CINXE.COM
Search results for: taper angle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: taper angle</title> <meta name="description" content="Search results for: taper angle"> <meta name="keywords" content="taper angle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="taper angle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="taper angle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1436</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: taper angle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1376</span> Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raad%20Hassan">Ali Raad Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=involute" title="involute">involute</a>, <a href="https://publications.waset.org/abstracts/search?q=trochoid" title=" trochoid"> trochoid</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20shift%20factor" title=" profile shift factor"> profile shift factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/88687/pressure-angle-and-profile-shift-factor-effects-on-the-natural-frequency-of-spur-tooth-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1375</span> Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%20Kwang-Won">Jo Kwang-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ho-Jun"> Lee Ho-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20In-Rak"> Choi In-Rak</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Hong-Gun"> Park Hong-Gun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=angle" title=" angle"> angle</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete" title=" precast concrete"> precast concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pratt%20truss" title=" pratt truss"> pratt truss</a> </p> <a href="https://publications.waset.org/abstracts/60429/flexural-behavior-for-prefabricated-angle-truss-composite-beams-using-precast-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1374</span> Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Mohd-Noor"> S. B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Gunawan"> T. S. Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Islam"> R. B. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat" title=" deadbeat"> deadbeat</a>, <a href="https://publications.waset.org/abstracts/search?q=pole-placement" title=" pole-placement"> pole-placement</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/15094/performance-comparisons-between-pid-and-adaptive-pid-controllers-for-travel-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1373</span> Simulation of Optimum Sculling Angle for Adaptive Rowing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pornthep%20Rachnavy">Pornthep Rachnavy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is twofold. First, we believe that there are a significant relationship between sculling angle and sculling style among adaptive rowing. Second, we introduce a methodology used for adaptive rowing, namely simulation, to identify effectiveness of adaptive rowing. For our study we simulate the arms only single scull of adaptive rowing. The method for rowing fastest under the 1000 meter was investigated by study sculling angle using the simulation modeling. A simulation model of a rowing system was developed using the Matlab software package base on equations of motion consist of many variation for moving the boat such as oars length, blade velocity and sculling style. The boat speed, power and energy consumption on the system were compute. This simulation modeling can predict the force acting on the boat. The optimum sculling angle was performing by computer simulation for compute the solution. Input to the model are sculling style of each rower and sculling angle. Outputs of the model are boat velocity at 1000 meter. The present study suggests that the optimum sculling angle exist depends on sculling styles. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the first style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the second style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the third style is -51.57 and 28.65 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the fourth style is -45.84 and 34.38 degree. A theoretical simulation for rowing has been developed and presented. The results suggest that it may be advantageous for the rowers to select the sculling angles proper to sculling styles. The optimum sculling angles of the rower depends on the sculling styles made by each rower. The investigated of this paper can be concludes in three directions: 1;. There is the optimum sculling angle in arms only single scull of adaptive rowing. 2. The optimum sculling angles depend on the sculling styles. 3. Computer simulation of rowing can identify opportunities for improving rowing performance by utilizing the kinematic description of rowing. The freedom to explore alternatives in speed, thrust and timing with the computer simulation will provide the coach with a tool for systematic assessments of rowing technique In addition, the ability to use the computer to examine the very complex movements during rowing will help both the rower and the coach to conceptualize the components of movements that may have been previously unclear or even undefined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sculling" title=" sculling"> sculling</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=rowing" title=" rowing"> rowing</a> </p> <a href="https://publications.waset.org/abstracts/36003/simulation-of-optimum-sculling-angle-for-adaptive-rowing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1372</span> Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hasan">W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Farhat"> H. Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunstensen%20model" title=" Gunstensen model"> Gunstensen model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20viscosity%20ratio" title=" high viscosity ratio"> high viscosity ratio</a> </p> <a href="https://publications.waset.org/abstracts/74061/investigating-the-effects-of-thermal-and-surface-energy-on-the-two-dimensional-flow-characteristics-of-oil-in-water-mixture-between-two-parallel-plates-a-lattice-boltzmann-method-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1371</span> Experimental Investigation of Cutting Forces and Temperature in Bone Drilling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwanath%20Mali">Vishwanath Mali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Warhatkar"> Hemant Warhatkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Pawade"> Raju Pawade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title="bone drilling">bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=helix%20angle" title=" helix angle"> helix angle</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20angle" title=" point angle"> point angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20necrosis" title=" thermal necrosis"> thermal necrosis</a> </p> <a href="https://publications.waset.org/abstracts/52171/experimental-investigation-of-cutting-forces-and-temperature-in-bone-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1370</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1369</span> Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Wei%20Liao"> Ching-Wei Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20beamforming" title="adaptive beamforming">adaptive beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20coupling%20effect" title=" mutual coupling effect"> mutual coupling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20algorithm" title=" recursive algorithm"> recursive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20angle%20error" title=" steering angle error"> steering angle error</a> </p> <a href="https://publications.waset.org/abstracts/84628/adaptive-beamforming-with-steering-error-and-mutual-coupling-between-antenna-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1368</span> Scaling Analysis of the Contact Line and Capillary Interaction Induced by a Floating Tilted Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShiQing%20Gao">ShiQing Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=XingYi%20Zhang"> XingYi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=YouHe%20Zhou"> YouHe Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a floating tilted cylinder pierces a fluid interface, the fulfilment of constant-contact-angle condition along the cylinder results in shift, stretch and distortion of the contact line, thus leading to a capillary interaction. We perform an investigation of the scaling dependence of tilt angle, contact angle, and cylinder radius on the contact line profile and the corresponding capillary interaction by numerical simulation and experiment. Characterized by three characteristic parameters respectively, the dependences for each deformation mode are systematically analyzed. Both the experiment and simulation reveals an invariant structure that is independent of contact angle and radius to characterize the stretch of the contact line for every tilted case. Based on this observation, we then propose a general capillary force scaling law to incredibly grasp all the simulated results, by simply approximating the contact line profile as tilted ellipse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%2Fliquid-fluid%20interface" title="gas-liquid/liquid-fluid interface">gas-liquid/liquid-fluid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20particle" title=" colloidal particle"> colloidal particle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20shape" title=" contact line shape"> contact line shape</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20interaction" title=" capillary interaction"> capillary interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20evolver%20%28SE%29" title=" surface evolver (SE)"> surface evolver (SE)</a> </p> <a href="https://publications.waset.org/abstracts/53570/scaling-analysis-of-the-contact-line-and-capillary-interaction-induced-by-a-floating-tilted-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1367</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1366</span> Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Tavasoli">Omid Tavasoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Ghazavi"> Mahmoud Ghazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile%20driving" title="pile driving">pile driving</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20piles" title=" non-uniform piles"> non-uniform piles</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20geometry" title=" pile geometry"> pile geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20set" title=" pile set"> pile set</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20points" title=" plastic points"> plastic points</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a> </p> <a href="https://publications.waset.org/abstracts/32842/numerical-analysis-for-soil-compaction-and-plastic-points-extension-in-pile-drivability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1365</span> Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20Yu">Ding Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ge%20Yang"> Ge Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hong-Tao"> Wang Hong-Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflagration%20to%20detonation%20transition" title="deflagration to detonation transition">deflagration to detonation transition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20structure" title=" obstacle structure"> obstacle structure</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flame" title=" turbulent flame"> turbulent flame</a> </p> <a href="https://publications.waset.org/abstracts/165628/numerical-study-on-the-effect-of-obstacle-structure-on-two-phase-detonation-initiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1364</span> Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Tun%20Huang">Yi-Tun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Wei%20Huang"> Shu-Wei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortex%20generators" title=" longitudinal vortex generators"> longitudinal vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20stream%20interfaces" title=" two stream interfaces"> two stream interfaces</a> </p> <a href="https://publications.waset.org/abstracts/7216/longitudinal-vortices-mixing-in-three-stream-micromixers-with-two-inlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1363</span> Influence of Single Source Irradiation