CINXE.COM

Search results for: CAST

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: CAST</title> <meta name="description" content="Search results for: CAST"> <meta name="keywords" content="CAST"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="CAST" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="CAST"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 333</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: CAST</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Analysis of Casting Call Process in Thai Film Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panprae%20Bunyapukkna">Panprae Bunyapukkna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to analyze the process that most of the Thai film industries commonly use in order to find the right cast to play the role. The result proved that most of the low-budget film productions find the cast by asking from the crew’s friends or friend of friend. Therefore, finding the cast in low-budget film productions normally has only few people shown up for the auditions and sometimes either none of them has acting knowledge or their appearances do not match the character. However, since most of the low-budget film productions do not have much ability to find members of the cast, thus some of them still will be selected. On the other hand, most of the high-budget film productions use modeling companies to find the cast for them. However, most of modeling agencies in Thailand seek and select their cast members from the cast’s appearances or talents rather than the knowledge of acting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20for%20film" title="casting for film">casting for film</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20business" title=" modeling business"> modeling business</a>, <a href="https://publications.waset.org/abstracts/search?q=acting" title=" acting"> acting</a>, <a href="https://publications.waset.org/abstracts/search?q=film" title=" film"> film</a>, <a href="https://publications.waset.org/abstracts/search?q=performing%20arts" title=" performing arts"> performing arts</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20business" title=" film business"> film business</a> </p> <a href="https://publications.waset.org/abstracts/12956/analysis-of-casting-call-process-in-thai-film-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ekici">Mehmet Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermicular%20cast%20iron" title="vermicular cast iron">vermicular cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20time" title=" fading time"> fading time</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test%20and%20impact%20test" title=" tensile test and impact test"> tensile test and impact test</a> </p> <a href="https://publications.waset.org/abstracts/61560/investigation-of-the-fading-time-effects-on-microstructure-and-mechanical-properties-in-vermicular-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ekici">Mehmet Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spheroidal%20graphite%20cast%20iron" title="spheroidal graphite cast iron">spheroidal graphite cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=lamellar%20graphite%20in%20cast%20iron" title=" lamellar graphite in cast iron"> lamellar graphite in cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=pouring%20temperature" title=" pouring temperature"> pouring temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test%20and%20impact%20test" title=" tensile test and impact test"> tensile test and impact test</a> </p> <a href="https://publications.waset.org/abstracts/61555/influence-of-pouring-temperature-on-the-formation-of-spheroidal-and-lamellar-graphite-in-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Jeyakumar"> C. V. Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Koteswara%20Rao"> S. R. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast%20Al-Mg-Sc%20alloy" title="cast Al-Mg-Sc alloy">cast Al-Mg-Sc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/18496/gas-tungsten-arc-welded-joints-of-cast-al-mg-sc-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Polymorphisms of Calpastatin Gene and Its Association with Growth Traits in Indonesian Thin Tail Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ihsan%20Andi%20Dagong">Muhammad Ihsan Andi Dagong</a>, <a href="https://publications.waset.org/abstracts/search?q=Cece%20Sumantri"> Cece Sumantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Rachman%20Noor"> Ronny Rachman Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Herman"> Rachmat Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Yamin"> Mohamad Yamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calpastatin involved in various physiological processes in the body such as the protein turnover, growth, fusion and mioblast migration. Thus, allegedly Calpastatin gene diversity (CAST) have an association with growth and potential use as candidate genes for growth trait. This study aims to identify the association between the genetic diversity of CAST gene with some growth properties such as body dimention (morphometric), body weight and daily weight gain in sheep. A total of 157 heads of Thin Tail Sheep (TTS) reared intensively for fattening purposes in the uniform environmental conditions. Overall sheep used were male, and maintained for 3 months. The parameters of growth properties were measured among others: body weight gain (ADG) (g/head / day), body weight (kg), body length (cm), chest circumference (cm), height (cm). All the sheep were genotyped by using PCR-SSCP (single strand conformational polymorphism) methods. CAST gene in locus fragment intron 5 - exon 6 were amplified with a predicted length of about 254 bp PCR products. Then the sheep were stratified based on their CAST genotypes. The result of this research showed that no association were found between the CAST gene variations with morphometric body weight, but there was a significant association with daily body weight gain (ADG) in sheep observed. CAST-23 and CAST-33 genotypes has higher average daily gain than other genotypes. CAST-23 