone for 8 min. The produced carotenoids were identified by comparing their retention times and absorption spectra with those of our authentic standards. When the produced carotenoids were not compounds in our authentic standards, as described in the following sections, we isolated the produced carotenoids and determined their structures using high-resolution electrospray ionization mass spectrometry (HRESI-MS) and nuclear magnetic resonance (NMR) analyses. *2.7. Isolation of Respective Highly Modified C<sub>30</sub>-Carotenoids* 2.7.1. 5‑Hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>1</b>) The transformed *E. coli* cells carrying pAC-HIMNFNbP were collected using centrifugation from 2 L culture and extracted with 540 mL acetone-MeOH (7:2) and 600 mL dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>)-MeOH (1:1) with sonication in a stepwise manner. The combined extract (1140 mL) was concentrated to a small volume *in vacuo* and partitioned with EtOAc/H<sub>2</sub>O (300 mL/150 mL). The EtOAc layer containing the produced carotenoids was evaporated to dryness to obtain yellow oil (125.0 mg). *n*-Hexane (3 mL) was added to the oil and sonicated for 3 min to remove fats and fatty acids (×3). The precipitate (10.1 mg) was subjected to preparative ODS HPLC [column: Develosil C30-UG (20 mm × 250 mm, Nomura Chemical, Co. Ltd, Aichi, Japan), solvent: acetonitrile (CH<sub>3</sub>CN)-tetrahydrofuran (THF) (3:2), flow rate: 8.0 mL/min, detection: PDA (250–700 nm)]. The peak at *t<sub>R</sub>* 9.6 min was collected and concentrated to dryness to afford pure 5‑hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>1</b>) (1.1 mg). 2.7.2. 5‑Hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic Acid (<b>2</b>) Transformed *E. coli* cells carrying pAC-HIMNFNbPA were collected by centrifugation from 2 L of culture and extracted with acetone-MeOH (7:2) and CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1) by stepwise sonication. The extract (1140 mL) was concentrated to a small volume *in vacuo* and partitioned with EtOAc/H<sub>2</sub>O (300 mL/150 mL). The EtOAc layer was evaporated to dryness to obtain a yellow oil (113.6 mg). *n*-Hexane (3 mL) was added to the oil and sonicated for 3 min to remove fats and fatty acids (×3). The precipitate (17.9 mg) was subjected to preparative ODS HPLC [column: Develosil C30-UG (20 mm × 250 mm), solvent: 90% (*v*/*v*) CH3CN containing 20 mM H3PO4-THF (3:2), flow rate: 8.0 mL/min, detection: PDA (250–700 nm)]. The peak at *t<sub>R</sub>* 9.8 min was collected and concentrated to 5 mL and partitioned between EtOAc/H<sub>2</sub>O (100 mL each). The EtOAc layer was concentrated to dryness to obtain pure 5-hydroxy-5,6-dihydro-4,4′-diapolycopen-4′-oic acid (<b>2</b>) (1.8 mg). 2.7.3. 5‑Glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>3</b>) The transformed *E. coli* cells carrying pAC-HIMNFNbGP were collected using centrifugation from 2 L of culture and extracted with 540 mL acetone-MeOH (7:2) and 600 mL CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1) with sonication in a stepwise manner. The combined extract (1140 mL) was concentrated to a small volume *in vacuo* and partitioned with EtOAc/H<sub>2</sub>O (300 mL/150 mL). The EtOAc layer containing the produced carotenoids was evaporated to dryness to obtain a yellow oil (301.7 mg). *n*-Hexane (3 mL) was added to the oil and sonicated for 3 min to remove fatty acids (×3). The precipitate (142.2 mg) was subjected to preparative ODS HPLC [column: Develosil C30-UG (20 mm × 250 mm, solvent: CH<sub>3</sub>CN-THF (3:2), flow rate: 8.0 mL/min, detection: PDA (250–700 nm)]. The peak at *t<sub>R</sub>* 8.2 min was collected and concentrated to dryness to afford pure 5‑glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>3</b>) (1.2 mg). 2.7.4. 5‑Glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic Acid (<b>4</b>) Transformed *E. coli* cells carrying pAC-HIMNFNbGPA were collected using centrifugation from 2 L of culture and extracted with acetone-MeOH (7:2) and CH<sub>2</sub>Cl<sub>2</sub>-MeOH (1:1) using stepwise sonication. The extract (1140 mL) was concentrated to a small volume *in vacuo* and partitioned with EtOAc/H<sub>2</sub>O (300 mL/150 mL). The ethyl acetate (EtOAc) layer was evaporated to dryness (203.2 mg). n-Hexane (3 mL) was added to the oil and sonicated for 3 min to remove fats and fatty acids (×3). The precipitate (58.9 mg) was subjected to preparative ODS HPLC [column: Develosil C30-UG (20 mm × 250 mm), solvent: 90% (*v*/*v*) CH<sub>3</sub>CN containing 20 mM H3PO4-THF (3:2), flow rate: 8.0 mL/min, detection: PDA (250–700 nm)]. The peak at *t<sub>R</sub>* 11.2 min was collected and concentrated to 5 mL and partitioned between EtOAc/H<sub>2</sub>O (each 100 mL). The EtOAc layer was concentrated to dryness to obtain pure 5-glucosyl-5,6-dihydro-4,4′-diapolycopen-4′-oic acid (<b>4</b>) (3.2 mg). *2.8. Singlet Oxygen-Quenching Activity* For the measurement of singlet oxygen-quenching activity, 80 µL of 25 µM methylene blue and 100 µL of 0.24 M linoleic acid, with or without 40 µL of carotenoid (final concentration, 1–25 µM; each dissolved in ethanol), were added to 5 mL glass test tubes. The tubes were mixed well and illuminated at 7000 lx and 22 °C for 3 h in a Styrofoam box. Subsequently, 120 µL of the reaction mixture was removed and diluted to 3.48 mL with ethanol. The OD235 was measured to estimate the formation of conjugated dienes. OD235 in the absence of carotenoids was measured as a negative control [no singlet oxygen (1O<sub>2</sub>)-quenching activity]. The 1O<sub>2</sub>-quenching activity of carotenoids was calculated from OD235 in the presence of carotenoids relative to this reference value. The activity is indicated as the IC50 value, which represents the concentration at which 50% inhibition occurs. *2.9. Physico-Chemical Properties of Respective Highly Modified C<sub>30</sub>-Carotenoids* 2.9.1. 5‑Hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>1</b>) HR-ESI-MS (+) *m*/*z* 455.29275 (C<sub>30</sub>H<sub>40</sub>O<sub>2</sub>Na; cald. for 455.29260, ∆ 0.33 ppm). UV-Vis λmax (ε) in MeOH 254 (9200), 315 (6800), 407 (43000), 428 (62000), 452 (56000). <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 1.14 (3H, s, H-4), 1.14 (3H, s, H-18), 1.90 (3H, s, H-18′), 1.94 (3H, s, H-19), 1.98 (3H, s, H-20), 1.98 (3H, s, H-20’), 2.02 (3H, s, H-19′), 2.32 (2H, d, *J* = 7.6 Hz, H-6), 5.77 (1H, dd, *J* = 7.6, 15.1 Hz, H-7), 6.14 (1H, d, *J* = 12.0 Hz, H-10), 6.22 (1H, d, *J* = 15.1 Hz, H-8), 6.26 (1H, d, *J* = 14.5 Hz, H-14), 6.33 (1H, d, *J* =15.0 Hz, H-14′), 6.36 (1H, d, *J* =14.0 Hz, H-12), 6.43 (1H, d, *J* =12.3 Hz, H-10’), 6.50 (1H, d, *J* =15.0 Hz, H-12′), 6.63 (1H, dd, *J* =12.0, 14.0 Hz, H-11), 6.65 (1H, dd, *J* =10.7, 14.8 Hz, H-7′), 6.65 (1H, dd, *J* =12.5, 15.0 Hz, H-11′), 6.65 (2H, H-15 and H-15′), 6.75 (1H, d, *J* =14.8 Hz, H-8′), 6.94 (1H, d, *J* =10.7 Hz, H-6′), 9.45 (1H, s, H-4′) (Figure S1). <sup>13</sup>C NMR (CDCl3) δ: 12.8 (C-19), 12.8 (C-20), 12.8 (C-18′), 12.8 (C-20′), 13.0 (C-19′), 29.2 (C-4), 29.3 (C-18), 47.4 (C-6), 71.0 (C-5), 122.4 (C-7′), 124.4 (C-11′), 124.8 (C-11), 125.3 (C-7), 129.8 (C-15′)<sup>c</sup>, 131.0 (C-10), 131.2 (C-15)c, 132.5 (C-14)<sup>b</sup>, 134.8 (C-14′)<sup>b</sup>, 134.9 (C-9′), 135.4 (C-13)<sup>a</sup>, 136.1 (C-13′)<sup>a</sup>, 136.6 (C-5′), 137.3 (C-9), 137.6 (C-12), 137.8 (C-10′), 138.7 (C-8), 141.0 (C-12′), 146.1 (C-8′), 149.4 (C-6′), 194.6 (C-4′) (Figure S2). <sup>a</sup>, <sup>b</sup>, <sup>c</sup>: Interchangeable. 