on the Homogeneous Alignment of Liquid Crystals Molecules on Glass Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Akhtar">Sarah Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Mahmood"> Rizwan Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed study of homogeneous alignment of liquid crystal molecules on a glass substrate will be presented. Thin films of polyimide were coated on several glass substrates. Various methods were employed to prepare coated surfaces to achieve desired alignment; these include traditionally rubbing the surface with a felt cloth then exposing them perpendicular to the easy axis with incandescent light (IL), linearly polarized ultraviolet (LPUVR) and un-polarized ultraviolet (UPUVR) radiation. The quality of the alignment was tested by measuring the tilt angle in the temperature range between 30°C to 55°C. Regression analysis of the data using ‘SigmaPlot’ suggests a gradual increase in tilt angle (1.1°-1.8°) for the rubbed, 0.6° to 3.6° increase for the rubbed plus IL radiated and 1.6° to 4.6° for the rubbed plus UPUVL radiated samples, respectively. However to our surprise, we found tilt angle to be decreasing from 2.4° to 1.6° for the rubbed plus LPUVL radiated samples. We hope that these findings will be helpful in the fabrication of display panels and other electro-optic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogeneous" title="homogeneous">homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide" title=" polyimide"> polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a> </p> <a href="https://publications.waset.org/abstracts/102033/influence-of-single-source-irradiation-on-the-homogeneous-alignment-of-liquid-crystals-molecules-on-glass-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1362</span> 6D Posture Estimation of Road Vehicles from Color Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshimoto%20Kurihara">Yoshimoto Kurihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tad%20Gonsalves"> Tad Gonsalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6D%20posture%20estimation" title="6D posture estimation">6D posture estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20recognition" title=" image recognition"> image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=AlexNet" title=" AlexNet"> AlexNet</a> </p> <a href="https://publications.waset.org/abstracts/138449/6d-posture-estimation-of-road-vehicles-from-color-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1361</span> Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angad%20S.%20Kushwaha">Angad S. Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar"> Rajeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Srivastava"> Monika Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Srivastava"> S. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a> </p> <a href="https://publications.waset.org/abstracts/40534/sensitivity-enhancement-in-graphene-based-surface-plasmon-resonance-spr-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1360</span> Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Furutani">R. Furutani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kikuchi"> G. Kikuchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=any%20direction%20angle" title="any direction angle">any direction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20lens" title=" ball lens"> ball lens</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometer" title=" laser interferometer"> laser interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=transmissive%20liquid%20crystal%20device" title=" transmissive liquid crystal device"> transmissive liquid crystal device</a> </p> <a href="https://publications.waset.org/abstracts/106989/study-on-angle-measurement-interferometer-around-any-axis-direction-selected-by-transmissive-liquid-crystal-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1359</span> Implementation and Modeling of a Quadrotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ersan%20Aktas">Ersan Aktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20Turano%C4%9Fuz"> Eren Turanoğuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the quad-electrical rotor driven unmanned aerial vehicle system is designed and modeled using fundamental dynamic equations. After that, mechanical, electronical and control system of the air vehicle are designed and implemented. Brushless motor speeds are altered via electronic speed controllers in order to achieve desired controllability. The vehicle's fundamental Euler angles (i.e., roll angle, pitch angle, and yaw angle) are obtained via AHRS sensor. These angles are provided as an input to the control algorithm that run on soft the processor on the electronic card. The vehicle control algorithm is implemented in the electronic card. Controller is designed and improved for each Euler angles. Finally, flight tests have been performed to observe and improve the flight characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title="quadrotor">quadrotor</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS%20applications" title=" UAS applications"> UAS applications</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20architectures" title=" control architectures"> control architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/48615/implementation-and-modeling-of-a-quadrotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1358</span> Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Waddington">William Waddington</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jahir%20Rizvi"> M. Jahir Rizvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=sailing%20vessel" title=" sailing vessel"> sailing vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20sail" title=" traditional sail"> traditional sail</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20sail" title=" wing sail"> wing sail</a> </p> <a href="https://publications.waset.org/abstracts/93023/performance-of-a-sailing-vessel-with-a-solid-wing-sail-compared-to-a-traditional-sail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1357</span> Electronically Controlled Motorized Steering System (E-Mo