and CAST-33 genotypes that carrying the CAST-2 and CAST-3 alleles potential to be used in the selection of the nature of the growth trait of the TTS sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title="body weight">body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=calpastatin" title=" calpastatin"> calpastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20trait" title=" growth trait"> growth trait</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20tail%20sheep" title=" thin tail sheep"> thin tail sheep</a> </p> <a href="https://publications.waset.org/abstracts/48500/polymorphisms-of-calpastatin-gene-and-its-association-with-growth-traits-in-indonesian-thin-tail-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Bakhtiari">Saeedeh Bakhtiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Depessemier"> Johannes Depessemier</a>, <a href="https://publications.waset.org/abstracts/search?q=Stijn%20Hertel%C3%A9"> Stijn Hertelé</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20De%20Waele"> Wim De Waele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High cycle fatigue comprising up to 10<sup>7</sup> load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of&nbsp; the specimen, and to control the temperature. The high resonance frequency allowed to assess the&nbsp; behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GG25" title="GG25">GG25</a>, <a href="https://publications.waset.org/abstracts/search?q=cast%20iron" title=" cast iron"> cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20cycle%20fatigue" title=" ultra-high cycle fatigue"> ultra-high cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20test" title=" ultrasonic test"> ultrasonic test</a> </p> <a href="https://publications.waset.org/abstracts/110405/assessment-of-ultra-high-cycle-fatigue-behavior-of-en-gjl-250-cast-iron-using-ultrasonic-fatigue-testing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Study the Influence of the Type of Cast Iron Chips on the Quality of Briquettes Obtained with Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20N.%20Karastoianov">Dimitar N. Karastoianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20D.%20Gyoshev"> Stanislav D. Gyoshev</a>, <a href="https://publications.waset.org/abstracts/search?q=Todor%20N.%20Penchev"> Todor N. Penchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparation of briquettes of metal chips with good density and quality is of great importance for the efficiency of this process. In this paper are presented the results of impact briquetting of grey cast iron chips with rectangular shape and dimensions 15x25x1 mm. Density and quality of briquettes of these chips are compared with those obtained in another work of the authors using cast iron chips with smaller sizes. It has been found that by using a rectangular chips with a large size are produced briquettes with a very low density and poor quality. From the photographs taken by X-ray tomography, it is clear that the reason for this is the orientation of the chip in the peripheral wall of the briquettes, which does not allow of the air to escape from it. It was concluded that in order to obtain briquettes of cast iron chips with a large size, these chips must first be ground, for example in a small ball mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=briquetting" title="briquetting">briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=chips" title=" chips"> chips</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a> </p> <a href="https://publications.waset.org/abstracts/33205/study-the-influence-of-the-type-of-cast-iron-chips-on-the-quality-of-briquettes-obtained-with-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> A Comprehensive Study on Cast NiTi and Ti64 Alloys for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mohamed%20Ibrahim">Khaled Mohamed Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive study on two biomaterials of NiTi and Ti-6Al-4V (Ti64) was done. Those materials were cast using vacuum arc remelting technique. As-cast structure of Ni-Ti alloy consists of NiTi matrix and some fine precipitates of Ni4Ti3. Ti-6Al-4V alloy showed a structure composed of equiaxed β grains and varied α-phase morphologies. Maximum ultimate compressive strength and reduction in height of 2042 MPa of 18%, respectively, were reported for the cast Ti64 alloy. However, minimum ultimate compressive strength of 1804 MPa and low reduction in height of 3% were obtained for the cast NiTi alloy. Wear rate of both Ni-Ti and Ti-6Al-4V alloys significantly increased at saline solution (0.9% NaCl) condition as compared to dry testing condition. Saline solution harmed the wear resistance of about 2 to 4 times compared to the dry condition. Corrosion rate of NiTi alloy at saline solution (0.9% NaCl) was (0.00038 mm/yr) is almost three times the value of Ti64 alloy (0.000171 mm/yr). The corrosion rate of Ti64 in SBF (0.00024 mm/yr) was lower than Ni-Ti (0.0003 mm/yr). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiTi" title="NiTi">NiTi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti64" title=" Ti64"> Ti64</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20casting" title=" vacuum casting"> vacuum casting</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/159117/a-comprehensive-study-on-cast-niti-and-ti64-alloys-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon"> Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title="stainless steel">stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=STS%20310S" title=" STS 310S"> STS 310S</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/11151/microstructure-and-high-temperature-deformation-behavior-of-cast-310s-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gvazava">S. Gvazava</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khidasheli"> N. Khidasheli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gordeziani"> G. Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20DL.