CINXE.COM
Search results for: brake shoe application
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: brake shoe application</title> <meta name="description" content="Search results for: brake shoe application"> <meta name="keywords" content="brake shoe application"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="brake shoe application" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="brake shoe application"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8334</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: brake shoe application</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8334</span> The Effect of Volume Fraction of Nano-Alumina Strengthening on AC4B Composite Characteristics through the Stir Casting Method as a Material Brake Shoe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Alexander">Benny Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikhlashia%20N.%20Fadhilah"> Ikhlashia N. Fadhilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Pasha"> Muhammad R. Pasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Julia"> Michelle Julia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Z.%20Syahrial"> Anne Z. Syahrial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brake shoe is a component that serves to reduce speed or stop the train's speed by utilizing the friction force. Generally, the material used as a brake shoe is cast iron, where cast iron itself is a heavy, expensive, and easily worn material. Aluminum matrix composites are one of candidates for the cast iron replacement material as the basic material for brake shoe. The matrix in the composite used is Aluminum AC4B. Reinforcement used in aluminum matrix composites is nano-alumina, where the use of nano-alumina of 0.25%, 0.3%, 0.35%, 0.4%, and 0.5% volume fraction will be tested. The sample is made using the stir casting method; then, it will be tested mechanically. The use of nano-alumina as a reinforcement will increase the strength of the matrix. SEM (scanning electron microscopy) testing is used to test the distribution of reinforcing particles due to stirring. Therefore, the addition of nano-alumina will improve AC4B aluminum matrix composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20matrix%20composites" title="aluminium matrix composites">aluminium matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application" title=" brake shoe application"> brake shoe application</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-alumina" title=" nano-alumina"> nano-alumina</a> </p> <a href="https://publications.waset.org/abstracts/125019/the-effect-of-volume-fraction-of-nano-alumina-strengthening-on-ac4b-composite-characteristics-through-the-stir-casting-method-as-a-material-brake-shoe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8333</span> An Experimental Study of Automotive Drum Brake Vibrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouby%20Ghazaly">Nouby Ghazaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates experimentally the effect coefficient of friction at different operation conditions on the variation of the brake temperature, brake force, and brake vibration with the braking time. All the experimental tests were carried out using brake dynamometer which designed and constructed in Vehicle Dynamic Laboratory. The results indicate that the brake temperature increases with the increase of the normal force and sliding speed especially with the increase of the braking time. The normal force has the effect on increasing the brake force. On the contrary, the vehicle speed has the effect on decreasing the brake force. Both the normal force and sliding speed affect the brake vibration according to the friction behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20dynamometer" title="brake dynamometer">brake dynamometer</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20friction" title=" coefficient of friction"> coefficient of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=drum%20brake%20vibrations" title=" drum brake vibrations"> drum brake vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20behavior" title=" friction behavior"> friction behavior</a> </p> <a href="https://publications.waset.org/abstracts/54502/an-experimental-study-of-automotive-drum-brake-vibrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8332</span> Effect of Compressibility of Brake Friction Materials on Vibration Occurrence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Makrahy">Mostafa Makrahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20Ghazaly"> Nouby Ghazaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Moaaz"> Ahmad Moaaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20brake" title="automotive brake">automotive brake</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20material" title=" friction material"> friction material</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20dynamometer" title=" brake dynamometer"> brake dynamometer</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility%20test" title=" compressibility test"> compressibility test</a> </p> <a href="https://publications.waset.org/abstracts/78445/effect-of-compressibility-of-brake-friction-materials-on-vibration-occurrence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8331</span> A New Car-Following Model with Consideration of the Brake Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Tang">Zhiyuan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Zhang"> Ju Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyuan%20Wu"> Wenyuan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20light" title="brake light">brake light</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20model" title=" car-following model"> car-following model</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20planning" title=" regional