CINXE.COM
Andr茅 Wijfjes - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Andr茅 Wijfjes - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="P+LsTD/KZBSGxqdoW/ghCveNM5h4udJx2HLu8FKgdz4GJvdZDo694mmW4Idt4h8MR2BJ7I/xp5geybf6t9a9gA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="andr茅 wijfjes" /> <meta name="description" content="Andr茅 Wijfjes: 5 Followers, 3 Following, 16 Research papers. Research interests: Fluorescence Microscopy, Mycobacterium tuberculosis, and Viscosity." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277529604,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732791136000); window.Aedu.timeDifference = new Date().getTime() - 1732791136000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/Andr%C3%A9Wijfjes" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes","photo":"https://0.academia-photos.com/36701282/10505536/11722626/s65_andr_.wijfjes.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":7700,"name":"Fluorescence Microscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Microscopy"},{"id":68318,"name":"Mycobacterium tuberculosis","url":"https://www.academia.edu/Documents/in/Mycobacterium_tuberculosis"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":17856,"name":"Cell Signaling","url":"https://www.academia.edu/Documents/in/Cell_Signaling"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/Andr%C3%A9Wijfjes","location":"/Andr%C3%A9Wijfjes","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/Andr%C3%A9Wijfjes","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-ddfcaa28-3b88-4dd9-8097-e68c78b63be8"></div> <div id="ProfileCheckPaperUpdate-react-component-ddfcaa28-3b88-4dd9-8097-e68c78b63be8"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Andr茅 Wijfjes" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/36701282/10505536/11722626/s200_andr_.wijfjes.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Andr茅 Wijfjes</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Andr茅" data-follow-user-id="36701282" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="36701282"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="36701282" href="https://www.academia.edu/Documents/in/Fluorescence_Microscopy"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/Andr%C3%A9Wijfjes","location":"/Andr%C3%A9Wijfjes","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/Andr%C3%A9Wijfjes","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fluorescence Microscopy"]}" data-trace="false" data-dom-id="Pill-react-component-e32dc6f5-fc69-4f03-bdd9-9d051e8ca9b6"></div> <div id="Pill-react-component-e32dc6f5-fc69-4f03-bdd9-9d051e8ca9b6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="36701282" href="https://www.academia.edu/Documents/in/Mycobacterium_tuberculosis"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mycobacterium tuberculosis"]}" data-trace="false" data-dom-id="Pill-react-component-303ffc71-49bb-441e-ae0f-ac0bfe7368de"></div> <div id="Pill-react-component-303ffc71-49bb-441e-ae0f-ac0bfe7368de"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="36701282" href="https://www.academia.edu/Documents/in/Viscosity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Viscosity"]}" data-trace="false" data-dom-id="Pill-react-component-1f2dfdab-64be-4cc0-a061-584e2e030887"></div> <div id="Pill-react-component-1f2dfdab-64be-4cc0-a061-584e2e030887"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="36701282" href="https://www.academia.edu/Documents/in/Cell_Signaling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cell Signaling"]}" data-trace="false" data-dom-id="Pill-react-component-2db179f7-e4b8-4b68-a7c0-803b03cae292"></div> <div id="Pill-react-component-2db179f7-e4b8-4b68-a7c0-803b03cae292"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="36701282" href="https://www.academia.edu/Documents/in/Gene_expression"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Gene expression"]}" data-trace="false" data-dom-id="Pill-react-component-ebca6740-ede9-4cc8-9989-cb9a72167edf"></div> <div id="Pill-react-component-ebca6740-ede9-4cc8-9989-cb9a72167edf"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Andr茅 Wijfjes</h3></div><div class="js-work-strip profile--work_container" data-work-id="87022970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides"><img alt="Research paper thumbnail of Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides" class="work-thumbnail" src="https://attachments.academia-assets.com/91348841/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides">Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides</a></div><div class="wp-workCard_item"><span>Journal of Bacteriology</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was use...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45a25ea66ac559e309cc57938a280b76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":91348841,"asset_id":87022970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="87022970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="87022970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 87022970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=87022970]").text(description); $(".js-view-count[data-work-id=87022970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 87022970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='87022970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 87022970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45a25ea66ac559e309cc57938a280b76" } } $('.js-work-strip[data-work-id=87022970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":87022970,"title":"Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides","translated_title":"","metadata":{"abstract":"Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...","publisher":"American Society for Microbiology","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Journal of Bacteriology"},"translated_abstract":"Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...","internal_url":"https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides","translated_internal_url":"","created_at":"2022-09-21T07:40:03.438-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":91348841,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/91348841/thumbnails/1.jpg","file_name":"50556525e6c72a5f088b44aad235c2850c9d.pdf","download_url":"https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rhizobium_NodI_and_NodJ_proteins_play_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/91348841/50556525e6c72a5f088b44aad235c2850c9d-libre.pdf?1663776681=\u0026response-content-disposition=attachment%3B+filename%3DRhizobium_NodI_and_NodJ_proteins_play_a.pdf\u0026Expires=1732794735\u0026Signature=M9mWhYOmDYC1swFfONkP-B09icnKd9SnouEoTuwAFjy-GqIxxfBim-tkEv8QwX6adgCAURxBeoe8Y8YYUBOiVTmcllbqdhmpEL92WSXGClIaEHM2l2KbrAfpt57ez0mfieS61b0iSAKZk3R~bPPnFcAJkB-kCD4s5xyeSwUSJUmhXTTVOryZUT4sJ~Znc1iKxTwM3fveD1ffTJcR4aHiKMilRINnSajgeHZ4zOxun-95iKRTnyIwcBCkN~dqdOiiQc-n5QcIwC9nuiOBhsTenkjMaXX5~XN6Oi~vhil6KJOKfp3mU8qShkSTaZR4cBPQZkAuOIOR3hgOMKMGiIuvCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":91348841,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/91348841/thumbnails/1.jpg","file_name":"50556525e6c72a5f088b44aad235c2850c9d.pdf","download_url":"https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rhizobium_NodI_and_NodJ_proteins_play_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/91348841/50556525e6c72a5f088b44aad235c2850c9d-libre.pdf?1663776681=\u0026response-content-disposition=attachment%3B+filename%3DRhizobium_NodI_and_NodJ_proteins_play_a.pdf\u0026Expires=1732794735\u0026Signature=M9mWhYOmDYC1swFfONkP-B09icnKd9SnouEoTuwAFjy-GqIxxfBim-tkEv8QwX6adgCAURxBeoe8Y8YYUBOiVTmcllbqdhmpEL92WSXGClIaEHM2l2KbrAfpt57ez0mfieS61b0iSAKZk3R~bPPnFcAJkB-kCD4s5xyeSwUSJUmhXTTVOryZUT4sJ~Znc1iKxTwM3fveD1ffTJcR4aHiKMilRINnSajgeHZ4zOxun-95iKRTnyIwcBCkN~dqdOiiQc-n5QcIwC9nuiOBhsTenkjMaXX5~XN6Oi~vhil6KJOKfp3mU8qShkSTaZR4cBPQZkAuOIOR3hgOMKMGiIuvCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3284,"name":"Bacteriology","url":"https://www.academia.edu/Documents/in/Bacteriology"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":102040,"name":"Rhizobium","url":"https://www.academia.edu/Documents/in/Rhizobium"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":888739,"name":"Quntitative Thin Layer Chromatography","url":"https://www.academia.edu/Documents/in/Quntitative_Thin_Layer_Chromatography"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"},{"id":3376418,"name":"Rhizobium leguminosarum","url":"https://www.academia.edu/Documents/in/Rhizobium_leguminosarum"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":24034569,"url":"https://journals.asm.org/doi/pdf/10.1128/jb.177.21.6276-6281.1995"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15172007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis"><img alt="Research paper thumbnail of Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis">Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BenLugtenberg">Ben Lugtenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a></span></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15172007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15172007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15172007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15172007]").text(description); $(".js-view-count[data-work-id=15172007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15172007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15172007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15172007, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=15172007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15172007,"title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis","translated_title":"","metadata":{"abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","internal_url":"https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_internal_url":"","created_at":"2015-08-25T08:07:22.598-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34221591,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5044940,"work_id":15172007,"tagging_user_id":34221591,"tagged_user_id":null,"co_author_invite_id":1062241,"email":"s***k@rulbim.leidenuniv.nl","display_order":0,"name":"H. Spaink","title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis"},{"id":15453476,"work_id":15172007,"tagging_user_id":34221591,"tagged_user_id":36701282,"co_author_invite_id":null,"email":"a***s@gmail.com","display_order":4194304,"name":"Andr茅 Wijfjes","title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis"}],"downloadable_attachments":[],"slug":"Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34221591,"first_name":"Ben","middle_initials":null,"last_name":"Lugtenberg","page_name":"BenLugtenberg","domain_name":"independent","created_at":"2015-08-25T08:06:12.146-07:00","display_name":"Ben Lugtenberg","url":"https://independent.academia.edu/BenLugtenberg"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125098"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization"><img alt="Research paper thumbnail of Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization" class="work-thumbnail" src="https://attachments.academia-assets.com/42314808/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization">Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the paren...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95791bba0a668f1e8d69354100d7115c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314808,"asset_id":17125098,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125098"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125098"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125098; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125098]").text(description); $(".js-view-count[data-work-id=17125098]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125098; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125098']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125098, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95791bba0a668f1e8d69354100d7115c" } } $('.js-work-strip[data-work-id=17125098]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125098,"title":"Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization","translated_title":"","metadata":{"abstract":"The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.","internal_url":"https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization","translated_internal_url":"","created_at":"2015-10-21T13:29:30.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314808,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314808/thumbnails/1.jpg","file_name":"Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f.pdf","download_url":"https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterization_of_NADH_Dehydrogenases.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314808/Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_NADH_Dehydrogenases.pdf\u0026Expires=1732794736\u0026Signature=ezRqlo2bGmuqRejQlO5CtmD682mSvKvqlHgAMmKngDB3nglEK3WY888eknqlhDcLH81tc4NqbUtF9AIWtF~HqHckIj8nauxnq5Ebk6rZasxl4CwatgTDAZHz3HbzqGVSJYFmZHd6FP4lieT2xobOrf7NPcahDBAHxMU53Za4nFOHkFpwJcHXQBT3eIMs5LkeRuwtVOc6THE0s7yCcVm4~dtgx6HC6DyuIZxeyPb-0GgbvGqkIdY7RxW57ZGFx9IvFX4V~49a29HjVAResf3u~clkUyRV8ZyD1Cy~V6e6fXLc0VKBpkYtgAU2k0QNqf3qgmrbHbwAzQi3yRdJM252~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314808,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314808/thumbnails/1.jpg","file_name":"Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f.pdf","download_url":"https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterization_of_NADH_Dehydrogenases.