Steer)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Prasanth">M. Prasanth</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nithin"> V. Nithin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Keerthana"> R. Keerthana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Kalyani"> S.Kalyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current scenario, the steering system in automobiles is such that the motion from the steering wheel is transferred to driving wheel by mechanical linkages. In this paper, we propose a method to design a steering mechanism using servomotors to turn the wheels instead of linkages. In this method, a steering angle sensor senses the turn angle of the steering wheel and its output is processed by an electronical control module. Then the ECM compares the angle value to that of a standard value from a look-up database. Then it gives the appropriate input power and the turning duration to the motors. Correspondingly, the motors turn the wheels by means of bevel gears welded to both the motor output shafts and the wheel hubs. Thus, the wheels are turned without the complicated framework of linkages, reducing the driver’s effort and fatigue considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20control%20unit" title="electronic control unit">electronic control unit</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage-less%20steering" title=" linkage-less steering"> linkage-less steering</a>, <a href="https://publications.waset.org/abstracts/search?q=servomotors" title=" servomotors"> servomotors</a>, <a href="https://publications.waset.org/abstracts/search?q=E-Mo%20Steer" title=" E-Mo Steer"> E-Mo Steer</a> </p> <a href="https://publications.waset.org/abstracts/4163/electronically-controlled-motorized-steering-system-e-mo-steer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1356</span> Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kai">Xie Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20K.%20Abbas"> Laith K. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Dongyang"> Chen Dongyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Fufeng"> Yang Fufeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xiaoting"> Rui Xiaoting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and <em>k - ω</em> shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle <em>φ = 0, μ </em>which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stall" title="dynamic stall">dynamic stall</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching-plunging" title=" pitching-plunging"> pitching-plunging</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20blade%20rotor" title=" helicopter blade rotor"> helicopter blade rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a> </p> <a href="https://publications.waset.org/abstracts/75693/numerical-investigations-on-dynamic-stall-of-a-pitching-plunging-helicopter-blade-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1355</span> The Influence of Chevron Angle on Plate Heat Exchanger Thermal Performance with Considering Maldistribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Shokouhmand">Hossein Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hasanpour"> Majid Hasanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new modification to the Strelow method of chevron-type plate heat exchangers (PHX) modeling is proposed. The effects of maldistribution are accounted in the resulting equation. The results of calculations are validated by reported experiences. The good accuracy of heat transfer performance prediction is shown. The results indicate that considering flow maldistribution improve the accuracy of predicting the flow and thermal behavior of the plate exchanger. Additionally, a wide range of the parametric study has been presented which brings out the effects of chevron angle of PHE on its thermal efficiency with considering maldistribution effect. In addition, the thermally optimal corrugation discussed for the chevron-type PHEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chevron%20angle" title="chevron angle">chevron angle</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20heat%20exchangers" title=" plate heat exchangers"> plate heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=maldistribution" title=" maldistribution"> maldistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=strelow%20method" title=" strelow method"> strelow method</a> </p> <a href="https://publications.waset.org/abstracts/86320/the-influence-of-chevron-angle-on-plate-heat-exchanger-thermal-performance-with-considering-maldistribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1354</span> An Elbow Biomechanical Model and Its Coefficients Adjustment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Bai">Jie Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsheng%20Gao"> Yongsheng Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shengxin%20Wang"> Shengxin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Zhao"> Jie Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elbow%20biomechanical%20model" title="elbow biomechanical model">elbow biomechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=RMS" title=" RMS"> RMS</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20search" title=" direct search"> direct search</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugacy%20search" title=" conjugacy search"> conjugacy search</a> </p> <a href="https://publications.waset.org/abstracts/7188/an-elbow-biomechanical-model-and-its-coefficients-adjustment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1353</span> Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao">Wei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxuan%20Yao"> Yuxuan Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen"> Hao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20battery" title=" power battery"> power battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20angle" title=" packing angle"> packing angle</a> </p> <a href="https://publications.waset.org/abstracts/182236/mechanical-properties-of-lithium-ion-battery-at-different-packing-angles-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1352</span> Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20A.%20Olaniyi">Kayode A. Olaniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olabanji%20F.