%20Batako"> A. DL. Batako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title="wear resistance">wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering" title=" austempering"> austempering</a>, <a href="https://publications.waset.org/abstracts/search?q=ADI" title=" ADI"> ADI</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20quenching" title=" isothermal quenching"> isothermal quenching</a> </p> <a href="https://publications.waset.org/abstracts/143702/tribocorrosion-behavior-of-austempered-ductile-iron-microalloyed-with-boron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nanjundaswamy">H. M. Nanjundaswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nath"> S. K. Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ray"> S. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiO<sub>2</sub> particles have been added in molten aluminium to result in aluminium based cast Al/Al<sub>3</sub>Ti-Al<sub>2</sub>O<sub>3</sub> composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al<sub>3</sub>Ti-Al<sub>2</sub>O<sub>3</sub> composite. The nominal compositions in terms of Mg, Al, and TiO<sub>2</sub> contents in the magnesium based composites are Mg-9Al-0.6TiO<sub>2</sub>, Mg-9Al-0.8TiO<sub>2</sub>, Mg-9Al-1.0TiO<sub>2</sub> and Mg-9Al-1.2TiO<sub>2</sub> designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al<sub>3</sub>Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. &beta;-phase in cast microstructure, Mg<sub>17</sub>Al<sub>12</sub>, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of &beta;-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO<sub>2 </sub>but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO<sub>2 </sub>in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO<sub>2</sub> addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, <em>J<sub>IC</sub></em>, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al<sub>3</sub>Ti and Al<sub>2</sub>O<sub>3</sub> particles in the composite. There is drastic reduction of <em>J<sub>IC</sub></em> on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al<sub>3</sub>Ti rods and the voids between the broken segments of Al<sub>3</sub>Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO<sub>2</sub> addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a> </p> <a href="https://publications.waset.org/abstracts/46897/tensile-and-fracture-properties-of-cast-and-forged-composite-synthesized-by-addition-of-in-situ-generated-al3ti-al2o3-particles-to-magnesium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orathai%20Pornsunthorntawee">Orathai Pornsunthorntawee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wareerom%20Polrut"> Wareerom Polrut</a>, <a href="https://publications.waset.org/abstracts/search?q=Nopphawan%20Phonthammachai"> Nopphawan Phonthammachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=stearate" title=" stearate"> stearate</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title=" carbon black"> carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/13017/effects-of-additives-on-thermal-decompositions-of-carbon-blackhigh-density-polyethylene-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Driving in a Short Arm Plaster Cast Steer a Patient off Course: A Randomised, Controlled, Crossover Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20W.%20Kenny">B. W. Kenny</a>, <a href="https://publications.waset.org/abstracts/search?q=D.Mansour"> D.Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Mansour"> K. G. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Attia"> J. Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Meads"> B. Meads </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is currently insufficient evidence to make a conclusive statement about safety while immobilized in a short arm cast. There is a paucity of published literature on this topic. The purpose of this study is to specifically evaluate short arm casts and their effect on driving abilities, particularly steering and avoidance of obstacles. The ability to drive safely is extrapolated from this data. In this study, a randomised, controlled, crossover design was used to assess 30 subjects randomised into 2 groups. A Logitech force feedback steering column and simulated driving program with a standardised road course was used. Objective outcome measures were the number of times subjects drove off the track, the number of crashes, time to lap completion and subjective assessment on whether wearing a short arm plaster cast impeded their steering. Recruited subjects had no upper limb pathology. The side of the applied plaster cast was randomised. The mean lap completion time reduced with repetition, the difference being statistically significant. There was no significant difference in mean number of times subjects in casts drove off the track (3 with vs. 3.07 without casts), average number of crashes (1.27 vs 0.97). Steering ability was not reduced whilst a subject was immobilised in a short arm Plaster of Paris cast, despite subject’s own impressions that their steering was impeded. This may help guide doctors in their advice to patients regarding driving in these casts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upper%20limb" title="upper limb">upper limb</a>, <a href="https://publications.waset.org/abstracts/search?q=arm%20injury" title=" arm injury"> arm injury</a>, <a href="https://publications.waset.org/abstracts/search?q=plaster%20cast" title=" plaster cast"> plaster cast</a>, <a href="https://publications.waset.org/abstracts/search?q=splint" title=" splint"> splint</a>, <a href="https://publications.waset.org/abstracts/search?q=driving" title=" driving"> driving</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile" title=" automobile"> automobile</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fracture" title=" bone fracture "> bone fracture </a> </p> <a href="https://publications.waset.org/abstracts/20977/driving-in-a-short-arm-plaster-cast-steer-a-patient-off-course-a-randomised-controlled-crossover-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko">Alan Vaško</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan"> Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1"> Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and