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314808/Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_NADH_Dehydrogenases.pdf\u0026Expires=1732794736\u0026Signature=ezRqlo2bGmuqRejQlO5CtmD682mSvKvqlHgAMmKngDB3nglEK3WY888eknqlhDcLH81tc4NqbUtF9AIWtF~HqHckIj8nauxnq5Ebk6rZasxl4CwatgTDAZHz3HbzqGVSJYFmZHd6FP4lieT2xobOrf7NPcahDBAHxMU53Za4nFOHkFpwJcHXQBT3eIMs5LkeRuwtVOc6THE0s7yCcVm4~dtgx6HC6DyuIZxeyPb-0GgbvGqkIdY7RxW57ZGFx9IvFX4V~49a29HjVAResf3u~clkUyRV8ZyD1Cy~V6e6fXLc0VKBpkYtgAU2k0QNqf3qgmrbHbwAzQi3yRdJM252~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520987,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/11259761_Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization/links/0fcfd50047d2fee56e000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125097"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction"><img alt="Research paper thumbnail of The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction">The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DimitrisKafetzopoulos">Dimitris Kafetzopoulos</a></span></div><div class="wp-workCard_item"><span>Current Plant Science and Biotechnology in Agriculture</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) sig...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125097"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125097"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125097; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125097]").text(description); $(".js-view-count[data-work-id=17125097]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125097; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125097']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125097, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125097]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125097,"title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction","translated_title":"","metadata":{"abstract":"Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Current Plant Science and Biotechnology in Agriculture"},"translated_abstract":"Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a","internal_url":"https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction","translated_internal_url":"","created_at":"2015-10-21T13:29:29.968-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":8260999,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":35970716,"co_author_invite_id":null,"email":"k***o@imbb.forth.gr","display_order":0,"name":"Dimitris Kafetzopoulos","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"},{"id":8261000,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":null,"co_author_invite_id":1121417,"email":"h***k@biology.leidenuniv.nl","display_order":4194304,"name":"Herman Spaink","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"},{"id":8261001,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":34463104,"co_author_invite_id":null,"email":"b***g@imm.uzh.ch","display_order":6291456,"name":"Guido Bloemberg","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"}],"downloadable_attachments":[],"slug":"The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":744732,"name":"Plant Interaction","url":"https://www.academia.edu/Documents/in/Plant_Interaction"},{"id":1302079,"name":"Host Plant","url":"https://www.academia.edu/Documents/in/Host_Plant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin"><img alt="Research paper thumbnail of Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin" class="work-thumbnail" src="https://attachments.academia-assets.com/42314803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin">Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fdc3ec5db433bad9ab0a6455e0480d3b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314803,"asset_id":17125096,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125096]").text(description); $(".js-view-count[data-work-id=17125096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fdc3ec5db433bad9ab0a6455e0480d3b" } } $('.js-work-strip[data-work-id=17125096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125096,"title":"Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin","translated_title":"","metadata":{"abstract":"The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.","internal_url":"https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin","translated_internal_url":"","created_at":"2015-10-21T13:29:29.891-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314803/thumbnails/1.jpg","file_name":"Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t.pdf","download_url":"https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bacterial_nodulation_protein_NodZ_is_a_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314803/Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DBacterial_nodulation_protein_NodZ_is_a_c.pdf\u0026Expires=1732794736\u0026Signature=PINauntTF8L7tCfBoTUOBJrPXm1uUTRaC90p-AVFO5Ux2MuwskZikP7r0~r7KVzVWUo6NLeHSH2rIRp7cpG5JHqOltCOf5ie7mAAVAdS6QE3y0VU-VDsgHCqlO~R23ZxMAwb26f1qJJkAUWuk8hmsseD1uclCNqlD00o2VEi8T~XwRkSDIvO1p597BBGYewBLxyorgHQqJmROp7smjMbAX2Vlttaybw5kPiMhRwtREhkxdhXh0mQkqwMDqklgJ4VxAyuSE~-cgiA6Bv~ApYHV4Bv2Ilj9XxSLmhXfvnSPG74~heRN8Em5uE5vpZtNHouv3LZD2FvIOtX5BifLTVfSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314803/thumbnails/1.jpg","file_name":"Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t.pdf","download_url":"https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bacterial_nodulation_protein_NodZ_is_a_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314803/Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DBacterial_nodulation_protein_NodZ_is_a_c.pdf\u0026Expires=1732794736\u0026Signature=PINauntTF8L7tCfBoTUOBJrPXm1uUTRaC90p-AVFO5Ux2MuwskZikP7r0~r7KVzVWUo6NLeHSH2rIRp7cpG5JHqOltCOf5ie7mAAVAdS6QE3y0VU-VDsgHCqlO~R23ZxMAwb26f1qJJkAUWuk8hmsseD1uclCNqlD00o2VEi8T~XwRkSDIvO1p597BBGYewBLxyorgHQqJmROp7smjMbAX2Vlttaybw5kPiMhRwtREhkxdhXh0mQkqwMDqklgJ4VxAyuSE~-cgiA6Bv~ApYHV4Bv2Ilj9XxSLmhXfvnSPG74~heRN8Em5uE5vpZtNHouv3LZD2FvIOtX5BifLTVfSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":50743,"name":"Compositional Analysis","url":"https://www.academia.edu/Documents/in/Compositional_Analysis"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202419,"name":"Soil Bacteria","url":"https://www.academia.edu/Documents/in/Soil_Bacteria"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":432129,"name":"Substrate Specificity","url":"https://www.academia.edu/Documents/in/Substrate_Specificity"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1445140,"name":"Linkage Analysis","url":"https://www.academia.edu/Documents/in/Linkage_Analysis"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[{"id":6520982,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/24451645_Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin/links/00b7d516be03443a3f000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants"><img alt="Research paper thumbnail of Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants" class="work-thumbnail" src="https://attachments.academia-assets.com/39346581/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants">Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants</a></div><div class="wp-workCard_item"><span>Plant and Soil</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9cb5e51c598a17de9c04491907227ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":39346581,"asset_id":17125095,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125095]").text(description); $(".js-view-count[data-work-id=17125095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9cb5e51c598a17de9c04491907227ce" } } $('.js-work-strip[data-work-id=17125095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125095,"title":"Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants","translated_title":"","metadata":{"grobid_abstract":"During recent years signals leading to the early stages of nodulation of legumes by rhizobia have been identified. Plant flavonoids induce rhizobial nod genes that are essential for nodulation. Most of the nod gene products are involved in the biosynthesis of lipo-oligosaccharide molecules. The common nodABC genes are minimally required for the synthesis of all lipo-oligosaccharides. Host-specific nod gene products in a given Rhizobium species are responsible for synthesis or addition of various moieties to those basic lipo-oligosaccharide molecules. For example, in R. leguminosarum, the nodFEL operon is involved in the production of lipo-oligosaccharide signals that mediate host specificity. A nodFEdetermined highly unsaturated fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for inducing nodule meristems and pre-infection thread structures on the host plant ~cia sativa. Lipo-oligosaccharides also trigger autoregulation of nodulation in pea and, if applied in excessive amounts to a legume, can prevent nodulation and thereby might play a role in competition. During our studies on the biosynthesis of lipo-oligosaccharides, we discovered that, besides the lipo-oligosaccharides, other metabolites are synthesized de novo after induction of the nod genes. These novel metabolites appeared to be phospholipids, containing either one of the three fatty acids which are made by the action of NodFE in R. leguminosarum.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Plant and Soil","grobid_abstract_attachment_id":39346581},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants","translated_internal_url":"","created_at":"2015-10-21T13:29:29.751-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":8939013,"work_id":17125095,"tagging_user_id":36701282,"tagged_user_id":null,"co_author_invite_id":1121417,"email":"h***k@biology.leidenuniv.nl","display_order":0,"name":"Herman Spaink","title":"Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants"}],"downloadable_attachments":[{"id":39346581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346581/thumbnails/1.jpg","file_name":"Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x.pdf","download_url":"https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_rhizobial_lipo_oligosacharides_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346581/Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x-libre.pdf?1445462129=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_rhizobial_lipo_oligosacharides_i.pdf\u0026Expires=1732794736\u0026Signature=VJQG5cqoGDtxqJQv3C0ROG~-U7-B8WCcmwUz0VZRyBEgHZg5BZ~fTgJ0m~e-uBSa1R-gyFYB8iLO~qHTG9i2IX~w77le7S~07HKW2rrFMxFIkAeiJQRs3VBnv7VwFJmlj0ikCuFNgZYUf33Woy4ZbunxHw6TYgS4huwhSlRGt8w87hWB-I5jJhoDvq5W7tH~Sw07E6UdCm2UKmWm8Z8AMYQ7O4RBMd~hHlfUt5BoZSrzkkEPH-BPwSij8E~uF0xprkKIDPooNcJXJLNIcFB8~TZRL5I96uElQbx43fqoxQeWq8FPVBmv7~j3rrsNGqItb~ANq-nr5Qe~Ci2F3enyPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":39346581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346581/thumbnails/1.jpg","file_name":"Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x.pdf","download_url":"https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_rhizobial_lipo_oligosacharides_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346581/Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x-libre.pdf?1445462129=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_rhizobial_lipo_oligosacharides_i.pdf\u0026Expires=1732794736\u0026Signature=VJQG5cqoGDtxqJQv3C0ROG~-U7-B8WCcmwUz0VZRyBEgHZg5BZ~fTgJ0m~e-uBSa1R-gyFYB8iLO~qHTG9i2IX~w77le7S~07HKW2rrFMxFIkAeiJQRs3VBnv7VwFJmlj0ikCuFNgZYUf33Woy4ZbunxHw6TYgS4huwhSlRGt8w87hWB-I5jJhoDvq5W7tH~Sw07E6UdCm2UKmWm8Z8AMYQ7O4RBMd~hHlfUt5BoZSrzkkEPH-BPwSij8E~uF0xprkKIDPooNcJXJLNIcFB8~TZRL5I96uElQbx43fqoxQeWq8FPVBmv7~j3rrsNGqItb~ANq-nr5Qe~Ci2F3enyPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":148851,"name":"Symbiotic Nitrogen Fixation","url":"https://www.academia.edu/Documents/in/Symbiotic_Nitrogen_Fixation"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125094"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici"><img alt="Research paper thumbnail of Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici" class="work-thumbnail" src="https://attachments.academia-assets.com/42314805/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici">Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plant...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78f3a9ecfef97816380bfeec2b40b4d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314805,"asset_id":17125094,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125094"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125094"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125094; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125094]").text(description); $(".js-view-count[data-work-id=17125094]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125094; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125094']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125094, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78f3a9ecfef97816380bfeec2b40b4d8" } } $('.js-work-strip[data-work-id=17125094]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125094,"title":"Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici","translated_title":"","metadata":{"abstract":"The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.","internal_url":"https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici","translated_internal_url":"","created_at":"2015-10-21T13:29:29.