%20Omotoye"> Olabanji F. Omotoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20A.%20Ogunleye"> Adeola A. Ogunleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hough-transform" title="hough-transform">hough-transform</a>, <a href="https://publications.waset.org/abstracts/search?q=skew-detection" title=" skew-detection"> skew-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=skew-angle" title=" skew-angle"> skew-angle</a>, <a href="https://publications.waset.org/abstracts/search?q=skew-correction" title=" skew-correction"> skew-correction</a>, <a href="https://publications.waset.org/abstracts/search?q=text-document" title=" text-document"> text-document</a> </p> <a href="https://publications.waset.org/abstracts/103263/adaptation-of-hough-transform-algorithm-for-text-document-skew-angle-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1351</span> Dynamic Modeling of Wind Farms in the Jeju Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hee%20Kang"> Sang-Hee Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeju%20power%20system" title=" Jeju power system"> Jeju power system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20limitation" title=" online limitation"> online limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle%20control" title=" pitch angle control"> pitch angle control</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farm" title=" wind farm"> wind farm</a> </p> <a href="https://publications.waset.org/abstracts/47581/dynamic-modeling-of-wind-farms-in-the-jeju-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1350</span> Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyakant%20Vaghela">Priyakant Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prajapati"> Jagdish Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20spur%20gear%20tooth" title="asymmetric spur gear tooth">asymmetric spur gear tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%20continuity" title=" G2 continuity"> G2 continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20at%20the%20root%20of%20tooth" title=" stress concentration at the root of tooth"> stress concentration at the root of tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress" title=" tooth root stress"> tooth root stress</a> </p> <a href="https://publications.waset.org/abstracts/95043/optimization-of-tooth-root-profile-and-drive-side-pressure-angle-to-minimize-bending-stress-at-root-of-asymmetric-spur-gear-tooth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1349</span> Kinect Station: Using Microsoft Kinect V2 as a Total Station Theodolite for Distance and Angle Determination in a 3D Cartesian Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Amini">Amin Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Kinect sensor has been utilized as a cheap and accurate alternative to 3D laser scanners and electronic distance measurement (EDM) systems. This research presents an inexpensive and easy-to-setup system that utilizes the Microsoft Kinect v2 sensor as a surveying and measurement tool and investigates the possibility of using such a device as a replacement for conventional theodolite systems. The system was tested in an indoor environment where its accuracy in distance and angle measurements was tested using virtual markers in a 3D Cartesian environment. The system has shown an average accuracy of 97.94 % in measuring distances and 99.11 % and 98.84 % accuracy for area and perimeter, respectively, within the Kinect’s surveying range of 1.5 to 6 meters. The research also tested the system competency for relative angle determination between two objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinect%20v2" title="kinect v2">kinect v2</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20measurement" title=" 3D measurement"> 3D measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20map" title=" depth map"> depth map</a>, <a href="https://publications.waset.org/abstracts/search?q=ToF" title=" ToF"> ToF</a> </p> <a href="https://publications.waset.org/abstracts/172734/kinect-station-using-microsoft-kinect-v2-as-a-total-station-theodolite-for-distance-and-angle-determination-in-a-3d-cartesian-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1348</span> Influence of High-Resolution Satellites Attitude Parameters on Image Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Wahballah">Walid Wahballah</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Bazan"> Taher Bazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzy%20Eltohamy"> Fawzy Eltohamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20satellites" title="high-resolution satellites">high-resolution satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=pointing%20accuracy" title=" pointing accuracy"> pointing accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20stability" title=" attitude stability"> attitude stability</a>, <a href="https://publications.waset.org/abstracts/search?q=TDI-CCD" title=" TDI-CCD"> TDI-CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=smear" title=" smear"> smear</a>, <a href="https://publications.waset.org/abstracts/search?q=MTF" title=" MTF"> MTF</a> </p> <a href="https://publications.waset.org/abstracts/79548/influence-of-high-resolution-satellites-attitude-parameters-on-image-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1347</span> Analysis of the Strip Shape and Microstructure with Consideration of Roll Crossing and Shifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Jiang">Z. Y. Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Tibar"> H. B. Tibar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aljabri"> A. Aljabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20speed%20ratio" title="rolling speed ratio">rolling speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20cross%20angle" title=" work roll cross angle"> work roll cross angle</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a> </p> <a href="https://publications.waset.org/abstracts/36517/analysis-of-the-strip-shape-and-microstructure-with-consideration-of-roll-crossing-and-shifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=2" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=taper%20angle&page=4" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>