2.9.2. 5‑Hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic Acid (<b>2</b>) HR-ESI-MS (+) *m*/*z* 471.28902 (C<sub>30</sub>H<sub>40</sub>O<sub>3</sub>Na; cald. for 471.28751, ∆ 1.51 ppm). UV-Vis λmax (ε) in MeOH 254 (9200), 315 (6800), 407 (43000), 428 (62000), 452 (56000). 1H NMR (DMSO-*d<sub>6</sub>*) δ: 1.06 (3H, s, H-4), 1.06 (3H, s, H-18), 1.87 (3H, s, H-19), 1.88 (3H, s, H-18′), 1.93 (3H, s, H-20), 1.94 (3H, s, H-20′), 1.96 (3H, s, H-19′), 2.18 (2H, d, *J* =7.1 Hz, H-6), 5.77 (1H, td, *J* =7.1, 16.0 Hz, H-7), 6.12 (1H, d, *J* =16.0 Hz, H-8), 6.13 (1H, d, *J* =10.2 Hz, H-10), 6.32 (1H, d, *J* =10.4 Hz, H-14), 6.36 (1H, d, *J* =15.0 Hz, H-12), 6.38 (1H, d, *J* =11.0 Hz, H-14′), 6.53 (1H, dd, *J* =11.2, 15.3 Hz, H-7′), 6.40 (1H, d, *J* =11.3 Hz, H-10′), 6.48 (1H, d, *J* =14.8 Hz, H-12′), 6.66 (1H, dd, *J* =10.2, 15.0 Hz, H-11), 6.68 (1H, dd, *J* =11.3, 14.8 Hz, H-11′), 6.72 (1H, dd, *J* =11.0, 15.0 Hz, H-15′), 6.73 (1H, dd, *J* =10.4, 15.0 Hz, H-15), 7.12 (1H, d, *J* =11.2 Hz, H-6′) (Figure S3). <sup>13</sup>C NMR (DMSO-*d<sub>6</sub>*) δ: 12.7 (C-20′), 12.8 (C-20), 12.8 (C-19′), 13.0 (C-19), 13.3 (C-18′), 29.4 (C-18), 29.4 (C-4), 47.6 (C-6), 69.5 (C-5), 124.1 (C-7′), 125.2 (C-11), 125.6 (C-11′), 127.2 (C-7), 128.6 (C-5′), 130.3 (C-10), 130.3 (C-15′), 131.2 (C-15), 132.6 (C-14), 134.0 (C-14′), 135.2 (C-10′), 135.6 (C-9), 135.6 (C-9′), 135.6 (C-13′), 136.8 (C-13), 136.8 (C-6′), 136.9 (C-8), 137.2 (C-12), 139.4 (C-12′), 142.5 (C-8′), 169.7 (C-4′) (Figure S4). 2.9.3. 5‑Glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<b>3</b>) HR-ESI-MS (+): *m*/*z* 617.34744 (C<sub>36</sub>H<sub>50</sub>O<sub>7</sub>Na; cald. for 617.34542, ∆ 3.27 ppm). UV-Vis λmax (ε) in MeOH 254 (9200), 315 (6800), 407 (43000), 428 (62000), 452 (56000). <sup>1</sup>H NMR (CD3OD) δ: 1.26 (3H, s, H-4), 1.26 (3H, s, H-18), 1.87 (3H, s, H-18′), 1.92 (3H, s, H-19), 1.97 (3H, s, H-20), 1.99 (3H, s, H-20′), 2.03 (3H, s, H-19′), 2.42 (2H, d, *J* =7.5 Hz, H-6), 3.15 (1H, dd, *J* =7.6, 9.0 Hz, H-2″), 3.24 (1H, m, H-5″), 3.26 (1H, m, H-4″), 3.35 (1H, dd, *J* =8.9, 9.0 Hz, H-3″), 3.65 (1H, m, H-6″a), 3.82 (1H, m, H-6″b), 4.51 (1H, d, *J* =7.6 Hz, H-1″), 5.91 (1H, m, H-7), 6.11 (1H, d, *J* =12.0 Hz, H-10), 6.18 (1H, d, *J* =15.2 Hz, H-8), 6.26 (2H, H-14 and H-14′), 6.37 (1H, d, *J* =15.0 Hz, H-12), 6.51 (1H, d, *J* =12.3 Hz, H-10′), 6.56 (1H, d, *J* =15.0 Hz, H-12′), 6.65 (2H, H-15 and H-15′), 6.68 (1H, dd, *J* =12.0, 15.0 Hz, H-11), 6.72 (1H, dd, *J* =12.3, 14.9 Hz, H-11′), 6.74 (1H, dd, *J* =10.8, 14.9 Hz, H-7′), 6.88 (1H, d, *J* =14.9 Hz, H-8′), 7.10 (1H, d, *J* =10.8 Hz, H-6′), 9.39 (1H, s, H-4′) (Figure S5). <sup>13</sup>C NMR (CD<sub>3</sub>OD) δ: 8.0 (C-18′), 11.2 (C-20), 11.3 (C-19′)<sup>c</sup>, 11.5 (C-20′)<sup>c</sup>, 11.6 (C-19), 25.3 (C-18), 25.6 (C-4), 29.3 (C-18), 45.3 (C-6), 61.4 (C-6″), 70.4 (C-4″), 73.8 (C-2″), 76.2 (C-5″), 76.8 (C-3″), 77.8 (C-5), 97.3 (C-1″), 122.1 (C-7′), 123.0 (C-11′), 123.7 (C-11), 125.6 (C-7), 129.7 (C-15′)<sup>b</sup>, 130.3 (C-10), 131.2 (C-15)<sup>b</sup>, 132.2 (C-14)<sup>a</sup>, 134.8 (C-9′), 134.9 (C-14′)<sup>a</sup>, 135.4 (C-9), 135.8 (C-13′), 135.9 (C-13), 136.1 (C-5′), 137.0 (C-12), 137.4 (C-8), 137.9 (C-10′), 141.0 (C-12′), 146.7 (C-8′), 150.4 (C-6′), 195.1 (C-4′) (Figure S6). <sup>a,b,c</sup>: Interchangeable. 2.9.4. 5‑Glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic Acid (<b>4</b>) HR-ESI-MS (+): *m*/*z* 633.33807 (C<sub>36</sub>H<sub>50</sub>O<sub>8</sub>Na; cald. for 633.34034, ∆ 3.58 ppm). UV-Vis λmax (ε) in MeOH 254 (9200), 315 (6800), 407 (43000), 428 (62000), 452 (56000). 1H NMR (DMSO-*d<sub>6</sub>*) δ: 1.14 (6H, s, H-4 and H-18), 1.88 (3H, s, H-19), 1.90 (3H, s, H-18′), 1.93 (3H, s, H-20′), 1.94 (3H, s, H-20), 1.97 (3H, s, H-19′), 2.32 (2H, t, *J* =7.5 Hz, H-6), 2.89 (1H, dd, *J* =7.6, 8.4 Hz, H-2″), 3.02 (1H, dd, *J* =8.4, 8.4 Hz, H-4″), 3.07 (1H, dd, *J* =5.2, 8.4 Hz, H-5″), 3.14 (1H, dd, *J* =8.4, 8.4 Hz, H-3″), 3.39 (1H, dd, *J* =5.2, 11.0 Hz, H-6″b), 3.62 (1H, d, *J* =11.0, H-6″a), 4.32 (1H, d, *J* =7.6 Hz, H-1″), 5.88 (1H, td, *J* = 7.5, 15.6 Hz, H-7), 6.13 (1H, d, *J* = 12.0 Hz, H-10), 6.14 (1H, d, J = 15.6 Hz, H-8), 6.33 (1H, d, *J* = 10.5 Hz, H-14), 6.37 (1H, d, *J*=15.0 Hz, H-12), 6.42 (1H, d, *J* = 10.5 Hz, H-14′), 6.43 (1H, d, *J*=10.8 Hz, H-10′), 6.50 (1H, d, *J*=15.4 Hz, H-12′), 6.55 (1H, dd, *J* = 11.0, 15.0 Hz, H-7′), 6.65 (1H, dd, *J*=12.0, 15.0 Hz, H-11), 6.68 (1H, dd, J=12.2, 15.0 Hz, H-11′), 6.71 (1H, d, *J*=15.0 Hz, H-8′), 6.73 (2H, H-15 and H-15′), 7.18 (1H, d, *J*=11.0 Hz, H-6′) (Figure S7). <sup>13</sup>C NMR (DMSO-*d<sub>6</sub>*) δ: 12.8 (C-20), 12.8 (C-19′), 12.8 (C-20′), 13.0 (C-18′), 13.1 (C-19), 26.4 (C-4), 26.9 (C-18), 45.1 (C-6), 61.4 (C-6″), 70.4 (C-4″), 73.8 (C-2″), 76.7 (C-5″), 76.9 (C-5), 77.2 (C-3″), 97.4 (C-1″), 123.5 (C-7′), 125.2 (C-11′), 125.7 (C-11), 126.7 (C-5′), 127.1 (C-7), 130.3 (C-10), 130.3 (C-15), 130.3 (C-15′), 132.6 (C-14), 134.2 (C-13′), 135.5 (C-14′), 135.5 (C-9′), 135.8 (C-10′), 136.3 (C-9), 137.0 (C-8), 137.0 (C-13), 137.2 (C-12), 138.3 (C-6′), 139.8 (C-12′), 143.8 (C-8′), 169.5 (C-4′) (Figure S8). </div> <h2 class="border-bottom"> <a id="link-theory-calculation" class="anchor-66"></a> 3. Results and Discussion </h2> <div class="link-theory-calculation article-item-text">*3.1. Isolation of the crtP and aldH Genes from P. maritimus Strain iso-3* Previously, we isolated the carotenoid biosynthesis gene cluster from *P. maritimus* iso-3, which contains *crtN* (*crtNa*), *crtM*, *crtNb*, *GT*, and *cruF* [<a href='#B3' class='html-bibr' title='3'>3</a>]. However, these genes were not sufficient to synthesize the carotenoid of *P. maritimus*, such as methyl 5-glucosyl-5,6-dihydro-4,4′-diapolycopenoate. Recently, Lee et al. cloned *crtP* and *aldH* genes from *P. faecalis* as carotenogenic genes [<a href='#B13' class='html-bibr' title='13'>13</a>]. Since the genome sequences are similar between the *Planococcus* genera, we designed PCR primers for these genes based on the genome sequences of *P. faecalis* and *P. plakorditis* (Table S1). PCR cloning with these primers resulted in the isolation of two genes from *P. maritimus* iso-3. In *Staphylococcus aureus*, Pelz et al. found the gene mediating the oxidation of the terminal methyl group in a C<sub>30</sub>-carotenoid and named it *crtP* [<a href='#B8' class='html-bibr' title='8'>8</a>]. The *crtP* designation was adopted for the ortholog in *P. faecalis* [<a href='#B13' class='html-bibr' title='13'>13</a>]. In contrast, the *crtP* gene has been widely designated as the cyanobacterial phytoene desaturase gene [<a href='#B14' class='html-bibr' title='14'>14</a>]. Because the same gene name for distinct carotenoid genes is confusing, we propose that *crtP* be renamed *cruO* for the carotenoid terminal oxidase gene. *3.2. Sequence Analysis of the Carotenoid Biosynthesis Gene Candidates* Subsequently, we performed a sequence analysis of the *cruO* and *aldH* genes isolated from *P. maritimus* iso-3. The predicted amino acid sequence of the *cruO* gene product (CruO) showed 86% identity to those of the *P. faecalis* CrtP, while CruO was 29%, 25%, and 23 % identical to CrtNb, CrtNa, and Orf2 that were isolated from the same *P. maritimus* iso-3, respectively. The phylogenetic tree of *crtN*-homologous genes (<a href='#Table1' class='html-table html-tablepopup'>Table 1</a>) showed that the *P. maritimus* iso-3 *cruO* gene encoding carotenoid terminal oxidase, along with the other corresponding genes (*crtP*), fell into the *crtNb* clade. This clade included the *crtNb* gene encoding carotenoid desaturase from *P. maritimus* iso-3 at earlier branch point (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>). On the other hand, the predicted amino acid sequences of AldH showed 79% identity to those of the *P. faecalis* AldH. These *aldH* genes were found to belong to another gene family different from the *crtNc* (*aldH*) clade. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure3'><img data-large='/uploads/2023/03/20/a1e5d802f358da82d33f76ff746556db.jpg' data-original='/uploads/2023/03/20/a1e5d802f358da82d33f76ff746556db.jpg' src='/uploads/2023/03/20/a1e5d802f358da82d33f76ff746556db.jpg'><a class='html-expand html-figpopup' href='#Figure3'></a></div></div><div class='html-fig_description'><b><a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>. </b>Phylogenetic tree of *crtN*-homologous genes.</div></div>Amino acid alignment of the encoded proteins was performed using MAFFT (http://www.mafft.ccbrc.jp/) and phylogenetic trees was constructed using the neighbor joining method, both as implemented on the GenomeNet (https://www.genome.jp/tools/ete/). Accession numbers of the sequences are listed in <a href='#Table1' class='html-table html-tablepopup'>Table 1</a>.<div class='html-fig-wrap'><div class='html-table_wrap_discription'><b><a href='#Table1' class='html-table html-tablepopup'>Table 1</a>. </b>Examples of crtN-homologous genes and their accession numbers.<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2023/03/20/851d942b97e2961addc4c6eae74db07d.jpg' data-original='/uploads/2023/03/20/851d942b97e2961addc4c6eae74db07d.jpg' src='/uploads/2023/03/20/851d942b97e2961addc4c6eae74db07d.jpg'><a class='html-expand html-tablepopup' href='#Table1'></a></div></div></div>*3.3. CruO Acts as an Aldehyde Synthase* To investigate the function of the *cruO* gene from *P. maritimus* iso-3, we constructed plasmids pAC-HIMNFNbP and pAC-HIMNFNbGP (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>) and introduced them into *E. coli* (JM101(DE3)). Recombinant *E. coli* strains carrying plasmids pAC-HIMNFNb and pAC-HIMNFNbG produced 5-hydroxy-5,6-dihydro-apo-4,4′-lycopene (Peak A) and 5-glucosyl-5,6-dihydro-apo-4,4′-lycopene (Peak B), respectively (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>a,c), as shown previously [<a href='#B3' class='html-bibr' title='3'>3</a>]. However, new peaks 1 and 3 were observed in *E. coli* carrying pAC-HIMNFNbP and pAC-HIMNFNbGP, respectively (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>a,c). The produced compounds <b>1</b> and <b>3</b> were purified and analyzed using ESI-MS (+), <sup>1</sup>H, and <sup>13</sup>C NMR, as described later. Consequently, <b>1</b> and <b>3</b> were identified as 5‑hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al and 5‑glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al, respectively. Thus, the *cruO* gene was confirmed to encode the carotenoid terminal oxidase, which converts the terminal methyl group of a C<sub>30</sub>-carotenoid into its aldehydes. In the *crtNb* clade (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>), the Methylomonas 16a *crtNb* gene and the *crtP* genes of *S. aureus* and *P. faecalis* are considered to encode enzymes with similar oxidation activity to CruO [<a href='#B15' class='html-bibr' title='15'>15</a>]. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure4'><img data-large='/uploads/2023/03/20/b4e588ba841deb70f6fc6065a52dfead.jpg' data-original='/uploads/2023/03/20/b4e588ba841deb70f6fc6065a52dfead.jpg' src='/uploads/2023/03/20/b4e588ba841deb70f6fc6065a52dfead.jpg'><a class='html-expand html-figpopup' href='#Figure4'></a></div></div><div class='html-fig_description'><b><a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>. </b>Functional analysis of *cruO* (*crtP*) and *aldH* of *P. maritimus* strain iso-3. (<b>a</b>) HPLC chromatograms of the extracts of *E. coli* transformants carrying pAC-HIMNFNbP; (<b>b</b>) pAC-HIMNFNbPA; (<b>c</b>) pAC-HIMNFNbGP; and (<b>d</b>) pAC-HIMNFNbGPA. The UV-visible spectra of compounds <b>1</b>–<b>4</b> are presented on the right of the chromatograms. Peak A, 5-hydroxy-5,6-dihydro-apo-4,4′-lycopene; peak B, 5-glucosyl-5,6-dihydro-apo-4,4′-lycopene.</div></div>*3.4. AldH Acts as an Aldehyde Dehydrogenase* The *aldH* gene from *P. maritimus* iso-3 is homologous to *aldH* from *P. faecalis*, which encodes an aldehyde dehydrogenase [<a href='#B13' class='html-bibr' title='13'>13</a>]. The catalytic activity of the *P. maritimus* AldH protein was examined by constructing the plasmids pAC-HIMNFNbPA and pAC-HIMNFNbGPA (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>), which were individually introduced into *E. coli* (DE3). These *E. coli* transformants generated new carotenoid peaks <b>2</b> and <b>4</b>, respectively (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>b,d). Their ESI-MS (+), <sup>1</sup>H, and <sup>13</sup>C NMR spectral analyses indicated compounds <b>2</b> and <b>4</b> as 5‑hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic acid and 5‑glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic acid, respectively. These results show that *aldH* codes for aldehyde dehydrogenase, which converts the terminal aldehyde group of a C<sub>30</sub>-carotenoid into its carboxylic acid. <i>3.5. Structural Determination of the Intermediate Carotenoids (<b>1–4</b>)</i> The molecular formula of <b>1</b> was determined as C<sub>30</sub>H<sub>40</sub>O<sub>2</sub> using HR-ESI-MS analysis. Analyses of <sup>1</sup>H and <sup>13</sup>C NMR, <sup>1</sup>H–<sup>1</sup>H DQF COSY, and HMQC spectra of <b>1</b> in CDCl3 showed that the structure of <b>1</b> was closely related to that of 4, 4′-diapolycopene, while the signals of two singlet methyls (H-4 (δ<sub>H</sub> 1.14) and C-4 (δ<sub>C</sub> 29.2)) and (H-18 (δ<sub>H</sub> 1.14) and C-18 (δ<sub>C</sub> 29.3)), one non-oxygenated sp3 CH<sub>2</sub> (H-6 (δ<sub>H</sub> 2.32) and C-6 (δ<sub>C</sub> 47.4)), one oxygenated quaternary <sup>13</sup>C (C-5 (δ<sub>C</sub> 71.0)), and one aldehyde (H-4′ (δ<sub>H</sub> 9.45) and C-4′ (δ<sub>C</sub> 194.4)) were observed only in <b>1</b>. The linkages between the observed <sup>1</sup>H and <sup>13</sup>C signals were analyzed using the HMBC spectrum. In the HMBC spectrum, preservation of the all *trans* olefin structure of 4,4′-diapolycopene from C-7 to C-5 in <b>1</b> was proved using the <sup>1</sup>H-<sup>13</sup>C long-range couplings from the methyl signals of H-19 (δ<sub>H</sub> 1.94), H-20 (δ<sub>H</sub> 1.98), H-18′ (δ<sub>H</sub> 1.90), H-19′ (δ<sub>H</sub> 2.02), and H-20′ (δ<sub>H</sub> 1.98) (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). The <sup>1</sup>H-<sup>13</sup>C long range couplings from H-4 and H-18 to C-5 and C-6 and vicinal <sup>1</sup>H-<sup>1</sup>H spin coupling between H-6 and H-7 showed that the 2-methyl, 2-oxygenated propyl structure composed of C-4, C-5, C-6, and C-18 were attached at C-7. Furthermore, the aldehyde function at C-4′ was demonstrated using the <sup>1</sup>H-<sup>13</sup>C long-range coupling from H-18′ to C-4′. Based on these observations, the structure of <b>1</b> was determined to be 5‑hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). According to the CAS database, compound <b>1</b> was new.