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314805,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314805/thumbnails/1.jpg","file_name":"Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67.pdf","download_url":"https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_in_the_Tomato_Rhizosphere_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314805/Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_in_the_Tomato_Rhizosphere_o.pdf\u0026Expires=1732794736\u0026Signature=FdqlavnOSspwGO~st~8qFJ2zXz1ZlpjLTxwL9v8PyN3BtDbQiveAAENoP35uBQPQ4L9sVUOCCg8x7~WO1Yw-igb1TC~HSz~PaSgTKtucVIrqOlJcC~c6SFyC1kZmW9~LoW3KvPNpPdN6-lHR7wMBCo6biIJDrKeLWkRta~7MMuPP61RUvZZITc5RscxFjPz5uVNWsIxQpM1h-T4xZM353OpxG96loEhMDjQmqnidMDNMHzbCQlu1ADwnOaROKMmIQRtpwHy67MFJAa1ugFiamGWXDzk9LLPwPQOQrAj7KlPQRDqJeEzVmJDYFb42yf8LDpNkbpxSnR43THr3J-XFUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314805,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314805/thumbnails/1.jpg","file_name":"Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67.pdf","download_url":"https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_in_the_Tomato_Rhizosphere_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314805/Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_in_the_Tomato_Rhizosphere_o.pdf\u0026Expires=1732794736\u0026Signature=FdqlavnOSspwGO~st~8qFJ2zXz1ZlpjLTxwL9v8PyN3BtDbQiveAAENoP35uBQPQ4L9sVUOCCg8x7~WO1Yw-igb1TC~HSz~PaSgTKtucVIrqOlJcC~c6SFyC1kZmW9~LoW3KvPNpPdN6-lHR7wMBCo6biIJDrKeLWkRta~7MMuPP61RUvZZITc5RscxFjPz5uVNWsIxQpM1h-T4xZM353OpxG96loEhMDjQmqnidMDNMHzbCQlu1ADwnOaROKMmIQRtpwHy67MFJAa1ugFiamGWXDzk9LLPwPQOQrAj7KlPQRDqJeEzVmJDYFb42yf8LDpNkbpxSnR43THr3J-XFUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":73618,"name":"Fusarium","url":"https://www.academia.edu/Documents/in/Fusarium"},{"id":112324,"name":"Pseudomonas","url":"https://www.academia.edu/Documents/in/Pseudomonas"},{"id":188240,"name":"Tomato","url":"https://www.academia.edu/Documents/in/Tomato"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":215623,"name":"Fusarium oxysporum","url":"https://www.academia.edu/Documents/in/Fusarium_oxysporum"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520984,"url":"https://www.researchgate.net/profile/Anastasia_Lagopodi/publication/9022324_Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f._sp._radicis-lycopersici/links/02bfe510a25968b559000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125093"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants"><img alt="Research paper thumbnail of Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants" class="work-thumbnail" src="https://attachments.academia-assets.com/39346580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants">Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8610f52781bf6ac85df96e7335889b6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":39346580,"asset_id":17125093,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125093"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125093"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125093; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125093]").text(description); $(".js-view-count[data-work-id=17125093]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125093; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125093']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125093, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8610f52781bf6ac85df96e7335889b6d" } } $('.js-work-strip[data-work-id=17125093]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125093,"title":"Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants","translated_title":"","metadata":{"grobid_abstract":"We developed two sets of broad-host-range vectors that drive expression of the green fluorescent protein (GFP) or color variants thereof (henceforth collectively called autofluorescent proteins [AFPs]) from the lac promoter. These two sets are based on different replicons that are maintained in a stable fashion in Escherichia coli and rhizobia. Using specific filter sets or a dedicated confocal laser scanning microscope setup in which emitted light is split into its color components through a prism, we were able to unambiguously identify bacteria expressing enhanced cyan fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) in mixtures of the two. Clearly, these vectors will be valuable tools for competition, cohabitation, and rescue studies and will also allow the visualization of interactions between genetically marked bacteria in vivo. Here, we used these vectors to visualize the interaction between rhizobia and plants. Specifically, we found that progeny from different rhizobia can be found in the same nodule or even in the same infection thread. We also visualized movements of bacteroids within plant nodule cells.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions","grobid_abstract_attachment_id":39346580},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants","translated_internal_url":"","created_at":"2015-10-21T13:29:29.558-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39346580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346580/thumbnails/1.jpg","file_name":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan.pdf","download_url":"https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_Green_Fluorescent_Protein_Color_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346580/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan-libre.pdf?1445462128=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_Green_Fluorescent_Protein_Color_V.pdf\u0026Expires=1732794736\u0026Signature=DtiTApkGppJcL1hQmfi4-f5aWFqf5~EP24uZ1xiGV2tfkjWVSVnGdQGQVLucI~6aEWrwMx1In7~I56SBW8gVFtgwUna6~1ha9pYt8JyqtUwbTIGCgqeDunb1N9uNJmtw6-FMvsKU0FyjozPTeD2WbqsXcodc8fhdidbJWQ02ynlvWR3wKGxdlZlr~HgyuXrUWNMiLqdEB9b~QrsdevRqdRFWs461VvkVU814jrxwekZZEQwPmIDkK1DKK-ucpHg5KZAEBPGl~n-w6f2RbOKeb92ImJBHRM85v0pOV1h5u3lxulZi~hHmdZr8kKQIdVW9ZFySFIIMGz6lphoGVckrQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":39346580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346580/thumbnails/1.jpg","file_name":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan.pdf","download_url":"https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_Green_Fluorescent_Protein_Color_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346580/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan-libre.pdf?1445462128=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_Green_Fluorescent_Protein_Color_V.pdf\u0026Expires=1732794736\u0026Signature=DtiTApkGppJcL1hQmfi4-f5aWFqf5~EP24uZ1xiGV2tfkjWVSVnGdQGQVLucI~6aEWrwMx1In7~I56SBW8gVFtgwUna6~1ha9pYt8JyqtUwbTIGCgqeDunb1N9uNJmtw6-FMvsKU0FyjozPTeD2WbqsXcodc8fhdidbJWQ02ynlvWR3wKGxdlZlr~HgyuXrUWNMiLqdEB9b~QrsdevRqdRFWs461VvkVU814jrxwekZZEQwPmIDkK1DKK-ucpHg5KZAEBPGl~n-w6f2RbOKeb92ImJBHRM85v0pOV1h5u3lxulZi~hHmdZr8kKQIdVW9ZFySFIIMGz6lphoGVckrQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":7700,"name":"Fluorescence Microscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Microscopy"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":76714,"name":"Color","url":"https://www.academia.edu/Documents/in/Color"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":202410,"name":"Green Fluorescent Protein","url":"https://www.academia.edu/Documents/in/Green_Fluorescent_Protein"},{"id":750576,"name":"Host Range","url":"https://www.academia.edu/Documents/in/Host_Range"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities"><img alt="Research paper thumbnail of Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities" class="work-thumbnail" src="https://attachments.academia-assets.com/42314804/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities">Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To visualize simultaneously different populations of pseudomonads in the rhizosphere at the singl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f10f1de0e8161182f5553756eff9607" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314804,"asset_id":17125092,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125092]").text(description); $(".js-view-count[data-work-id=17125092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125092, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f10f1de0e8161182f5553756eff9607" } } $('.js-work-strip[data-work-id=17125092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125092,"title":"Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities","translated_title":"","metadata":{"abstract":"To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.","internal_url":"https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities","translated_internal_url":"","created_at":"2015-10-21T13:29:29.485-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314804/thumbnails/1.jpg","file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq.pdf","download_url":"https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314804/Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq-libre.pdf?1454867593=\u0026response-content-disposition=attachment%3B+filename%3DSimultaneous_Imaging_of_Pseudomonas_fluo.pdf\u0026Expires=1732794736\u0026Signature=TTxxX3G531XfPsp8aPjxj4ND-Vw2avHtQNoZN~HS22TzJ1b7U8~77QQ0C27btx6mhKqNIvjfkzvBtw5Xed7AyxBb3NwR~6M8YIPmXwXbElMf6D2gkg7rrur34W53IsTxIorS9~LiA1xJ8f2hW0NPmocbn6rbqevDJzXrPBIfvDzOtEDWgyEneOfk4rhrH-mhbgUqlWTAU~2dBsirKzGA9B-wss-OiPm4RgXif8f4qh0m8ne~zoAs-J6~lFoDes3TOsNPP7YQyg52rhFwx4tV~4cbIlZACr2~xrMwfLkm44AWoVF4C-4us1xViUv3BWBnw6w0PKSUfh0U37-ZZqLzyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314804/thumbnails/1.jpg","file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq.pdf","download_url":"https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314804/Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq-libre.pdf?1454867593=\u0026response-content-disposition=attachment%3B+filename%3DSimultaneous_Imaging_of_Pseudomonas_fluo.pdf\u0026Expires=1732794736\u0026Signature=TTxxX3G531XfPsp8aPjxj4ND-Vw2avHtQNoZN~HS22TzJ1b7U8~77QQ0C27btx6mhKqNIvjfkzvBtw5Xed7AyxBb3NwR~6M8YIPmXwXbElMf6D2gkg7rrur34W53IsTxIorS9~LiA1xJ8f2hW0NPmocbn6rbqevDJzXrPBIfvDzOtEDWgyEneOfk4rhrH-mhbgUqlWTAU~2dBsirKzGA9B-wss-OiPm4RgXif8f4qh0m8ne~zoAs-J6~lFoDes3TOsNPP7YQyg52rhFwx4tV~4cbIlZACr2~xrMwfLkm44AWoVF4C-4us1xViUv3BWBnw6w0PKSUfh0U37-ZZqLzyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7700,"name":"Fluorescence Microscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Microscopy"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":231547,"name":"Soil Microbiology","url":"https://www.academia.edu/Documents/in/Soil_Microbiology"},{"id":1627116,"name":"Microbial community","url":"https://www.academia.edu/Documents/in/Microbial_community"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520983,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/12266406_Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities/links/0fcfd5007fe4965751000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125091"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation"><img alt="Research paper thumbnail of Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation">Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5&amp;#39; and 3&amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125091"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125091"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125091; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125091]").text(description); $(".js-view-count[data-work-id=17125091]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125091; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125091']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125091, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125091]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125091,"title":"Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation","translated_title":"","metadata":{"abstract":"Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5\u0026amp;#39; and 3\u0026amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5\u0026amp;#39; and 3\u0026amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.","internal_url":"https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation","translated_internal_url":"","created_at":"2015-10-21T13:29:29.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":15019,"name":"Medicinal Plants","url":"https://www.academia.edu/Documents/in/Medicinal_Plants"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":396733,"name":"Fabaceae","url":"https://www.academia.edu/Documents/in/Fabaceae"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum"><img alt="Research paper thumbnail of A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum">A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125090]").text(description); $(".js-view-count[data-work-id=17125090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125090, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125090,"title":"A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum","translated_title":"","metadata":{"abstract":"Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).","internal_url":"https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum","translated_internal_url":"","created_at":"2015-10-21T13:29:29.334-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":133873,"name":"Plants","url":"https://www.academia.edu/Documents/in/Plants"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":360394,"name":"Alphaproteobacteria","url":"https://www.academia.edu/Documents/in/Alphaproteobacteria"},{"id":961470,"name":"Heterologous Expression","url":"https://www.academia.edu/Documents/in/Heterologous_Expression"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria"><img alt="Research paper thumbnail of The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria">The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxyspo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125089]").text(description); $(".js-view-count[data-work-id=17125089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125089, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125089,"title":"The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria","translated_title":"","metadata":{"abstract":"We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.","internal_url":"https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria","translated_internal_url":"","created_at":"2015-10-21T13:29:29.