planning"> regional planning</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/28404/a-new-car-following-model-with-consideration-of-the-brake-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8330</span> Comparative Analysis of VTEC Bank of Rollers Brake Testers versus Maha, Ryme and Dynamometric Platform Testers Used at Ministry of Transport Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco"> Emilio Velasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research objective is to compare the differences of brake measurements obtained with the same vehicle when braking on VTEQ Ministry of Transport (MOT) brake testers versus others such as Maha, Ryme and a dynamometric platform. These different types of brake testers have been used and analyzed by the mechanical engineering staffs at the mechanical laboratory at the Miguel Hernández University. Parameters of the vehicle have been controlled to be the same in all tests. Therefore, brake measurements variability will be due to the tester used. Advances and disadvantages of each brake tester have been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=Ministry%20of%20transport" title=" Ministry of transport"> Ministry of transport</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20braking" title=" longitudinal braking"> longitudinal braking</a>, <a href="https://publications.waset.org/abstracts/search?q=Bank%20of%20Rollers" title=" Bank of Rollers"> Bank of Rollers</a> </p> <a href="https://publications.waset.org/abstracts/54505/comparative-analysis-of-vtec-bank-of-rollers-brake-testers-versus-maha-ryme-and-dynamometric-platform-testers-used-at-ministry-of-transport-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8329</span> Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurlal%20Singh">Gurlal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Singh"> Rupinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title="exhaust gas">exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=automobiles" title=" automobiles"> automobiles</a>, <a href="https://publications.waset.org/abstracts/search?q=solenoid" title=" solenoid"> solenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=airbrake" title=" airbrake"> airbrake</a> </p> <a href="https://publications.waset.org/abstracts/93446/application-of-exhaust-gas-air-brake-system-in-petrol-and-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8328</span> Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco"> Emilio Velasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brake systems of vehicles are tested periodically by a “brake tester” at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=ministry%20of%20transport%20facilities" title=" ministry of transport facilities"> ministry of transport facilities</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20diameter" title=" wheel diameter"> wheel diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/48087/wheel-diameter-and-width-influence-in-variability-of-brake-data-measurement-at-ministry-of-transport-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8327</span> Research on Aerodynamic Brake Device for High-Speed Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yun">S. Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwak"> M. Kwak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title="aerodynamic brake">aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=braking%20distance" title=" braking distance"> braking distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20test" title=" wind-tunnel test"> wind-tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/65559/research-on-aerodynamic-brake-device-for-high-speed-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8326</span> Development of Detachable Brake System for Moving Apparatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong-Keun%20Jung">Bong-Keun Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Yeon%20Kim"> Jung-Yeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate usability of detachable brake system for moving apparatus such as baby strollers, manual wheelchairs or walkers. The current brake system was proposed to prevent that moving apparatus slip on sloping roadways when unattended as current built-in manual brake for the moving apparatus is not able to react for the matter. The developed detachable brake system enacted by force sensor on the hand grip showed the possibilities to prevent unexpected accident due to uncontrolled stroller or wheelchair use. To investigate the quality and acceptance of this new technology, standard stroller testbed was built and the use of moving apparatus which attached to the proposed brake system was analyzed through video recording. Additional usability questionnaires were given to test users for measuring usability issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20system" title="brake system">brake system</a>, <a href="https://publications.waset.org/abstracts/search?q=stroller" title=" stroller"> stroller</a>, <a href="https://publications.waset.org/abstracts/search?q=wheelchair" title=" wheelchair"> wheelchair</a>, <a href="https://publications.waset.org/abstracts/search?q=usability%20test" title=" usability test"> usability test</a> </p> <a href="https://publications.waset.org/abstracts/34809/development-of-detachable-brake-system-for-moving-apparatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">738</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8325</span> Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahroz%20Khan">Shahroz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Taha%20%C5%9Een"> Osman Taha Şen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20force" title="contact force">contact force</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearities" title=" nonlinearities"> nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20squeal" title=" brake