<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure5'><img data-large='/uploads/2023/03/20/f470efa63cd65d02d7b441ea7f27cd26.jpg' data-original='/uploads/2023/03/20/f470efa63cd65d02d7b441ea7f27cd26.jpg' src='/uploads/2023/03/20/f470efa63cd65d02d7b441ea7f27cd26.jpg'><a class='html-expand html-figpopup' href='#Figure5'></a></div></div><div class='html-fig_description'><b><a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>. </b>Structural determination of compounds <b>1</b>–<b>4</b>.</div></div> The molecular formula of <b>2</b> was determined to be C<sub>30</sub>H<sub>40</sub>O<sub>3</sub> by HR-ESI-MS analysis. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of <b>2</b> in CDCl<sub>3</sub> were almost identical to those of <b>1</b> except for the disappearance of the aldehyde signal in <b>1</b> and the appearance of a carbonyl signal (C-4′ (δ<sub>C</sub> 169.7)). Because long-range coupling from H-18′ (δ<sub>H</sub> 1.88) to C-4′ was observed in the HMBC spectrum and the molecular formula of <b>2</b> was <b>1</b> + O, the structure of <b>2</b> was determined as 5‑hydroxy‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic acid (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). Compound <b>2</b> was a new compound according to the CAS database. The molecular formula of <b>3</b> was determined to be C<sub>36</sub>H<sub>50</sub>O<sub>7</sub> using HR-ESIMS analysis. The <sup>1</sup>H and <sup>13</sup>C NMR, <sup>1</sup>H–<sup>1</sup>H DQF COSY, and HMQC spectra of <b>3</b> in CD3OD revealed that the structure of <b>3</b> was closely related to <b>1</b>, while <sup>1</sup>H and <sup>13</sup>C signals derived from a hexose were observed in <b>3</b>. Hexose was identified as β-glucose by <sup>1</sup>H–<sup>1</sup>H vicinal spin couplings of H-1′–H-6′ and the linkage of the glucose at C-5 was shown by the <sup>1</sup>H-<sup>13</sup>C long-range coupling from H-1″ (δ<sub>H</sub> 4.51) to C-5 (δ<sub>C</sub> 70.4) observed in the HMBC spectrum. Based on these findings, the structure of <b>3</b> was determined to be 5‑glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-al (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). According to the CAS database, compound <b>3</b> was new. The molecular formula of <b>4</b> was determined to be C<sub>36</sub>H<sub>50</sub>O<sub>7</sub> using HR-ESI-MS analysis. The <sup>1</sup>H, <sup>13</sup>C NMR, <sup>1</sup>H–<sup>1</sup>H DQF COSY, and HMQC spectra of <b>4</b> in DMSO-*d<sub>6</sub>* revealed that the structure of <b>4</b> was almost identical to <b>3</b>, while the aldehyde signal in <b>3</b> disappeared in <b>4</b> and a carbonyl signal (C-4′ (δ<sub>C</sub> 169.5)) was observed only in <b>4</b>. Since the long-range coupling from H-18′ (δ<sub>H</sub> 1.90) to C-4′ was observed in the HMBC spectrum (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>) and the molecular formula of <b>4</b> was compound <b>3</b> + O, the structure of <b>4</b> was determined as 5‑glucosyl‑5,6‑dihydro‑4,4′‑diapolycopen-4′-oic acid (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>). According to the CAS database, compound <b>4</b> was new. *3.6. Singlet Oxygen-quenching Activities of Newly Generated Carotenoids* The singlet oxygen-quenching activities of the newly generated C<sub>30</sub>-carotenoids (intermediates) were examined and the results are shown in <a href='#Table2' class='html-table html-tablepopup'>Table 2</a>. As shown in <a href='#Table2' class='html-table html-tablepopup'>Table 2</a>, compounds closer to the end of the biosynthetic pathway exhibited more potent singlet oxygen-quenching activity. <div class='html-fig-wrap'><div class='html-table_wrap_discription'><b><a href='#Table2' class='html-table html-tablepopup'>Table 2</a>. </b>Singlet oxygen-quenching activity of the individual C<sub>30</sub>-carotenoids (intermediates).<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2023/03/20/69f3eb873b701fd083b4c8e3cb2e827b.jpg' data-original='/uploads/2023/03/20/69f3eb873b701fd083b4c8e3cb2e827b.jpg' src='/uploads/2023/03/20/69f3eb873b701fd083b4c8e3cb2e827b.jpg'><a class='html-expand html-tablepopup' href='#Table2'></a></div></div></div> This result suggests that *P. maritimus* iso-3 living near the surface of the sea produces metyl-5-glucosyl-5,6-dihydro-4,4′-diapolycopenate to protect itself from singlet oxygen damage caused by ultraviolet and triplet oxygen. The dipolar structure of this highly modified C<sub>30</sub>-carotenoid may also stabilize the phospholipid double-layer membrane of Planococcus, and consequently may contribute to the tolerance of this bacterium not only to photooxidative damage but also to solvents [<a href='#B3' class='html-bibr' title='3'>3</a>]. A similar highly modified dipolar C<sub>30</sub>-carotenoid, glycosyl-4,4′-diaponeurosporen-4′-ol-4-oate, is found in the same genus *P. faecalis* [<a href='#B13' class='html-bibr' title='13'>13</a>]. On the other hand, *S. aureus* is known to produce staphyloxanthin as the monopolar C<sub>30</sub>-carotenoid, whose biosynthetic pathway has been elucidated at the gene level [<a href='#B7' class='html-bibr' title='7'>7</a>,<a href='#B8' class='html-bibr' title='8'>8</a>]. We have elucidated the biosynthetic pathway of highly modified dipolar C<sub>30</sub>-carotenoids for the first time, using the *Planococcus* genes. </div> <h2 class="border-bottom"> <a id="link-results" class="anchor-66"></a> 4. Conclusions </h2> <div class="link-results article-item-text">In the marine bacterium *Planococcus maritimus* strain iso-3, the <em>crtP</em> (here renamed <em>cruO</em>) and <em>aldH</em> genes were shown to encode carotenoid terminal oxidase (carotenoid-aldehyde synthase) and carotenoid-aldehyde dehydrogenase, respectively. The carotenoid biosynthetic pathway for 5-glucosyl-5,6-dihydro-4,4′-diapolycopen-4′-oic acid (<b>4</b>) was identified at the gene level (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>). We further produced four new highly modified C<sub>30</sub>-carotenoids <b>1</b>–<b>3</b> in addition to <b>4</b>, which were obtained using *E. coli* cells carrying combinations of *P. maritimus* carotenogenic genes. They have been shown to retain potent singlet oxygen-quenching activities. We await further biological evaluations of <b>1</b>–<b>4</b> as future studies.</div> <h2 class="border-bottom"> <a id="link-discussion" class="anchor-66"></a> Supplementary Materials </h2> <div class="link-discussion article-item-text">The following supporting information can be found at: https://www.sciepublish.com/index/journals/article/sbe/25.html/id/17. Data Availability: Accession numbers of the *cruO* (*crtP*) and *aldH* genes are LC722835 and LC722836, respectively. Accession of the sequences of the plasmids, pAC-HIMNFNbP, pAC-HIMNFNbGP, pAC-HIMNFNbPA and pAC-HIMNFNbGPA are LC722947, LC722948, LC722949, and LC722950, respectively.