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":73618,"name":"Fusarium","url":"https://www.academia.edu/Documents/in/Fusarium"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":188240,"name":"Tomato","url":"https://www.academia.edu/Documents/in/Tomato"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":215623,"name":"Fusarium oxysporum","url":"https://www.academia.edu/Documents/in/Fusarium_oxysporum"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125088"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum"><img alt="Research paper thumbnail of Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum">Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum</a></div><div class="wp-workCard_item"><span>Molecular Microbiology</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharid...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125088"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125088"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125088; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125088]").text(description); $(".js-view-count[data-work-id=17125088]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125088; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125088']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125088, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125088]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125088,"title":"Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum","translated_title":"","metadata":{"abstract":"The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Molecular Microbiology"},"translated_abstract":"The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.","internal_url":"https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum","translated_internal_url":"","created_at":"2015-10-21T13:29:29.160-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":13744,"name":"Molecular Microbiology","url":"https://www.academia.edu/Documents/in/Molecular_Microbiology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":50157,"name":"Molecular","url":"https://www.academia.edu/Documents/in/Molecular"},{"id":377343,"name":"Glucosamine","url":"https://www.academia.edu/Documents/in/Glucosamine"},{"id":463081,"name":"Acetylation","url":"https://www.academia.edu/Documents/in/Acetylation"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125087"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis"><img alt="Research paper thumbnail of Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis">Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis</a></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125087"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125087"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125087; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125087]").text(description); $(".js-view-count[data-work-id=17125087]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125087; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125087']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125087, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125087]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125087,"title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis","translated_title":"","metadata":{"abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","internal_url":"https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_internal_url":"","created_at":"2015-10-21T13:29:29.065-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125086/Rhizobium"><img alt="Research paper thumbnail of Rhizobium" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125086/Rhizobium">Rhizobium</a></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125086]").text(description); $(".js-view-count[data-work-id=17125086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125086,"title":"Rhizobium","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125086/Rhizobium","translated_internal_url":"","created_at":"2015-10-21T13:29:28.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rhizobium","translated_slug":"","page_count":null,"language":"es","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17044461"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane"><img alt="Research paper thumbnail of The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane" class="work-thumbnail" src="https://attachments.academia-assets.com/42347589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane">The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vu-nl.academia.edu/WilbertBitter">Wilbert Bitter</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a></span></div><div class="wp-workCard_item"><span>FEMS Microbiology Ecology</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="483c5a733b145b60b5df5ba2ace54a90" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42347589,"asset_id":17044461,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17044461"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17044461"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17044461; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17044461]").text(description); $(".js-view-count[data-work-id=17044461]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17044461; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17044461']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17044461, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "483c5a733b145b60b5df5ba2ace54a90" } } $('.js-work-strip[data-work-id=17044461]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17044461,"title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane","translated_title":"","metadata":{"grobid_abstract":"Pseudomonas fluorescens strain PCL1210, a competitive tomato root tip colonization mutant of the efficient root colonizing wild type strain WCS365, is impaired in the two-component sensor-response regulator system ColR/ColS. Here we show that a putative methyltransferase/wapQ operon is located downstream of colR/colS and that this operon is regulated by ColR/ColS. Since wapQ encodes a putative lipopolysaccharide (LPS) phosphatase, the possibility was studied that the integrity of the outer membrane of PCL1210 was altered. Indeed, it was shown that mutant PCL1210 is more resistant to various chemically unrelated antibiotics which have to pass the outer membrane for their action. In contrast, the mutant is more sensitive to the LPS-binding antibiotic polymyxin B. Mutant PCL1210 loses growth in competition with its wild type when grown in tomato root exudate. Mutants in the methyltransferase/wapQ operon are also altered in their outer membrane permeability and are defective in competitive tomato root tip colonization. A model for the altered outer membrane of PCL1210 is discussed.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"FEMS Microbiology Ecology","grobid_abstract_attachment_id":42347589},"translated_abstract":null,"internal_url":"https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane","translated_internal_url":"","created_at":"2015-10-20T06:59:07.661-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36597728,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":7615870,"work_id":17044461,"tagging_user_id":36597728,"tagged_user_id":null,"co_author_invite_id":1701288,"email":"l***g@rulbim.leidenuniv.nl","display_order":0,"name":"Ben Lugtenberg","title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane"},{"id":7615871,"work_id":17044461,"tagging_user_id":36597728,"tagged_user_id":36701282,"co_author_invite_id":1701289,"email":"a***s@gmail.com","display_order":4194304,"name":"Andr茅 Wijfjes","title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane"}],"downloadable_attachments":[{"id":42347589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347589/thumbnails/1.jpg","file_name":"The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6.pdf","download_url":"https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_component_colR_S_system_of_Pseud.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347589/The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6-libre.pdf?1454907358=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_component_colR_S_system_of_Pseud.pdf\u0026Expires=1732794736\u0026Signature=OKYKdVMDov0PI0CqzzHz1~Q21nEf3M3cVMePmdFgmsHBo82MUFIm93nP7Vyf11jKYuUmuRi86JpLyL0f7BJin778ZWd7vb7W3BW1bBjvGjhZzJZhSPz3nM9CabTykmguJ511oIVwa6odhRnoFxjFZOoqkP2hEZAVLaObbJRW5FbaGKRGefYryCJs-r5LLNn-gXXYdrIuWV0jv1Ci49dECeDXHC8F-fCJiarGUlNZZOKoE2uDZ6t5HIWm1NXBHJJBW~66Dr~cHmTIwHXWw~qeiToSTGzQw7MwN3JuOexBd1wMQPZuBRtScvC~BbDB1YeLotnwgSJsigVUBg3UFhjpnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":36597728,"first_name":"Wilbert","middle_initials":null,"last_name":"Bitter","page_name":"WilbertBitter","domain_name":"vu-nl","created_at":"2015-10-20T06:16:33.931-07:00","display_name":"Wilbert Bitter","url":"https://vu-nl.academia.edu/WilbertBitter"},"attachments":[{"id":42347589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347589/thumbnails/1.jpg","file_name":"The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6.pdf","download_url":"https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_component_colR_S_system_of_Pseud.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347589/The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6-libre.pdf?1454907358=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_component_colR_S_system_of_Pseud.pdf\u0026Expires=1732794736\u0026Signature=OKYKdVMDov0PI0CqzzHz1~Q21nEf3M3cVMePmdFgmsHBo82MUFIm93nP7Vyf11jKYuUmuRi86JpLyL0f7BJin778ZWd7vb7W3BW1bBjvGjhZzJZhSPz3nM9CabTykmguJ511oIVwa6odhRnoFxjFZOoqkP2hEZAVLaObbJRW5FbaGKRGefYryCJs-r5LLNn-gXXYdrIuWV0jv1Ci49dECeDXHC8F-fCJiarGUlNZZOKoE2uDZ6t5HIWm1NXBHJJBW~66Dr~cHmTIwHXWw~qeiToSTGzQw7MwN3JuOexBd1wMQPZuBRtScvC~BbDB1YeLotnwgSJsigVUBg3UFhjpnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5411,"name":"Biomass","url":"https://www.academia.edu/Documents/in/Biomass"},{"id":23515,"name":"Biological Control","url":"https://www.academia.edu/Documents/in/Biological_Control"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49646,"name":"Protein Structure and Function","url":"https://www.academia.edu/Documents/in/Protein_Structure_and_Function"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":335984,"name":"Anti-Bacterial Agents","url":"https://www.academia.edu/Documents/in/Anti-Bacterial_Agents"},{"id":421780,"name":"Putrescine","url":"https://www.academia.edu/Documents/in/Putrescine"},{"id":561014,"name":"Microbial Sensitivity Tests","url":"https://www.academia.edu/Documents/in/Microbial_Sensitivity_Tests"},{"id":726132,"name":"Ampicillin","url":"https://www.academia.edu/Documents/in/Ampicillin"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6543725,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/6732398_The_twocomponent_colRS_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane/links/0912f4ffe9cd92bd6f000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3810598" id="papers"><div class="js-work-strip profile--work_container" data-work-id="87022970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides"><img alt="Research paper thumbnail of Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides" class="work-thumbnail" src="https://attachments.academia-assets.com/91348841/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides">Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides</a></div><div class="wp-workCard_item"><span>Journal of Bacteriology</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was use...