micro fractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by a different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with the higher ratio of steel scrap in the charge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nodular%20cast%20iron" title="nodular cast iron">nodular cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/20276/influence-of-raw-material-composition-on-microstructure-and-mechanical-properties-of-nodular-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=20%20Cr-5Al%20ferritic%20stainless" title="20 Cr-5Al ferritic stainless">20 Cr-5Al ferritic stainless</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20treatment" title=" aging treatment"> aging treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/15805/microstructure-and-hot-deformation-behavior-of-fe-20cr-5al-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Mechanical Properties of Die-Cast Nonflammable Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myoung-Gon%20Yoon">Myoung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-flammable%20magnesium%20alloy" title="non-flammable magnesium alloy">non-flammable magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=die-casting" title=" die-casting"> die-casting</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/11152/mechanical-properties-of-die-cast-nonflammable-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Sawke">Kshitij Sawke</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradnyavant%20Kamble"> Pradnyavant Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Patil"> Shrikant Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20clad" title="laser clad">laser clad</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/76458/to-study-the-effect-of-optic-fibre-laser-cladding-of-cast-iron-with-silicon-carbide-on-wear-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu"> Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20surface%20cracks" title=" inclined surface cracks"> inclined surface cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=pressurized%20cast%20iron%20pipes" title=" pressurized cast iron pipes"> pressurized cast iron pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity" title=" stress intensity"> stress intensity</a> </p> <a href="https://publications.waset.org/abstracts/61735/time-dependent-reliability-analysis-of-corrosion-affected-cast-iron-pipes-with-mixed-mode-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Undercasts in Fracture Care: A Randomized Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kenny">B. Kenny </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is currently no literature comparing undercasts in fracture care. This study is a randomised trial comparing the 4 commonly used undercasts in Australia. These are Webril, Sofban, Goretech and Delta-dry. The ideal undercast should be comfortable for the patient and not cause itchiness. It should be durable enough to withstand daily activities. The clinician/technician should find the undercast easy to apply and remove. It should provide adequate padding without compromising cast mouldability to obtain a good cast index and air index. 18 volunteering medical students were randomly allocated to receive 4 angular casts, one over each elbow and ankle(total of 72 casts). They were blinded to cast type. After an hour their casts were stressed by pouring 20ml Normal Saline onto the skin beneath. Each student filled a questionnaire about comfort, itchiness, weight and water resistance. Subsequently they ranked each cast 1 to 4 based on preference. Our preliminary results show Delta-dry is the most preferred undercast followed by Webril, Sofban and Goretech in that order. Underlay selection is important component of patient care with long immobilsation. Webril or Deltra-dry are by far the most preferred undercasts in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casts" title="casts">casts</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20modality" title=" treatment modality"> treatment modality</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20compliance" title=" patient compliance"> patient compliance</a> </p> <a href="https://publications.waset.org/abstracts/20978/undercasts-in-fracture-care-a-randomized-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqiang%20Gong">Liqiang Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanguang%20Fu"> Hanguang Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypereutectic%20high%20chromium%20cast%20iron" title="hypereutectic high chromium cast iron">hypereutectic high chromium cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=cu%20alloying" title=" cu alloying"> cu alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=carbides" title=" carbides"> carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title=" first-principles calculations"> first-principles calculations</a> </p> <a href="https://publications.waset.org/abstracts/165072/microstructure-and-properties-of-cu-bearing-hypereutectic-high-chromium-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Structural Analysis of Polymer Thin Films at Single Macromolecule Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Asada"> Toru Asada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomomi%20Tanii"> Tomomi Tanii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chain%20conformation" title="chain conformation">chain conformation</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20thin%20film" title=" polymer thin film"> polymer thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-coating" title=" spin-coating"> spin-coating</a>, <a href="https://publications.waset.org/abstracts/search?q=super-resolution%20optical%20microscopy" title=" super-resolution optical microscopy"> super-resolution optical microscopy</a> </p> <a href="https://publications.waset.org/abstracts/41961/structural-analysis-of-polymer-thin-films-at-single-macromolecule-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Usability and Biometric Authentication of Electronic Voting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nighat%20Ayub">Nighat