</div> <h2 class="border-bottom"> <a id="link-conclusions" class="anchor-66"></a> Author Contributions </h2> <div class="link-conclusions article-item-text">Conceptualization: K.S. and N.M.; Investigation: M. H., C.M., and M.T.; Writing – Original Draft Preparation: K.S., M.T., and N.M.</div> <h2 class="border-bottom"> <a id="link-supplementary-materials" class="anchor-66"></a> Ethics Statement </h2> <div class="link-supplementary-materials article-item-text">Not applicable.</div> <h2 class="border-bottom"> <a id="link-appendix" class="anchor-66"></a> Informed Consent Statement </h2> <div class="link-appendix article-item-text">Not applicable.</div> <div class="link-appendix-b article-item-text"></div> <div class="link-acknowledgments article-item-text"></div> <div class="link-author-contributions article-item-text"></div> <div class="link-ethics-statement article-item-text"></div> <div class="link-informed-consent-statement article-item-text"></div> <h2 class="border-bottom"> <a id="link-funding" class="anchor-66"></a> Funding </h2> <div class="link-funding article-item-text">This research received no external funding. </div> <h2 class="border-bottom"> <a id="link-declaration-competing-interest" class="anchor-66"></a> Declaration of Competing Interest </h2> <div class="link-declaration-competing-interest article-item-text">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. </div> <h2 class="border-bottom"> <a id="html-references_list" class="anchor-66"></a> References </h2> <div class="references_zt"> <div class="references_at"> <div class="references html-x" id='B1'> <div class="references_sup">1.</div> <div class="references_name"> Sandmann G, Misawa N. Carotenoid production in <i>Escherichia coli</i>: Case of acyclic carotenoids. In <i>Carotenoids: Biosynthetic and Biofunctional Approaches</i>;<i> </i>Misawa N., Ed.; Springer: Singapore,<i> </i>2021; pp. 201–208. </div> </div> <div class="references html-x" id='B2'> <div class="references_sup">2.</div> <div class="references_name"> Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of <em>Staphylococcus aureus</em>.<i> J. Bacteriol.</i><b> 1994</b>,<i> 176,</i> 7719–7726. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of <em>Staphylococcus aureus</em>.&publication_year=1994&author=Wieland B&author=Feil C&author=Gloria-Maercker E&author=Thumm G&author=Lechner M&author=Bravo JM&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B3'> <div class="references_sup">3.</div> <div class="references_name"> Takemura M, Takagi C, Aikawa M, Araki K, Choi S-K, Itaya M, et al. Heterologous production of novel and rare C30-carotenoids using <em>Planococcus carotenoid</em> biosynthesis genes. <i> Microb. Cell Fact.</i><b> 2021</b>,<i> 20,</i> 194–205. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Heterologous production of novel and rare C30-carotenoids using <em>Planococcus carotenoid</em> biosynthesis genes.&nbsp;&publication_year=2021&author=Takemura M&author=Takagi C&author=Aikawa M&author=Araki K&author=Choi S-K&author=Itaya M&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B4'> <div class="references_sup">4.</div> <div class="references_name"> Shindo K, Endo M, Miyake Y, Wakasugi K, Morritt D, Bramley PM, et al. Methyl glucosyl-3,4-dehydro-apo-8′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium <em>Planococcus maritimus</em>.<i> J. Antibiot.</i><b> 2008</b>,<i> 61,</i> 729–735. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Methyl glucosyl-3,4-dehydro-apo-8′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium <em>Planococcus maritimus</em>.&publication_year=2008&author=Shindo K&author=Endo M&author=Miyake Y&author=Wakasugi K&author=Morritt D&author=Bramley PM&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B5'> <div class="references_sup">5.</div> <div class="references_name"> Shindo K, Endo M, Miyake Y, Wakasugi K, Morritt D, Bramley PM, et al. Methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium <em>Planococcus maritimus</em>. <i> J. Antibiot.</i><b> 2014</b>,<i> 67,</i> 731–732. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium <em>Planococcus maritimus</em>.&nbsp;&publication_year=2014&author=Shindo K&author=Endo M&author=Miyake Y&author=Wakasugi K&author=Morritt D&author=Bramley PM&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B6'> <div class="references_sup">6.</div> <div class="references_name"> Sun Z, Shen S, Wang C, Wang H, Hu Y, Jiao J, et al. A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium <em>Deinococcus</em>.<i> Microbiology</i><b> 2009</b>,<i> 155,</i> 2775–2783. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium <em>Deinococcus</em>.&publication_year=2009&author=Sun Z&author=Shen S&author=Wang C&author=Wang H&author=Hu Y&author=Jiao J&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B7'> <div class="references_sup">7.</div> <div class="references_name"> Kim SH, Lee PC. Functional expression and extension of Staphylococcal staphyloxanthin biosynthesis pathway in <em>Escherichia coli</em>.<i> J. Biol. Chem.</i><b> 2012</b>,<i> 287,</i> 21575–21583. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Functional expression and extension of Staphylococcal staphyloxanthin biosynthesis pathway in <em>Escherichia coli</em>.&publication_year=2012&author=Kim SH&author=Lee PC." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B8'> <div class="references_sup">8.</div> <div class="references_name"> Pelz A, Wieland KP, Pitzbach K, Hentschel P, Alberl K, Götz F. Structure and biosynthesis of staphyloxanthin from <em>Staphylococcus aureus</em>.<i> J. Biol. Chem.</i><b> 2005</b>,<i> 280,</i> 32493–32498. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Structure and biosynthesis of staphyloxanthin from <em>Staphylococcus aureus</em>.&publication_year=2005&author=Pelz A&author=Wieland KP&author=Pitzbach K&author=Hentschel P&author=Alberl K&author=Götz F. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B9'> <div class="references_sup">9.</div> <div class="references_name"> Steiger S, Perez-Fons L, Cutting SM, Fraser PD, Sandmann G. Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: <em>Bacillus indicus </em>and <em>Bacillus firmus</em>.<i> Microbiology </i><b> 2015</b>,<i> 161,</i> 194–202. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: <em>Bacillus indicus </em>and <em>Bacillus firmus</em>.&publication_year=2015&author=Steiger S&author=Perez-Fons L&author=Cutting SM&author=Fraser PD&author=Sandmann G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B10'> <div class="references_sup">10.</div> <div class="references_name"> Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, et al. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from <em>Brevundimonas</em> sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.<i> Appl. Environ. Microbiol.</i><b> 2005</b>,<i> 71,</i> 4286–4296. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from <em>Brevundimonas</em> sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.