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45a25ea66ac559e309cc57938a280b76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":91348841,"asset_id":87022970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="87022970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="87022970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 87022970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=87022970]").text(description); $(".js-view-count[data-work-id=87022970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 87022970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='87022970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 87022970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45a25ea66ac559e309cc57938a280b76" } } $('.js-work-strip[data-work-id=87022970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":87022970,"title":"Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides","translated_title":"","metadata":{"abstract":"Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...","publisher":"American Society for Microbiology","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Journal of Bacteriology"},"translated_abstract":"Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induc...","internal_url":"https://www.academia.edu/87022970/Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides","translated_internal_url":"","created_at":"2022-09-21T07:40:03.438-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":91348841,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/91348841/thumbnails/1.jpg","file_name":"50556525e6c72a5f088b44aad235c2850c9d.pdf","download_url":"https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rhizobium_NodI_and_NodJ_proteins_play_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/91348841/50556525e6c72a5f088b44aad235c2850c9d-libre.pdf?1663776681=\u0026response-content-disposition=attachment%3B+filename%3DRhizobium_NodI_and_NodJ_proteins_play_a.pdf\u0026Expires=1732794735\u0026Signature=M9mWhYOmDYC1swFfONkP-B09icnKd9SnouEoTuwAFjy-GqIxxfBim-tkEv8QwX6adgCAURxBeoe8Y8YYUBOiVTmcllbqdhmpEL92WSXGClIaEHM2l2KbrAfpt57ez0mfieS61b0iSAKZk3R~bPPnFcAJkB-kCD4s5xyeSwUSJUmhXTTVOryZUT4sJ~Znc1iKxTwM3fveD1ffTJcR4aHiKMilRINnSajgeHZ4zOxun-95iKRTnyIwcBCkN~dqdOiiQc-n5QcIwC9nuiOBhsTenkjMaXX5~XN6Oi~vhil6KJOKfp3mU8qShkSTaZR4cBPQZkAuOIOR3hgOMKMGiIuvCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rhizobium_NodI_and_NodJ_proteins_play_a_role_in_the_efficiency_of_secretion_of_lipochitin_oligosaccharides","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":91348841,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/91348841/thumbnails/1.jpg","file_name":"50556525e6c72a5f088b44aad235c2850c9d.pdf","download_url":"https://www.academia.edu/attachments/91348841/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rhizobium_NodI_and_NodJ_proteins_play_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/91348841/50556525e6c72a5f088b44aad235c2850c9d-libre.pdf?1663776681=\u0026response-content-disposition=attachment%3B+filename%3DRhizobium_NodI_and_NodJ_proteins_play_a.pdf\u0026Expires=1732794735\u0026Signature=M9mWhYOmDYC1swFfONkP-B09icnKd9SnouEoTuwAFjy-GqIxxfBim-tkEv8QwX6adgCAURxBeoe8Y8YYUBOiVTmcllbqdhmpEL92WSXGClIaEHM2l2KbrAfpt57ez0mfieS61b0iSAKZk3R~bPPnFcAJkB-kCD4s5xyeSwUSJUmhXTTVOryZUT4sJ~Znc1iKxTwM3fveD1ffTJcR4aHiKMilRINnSajgeHZ4zOxun-95iKRTnyIwcBCkN~dqdOiiQc-n5QcIwC9nuiOBhsTenkjMaXX5~XN6Oi~vhil6KJOKfp3mU8qShkSTaZR4cBPQZkAuOIOR3hgOMKMGiIuvCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3284,"name":"Bacteriology","url":"https://www.academia.edu/Documents/in/Bacteriology"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":102040,"name":"Rhizobium","url":"https://www.academia.edu/Documents/in/Rhizobium"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":888739,"name":"Quntitative Thin Layer Chromatography","url":"https://www.academia.edu/Documents/in/Quntitative_Thin_Layer_Chromatography"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"},{"id":3376418,"name":"Rhizobium leguminosarum","url":"https://www.academia.edu/Documents/in/Rhizobium_leguminosarum"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":24034569,"url":"https://journals.asm.org/doi/pdf/10.1128/jb.177.21.6276-6281.1995"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15172007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis"><img alt="Research paper thumbnail of Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis">Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BenLugtenberg">Ben Lugtenberg</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a></span></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15172007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15172007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15172007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15172007]").text(description); $(".js-view-count[data-work-id=15172007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15172007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15172007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15172007, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=15172007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15172007,"title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis","translated_title":"","metadata":{"abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","internal_url":"https://www.academia.edu/15172007/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_internal_url":"","created_at":"2015-08-25T08:07:22.598-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34221591,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5044940,"work_id":15172007,"tagging_user_id":34221591,"tagged_user_id":null,"co_author_invite_id":1062241,"email":"s***k@rulbim.leidenuniv.nl","display_order":0,"name":"H. Spaink","title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis"},{"id":15453476,"work_id":15172007,"tagging_user_id":34221591,"tagged_user_id":36701282,"co_author_invite_id":null,"email":"a***s@gmail.com","display_order":4194304,"name":"Andr茅 Wijfjes","title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis"}],"downloadable_attachments":[],"slug":"Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34221591,"first_name":"Ben","middle_initials":null,"last_name":"Lugtenberg","page_name":"BenLugtenberg","domain_name":"independent","created_at":"2015-08-25T08:06:12.146-07:00","display_name":"Ben Lugtenberg","url":"https://independent.academia.edu/BenLugtenberg"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125098"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization"><img alt="Research paper thumbnail of Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization" class="work-thumbnail" src="https://attachments.academia-assets.com/42314808/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization">Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the paren...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95791bba0a668f1e8d69354100d7115c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314808,"asset_id":17125098,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125098"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125098"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125098; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125098]").text(description); $(".js-view-count[data-work-id=17125098]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125098; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125098']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125098, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95791bba0a668f1e8d69354100d7115c" } } $('.js-work-strip[data-work-id=17125098]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125098,"title":"Characterization of NADH Dehydrogenases of Pseudomonas fluorescens WCS365 and Their Role in Competitive Root Colonization","translated_title":"","metadata":{"abstract":"The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provide evidence that shows that the lack of NADH dehydrogenase I, an enzyme of the aerobic respiratory chain encoded by the nuo operon, is responsible for the impaired root-colonization ability of PCL1201. The complete sequence of the nuo operon (ranging from nuoA to nuoN) of P. fluorescens WCS365 was identified, including the promoter region and a transcriptional terminator consensus sequence downstream of nuoN. It was shown biochemically that PCL1201 is lacking NADH dehydrogenase I activity. In addition, the presence and activity of a second NADH dehydrogenase, encoded by the ndh gene, was identified to our knowledge for the first time in the genus Pseudomonas. Since it was assumed that low-oxygen conditions were present in the rhizosphere, we analyzed the activity of the nuo and the ndh promoters at different oxygen tensions. The results showed that both promoters are up-regulated by low concentrations of oxygen and that their levels of expression vary during growth. By using lacZ as a marker, it was shown that both the nuo operon and the ndh gene are expressed in the tomato rhizosphere. In contrast to the nuo mutant PCL1201, an ndh mutant of WCS365 appeared not to be impaired in competitive root tip colonization.","internal_url":"https://www.academia.edu/17125098/Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization","translated_internal_url":"","created_at":"2015-10-21T13:29:30.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314808,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314808/thumbnails/1.jpg","file_name":"Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f.pdf","download_url":"https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterization_of_NADH_Dehydrogenases.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314808/Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_NADH_Dehydrogenases.pdf\u0026Expires=1732794736\u0026Signature=ezRqlo2bGmuqRejQlO5CtmD682mSvKvqlHgAMmKngDB3nglEK3WY888eknqlhDcLH81tc4NqbUtF9AIWtF~HqHckIj8nauxnq5Ebk6rZasxl4CwatgTDAZHz3HbzqGVSJYFmZHd6FP4lieT2xobOrf7NPcahDBAHxMU53Za4nFOHkFpwJcHXQBT3eIMs5LkeRuwtVOc6THE0s7yCcVm4~dtgx6HC6DyuIZxeyPb-0GgbvGqkIdY7RxW57ZGFx9IvFX4V~49a29HjVAResf3u~clkUyRV8ZyD1Cy~V6e6fXLc0VKBpkYtgAU2k0QNqf3qgmrbHbwAzQi3yRdJM252~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314808,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314808/thumbnails/1.jpg","file_name":"Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f.pdf","download_url":"https://www.academia.edu/attachments/42314808/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterization_of_NADH_Dehydrogenases.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314808/Characterization_of_NADH_Dehydrogenases_20160207-22150-wtma9f-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_NADH_Dehydrogenases.pdf\u0026Expires=1732794736\u0026Signature=ezRqlo2bGmuqRejQlO5CtmD682mSvKvqlHgAMmKngDB3nglEK3WY888eknqlhDcLH81tc4NqbUtF9AIWtF~HqHckIj8nauxnq5Ebk6rZasxl4CwatgTDAZHz3HbzqGVSJYFmZHd6FP4lieT2xobOrf7NPcahDBAHxMU53Za4nFOHkFpwJcHXQBT3eIMs5LkeRuwtVOc6THE0s7yCcVm4~dtgx6HC6DyuIZxeyPb-0GgbvGqkIdY7RxW57ZGFx9IvFX4V~49a29HjVAResf3u~clkUyRV8ZyD1Cy~V6e6fXLc0VKBpkYtgAU2k0QNqf3qgmrbHbwAzQi3yRdJM252~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520987,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/11259761_Characterization_of_NADH_Dehydrogenases_of_Pseudomonas_fluorescens_WCS365_and_Their_Role_in_Competitive_Root_Colonization/links/0fcfd50047d2fee56e000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125097"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction"><img alt="Research paper thumbnail of The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction">The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DimitrisKafetzopoulos">Dimitris Kafetzopoulos</a></span></div><div class="wp-workCard_item"><span>Current Plant Science and Biotechnology in Agriculture</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) sig...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125097"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125097"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125097; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125097]").text(description); $(".js-view-count[data-work-id=17125097]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125097; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125097']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125097, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125097]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125097,"title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction","translated_title":"","metadata":{"abstract":"Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Current Plant Science and Biotechnology in Agriculture"},"translated_abstract":"Rhizobia, bacterial symbionts of leguminous plants, produce lipo-chitin oligosaccharide (LCO) signal molecules after induction of their nodulation(nod)genes by flavonoids secreted by the plant host. These LCOs have various effects on the roots of the host plants. One of these is the dedifferentiation of groups of cells located in the cortex of the root which leads to the formation of a","internal_url":"https://www.academia.edu/17125097/The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction","translated_internal_url":"","created_at":"2015-10-21T13:29:29.968-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":8260999,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":35970716,"co_author_invite_id":null,"email":"k***o@imbb.forth.gr","display_order":0,"name":"Dimitris Kafetzopoulos","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"},{"id":8261000,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":null,"co_author_invite_id":1121417,"email":"h***k@biology.leidenuniv.nl","display_order":4194304,"name":"Herman Spaink","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"},{"id":8261001,"work_id":17125097,"tagging_user_id":36701282,"tagged_user_id":34463104,"co_author_invite_id":null,"email":"b***g@imm.uzh.ch","display_order":6291456,"name":"Guido Bloemberg","title":"The Molecular Basis of Host Specificity in the Rhizobium Leguminosarum-Plant Interaction"}],"downloadable_attachments":[],"slug":"The_Molecular_Basis_of_Host_Specificity_in_the_Rhizobium_Leguminosarum_Plant_Interaction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":744732,"name":"Plant Interaction","url":"https://www.academia.edu/Documents/in/Plant_Interaction"},{"id":1302079,"name":"Host Plant","url":"https://www.academia.edu/Documents/in/Host_Plant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin"><img alt="Research paper thumbnail of Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin" class="work-thumbnail" src="https://attachments.academia-assets.com/42314803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin">Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fdc3ec5db433bad9ab0a6455e0480d3b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314803,"asset_id":17125096,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125096]").text(description); $(".js-view-count[data-work-id=17125096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fdc3ec5db433bad9ab0a6455e0480d3b" } } $('.js-work-strip[data-work-id=17125096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125096,"title":"Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin","translated_title":"","metadata":{"abstract":"The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.","internal_url":"https://www.academia.edu/17125096/Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin","translated_internal_url":"","created_at":"2015-10-21T13:29:29.891-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314803/thumbnails/1.jpg","file_name":"Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t.pdf","download_url":"https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bacterial_nodulation_protein_NodZ_is_a_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314803/Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DBacterial_nodulation_protein_NodZ_is_a_c.pdf\u0026Expires=1732794736\u0026Signature=PINauntTF8L7tCfBoTUOBJrPXm1uUTRaC90p-AVFO5Ux2MuwskZikP7r0~r7KVzVWUo6NLeHSH2rIRp7cpG5JHqOltCOf5ie7mAAVAdS6QE3y0VU-VDsgHCqlO~R23ZxMAwb26f1qJJkAUWuk8hmsseD1uclCNqlD00o2VEi8T~XwRkSDIvO1p597BBGYewBLxyorgHQqJmROp7smjMbAX2Vlttaybw5kPiMhRwtREhkxdhXh0mQkqwMDqklgJ4VxAyuSE~-cgiA6Bv~ApYHV4Bv2Ilj9XxSLmhXfvnSPG74~heRN8Em5uE5vpZtNHouv3LZD2FvIOtX5BifLTVfSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314803/thumbnails/1.jpg","file_name":"Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t.pdf","download_url":"https://www.academia.edu/attachments/42314803/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bacterial_nodulation_protein_NodZ_is_a_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314803/Bacterial_nodulation_protein_NodZ_is_a_c20160207-27881-14dsg0t-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DBacterial_nodulation_protein_NodZ_is_a_c.pdf\u0026Expires=1732794736\u0026Signature=PINauntTF8L7tCfBoTUOBJrPXm1uUTRaC90p-AVFO5Ux2MuwskZikP7r0~r7KVzVWUo6NLeHSH2rIRp7cpG5JHqOltCOf5ie7mAAVAdS6QE3y0VU-VDsgHCqlO~R23ZxMAwb26f1qJJkAUWuk8hmsseD1uclCNqlD00o2VEi8T~XwRkSDIvO1p597BBGYewBLxyorgHQqJmROp7smjMbAX2Vlttaybw5kPiMhRwtREhkxdhXh0mQkqwMDqklgJ4VxAyuSE~-cgiA6Bv~ApYHV4Bv2Ilj9XxSLmhXfvnSPG74~heRN8Em5uE5vpZtNHouv3LZD2FvIOtX5BifLTVfSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":50743,"name":"Compositional Analysis","url":"https://www.academia.edu/Documents/in/Compositional_Analysis"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202419,"name":"Soil Bacteria","url":"https://www.academia.edu/Documents/in/Soil_Bacteria"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":432129,"name":"Substrate Specificity","url":"https://www.academia.edu/Documents/in/Substrate_Specificity"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1445140,"name":"Linkage Analysis","url":"https://www.academia.edu/Documents/in/Linkage_Analysis"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[{"id":6520982,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/24451645_Bacterial_nodulation_protein_NodZ_is_a_chitin_oligosaccharide_fucosyltransferase_which_can_also_recognize_related_substrates_of_animal_origin/links/00b7d516be03443a3f000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants"><img alt="Research paper thumbnail of Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants" class="work-thumbnail" src="https://attachments.academia-assets.com/39346581/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants">Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants</a></div><div class="wp-workCard_item"><span>Plant and Soil</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9cb5e51c598a17de9c04491907227ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":39346581,"asset_id":17125095,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125095]").text(description); $(".js-view-count[data-work-id=17125095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9cb5e51c598a17de9c04491907227ce" } } $('.js-work-strip[data-work-id=17125095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125095,"title":"Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants","translated_title":"","metadata":{"grobid_abstract":"During recent years signals leading to the early stages of nodulation of legumes by rhizobia have been identified. Plant flavonoids induce rhizobial nod genes that are essential for nodulation. Most of the nod gene products are involved in the biosynthesis of lipo-oligosaccharide molecules. The common nodABC genes are minimally required for the synthesis of all lipo-oligosaccharides. Host-specific nod gene products in a given Rhizobium species are responsible for synthesis or addition of various moieties to those basic lipo-oligosaccharide molecules. For example, in R. leguminosarum, the nodFEL operon is involved in the production of lipo-oligosaccharide signals that mediate host specificity. A nodFEdetermined highly unsaturated fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for inducing nodule meristems and pre-infection thread structures on the host plant ~cia sativa. Lipo-oligosaccharides also trigger autoregulation of nodulation in pea and, if applied in excessive amounts to a legume, can prevent nodulation and thereby might play a role in competition. During our studies on the biosynthesis of lipo-oligosaccharides, we discovered that, besides the lipo-oligosaccharides, other metabolites are synthesized de novo after induction of the nod genes. These novel metabolites appeared to be phospholipids, containing either one of the three fatty acids which are made by the action of NodFE in R. leguminosarum.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Plant and Soil","grobid_abstract_attachment_id":39346581},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125095/Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants","translated_internal_url":"","created_at":"2015-10-21T13:29:29.751-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":8939013,"work_id":17125095,"tagging_user_id":36701282,"tagged_user_id":null,"co_author_invite_id":1121417,"email":"h***k@biology.leidenuniv.nl","display_order":0,"name":"Herman Spaink","title":"Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants"}],"downloadable_attachments":[{"id":39346581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346581/thumbnails/1.jpg","file_name":"Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x.pdf","download_url":"https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_rhizobial_lipo_oligosacharides_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346581/Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x-libre.pdf?1445462129=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_rhizobial_lipo_oligosacharides_i.pdf\u0026Expires=1732794736\u0026Signature=VJQG5cqoGDtxqJQv3C0ROG~-U7-B8WCcmwUz0VZRyBEgHZg5BZ~fTgJ0m~e-uBSa1R-gyFYB8iLO~qHTG9i2IX~w77le7S~07HKW2rrFMxFIkAeiJQRs3VBnv7VwFJmlj0ikCuFNgZYUf33Woy4ZbunxHw6TYgS4huwhSlRGt8w87hWB-I5jJhoDvq5W7tH~Sw07E6UdCm2UKmWm8Z8AMYQ7O4RBMd~hHlfUt5BoZSrzkkEPH-BPwSij8E~uF0xprkKIDPooNcJXJLNIcFB8~TZRL5I96uElQbx43fqoxQeWq8FPVBmv7~j3rrsNGqItb~ANq-nr5Qe~Ci2F3enyPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_rhizobial_lipo_oligosacharides_in_root_nodule_formation_on_leguminous_plants","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":39346581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346581/thumbnails/1.jpg","file_name":"Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x.pdf","download_url":"https://www.academia.edu/attachments/39346581/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_rhizobial_lipo_oligosacharides_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346581/Role_of_rhizobial_lipo-oligosaccharides_in_root_nodule_formation_on_leguminous_plants._Plant_Soil20151021-2588-feh74x-libre.pdf?1445462129=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_rhizobial_lipo_oligosacharides_i.pdf\u0026Expires=1732794736\u0026Signature=VJQG5cqoGDtxqJQv3C0ROG~-U7-B8WCcmwUz0VZRyBEgHZg5BZ~fTgJ0m~e-uBSa1R-gyFYB8iLO~qHTG9i2IX~w77le7S~07HKW2rrFMxFIkAeiJQRs3VBnv7VwFJmlj0ikCuFNgZYUf33Woy4ZbunxHw6TYgS4huwhSlRGt8w87hWB-I5jJhoDvq5W7tH~Sw07E6UdCm2UKmWm8Z8AMYQ7O4RBMd~hHlfUt5BoZSrzkkEPH-BPwSij8E~uF0xprkKIDPooNcJXJLNIcFB8~TZRL5I96uElQbx43fqoxQeWq8FPVBmv7~j3rrsNGqItb~ANq-nr5Qe~Ci2F3enyPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":148851,"name":"Symbiotic Nitrogen Fixation","url":"https://www.academia.edu/Documents/in/Symbiotic_Nitrogen_Fixation"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125094"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici"><img alt="Research paper thumbnail of Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici" class="work-thumbnail" src="https://attachments.academia-assets.com/42314805/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici">Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plant...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78f3a9ecfef97816380bfeec2b40b4d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314805,"asset_id":17125094,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125094"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125094"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125094; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125094]").text(description); $(".js-view-count[data-work-id=17125094]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125094; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125094']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125094, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78f3a9ecfef97816380bfeec2b40b4d8" } } $('.js-work-strip[data-work-id=17125094]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125094,"title":"Interactions in the Tomato Rhizosphere of Two Pseudomonas Biocontrol Strains with the Phytopathogenic Fungus Fusarium oxysporum f. sp. radicis-lycopersici","translated_title":"","metadata":{"abstract":"The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.","internal_url":"https://www.academia.edu/17125094/Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici","translated_internal_url":"","created_at":"2015-10-21T13:29:29.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314805,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314805/thumbnails/1.jpg","file_name":"Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67.pdf","download_url":"https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_in_the_Tomato_Rhizosphere_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314805/Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_in_the_Tomato_Rhizosphere_o.pdf\u0026Expires=1732794736\u0026Signature=FdqlavnOSspwGO~st~8qFJ2zXz1ZlpjLTxwL9v8PyN3BtDbQiveAAENoP35uBQPQ4L9sVUOCCg8x7~WO1Yw-igb1TC~HSz~PaSgTKtucVIrqOlJcC~c6SFyC1kZmW9~LoW3KvPNpPdN6-lHR7wMBCo6biIJDrKeLWkRta~7MMuPP61RUvZZITc5RscxFjPz5uVNWsIxQpM1h-T4xZM353OpxG96loEhMDjQmqnidMDNMHzbCQlu1ADwnOaROKMmIQRtpwHy67MFJAa1ugFiamGWXDzk9LLPwPQOQrAj7KlPQRDqJeEzVmJDYFb42yf8LDpNkbpxSnR43THr3J-XFUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f_sp_radicis_lycopersici","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314805,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314805/thumbnails/1.jpg","file_name":"Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67.pdf","download_url":"https://www.academia.edu/attachments/42314805/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_in_the_Tomato_Rhizosphere_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314805/Interactions_in_the_Tomato_Rhizosphere_o20160207-11015-1nllj67-libre.pdf?1454867594=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_in_the_Tomato_Rhizosphere_o.pdf\u0026Expires=1732794736\u0026Signature=FdqlavnOSspwGO~st~8qFJ2zXz1ZlpjLTxwL9v8PyN3BtDbQiveAAENoP35uBQPQ4L9sVUOCCg8x7~WO1Yw-igb1TC~HSz~PaSgTKtucVIrqOlJcC~c6SFyC1kZmW9~LoW3KvPNpPdN6-lHR7wMBCo6biIJDrKeLWkRta~7MMuPP61RUvZZITc5RscxFjPz5uVNWsIxQpM1h-T4xZM353OpxG96loEhMDjQmqnidMDNMHzbCQlu1ADwnOaROKMmIQRtpwHy67MFJAa1ugFiamGWXDzk9LLPwPQOQrAj7KlPQRDqJeEzVmJDYFb42yf8LDpNkbpxSnR43THr3J-XFUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":73618,"name":"Fusarium","url":"https://www.academia.edu/Documents/in/Fusarium"},{"id":112324,"name":"Pseudomonas","url":"https://www.academia.edu/Documents/in/Pseudomonas"},{"id":188240,"name":"Tomato","url":"https://www.academia.edu/Documents/in/Tomato"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":215623,"name":"Fusarium oxysporum","url":"https://www.academia.edu/Documents/in/Fusarium_oxysporum"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520984,"url":"https://www.researchgate.net/profile/Anastasia_Lagopodi/publication/9022324_Interactions_in_the_Tomato_Rhizosphere_of_Two_Pseudomonas_Biocontrol_Strains_with_the_Phytopathogenic_Fungus_Fusarium_oxysporum_f._sp._radicis-lycopersici/links/02bfe510a25968b559000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125093"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants"><img alt="Research paper thumbnail of Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants" class="work-thumbnail" src="https://attachments.academia-assets.com/39346580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants">Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8610f52781bf6ac85df96e7335889b6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":39346580,"asset_id":17125093,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125093"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125093"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125093; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125093]").text(description); $(".js-view-count[data-work-id=17125093]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125093; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125093']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125093, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8610f52781bf6ac85df96e7335889b6d" } } $('.js-work-strip[data-work-id=17125093]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125093,"title":"Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to Visualize Rhizobia Interacting with Plants","translated_title":"","metadata":{"grobid_abstract":"We developed two sets of broad-host-range vectors that drive expression of the green fluorescent protein (GFP) or color variants thereof (henceforth collectively called autofluorescent proteins [AFPs]) from the lac promoter. These two sets are based on different replicons that are maintained in a stable fashion in Escherichia coli and rhizobia. Using specific filter sets or a dedicated confocal laser scanning microscope setup in which emitted light is split into its color components through a prism, we were able to unambiguously identify bacteria expressing enhanced cyan fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) in mixtures of the two. Clearly, these vectors will be valuable tools for competition, cohabitation, and rescue studies and will also allow the visualization of interactions between genetically marked bacteria in vivo. Here, we used these vectors to visualize the interaction between rhizobia and plants. Specifically, we found that progeny from different rhizobia can be found in the same nodule or even in the same infection thread. We also visualized movements of bacteroids within plant nodule cells.