squeal"> brake squeal</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20brake" title=" vehicle brake"> vehicle brake</a> </p> <a href="https://publications.waset.org/abstracts/52950/dynamic-investigation-of-brake-squeal-problem-in-the-presence-of-kinematic-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8324</span> Comparative Assessment of ABS and Disk Brake Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Mobasseri">Saleh Mobasseri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mobasseri"> Mohammad Mobasseri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article refers to the history of the rise of brake system and described it’s importance in passenger’s lives. The disc brake system performance and ABS are also compared with each other by the kinetic and kinematic analysis of the braking system,and evaluate the impact of each parameters is checked on the vehicle stopping distance. Anti−lock braking system (ABS) is one of the most important features that affect on vehicle safety and for this reason much efforts have been made to improve this system. The objectives of the anti−lock system (ABS) are as follows: Preventing the wheels from locking, achieving maximum technical momentum in terms of braking,stability,reducing stopping distances. In this paper,we study the comparative of ABS brake and disc brake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti%E2%88%92lock%20braking%20System%20%28ABS%29" title="anti−lock braking System (ABS)">anti−lock braking System (ABS)</a>, <a href="https://publications.waset.org/abstracts/search?q=stopping%20distances" title=" stopping distances"> stopping distances</a>, <a href="https://publications.waset.org/abstracts/search?q=booster" title=" booster"> booster</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20stability" title=" car stability"> car stability</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20exerted%20on%20the%20brake%20pedal" title=" force exerted on the brake pedal"> force exerted on the brake pedal</a> </p> <a href="https://publications.waset.org/abstracts/32080/comparative-assessment-of-abs-and-disk-brake-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8323</span> Probability of Passing the Brake Test at Ministry of Transport Facilities of Each City at Alicante Region from Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre%20Blanes">Carolina Senabre Blanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero%20Verd%C3%BA"> Sergio Valero Verdú</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco%20S%C3%A1Nchez"> Emilio Velasco SáNchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research objective is to obtain a percentage of success for each Ministry of Transport (MOT) facilities of each city of the Alicante region from Comunidad Valenciana from Spain by comparing results obtained by using different brake testers. It has been studied which types of brake tester are being used at each city nowadays. Different types of brake testers are used at each city, and the mechanical engineering staffs from the Miguel Hernández University have studied differences between all of them, and have obtained measures from each type. A percentage of probability of success will be given to each MOT station when you try to pass the exam with the same car with same characteristics and the same wheels. In other words, parameters of the vehicle have been controlled to be the same at all tests; therefore, brake measurements variability will be due to the type of testers could be used at the MOT station. A percentage of probability to pass the brake exam at each city will be given by comparing results of tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=Mot%20station" title=" Mot station"> Mot station</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20to%20pass%20the%20exam" title=" probability to pass the exam"> probability to pass the exam</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20tester%20characteristics" title=" brake tester characteristics"> brake tester characteristics</a> </p> <a href="https://publications.waset.org/abstracts/58227/probability-of-passing-the-brake-test-at-ministry-of-transport-facilities-of-each-city-at-alicante-region-from-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8322</span> Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wakayama%20Shunya">Wakayama Shunya</a>, <a href="https://publications.waset.org/abstracts/search?q=Okubo%20Kazuya"> Okubo Kazuya</a>, <a href="https://publications.waset.org/abstracts/search?q=Fujii%20Toru"> Fujii Toru</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakata%20Daisuke"> Sakata Daisuke</a>, <a href="https://publications.waset.org/abstracts/search?q=Kado%20Noriyuki"> Kado Noriyuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Furutachi%20Hiroshi"> Furutachi Hiroshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frictional%20coefficient" title="frictional coefficient">frictional coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=shoe%20soles" title=" shoe soles"> shoe soles</a>, <a href="https://publications.waset.org/abstracts/search?q=icy%20and%20snowy%20road" title=" icy and snowy road"> icy and snowy road</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibers" title=" glass fibers"> glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tilting%20angle" title=" tilting angle"> tilting angle</a> </p> <a href="https://publications.waset.org/abstracts/34387/improvement-of-frictional-coefficient-of-modified-shoe-soles-onto-icy-and-snowy-road-by-tilting-of-added-glass-fibers-into-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8321</span> Aerodynamic Brake Study of Reducing Braking Distance for High-Speed Trains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phatthara%20Surachon">Phatthara Surachon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an