&publication_year=2005&author=Nishida Y&author=Adachi K&author=Kasai H&author=Shizuri Y&author=Shindo K&author=Sawabe A&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B11'> <div class="references_sup">11.</div> <div class="references_name"> Fraser PD, Pinto MES, Holloway DE, Bramley PM. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids.<i> Plant J.</i><b> 2000</b>,<i> 24,</i> 551–558. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids.&publication_year=2000&author=Fraser PD&author=Pinto MES&author=Holloway DE&author=Bramley PM. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B12'> <div class="references_sup">12.</div> <div class="references_name"> Yokoyama A, Miki W. Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium <em>Agrobacterium aurantiacum</em>.<i> FEMS Microbiol. Lett.</i><b> 1995</b>,<i> 128,</i> 139–144. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium <em>Agrobacterium aurantiacum</em>.&publication_year=1995&author=Yokoyama A&author=Miki W. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B13'> <div class="references_sup">13.</div> <div class="references_name"> Lee JH, Kim JW, Lee PC. Genome mining reveals two missing CrtP and AldH enzymes in the C30 carotenoid biosynthesis pathway in <em>Planococcus faecalis</em> AJ003T.<i> Molecules</i><b> 2020</b>,<i> 25,</i> 5892. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Genome mining reveals two missing CrtP and AldH enzymes in the C30 carotenoid biosynthesis pathway in <em>Planococcus faecalis</em> AJ003T.&publication_year=2020&author=Lee JH&author=Kim JW&author=Lee PC. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B14'> <div class="references_sup">14.</div> <div class="references_name"> Harker M, Hirschberg J. Molecular biology of carotenoid biosynthesis in photosynthetic organisms.<i> Methods Enzymol.</i><b> 1998</b>,<i> 297,</i> 244–263. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Molecular biology of carotenoid biosynthesis in photosynthetic organisms.&publication_year=1998&author=Harker M&author=Hirschberg J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B15'> <div class="references_sup">15.</div> <div class="references_name"> Tao L, Schenzle A, Odom JM, Cheng Q. Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapophytoene dialdehyde.<i> Appl. Envion. Microbiol.</i><b> 2005</b>,<i> 71,</i> 3294–3301. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapophytoene dialdehyde.&publication_year=2005&author=Tao L&author=Schenzle A&author=Odom JM&author=Cheng Q." target="_blank">Google Scholar</a>]</span> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </section> <div class="modal fade cite-modal" id="citeModal" tabindex="-1" aria-labelledby="exampleModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content border-0"> <div class="modal-body pt-5 pl-5 pr-5 pb-4"> <h3 class="pb-2 border-bottom border-dark">Cite This Article</h3> <h6 class="mt-4 d-flex justify-content-between"> SCIEPublish Style </h6> <p class="modal-text2 text-justify">Hagiwara M, Maehara C, Takemura M, Misawa N, Shindo K. Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3. <i>Synthetic Biology and Engineering</i> <b>2023</b>, <i>1</i>, 10002. https://doi.org/10.35534/sbe.2023.10002</p> <h6 class="mt-3 d-flex justify-content-between text-justify"> AMA Style </h6> <p class="modal-text2 text-justify">Hagiwara M, Maehara C, Takemura M, Misawa N, Shindo K. Production of Highly Modified C30-carotenoids with Singlet Oxygen-quenching Activities, 5-glucosyl-5,6-dihydro-4,4’-diapolycopen-4’-oic Acid, and Its Three Intermediates Using Genes from Planococcus maritimus Strain iso-3. <i>Synthetic Biology and Engineering</i>. 2023; 1(1):10002. https://doi.org/10.35534/sbe.2023.10002</p> </div> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> </div> </div> </div> <div class="modal modal-amplification-img" id="imgModal" tabindex="-1" aria-labelledby="imgModal" aria-hidden="true"> <div class="modal-dialog modal-xl modal-dialog-centered modal-dialog-scrollable modal-dialog-img"> <div class="modal-content"> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> <div class="modal-body"> </div> </div> </div> </div> <link rel="stylesheet" href="/static/css/share.min.css?3" /> <script src="/static/js/social-share.min.js"></script> <script> var $config = { image:"https://www.sciepublish.com/uploads/2023/03/20/f2f644f9f6a345e666c17f48d3f27884.jpg", origin:'', wechatQrcodeTitle: "WeChat Share", // WeChat QR code prompt text wechatQrcodeHelper: '<p>Scan QR code</p> <p>This article can be shared to your WeChat.</p>', }; socialShare('.social-share', $config); </script> <script> document.addEventListener("DOMContentLoaded", function() { /**/ var stopScroll = $(document).scrollTop(), column = $('.left-content'), fixedTitle = $('.fixed-title'), acquiesceTitle = $('.acquiesce-title'), acquiesceTitleTop = acquiesceTitle.offset().top; $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); if(scrollTop > acquiesceTitleTop){ column.addClass('fixed'); fixedTitle.addClass('fixed'); }else{ column.removeClass('fixed'); fixedTitle.removeClass('fixed'); } }) if (stopScroll > acquiesceTitleTop ){ column.addClass('fixed'); fixedTitle.addClass('fixed'); } //Anchor navigation $('body').scrollspy({ target: '#article-menu-float' }) //tab switch $('.information-collapse').each(function(){ $(this).click(function(){ $(this).toggleClass('active').siblings().removeClass('active'); $(".information-item").eq($(this).index()).slideToggle().siblings().slideUp(); }) }) function markdownReplace(text) { // Replace the oblique body, bold it to HTML // /article/pii/21 text = text.replace(/</g, '<'); //article/pii/166 text = text.replace(/>/g, '>'); // text = text.replace(/\*\*(.+?)\*\*/g, "<b>$1</b>"); text = text.replace(/\*(.+?)\*/g, "<i>$1</i>"); // article/pii/18 text = text.replace(/&/g, '&');//* /article/pii/181#Figure5 中的* // text = text.replace(/\\\$/g, '$'); //article/pii/19 return text; } // Treatment of non -serial list function replaceConsecutiveBulletsWithList(text) { // Regular expression matching continuously with • starting line const regex = /^(?:•\s.*\n?)+/gm; // Replace the matching line, convert it to <ul> and <li> elements return text.replace(regex, (match) => { // Remove the • and the subsequent blank characters at the beginning of each line, and convert it to <li> element const listItems = match.split('\n').map(line => { return line.replace(/^•\s/, '').trim() ? `<li>${line.replace(/^•\s/, '').trim()}</li>` : ''; }).join(''); // If there is a list item, the package is wrapped in the <ul> label return `<ul>${listItems}</ul>`; }); } // Pre -predetermined formula rendering global indexes window.formula = {}; // Treatment to find a third -level and four -level title, sort out the P label that is not available in the text document.querySelectorAll('.article-item-text').forEach(element => { element.innerHTML = replaceConsecutiveBulletsWithList(element.innerHTML); // Forwards <em> 3.1. Serine Integrase-Mediated DNA Assembly Between Two Plasmids </em> element.innerHTML = element.innerHTML.replace(/(<h[1-6].+?>)/gi, '\r\n$1'); //TODO There is a change in the middle of the H tag to cause problems element.innerHTML = element.innerHTML.replace(/(<\/h[1-6]\s*>)/gi, '$1\r\n'); element.innerHTML = element.innerHTML.replace(/<(em|i)>(\d+\.