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions","grobid_abstract_attachment_id":39346580},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125093/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants","translated_internal_url":"","created_at":"2015-10-21T13:29:29.558-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39346580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346580/thumbnails/1.jpg","file_name":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan.pdf","download_url":"https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_Green_Fluorescent_Protein_Color_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346580/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan-libre.pdf?1445462128=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_Green_Fluorescent_Protein_Color_V.pdf\u0026Expires=1732794736\u0026Signature=DtiTApkGppJcL1hQmfi4-f5aWFqf5~EP24uZ1xiGV2tfkjWVSVnGdQGQVLucI~6aEWrwMx1In7~I56SBW8gVFtgwUna6~1ha9pYt8JyqtUwbTIGCgqeDunb1N9uNJmtw6-FMvsKU0FyjozPTeD2WbqsXcodc8fhdidbJWQ02ynlvWR3wKGxdlZlr~HgyuXrUWNMiLqdEB9b~QrsdevRqdRFWs461VvkVU814jrxwekZZEQwPmIDkK1DKK-ucpHg5KZAEBPGl~n-w6f2RbOKeb92ImJBHRM85v0pOV1h5u3lxulZi~hHmdZr8kKQIdVW9ZFySFIIMGz6lphoGVckrQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad_Host_Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plants","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":39346580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39346580/thumbnails/1.jpg","file_name":"Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan.pdf","download_url":"https://www.academia.edu/attachments/39346580/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_Green_Fluorescent_Protein_Color_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39346580/Use_of_Green_Fluorescent_Protein_Color_Variants_Expressed_on_Stable_Broad-Host-Range_Vectors_to_Visualize_Rhizobia_Interacting_with_Plan-libre.pdf?1445462128=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_Green_Fluorescent_Protein_Color_V.pdf\u0026Expires=1732794736\u0026Signature=DtiTApkGppJcL1hQmfi4-f5aWFqf5~EP24uZ1xiGV2tfkjWVSVnGdQGQVLucI~6aEWrwMx1In7~I56SBW8gVFtgwUna6~1ha9pYt8JyqtUwbTIGCgqeDunb1N9uNJmtw6-FMvsKU0FyjozPTeD2WbqsXcodc8fhdidbJWQ02ynlvWR3wKGxdlZlr~HgyuXrUWNMiLqdEB9b~QrsdevRqdRFWs461VvkVU814jrxwekZZEQwPmIDkK1DKK-ucpHg5KZAEBPGl~n-w6f2RbOKeb92ImJBHRM85v0pOV1h5u3lxulZi~hHmdZr8kKQIdVW9ZFySFIIMGz6lphoGVckrQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":7700,"name":"Fluorescence Microscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Microscopy"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":76714,"name":"Color","url":"https://www.academia.edu/Documents/in/Color"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":202410,"name":"Green Fluorescent Protein","url":"https://www.academia.edu/Documents/in/Green_Fluorescent_Protein"},{"id":750576,"name":"Host Range","url":"https://www.academia.edu/Documents/in/Host_Range"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities"><img alt="Research paper thumbnail of Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities" class="work-thumbnail" src="https://attachments.academia-assets.com/42314804/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities">Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To visualize simultaneously different populations of pseudomonads in the rhizosphere at the singl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f10f1de0e8161182f5553756eff9607" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42314804,"asset_id":17125092,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125092]").text(description); $(".js-view-count[data-work-id=17125092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125092, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f10f1de0e8161182f5553756eff9607" } } $('.js-work-strip[data-work-id=17125092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125092,"title":"Simultaneous Imaging of Pseudomonas fluorescens WCS365 Populations Expressing Three Different Autofluorescent Proteins in the Rhizosphere: New Perspectives for Studying Microbial Communities","translated_title":"","metadata":{"abstract":"To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.","internal_url":"https://www.academia.edu/17125092/Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities","translated_internal_url":"","created_at":"2015-10-21T13:29:29.485-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42314804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314804/thumbnails/1.jpg","file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq.pdf","download_url":"https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314804/Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq-libre.pdf?1454867593=\u0026response-content-disposition=attachment%3B+filename%3DSimultaneous_Imaging_of_Pseudomonas_fluo.pdf\u0026Expires=1732794736\u0026Signature=TTxxX3G531XfPsp8aPjxj4ND-Vw2avHtQNoZN~HS22TzJ1b7U8~77QQ0C27btx6mhKqNIvjfkzvBtw5Xed7AyxBb3NwR~6M8YIPmXwXbElMf6D2gkg7rrur34W53IsTxIorS9~LiA1xJ8f2hW0NPmocbn6rbqevDJzXrPBIfvDzOtEDWgyEneOfk4rhrH-mhbgUqlWTAU~2dBsirKzGA9B-wss-OiPm4RgXif8f4qh0m8ne~zoAs-J6~lFoDes3TOsNPP7YQyg52rhFwx4tV~4cbIlZACr2~xrMwfLkm44AWoVF4C-4us1xViUv3BWBnw6w0PKSUfh0U37-ZZqLzyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[{"id":42314804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42314804/thumbnails/1.jpg","file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq.pdf","download_url":"https://www.academia.edu/attachments/42314804/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simultaneous_Imaging_of_Pseudomonas_fluo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42314804/Simultaneous_Imaging_of_Pseudomonas_fluo20160207-26129-xbm7xq-libre.pdf?1454867593=\u0026response-content-disposition=attachment%3B+filename%3DSimultaneous_Imaging_of_Pseudomonas_fluo.pdf\u0026Expires=1732794736\u0026Signature=TTxxX3G531XfPsp8aPjxj4ND-Vw2avHtQNoZN~HS22TzJ1b7U8~77QQ0C27btx6mhKqNIvjfkzvBtw5Xed7AyxBb3NwR~6M8YIPmXwXbElMf6D2gkg7rrur34W53IsTxIorS9~LiA1xJ8f2hW0NPmocbn6rbqevDJzXrPBIfvDzOtEDWgyEneOfk4rhrH-mhbgUqlWTAU~2dBsirKzGA9B-wss-OiPm4RgXif8f4qh0m8ne~zoAs-J6~lFoDes3TOsNPP7YQyg52rhFwx4tV~4cbIlZACr2~xrMwfLkm44AWoVF4C-4us1xViUv3BWBnw6w0PKSUfh0U37-ZZqLzyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7700,"name":"Fluorescence Microscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Microscopy"},{"id":18533,"name":"Confocal Microscopy","url":"https://www.academia.edu/Documents/in/Confocal_Microscopy"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":231547,"name":"Soil Microbiology","url":"https://www.academia.edu/Documents/in/Soil_Microbiology"},{"id":1627116,"name":"Microbial community","url":"https://www.academia.edu/Documents/in/Microbial_community"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6520983,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/12266406_Simultaneous_Imaging_of_Pseudomonas_fluorescens_WCS365_Populations_Expressing_Three_Different_Autofluorescent_Proteins_in_the_Rhizosphere_New_Perspectives_for_Studying_Microbial_Communities/links/0fcfd5007fe4965751000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125091"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation"><img alt="Research paper thumbnail of Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation">Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5&amp;#39; and 3&amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125091"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125091"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125091; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125091]").text(description); $(".js-view-count[data-work-id=17125091]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125091; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125091']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125091, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125091]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125091,"title":"Cloning and Characterization of Four Genes of Rhizobium leguminosarum bv. trifolii Involved in Exopolysaccharide Production and Nodulation","translated_title":"","metadata":{"abstract":"Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5\u0026amp;#39; and 3\u0026amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5\u0026amp;#39; and 3\u0026amp;#39; parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.","internal_url":"https://www.academia.edu/17125091/Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation","translated_internal_url":"","created_at":"2015-10-21T13:29:29.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cloning_and_Characterization_of_Four_Genes_of_Rhizobium_leguminosarum_bv_trifolii_Involved_in_Exopolysaccharide_Production_and_Nodulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":15019,"name":"Medicinal Plants","url":"https://www.academia.edu/Documents/in/Medicinal_Plants"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":396733,"name":"Fabaceae","url":"https://www.academia.edu/Documents/in/Fabaceae"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum"><img alt="Research paper thumbnail of A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum">A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125090]").text(description); $(".js-view-count[data-work-id=17125090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125090, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125090,"title":"A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum","translated_title":"","metadata":{"abstract":"Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).","internal_url":"https://www.academia.edu/17125090/A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum","translated_internal_url":"","created_at":"2015-10-21T13:29:29.334-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Lotus_japonicus_Nodulation_System_Based_on_Heterologous_Expression_of_the_Fucosyl_Transferase_NodZ_and_the_Acetyl_Transferase_NolL_in_Rhizobium_leguminosarum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":7043,"name":"Symbiosis","url":"https://www.academia.edu/Documents/in/Symbiosis"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":133873,"name":"Plants","url":"https://www.academia.edu/Documents/in/Plants"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":360394,"name":"Alphaproteobacteria","url":"https://www.academia.edu/Documents/in/Alphaproteobacteria"},{"id":961470,"name":"Heterologous Expression","url":"https://www.academia.edu/Documents/in/Heterologous_Expression"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria"><img alt="Research paper thumbnail of The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria">The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria</a></div><div class="wp-workCard_item"><span>Molecular Plant-Microbe Interactions</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxyspo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125089]").text(description); $(".js-view-count[data-work-id=17125089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125089, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125089,"title":"The sss Colonization Gene of the Tomato- Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas fluorescens WCS365 Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria","translated_title":"","metadata":{"abstract":"We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Molecular Plant-Microbe Interactions"},"translated_abstract":"We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.","internal_url":"https://www.academia.edu/17125089/The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria","translated_internal_url":"","created_at":"2015-10-21T13:29:29.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_sss_Colonization_Gene_of_the_Tomato_Fusarium_oxysporum_f_sp_radicis_lycopersici_Biocontrol_Strain_Pseudomonas_fluorescens_WCS365_Can_Improve_Root_Colonization_of_Other_Wild_type_Pseudomonas_spp_Bacteria","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":73618,"name":"Fusarium","url":"https://www.academia.edu/Documents/in/Fusarium"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":188240,"name":"Tomato","url":"https://www.academia.edu/Documents/in/Tomato"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":215623,"name":"Fusarium oxysporum","url":"https://www.academia.edu/Documents/in/Fusarium_oxysporum"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125088"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum"><img alt="Research paper thumbnail of Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum">Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum</a></div><div class="wp-workCard_item"><span>Molecular Microbiology</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharid...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125088"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125088"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125088; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125088]").text(description); $(".js-view-count[data-work-id=17125088]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125088; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125088']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125088, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125088]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125088,"title":"Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum","translated_title":"","metadata":{"abstract":"The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Molecular Microbiology"},"translated_abstract":"The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.","internal_url":"https://www.academia.edu/17125088/Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum","translated_internal_url":"","created_at":"2015-10-21T13:29:29.160-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structural_identification_of_metabolites_produced_by_the_NodB_and_NodC_proteins_of_Rhizobium_leguminosarum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":13744,"name":"Molecular Microbiology","url":"https://www.academia.edu/Documents/in/Molecular_Microbiology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":50157,"name":"Molecular","url":"https://www.academia.edu/Documents/in/Molecular"},{"id":377343,"name":"Glucosamine","url":"https://www.academia.edu/Documents/in/Glucosamine"},{"id":463081,"name":"Acetylation","url":"https://www.academia.edu/Documents/in/Acetylation"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125087"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis"><img alt="Research paper thumbnail of Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis">Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis</a></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125087"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125087"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125087; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125087]").text(description); $(".js-view-count[data-work-id=17125087]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125087; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125087']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125087, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125087]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125087,"title":"Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis","translated_title":"","metadata":{"abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":"In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. by viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. by, viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.","internal_url":"https://www.academia.edu/17125087/Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_internal_url":"","created_at":"2015-10-21T13:29:29.065-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rhizobium_nodulation_protein_NodA_is_a_host_specific_determinant_of_the_transfer_of_fatty_acids_in_Nod_factor_biosynthesis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":190363,"name":"Plasmids","url":"https://www.academia.edu/Documents/in/Plasmids"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":486713,"name":"Fatty Acid","url":"https://www.academia.edu/Documents/in/Fatty_Acid"},{"id":589755,"name":"Host Specificity","url":"https://www.academia.edu/Documents/in/Host_Specificity"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":858129,"name":"Rhizobiaceae","url":"https://www.academia.edu/Documents/in/Rhizobiaceae"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1974871,"name":"Oligosaccharides","url":"https://www.academia.edu/Documents/in/Oligosaccharides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17125086"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17125086/Rhizobium"><img alt="Research paper thumbnail of Rhizobium" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17125086/Rhizobium">Rhizobium</a></div><div class="wp-workCard_item"><span>MGG Molecular & General Genetics</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17125086"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17125086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17125086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17125086]").text(description); $(".js-view-count[data-work-id=17125086]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17125086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17125086']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17125086, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=17125086]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17125086,"title":"Rhizobium","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"MGG Molecular \u0026 General Genetics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/17125086/Rhizobium","translated_internal_url":"","created_at":"2015-10-21T13:29:28.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36701282,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rhizobium","translated_slug":"","page_count":null,"language":"es","content_type":"Work","owner":{"id":36701282,"first_name":"Andr茅","middle_initials":null,"last_name":"Wijfjes","page_name":"Andr茅Wijfjes","domain_name":"independent","created_at":"2015-10-21T13:28:50.063-07:00","display_name":"Andr茅 Wijfjes","url":"https://independent.academia.edu/Andr%C3%A9Wijfjes"},"attachments":[],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="17044461"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane"><img alt="Research paper thumbnail of The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane" class="work-thumbnail" src="https://attachments.academia-assets.com/42347589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane">The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vu-nl.academia.edu/WilbertBitter">Wilbert Bitter</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/Andr%C3%A9Wijfjes">Andr茅 Wijfjes</a></span></div><div class="wp-workCard_item"><span>FEMS Microbiology Ecology</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="483c5a733b145b60b5df5ba2ace54a90" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42347589,"asset_id":17044461,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="17044461"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="17044461"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17044461; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17044461]").text(description); $(".js-view-count[data-work-id=17044461]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17044461; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='17044461']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 17044461, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "483c5a733b145b60b5df5ba2ace54a90" } } $('.js-work-strip[data-work-id=17044461]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":17044461,"title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane","translated_title":"","metadata":{"grobid_abstract":"Pseudomonas fluorescens strain PCL1210, a competitive tomato root tip colonization mutant of the efficient root colonizing wild type strain WCS365, is impaired in the two-component sensor-response regulator system ColR/ColS. Here we show that a putative methyltransferase/wapQ operon is located downstream of colR/colS and that this operon is regulated by ColR/ColS. Since wapQ encodes a putative lipopolysaccharide (LPS) phosphatase, the possibility was studied that the integrity of the outer membrane of PCL1210 was altered. Indeed, it was shown that mutant PCL1210 is more resistant to various chemically unrelated antibiotics which have to pass the outer membrane for their action. In contrast, the mutant is more sensitive to the LPS-binding antibiotic polymyxin B. Mutant PCL1210 loses growth in competition with its wild type when grown in tomato root exudate. Mutants in the methyltransferase/wapQ operon are also altered in their outer membrane permeability and are defective in competitive tomato root tip colonization. A model for the altered outer membrane of PCL1210 is discussed.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"FEMS Microbiology Ecology","grobid_abstract_attachment_id":42347589},"translated_abstract":null,"internal_url":"https://www.academia.edu/17044461/The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane","translated_internal_url":"","created_at":"2015-10-20T06:59:07.661-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36597728,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":7615870,"work_id":17044461,"tagging_user_id":36597728,"tagged_user_id":null,"co_author_invite_id":1701288,"email":"l***g@rulbim.leidenuniv.nl","display_order":0,"name":"Ben Lugtenberg","title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane"},{"id":7615871,"work_id":17044461,"tagging_user_id":36597728,"tagged_user_id":36701282,"co_author_invite_id":1701289,"email":"a***s@gmail.com","display_order":4194304,"name":"Andr茅 Wijfjes","title":"The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane"}],"downloadable_attachments":[{"id":42347589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347589/thumbnails/1.jpg","file_name":"The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6.pdf","download_url":"https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_component_colR_S_system_of_Pseud.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347589/The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6-libre.pdf?1454907358=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_component_colR_S_system_of_Pseud.pdf\u0026Expires=1732794736\u0026Signature=OKYKdVMDov0PI0CqzzHz1~Q21nEf3M3cVMePmdFgmsHBo82MUFIm93nP7Vyf11jKYuUmuRi86JpLyL0f7BJin778ZWd7vb7W3BW1bBjvGjhZzJZhSPz3nM9CabTykmguJ511oIVwa6odhRnoFxjFZOoqkP2hEZAVLaObbJRW5FbaGKRGefYryCJs-r5LLNn-gXXYdrIuWV0jv1Ci49dECeDXHC8F-fCJiarGUlNZZOKoE2uDZ6t5HIWm1NXBHJJBW~66Dr~cHmTIwHXWw~qeiToSTGzQw7MwN3JuOexBd1wMQPZuBRtScvC~BbDB1YeLotnwgSJsigVUBg3UFhjpnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_component_colR_S_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":36597728,"first_name":"Wilbert","middle_initials":null,"last_name":"Bitter","page_name":"WilbertBitter","domain_name":"vu-nl","created_at":"2015-10-20T06:16:33.931-07:00","display_name":"Wilbert Bitter","url":"https://vu-nl.academia.edu/WilbertBitter"},"attachments":[{"id":42347589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42347589/thumbnails/1.jpg","file_name":"The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6.pdf","download_url":"https://www.academia.edu/attachments/42347589/download_file?st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTEzNiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_component_colR_S_system_of_Pseud.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42347589/The_twocomponent_colRS_system_of_Pseudom20160207-11048-1lrczd6-libre.pdf?1454907358=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_component_colR_S_system_of_Pseud.pdf\u0026Expires=1732794736\u0026Signature=OKYKdVMDov0PI0CqzzHz1~Q21nEf3M3cVMePmdFgmsHBo82MUFIm93nP7Vyf11jKYuUmuRi86JpLyL0f7BJin778ZWd7vb7W3BW1bBjvGjhZzJZhSPz3nM9CabTykmguJ511oIVwa6odhRnoFxjFZOoqkP2hEZAVLaObbJRW5FbaGKRGefYryCJs-r5LLNn-gXXYdrIuWV0jv1Ci49dECeDXHC8F-fCJiarGUlNZZOKoE2uDZ6t5HIWm1NXBHJJBW~66Dr~cHmTIwHXWw~qeiToSTGzQw7MwN3JuOexBd1wMQPZuBRtScvC~BbDB1YeLotnwgSJsigVUBg3UFhjpnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5411,"name":"Biomass","url":"https://www.academia.edu/Documents/in/Biomass"},{"id":23515,"name":"Biological Control","url":"https://www.academia.edu/Documents/in/Biological_Control"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49646,"name":"Protein Structure and Function","url":"https://www.academia.edu/Documents/in/Protein_Structure_and_Function"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":152644,"name":"Pseudomonas Fluorescens","url":"https://www.academia.edu/Documents/in/Pseudomonas_Fluorescens"},{"id":202399,"name":"Plant Roots","url":"https://www.academia.edu/Documents/in/Plant_Roots"},{"id":335983,"name":"Lipopolysaccharides","url":"https://www.academia.edu/Documents/in/Lipopolysaccharides"},{"id":335984,"name":"Anti-Bacterial Agents","url":"https://www.academia.edu/Documents/in/Anti-Bacterial_Agents"},{"id":421780,"name":"Putrescine","url":"https://www.academia.edu/Documents/in/Putrescine"},{"id":561014,"name":"Microbial Sensitivity Tests","url":"https://www.academia.edu/Documents/in/Microbial_Sensitivity_Tests"},{"id":726132,"name":"Ampicillin","url":"https://www.academia.edu/Documents/in/Ampicillin"},{"id":1640340,"name":"Lycopersicon esculentum","url":"https://www.academia.edu/Documents/in/Lycopersicon_esculentum"}],"urls":[{"id":6543725,"url":"https://www.researchgate.net/profile/Ben_Lugtenberg/publication/6732398_The_twocomponent_colRS_system_of_Pseudomonas_fluorescens_WCS365_plays_a_role_in_rhizosphere_competence_through_maintaining_the_structure_and_function_of_the_outer_membrane/links/0912f4ffe9cd92bd6f000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9c99fc00c46935cb43f5d88e90751494491c271c96e5df97e1933b7b07881bde", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="GqdNusnIaFd7UfdbzSzSwkg9UaORmaS17zkKbdXqJkgjY1av+IyxoZQBsLT7NuzE+NAr12bR0VwpglNnMJzs9g==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/Andr%C3%A9Wijfjes" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ts4wrji8ePR0gJmznHQtp0J8I4THcezDTKrTKWitRluPCiu7CfihApvQ3lyqbhOh8pFZ8DA5mSqKEYojjduM5Q==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>