aerodynamic brake study of reducing braking distance for high-speed trains (HST) using aerodynamic brakes as inspiration from the applications on the commercial aircraft wings. In case of emergency, both braking distance and stopping time are longer than the usual situation. Therefore, the passenger safety and the HST driving control management are definitely obtained by reducing the time and distance of train braking during emergency situation. Due to the limited study and implementation of the aerodynamic brake in HST, the possibility in use and the effectiveness of the aerodynamic brake to the train dynamic movement during braking are analyzed and considered. Regarding the aircraft’s flaps that applied in the HST, the areas of the aerodynamic brake acted as an additional drag force during train braking are able to vary depending on the operating angle and the required dynamic braking force. The HST with a varying speed of 200 km/h to 350 km/h is taken as a case study of this paper. The results show that the stopping time and the brake distance are effectively reduced by the aerodynamic brakes. The mechanical brake and its maintenance are effectively getting this benefit by extending its lifetime for longer use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title="high-speed train">high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title=" aerodynamic brake"> aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20distance" title=" brake distance"> brake distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20force" title=" drag force "> drag force </a> </p> <a href="https://publications.waset.org/abstracts/122559/aerodynamic-brake-study-of-reducing-braking-distance-for-high-speed-trains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8320</span> Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Beheshti">Mina Beheshti</a>, <a href="https://publications.waset.org/abstracts/search?q=Vida%20Shams"> Vida Shams</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Esfandiari"> Mojtaba Esfandiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Abdollahi"> Farzaneh Abdollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Ohadi"> Abdolreza Ohadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title="rehabilitation">rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluid" title=" magnetorheological fluid"> magnetorheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=knee" title=" knee"> knee</a>, <a href="https://publications.waset.org/abstracts/search?q=brake" title=" brake"> brake</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20control" title=" neural network control"> neural network control</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20control" title=" torque control"> torque control</a> </p> <a href="https://publications.waset.org/abstracts/134338/design-and-control-of-a-knee-rehabilitation-device-using-an-mr-fluid-brake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20L.%20Yanagihara">Adam L. Yanagihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seok%20Park"> Yong Seok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20brake" title="eddy current brake">eddy current brake</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title=" engineering design"> engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20synthesis" title=" design synthesis"> design synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors%20engineering" title=" human factors engineering"> human factors engineering</a> </p> <a href="https://publications.waset.org/abstracts/123650/design-of-an-eddy-current-brake-system-for-the-use-of-roller-coasters-based-on-a-human-factors-engineering-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Analysis of Structure-Flow Interaction for Water Brake Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Avci">Murat Avci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kosar"> Fatih Kosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yilmaz"> Ismail Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-flow" title=" structure-flow"> structure-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a> </p> <a href="https://publications.waset.org/abstracts/104502/analysis-of-structure-flow-interaction-for-water-brake-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Evaluating the Effects of an Educational Video on Running Shoe Selection and Subjective Perceptions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Fife">Andrew Fife</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Esculier"> Jean-Francois Esculier</a>, <a href="https://publications.waset.org/abstracts/search?q=Codi%20Ramsey"> Codi Ramsey</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Hebert-Losier"> Kim Hebert-Losier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: We aimed to identify how an evidence-based educational video influences how runners select shoes, and perceive shoe comfort, satisfaction, and performance over three months in comparison with a control video. Design: Two groups participated in a double-blind randomised controlled trial. Method: Fifty-six runners were randomly assigned to view one of two video presentations prior to purchasing new shoes for road running in speciality stores. Runners completed a survey with regards to their own shoes and one in reference to the new shoes purchased at three timepoints: before first use, onemonth post-purchase, and three-months post-purchase. Perceived shoe comfort, satisfaction, and performance were assessed using 100 mm visual analogue scales. Factors that influenced their shoe purchase were ranked in order of importance. Results: Comfort and satisfaction were not significantly different between groups and timepoints. The perceived performance of new shoes (75.6 mm) was significantly greater than own shoes (mean: 67.6 mm) before first use, but