\d+\..+?)<\/(em|i)>/gi, '\r\n<h4 class="value4">$2</h4>\r\n'); // Processing replacement of level 4 title element.innerHTML = element.innerHTML.replace(/>\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/g, '>\r\n<h5 class="value5">$1</h5>\r\n'); element.innerHTML = element.innerHTML.replace(/^\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/gm, '\r\n<h5 class="value5">$1</h5>\r\n'); // Processing replacement three -level title element.innerHTML = element.innerHTML.replace(/\*+(\d+\.\d+\..+?)\*+\s+/g, '\r\n<h4 class="value4">$1</h4>\r\n'); // Treatment P tag element.innerHTML = element.innerHTML.replace(/<p.+?>(.+?)<\/p>/gi, '\r\n$1\r\n'); let lastP = document.createElement('p'); Array.from(element.childNodes).forEach(node=> { if (node.childElementCount == 0 && node.textContent.trim().length == 0){ // Delete the empty node element.removeChild(node); } // Handle the title if (/H[1-6]/i.test(node.nodeName)){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ // Lastp is not an empty node. element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); return; } // Check the HTML-Disp-Formula-Info node if (node.classList && node.classList.contains('html-disp-formula-info')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); // Treatment of the text formula in the chapter renderMathInElement(node, { delimiters: [ {left: '```latex', right: '```', display: true}, ], throwOnError : false }); const label = node.querySelector('.formula > label'); if (label === null){ return; } var numMatch = label.textContent.match(/\d+/g) if (!numMatch){ return; } const html_pics = node.querySelector('.html_pics') if (html_pics){ formula["Equation"+numMatch[0]]=html_pics.innerHTML; } return; } // Treatment textbooks if (node.nodeType === 3) { var lines = node.nodeValue.split(/\r?\n/); if (lines.length == 1){ // No change, it may be the content of the previous P tag if (node.nodeValue.trim().length > 0){ lastP.appendChild(node); } return; } lines.forEach((line, index)=> { if (index >0){ // Other changes may be the new P tag, the old P label is moved in if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } if (line.trim().length > 0){ lastP.appendChild(document.createTextNode(line)); } }); element.removeChild(node); return; } if (node.classList.contains('html-fig-wrap')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } //Other situations are the content of the previous P tag lastP.appendChild(node); }); if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); } if (element.childElementCount == 0 && element.textContent.trim().length == 0){ // Delete the empty node element.parentNode.removeChild(element); } function capitalizeFirstLetter(str) { return str.charAt(0).toUpperCase() + str.slice(1); } // Find the picture form formula without setting the A tag, and give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*|[a-zA-Z])(Figure|Table|Scheme|Equation)\s+(\(([A-Z]?\d+)\)|([A-Z]?\d+))(?<!\s*<\/a>)/gi, function(match, $2,$3) { match = capitalizeFirstLetter(match); return '<a href="#'+ capitalizeFirstLetter($2) + $3.replace(/\(|\)/g,'') +'">'+ match +'</a>'; }); // Remove Markdown element.innerHTML = markdownReplace(element.innerHTML); // Find a super -text link without setting A tags, give a tagnk without setting A tags, give a tagnk without setting A tags, give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*)https?:\/\/[^\s\/]+(\/[^\s<.]*)*(?<!\s*<\/a>)/gi, function(match) { return '<a href="'+ match.replace(/[.,,。;\s]+$/, '') +'" target="_blank">'+ match +'</a>'; } ); // Add a box to the formula quotation element.querySelectorAll('a[href^="#Equation"]').forEach(auchor=>{ const id= auchor.getAttribute('href').slice(1); if (formula[id]){ $(auchor).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:$('<div class="formulaTip">').html(formula[id])}); } }); // Handling in -line formula renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); document.querySelectorAll("div.articleneir.abstract").forEach(element => { renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); // Processing reference document.querySelectorAll(".html-bibr").forEach(link => { link.removeAttribute('title'); const target = document.querySelector(link.getAttribute('href')+'.references > .references_name'); if (target){ $(link).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:target.innerHTML}); } }); document.querySelectorAll(".references").forEach(ref => { if (ref.id){ const a = document.createElement("a"); a.name=ref.id; a.classList.add("anchor-abs-66"); ref.removeAttribute("id"); ref.insertBefore(a, ref.firstChild); } }); // Treat the display area of the formula formula of the picture form, remove the A tag, set the anchor point document.querySelectorAll('.html-fig-wrap .html-fig_description,.html-fig-wrap .html-table_wrap_discription').forEach(element => { element.innerHTML = markdownReplace(element.innerHTML); const match = element.firstChild.textContent.match(/(Figure|Table|Scheme) [A-Z]?\d+/g); if (match){ element.firstChild.textContent = element.firstChild.textContent let id= match[0].replace(" ","") const target = document.createElement("a"); target.name=id; target.classList.add("anchor"); element.parentNode.insertBefore(target, element.parentNode.firstChild); document.querySelectorAll("a[href='#"+id+"']").forEach(auchor => { $(auchor).tooltip({ html: true , delay: { "show": 1000, "hide": 100 },title:$(element.parentNode).html()}); }); } }); // Processing keywords const keywordsContainer = document.querySelector('.keywords') if (keywordsContainer){ let title; while(child = keywordsContainer.firstChild){ // Take out the first non -empty element in Keywords if (child.textContent.trim().length>0){ title = child; title.appendChild(document.createTextNode(' ')); keywordsContainer.removeChild(child); break; } keywordsContainer.removeChild(child); } let listLinks = []; let link = document.createElement('a'); Array.from(keywordsContainer.childNodes).forEach(node=> { // Treatment text nodes if (node.nodeType === 3) { var ks = node.nodeValue.split(/(?<!&#(?:x[0-9a-fA-F]{1,5}|\d{1,6}))[;]|,/); if (ks.length == 1){ // There is no separatist, no new link is created if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += ks[0]; }else{ link.appendChild(node); } return; }else{ ks.forEach((k, index)=> { if (index==0){ // In the first paragraph, do not create a new LINK, and the merger with the previous merger if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += k; return; } }else{ // Means encounter; create a new link listLinks.push(link); link = document.createElement('a'); } link.appendChild(document.createTextNode(k.trim())); }); return; } }else{ link.appendChild(node); } }); if (link.innerText.trim().length>0){ listLinks.push(link); } keywordsContainer.innerHTML = ""; keywordsContainer.appendChild(title); listLinks.forEach((link, index, array)=> { link.href = "/index/search/index.html?search="+link.innerHTML.trim().replace(/ /g, '+');// TODO :Angle/lowering/small capitalization keywordsContainer.appendChild(link); if (index !