Ayub</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20Ahmad"> Masood Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new voting system is developed and its usability is evaluated. The main feature of this system is the biometric verification of the voter and then a few easy steps to cast a vote. As compared to existing systems available, e.g dual vote, the new system requires no training in advance. The security is achieved via multiple key concept (another part of this project). More than 100 student voters were participated in the election from University of Malakanad, Chakdara, PK. To achieve the reliability, the voters cast their votes in two ways, i.e. paper based and electronic based voting using our new system. The results of paper based and electronic voting system are compared and it is concluded that the voters cast their votes for the intended candidates on the electronic voting system. The voters were requested to fill a questionnaire and the results of the questionnaire are carefully analyzed. The results show that the new system proposed in this paper is more secure and usable than other systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-voting" title="e-voting">e-voting</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=usability" title=" usability"> usability</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a> </p> <a href="https://publications.waset.org/abstracts/68301/usability-and-biometric-authentication-of-electronic-voting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20M.%20Khan">Mohammad M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajendra%20Dixit"> Gajendra Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 &micro;m) and (100 &micro;m) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and &Icirc; phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 &micro;m) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lubricant" title="solid lubricant">solid lubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20wear" title=" sliding wear"> sliding wear</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20cast%20iron" title=" grey cast iron"> grey cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20based%20metal%20matrix%20composites" title=" zinc based metal matrix composites"> zinc based metal matrix composites</a> </p> <a href="https://publications.waset.org/abstracts/50160/effects-of-test-environment-on-the-sliding-wear-behaviour-of-cast-iron-zinc-aluminium-alloy-and-its-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mokhtari">Majid Mokhtari</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Bahrami%20Alamdarlo"> Masoud Bahrami Alamdarlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Nazari"> Babak Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Zakerinya"> Hossein Zakerinya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salehi"> Mehdi Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20roller" title="hot roller">hot roller</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/144560/investigation-of-mechanical-properties-and-wear-behavior-of-hot-roller-grades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Nataniel">W. Nataniel</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lima"> B. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Manoel"> J. Manoel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Filho"> M. P. Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Marcos"> H. Marcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliveira%20Mauricio"> Oliveira Mauricio</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ferreira"> P. Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (<em>h<sub>ef</sub></em>), bar diameter (<em>d<sub>s</sub></em>), and the concrete compressive strength (<em>f<sub>c</sub></em>) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast-in%20headed%20anchors" title="cast-in headed anchors">cast-in headed anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20cone%20failure" title=" concrete cone failure"> concrete cone failure</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20concrete" title=" uncracked concrete"> uncracked concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cracked%20concrete" title=" cracked concrete"> cracked concrete</a> </p> <a href="https://publications.waset.org/abstracts/108458/influence-of-concrete-cracking-in-the-tensile-strength-of-cast-in-headed-anchors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20O.%20Zaid">A. I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Attieh"> A. M. Attieh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Al%20Qawabah"> S. M. A. Al Qawabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECAP" title="ECAP">ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=cast" title=" cast"> cast</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20grain%20refiner" title=" Mo grain refiner "> Mo grain refiner </a> </p> <a href="https://publications.waset.org/abstracts/9994/effect-of-molybdenum-addition-to-aluminum-grain-refined-by-titanium-plus-boron-on-its-grain-size-and-mechanical-characteristics-in-the-cast-and-after-pressing-by-the-equal-channel-angular-pressing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Wear Behavior of Grey Cast Iron Coated with Al2O3-13TiO2 and Ni20Cr Using Detonation Spray Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harjot%20Singh%20Gill">Harjot Singh Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelkanth%20Grover"> Neelkanth Grover</a>, <a href="https://publications.waset.org/abstracts/search?q=Jwala%20Parshad%20Singla"> Jwala Parshad Singla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this research work is to present the effect of coating on two different grades of grey cast iron using detonation spray method. Ni20Cr and Al2O3-13TiO2 powders were sprayed using detonation gun onto GI250 and GIHC substrates and the results as well as coating surface morphology of the coating is studied by XRD and SEM/EDAX analysis. The wear resistance of Ni20Cr and Al2O3-13TiO2 has been investigated on pin-on-disc tribometer using ASTM G99 standards. Cumulative