ratings returned to own-shoe levels one month later in both groups. The group receiving the evidence-based presentation reported their purchased shoes as being influenced more by the video (55.4 mm) than the control group (21.8 mm), although both chose the same brand and model as previously worn over half of the time. Runners in both groups prioritised fit, comfort, and choosing similar shoes to the ones they previously used. Conclusions: In contrast to expectations, the evidence-based educational video did not appear to influence running shoe selection, or overall perceived shoe comfort, satisfaction, or performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort" title="comfort">comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behaviour" title=" consumer behaviour"> consumer behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=consciousness" title=" consciousness"> consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=running" title=" running"> running</a>, <a href="https://publications.waset.org/abstracts/search?q=shoes" title=" shoes"> shoes</a> </p> <a href="https://publications.waset.org/abstracts/188323/evaluating-the-effects-of-an-educational-video-on-running-shoe-selection-and-subjective-perceptions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Makrahy">Mostafa M. Makrahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Abd%20el-Jaber"> G. T. Abd el-Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disc%20brake%20vibration" title="disc brake vibration">disc brake vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=friction-induced%20vibration" title=" friction-induced vibration"> friction-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sand%20particles" title=" silica sand particles"> silica sand particles</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20operational%20and%20environmental%20conditions" title=" brake operational and environmental conditions"> brake operational and environmental conditions</a> </p> <a href="https://publications.waset.org/abstracts/101846/effects-of-humidity-and-silica-sand-particles-on-vibration-generation-by-friction-materials-of-automotive-brake-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukiye%20Ertan">Rukiye Ertan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20pad" title="brake pad">brake pad</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasives" title=" abrasives"> abrasives</a> </p> <a href="https://publications.waset.org/abstracts/12601/effects-of-ingredients-proportions-on-the-friction-performance-of-a-brake-pad-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Application of Lean Manufacturing in Brake Shoe Manufacturing Plant: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anees%20K.%20Ahamed">Anees K. Ahamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Kumar%20R.%20G."> Aakash Kumar R. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20M.%20Mohan"> Raj M. Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective is to apply lean tools to identify and eliminate waste in and among the work stations so as to improve the process speed and quality. From the top seven wastes in the lean concept, we consider the movement of materials, defects, and inventory for the improvement since these cause the major impact on the performance measures. The layout was improved to reduce the movement of materials. It also quantifies the reduction in movement among the work stations. Value stream mapping has been used for identification of waste. Cause and effect diagram and 5W analysis are used to identify the reasons for defects and to provide the counter measures. Some cycle time reduction techniques also proposed to improve the productivity. Lean Audit check sheet was also used to identify the current position of the industry and to identify the gap to make the industry Lean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cause%20and%20effect%20diagram" title="cause and effect diagram">cause and effect diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time%20reduction" title=" cycle time reduction"> cycle time reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20reduction" title=" waste reduction"> waste reduction</a> </p> <a href="https://publications.waset.org/abstracts/59590/application-of-lean-manufacturing-in-brake-shoe-manufacturing-plant-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8313</span> Investigation of Effect of Mixture Ratio and Compaction Pressure of Reinforced with Miscanthus Fibre Brake Pad Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Unaldi">M. Unaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kus"> R. Kus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brake pads are important parts of the braking system and they are made of different materials. Use of asbestos fibre can cause health risks. The goal of this study is to determine the effect of ecological brake pad samples which are produced under different compaction pressure values and mixture ratios by using miscanthus as reinforcement component on the density, hardness, wear rate and compression strength properties, and friction coefficients changes of ecological brake pad samples. Miscanthus powder, cashew powder, alumina powder, phenolic resin powder, and calcite powder mixtures were used to produce ecological brake pad samples. The physical properties of the brake pad samples produced under different mixture ratios and compaction pressures values were determined to assign their effects on them by using Taguchi experimental design. Mixture ratios and compaction pressures values were chosen as the factors with three-levels. Experiments are conducted to L₉(3⁴) Taguchi orthogonal array design. The results showed that hardness value is very much affected both compaction pressure values and mixture ratios than the other physical properties. When reinforcing