== array.length - 1) { keywordsContainer.appendChild(document.createTextNode(', ')); } }); } // Treatment reference copy document.querySelectorAll('.cite-modal h6 ').forEach(h6 => { let a = document.createElement('a'); let h6Text = h6.textContent.trim(); h6.appendChild(a); a.href = "#"; a.textContent = "Copy"; a.onclick = function(e) { if (h6.nextElementSibling) { navigator.clipboard.writeText(h6.nextElementSibling.textContent.replace(/\r\n|\n|\r/g, '')).then(function() { $('#citeModal').modal('hide'); // showToast(h6Text + ' copied to clipboard!'); }, function() { showToast('Failed to copy '+h6Text+' to clipboard.'); }); } e.preventDefault(); }; }); //Picture amplification var $imgModal = $('#imgModal'), $imgModalBody = $imgModal.find('.modal-body'); $(".html-figpopup-link").each(function(){ var dataSrc = $(this).children('img').attr('data-large'); $(this).attr({ 'data-toggle': 'modal', 'data-target': '#imgModal' }) $(this).on('click', function () { $imgModalBody.append(`<img src="`+dataSrc+`" class="amplification-img">`); }) }); $imgModal.on('hidden.bs.modal', function (event) { $imgModalBody.children('img').remove(); }) //The picture is enlarged again $imgModal.on('shown.bs.modal', function (event) { $imgModalBody.children('img').on('click', function () { $(this).parent().parent().toggleClass('toggle-img'); }) }) // Process doi // Doi reference the magazine $.ajax({ type: 'GET', url: '/api/article/doi/id/17', dataType:"json", success: function(data){ var doiEL =""; $.each(data.doi_list, function(k, v) { doiEL += "<p>" + v.title + "." + " <em>" + v.source + "</em>" + " " + "<b>" + v.year + "</b>. " + "[" + "<a target='_blank' href='http://dx.doi.org/" + v.doi + "'>CrossRef</a>" + "]" +"</p>"; }) if (data.doi_count > 0) { $("[data-bind='popover1'] > b").text(data.doi_count); $("[data-bind='popover1']").addClass('d-flex'); $("[data-bind='popover1']").popover({ trigger: 'focus', html: true, delay: { "show": 100, "hide": 500 }, content: function(){ return doiEL; }, }); } }, timeout: 5000, error: function(jqXHR,textStatus){ } }) }) function showToast(message) { var toast = document.createElement('div'); toast.classList.add('toast', 'centered-div', 'show'); toast.setAttribute('role', 'alert'); toast.setAttribute('aria-live', 'assertive'); toast.setAttribute('aria-atomic', 'true'); var toastBody = document.createElement('div'); toastBody.classList.add('toast-body'); toastBody.textContent = message; toast.appendChild(toastBody); document.body.appendChild(toast); setTimeout(function () { toast.classList.remove('show'); toast.classList.add('hide'); setTimeout(function () { document.body.removeChild(toast); }, 500); }, 3000); } </script> <!-- Footer --> <footer class="mt-1"> <div class="my-body-container pt-4 pb-4"> <div class="fotter-top"> <div> <div class="item-text"> <h3>About</h3> <ul> <li> <a href="/About_SCIEPublish" title="About SClEPublish">About SClEPublish</a> </li> <li> <a href="/Management_Team" title="Management Team">Management Team</a> </li> <li> <a href="/Careers" title="Careers">Careers</a> </li> <li> <a href="/Contact" title="Contact">Contact</a> </li> </ul> </div> <div class="item-text"> <h3>Policies</h3> <ul> <li> <a href="/Peer_Review_Policy" title="Peer Review Policy">Peer Review Policy</a> </li> <li> <a href="/Open_Access_Policy" title="Open Access Policy">Open Access Policy</a> </li> <li> <a href="/Licensing_and_Copyright" title="Licensing and Copyright">Licensing and Copyright</a> </li> <li> <a href="/Editorial_Policy" title="Editorial Policy">Editorial Policy</a> </li> <li> <a href="/Advertising_Policy" title="Advertising Policy">Advertising Policy</a> </li> </ul> </div> <div class="item-text"> <h3>Information</h3> <ul> <li> <a href="/For_Authors" title="For Authors">For Authors</a> </li> <li> <a href="/For_Reviewers" title="For Reviewers">For Reviewers</a> </li> <li> <a href="/For_Editors" title="For Editors">For Editors</a> </li> </ul> </div> <div class="item-text item-text-membership"> <h3>A Member of</h3> <ul> <li class="membership-img1"> <a href="https://stm-assoc.org/" target="_blank" rel="nofollow"> <img src="/style/image/stm2024-logo.png"> </a> </li> <li class="membership-img2"> <a href="https://www.alpsp.org/" target="_blank" rel="nofollow" title=""> <img src="/style/image/alpsp-logo.png" alt=""> </a> </li> <!-- <li class="membership-img3"> <a href="https://publicationethics.org/publisher-membership-application-form-1" target="_blank" rel="nofollow" title=""> <img src="/style/image/cope-logo.png" alt=""> </a> </li> --> </ul> </div> </div> <div class="item-text item-text-right"> <h3> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </h3> <div class="text-share"> <a href="https://x.com/SCIEPublish" class="share-btn twitter-btn" title="Share on Twitter" target="_blank"> <svg t="1713929395475" class="icon" width="32" height="32" viewBox="0 0 1399 1024" fill="#000000" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn LinkedIn-btn" id="email-LinkedIn-btn" title="Share on LinkedIn" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="#000000" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="javaScript:void(0)" class="share-btn wechat-btn" id="wechat-share-btn"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> <div class="cord"> <div class="img"> <img src="/style/image/wechat.jpg" alt="SCIEPublish wechat" /> </div> </div> </a> <a href="mailto:office@sciepublish.org" class="share-btn email-btn" id="email-share-btn" title="Share on Email" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> </div> </div> </div> <div class="copyright-box mt-4 mb-0 pt-3 pb-0"> <p class="text-left">Copyright © 2021-2024 SCIE Publishing Ltd. unless otherwise stated.</p> <p class="text-right"> <a href="/Privacy" title="Privacy">Privacy</a> <!-- <a href="" title="Cookies">Cookies</a> --> <a href="/Terms_of_Use" title="Terms of Use">Terms of Use</a> </p> </div> </div> </footer> <!-- Back-top --> <div class="back-top"> <div class="d-flex justify-content-center align-items-center flex-wrap"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> <span>TOP</span> </div> </div> <!-- Toast --> <div class="toast-container"> <div class="toast" id="liveToast" role="alert" data-delay="3000" aria-live="assertive" aria-atomic="true"> <div class="toast-header"> <strong class="mr-auto">Message</strong> <button type="button" class="ml-2 mb-1 close" data-dismiss="toast" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="toast-body"> </div> </div> </div> <script> $(function () { $('.js-navbar-toggle').on('click', function () { $('header nav').toggleClass('nav-search-active'); }); var windowHeight = $(window).height(), header = $('header'), backTop = $('.back-top'); $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); scrollTop > 0 ? header.addClass('fixed') : header.removeClass('fixed'); scrollTop > windowHeight ? backTop.addClass('fixed') : backTop.removeClass('fixed'); }) backTop.click(function(){ $("body,html").animate({scrollTop:0},300); }) $(".article-abseract.clamp").each(function () { $(this).click(function () { $(this).toggleClass("clamp-open"); }); }); //初始化select $('select.select-mania').selectMania(); }) $('.logout').click(function () { $.get('/index/user/login_out', function (res) { if (res.err == 0) { window.location.href = res.data layer.msg('exit successfully!') } else { layer.msg('Exit failed!') } }) }) </script> </body> </html>