wear rate and coefficient of friction (µ) were calculated under three normal load of 30N, 40N, 50N at constant sliding velocity of 1m/s. Worn out surfaces were analyzed by SEM/EDAX. The results show significant resistance to wear with Al2O3-13TiO2 coating as compared to Ni20Cr and bare substrates. SEM/EDAX analysis and cumulative wear loss bar charts clearly explain the wear behavior of coated as well as bare sample of GI250 and GIHC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detonation%20spray" title="detonation spray">detonation spray</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20cast%20iron" title=" grey cast iron"> grey cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20friction" title=" coefficient of friction"> coefficient of friction</a> </p> <a href="https://publications.waset.org/abstracts/8636/wear-behavior-of-grey-cast-iron-coated-with-al2o3-13tio2-and-ni20cr-using-detonation-spray-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> The Effect of Volume Fraction of Nano-Alumina Strengthening on AC4B Composite Characteristics through the Stir Casting Method as a Material Brake Shoe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Alexander">Benny Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikhlashia%20N.%20Fadhilah"> Ikhlashia N. Fadhilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Pasha"> Muhammad R. Pasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Julia"> Michelle Julia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Z.%20Syahrial"> Anne Z. Syahrial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brake shoe is a component that serves to reduce speed or stop the train's speed by utilizing the friction force. Generally, the material used as a brake shoe is cast iron, where cast iron itself is a heavy, expensive, and easily worn material. Aluminum matrix composites are one of candidates for the cast iron replacement material as the basic material for brake shoe. The matrix in the composite used is Aluminum AC4B. Reinforcement used in aluminum matrix composites is nano-alumina, where the use of nano-alumina of 0.25%, 0.3%, 0.35%, 0.4%, and 0.5% volume fraction will be tested. The sample is made using the stir casting method; then, it will be tested mechanically. The use of nano-alumina as a reinforcement will increase the strength of the matrix. SEM (scanning electron microscopy) testing is used to test the distribution of reinforcing particles due to stirring. Therefore, the addition of nano-alumina will improve AC4B aluminum matrix composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20matrix%20composites" title="aluminium matrix composites">aluminium matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application" title=" brake shoe application"> brake shoe application</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-alumina" title=" nano-alumina"> nano-alumina</a> </p> <a href="https://publications.waset.org/abstracts/125019/the-effect-of-volume-fraction-of-nano-alumina-strengthening-on-ac4b-composite-characteristics-through-the-stir-casting-method-as-a-material-brake-shoe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghanaraja">S. Ghanaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Ray"> Subrata Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nath"> S. K. Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium" title="aluminium">aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particle%20reinforced%20composites" title=" nano-particle reinforced composites"> nano-particle reinforced composites</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a> </p> <a href="https://publications.waset.org/abstracts/47037/comparative-study-of-tensile-properties-of-cast-and-hot-forged-alumina-nanoparticle-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Evaluation of Cast-in-Situ Pile Condition Using Pile Integrity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20I.%20Hossain">Mohammad I. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20F.%20Hamim"> Omar F. Hamim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a case study on a pile integrity test for assessing the integrity of piles as well as a physical dimension (e.g., cross-sectional area, length), continuity, and consistency of the pile materials. The recent boom in the socio-economic condition of Bangladesh has given rise to the building of high-rise commercial and residential infrastructures. The advantage of the pile integrity test lies in the fact that it is possible to get an approximate indication regarding the quality of the sub-structure before commencing the construction of the super-structure. This paper aims at providing a classification of cast-in-situ piles based on characteristic reflectograms obtained using the Sonic Integrity Testing program for the sub-soil condition of Narayanganj, Bangladesh. The piles have been classified as &#39;Pile Type-1&#39;, &#39;Pile Type-2&#39;, &#39;Pile Type-3&#39;, &#39;Pile type-4&#39;, &#39;Pile Type-5&#39; or &#39;Pile Type-6&#39; from the visual observations of reflections from the generated stress waves by striking the pile head with a handheld hammer. With respect to construction quality and integrity, piles have been further classified into three distinct categories, i.e., satisfactory, may be satisfactory, and unsatisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast-in-situ%20piles" title="cast-in-situ piles">cast-in-situ piles</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20reflectograms" title=" characteristic reflectograms"> characteristic reflectograms</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20integrity%20test" title=" pile integrity test"> pile integrity test</a>, <a href="https://publications.waset.org/abstracts/search?q=sonic%20integrity%20testing%20program" title=" sonic integrity testing program"> sonic integrity testing program</a> </p> <a href="https://publications.waset.org/abstracts/126450/evaluation-of-cast-in-situ-pile-condition-using-pile-integrity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CAST&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10