component ratio within the mixture and compaction pressure value is increased, hardness and compression strength values of the all samples are also increased. All test results taking into account, the ideal compaction value for used components and mixture ratios were determined as 200 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20pad" title="brake pad">brake pad</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20materials" title=" eco-friendly materials"> eco-friendly materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=Miscanthus" title=" Miscanthus"> Miscanthus</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/52015/investigation-of-effect-of-mixture-ratio-and-compaction-pressure-of-reinforced-with-miscanthus-fibre-brake-pad-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8312</span> Study of Engine Performance and Exhaust Emissions on Multi-Cylinder Turbo-Charged Diesel Engine Operated with B5 Biodiesel Blend </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradip%20Lingfa">Pradip Lingfa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Das"> L. M. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Naik"> S. N. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last three decades the world has been confronting an energy crisis caused by the decreased of fossil resources, and increased of environmental problems. This situation resulted in a search for an alternative fuel. Non-edible vegetable oils are promising sources for producing liquid fuels. In the present experimental investigation, the engine tests were carried out for performance and exhaust emissions on 2.5 L Turbo-charged diesel engine fuelled with 5% biodiesel blend obtained from non-edible vegetable oils such as Jatropha, Karanja, and Castor Seeds. The engine tests were carried out at full throttle position with various engine speeds of 1500, 1750, 2000, 2250, 2750 and 3000 rpm respectively. After test, it was observed that 5% Jatropha biodiesel blend have highest brake power of 46.65 kW and less brake specific fuel consumptions of 225.8 kg/kW-hr compared to other two biodiesel blends of brake power of 45.99 kW, 45.81 kW and brake specific fuel consumption of 234.34, 236.55 kg/kW-hr respectively. The brake specific fuel consumption of biodiesel blends increase at increasing speeds for all biodiesel blends. NOx emissions for biodiesel blends were observed to be higher compared to diesel fuel during the entire range of engine operations. The emission characteristics like CO, HC and smoke were lowered at all engine speed conditions compared to diesel fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20blend" title="biodiesel blend">biodiesel blend</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20power" title=" brake power"> brake power</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20specific%20fuel%20consumption" title=" brake specific fuel consumption"> brake specific fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/94014/study-of-engine-performance-and-exhaust-emissions-on-multi-cylinder-turbo-charged-diesel-engine-operated-with-b5-biodiesel-blend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8311</span> A Low-Cost of Foot Plantar Shoes for Gait Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulkifli%20Ahmad">Zulkifli Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Razlan%20Azizan"> Mohd Razlan Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrul%20Hadi%20Johari"> Nasrul Hadi Johari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title="gait analysis">gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20pressure" title=" plantar pressure"> plantar pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20plate" title=" force plate"> force plate</a>, <a href="https://publications.waset.org/abstracts/search?q=earable%20sensor" title=" earable sensor"> earable sensor</a> </p> <a href="https://publications.waset.org/abstracts/13319/a-low-cost-of-foot-plantar-shoes-for-gait-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8310</span> Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Mahale">Vishal Mahale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayashree%20Bijwe"> Jayashree Bijwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20K.%20Sinha"> Sujeet K. Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20inertia%20dynamometer" title="brake inertia dynamometer">brake inertia dynamometer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20fabric" title=" copper fabric"> copper fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=non-asbestos%20organic%20%28NAO%29%20friction%20materials" title=" non-asbestos organic (NAO) friction materials"> non-asbestos organic (NAO) friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity%20enhancement" title=" thermal conductivity enhancement "> thermal conductivity enhancement </a> </p> <a href="https://publications.waset.org/abstracts/96533/exploration-of-copper-fabric-in-non-asbestos-organic-brake-pads-for-thermal-conductivity-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8309</span> A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkay%20Ergene">Berkay Ergene</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87a%C4%9F%C4%B1n%20Bolat"> Çağın Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20behaviour" title=" elastic behaviour"> elastic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=footbed" title=" footbed"> footbed</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/68124/a-simulation-study-of-e-glass-reinforced-polyurethane-footbed-and-investigation-of-parameters-effecting-elastic-behaviour-of-footbed-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8308</span> Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Gomes%20Nogueira">Ana Paula Gomes Nogueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Pietro%20Tonolini"> Pietro Tonolini</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Bonfanti"> Andrea Bonfanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20mechanism" title="wear mechanism">wear mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20characterization" title=" surface characterization"> surface characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20tests" title=" brake tests"> brake tests</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20materials" title=" friction materials"> friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20brake" title=" disc brake"> disc brake</a> </p> <a href="https://publications.waset.org/abstracts/182008/characterization-of-the-worn-surfaces-of-brake-discs-and-friction-materials-after-dynobench-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8307</span> Analysis of Brain Activities due to Differences in Running Shoe Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kei%20Okubo">Kei Okubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosuke%20Kurihara"> Yosuke Kurihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaburagi"> Takashi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20activities" title="brain activities">brain activities</a>, <a href="https://publications.waset.org/abstracts/search?q=NIRS" title=" NIRS"> NIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=PASAT" title=" PASAT"> PASAT</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20shoes" title=" running shoes"> running shoes</a> </p> <a href="https://publications.waset.org/abstracts/16935/analysis-of-brain-activities-due-to-differences-in-running-shoe-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8306</span> Absence of Malignancy in Oral Epithelial Cells from Individuals Occupationally Exposed to Organic Solvents Working in the Shoe Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Gonz%C3%A1lez-Yebra">B. González-Yebra</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Flores-Nieto"> B. Flores-Nieto</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Aguilar-Salinas"> P. Aguilar-Salinas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Preciado%20Puga"> M. Preciado Puga</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Gonz%C3%A1lez%20Yebra"> A. L. González Yebra </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of populations occupationally exposed to organic solvents has been an important issue for several shoe factories for years since the International Agency for Research on Cancer (IARC) has advised on the potential carcinogenic risk of chemicals related to occupations. In order to detect if exposition to organic solvents used in some Mexican shoe factories contributes to oral carcinogenesis, we performed monitoring in three factories. Occupational exposure was determined by using monitors 3M. Organic solvents were assessed by gas chromatography. Then, we recruited 30 shoe workers (30.2 ± 8.4 years) and 10 unexposed subjects (43.3 ± 11.2 years) for the micronuclei (MN) test and immunodetection of some cancer biomarkers (ki-67, p16, caspase-3) in scraped oral epithelial cells. Monitored solvents detected were acetone, benzene, hexane, methyl ethyl ketone, and toluene in acceptable levels according to Official Mexican Norm. We found by MN test higher incidence of nuclear abnormalities (karyorrhexis, pycnosis, karyolysis, condensed chromatin, and macronuclei) in the exposed group than the non-exposed group. On the other hand, we found, a negative expression for Ki-67 and p16 in exfoliated epithelial cells from exposed and non-exposed to organic solvents subjects. Only caspase-3 shown positive patter of expression in 9/30 (30%) exposed subjects, and we detected high karyolysis incidence in caspase-3 subjects (p = 0.021). The absence of expression of proliferation markers p16 and ki-67 and presence of apoptosis marker caspase-3 are indicating the absence of malignancy in oral epithelial cells and low risk for oral cancer. It is a fact that the MN test is a very effective method to detect nuclear abnormalities in exfoliated buccal cells from subjects that have been exposed to organic solvents in the shoe industry. However, in order to improve this tool and predict cancer risk is it is mandatory to implement complementary tests as other biomarkers that can help to detect malignancy in individuals occupationally exposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20cancer" title=" oral cancer"> oral cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvents" title=" organic solvents"> organic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=shoe%20industries" title=" shoe industries"> shoe industries</a> </p> <a href="https://publications.waset.org/abstracts/110541/absence-of-malignancy-in-oral-epithelial-cells-from-individuals-occupationally-exposed-to-organic-solvents-working-in-the-shoe-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8305</span> The Customization of 3D Last Form Design Based on Weighted Blending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Wen%20Hsiao">Shih-Wen Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Hsuan%20Lee"> Chu-Hsuan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Qi%20Chen"> Rong-Qi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20last%20design" title="3D last design">3D last design</a>, <a href="https://publications.waset.org/abstracts/search?q=customization" title=" customization"> customization</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20morphing" title=" weighted morphing"> weighted morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20blending" title=" shape blending"> shape blending</a> </p> <a href="https://publications.waset.org/abstracts/7580/the-customization-of-3d-last-form-design-based-on-weighted-blending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=277">277</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>