CINXE.COM
Search
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-6e346ed4504727cd.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Lee, Percy"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture & Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Lee, Percy"</h1><input type="hidden" name="q" value="author:Lee, Percy"/><div class="c-filter__results">49<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->49<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->49<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->43<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->13<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture & Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-ucla_radonc" class="c-checkbox__input" name="departments" value="ucla_radonc"/><label for="departments-ucla_radonc" class="c-checkbox__label">UCLA Department of Radiation Oncology<!-- --> (<!-- -->39<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-uclapharm" class="c-checkbox__input" name="departments" value="uclapharm"/><label for="departments-uclapharm" class="c-checkbox__label">Department of Molecular and Medical Pharmacology<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-rgpo" class="c-checkbox__input" name="departments" value="rgpo"/><label for="departments-rgpo" class="c-checkbox__label">Research Grants Program Office<!-- --> (<!-- -->2<!-- -->)</label><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-trdrp" class="c-checkbox__input" name="departments" value="trdrp"/><label for="departments-trdrp" class="c-checkbox__label">Tobacco-Related Disease Research Program<!-- --> (<!-- -->1<!-- -->)</label></li></ul></li><li class=""><input type="checkbox" id="departments-ucsdsom" class="c-checkbox__input" name="departments" value="ucsdsom"/><label for="departments-ucsdsom" class="c-checkbox__label">School of Medicine<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->14<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc-nd"><input type="checkbox" id="rights-CC_BY-NC-ND" class="c-checkbox__input" name="rights" value="CC BY-NC-ND"/><label for="rights-CC_BY-NC-ND" class="c-checkbox__label">BY-NC-ND - Attribution; NonCommercial use; No derivatives<!-- --> (<!-- -->7<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc"><input type="checkbox" id="rights-CC_BY-NC" class="c-checkbox__input" name="rights" value="CC BY-NC"/><label for="rights-CC_BY-NC" class="c-checkbox__label">BY-NC - Attribution; NonCommercial use only<!-- --> (<!-- -->3<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->49 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div><div class="o-input__droplist1 c-sort__page-input"><label for="c-sort2">Show:</label><select name="rows" id="c-sort2" form="facetForm"><option selected="" value="10">10</option><option value="20">20</option><option value="30">30</option><option value="40">40</option><option value="50">50</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 5" class="c-pagination__item">5</a></li></ul></nav></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0q67r0f9"><div class="c-clientmarkup">Online Search Behavior for Cancer Immunotherapy Resources and Readability Analysis: An Opportunity to Aid in Medical Decision-making</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ADeng%2C%20Jie">Deng, Jie</a>; </li><li><a href="/search/?q=author%3ASavjani%2C%20Ricky%20R">Savjani, Ricky R</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2019<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Cancer patients are faced with increasing options for cancer care, especially with the introduction of cancer immunotherapy with immune checkpoint inhibitors (ICIs). Though many patients turn to online resources to supplement their decision-making, it is unknown whether online resources in cancer immunotherapy with ICIs are written at an appropriate level of readability according to national medical organizations. We performed a cross-sectional analysis of internet search behavior for cancer immunotherapy by ICIs and clinical trial availability per ClinicalTrials.gov in the United States (US) from 2004 - 2018 with subsequent quantitation of readability by four readability formulas of top 50 online resources. Internet search behavior for "cancer immunotherapy" has steadily increased since 2013 and coincides with the year of the US Food and Drug Administration (FDA) approval for individual ICIs. Furthermore, internet search behavior was significantly correlated with clinical trial availability in the US (R = 0.97, p < 0.0001). None of the top 50 resources available to patients were found to be within the recommended level of sixth-grade readability or less with only one (2%) written at the middle school level, 21 (42%) at the high school level, 23 (46%) at the university level, and five (8%) at a graduate level. Population-level internet search patterns may reflect patient behavior in seeking relevant online health information and may be influenced by new options for cancer therapy, including via clinical trials. However, low readability of available online resources may impede patient comprehension and negatively affect medical decision-making.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/0q67r0f9"><img src="/cms-assets/f13ded480dc93a31332e4e9fb52755dfd07f7f0a023c57736399e3cc6cb65779" alt="Cover page: Online Search Behavior for Cancer Immunotherapy Resources and Readability Analysis: An Opportunity to Aid in Medical Decision-making"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/4v11z6k0"><div class="c-clientmarkup">Benefit of Adjuvant Chemoradiotherapy for Gastric Adenocarcinoma: A SEER Population Analysis.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASeyedin%2C%20Steven">Seyedin, Steven</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Pin-Chieh">Wang, Pin-Chieh</a>; </li><li><a href="/search/?q=author%3AZhang%2C%20Quan">Zhang, Quan</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsf_postprints">UC San Francisco Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">BACKGROUND: Despite results of the Intergroup 0116 (INT-0116) study showing an overall survival benefit of adjuvant chemoradiotherapy in gastric adenocarcinoma, its use in the United States remains controversial. The Surveillance Epidemiology of End Results (SEER) database was used to compare cause-specific survival outcomes in resected gastric adenocarcinoma with various adjuvant therapies and patterns of care. METHODS: Individual data from 1988 to 2008 were selected for patients with resected, nonmetastatic gastric adenocarcinoma. These patients were stratified by stage (American Joint Committee on Cancer [AJCC], 6th edition), as well as treatment modalities (surgery alone, S; surgery followed by radiotherapy, SR; surgery with chemotherapy, SC; surgery followed by radiotherapy with chemotherapy, SRC; and radiotherapy followed by surgery with chemotherapy, RSC). Overall 21,472 patients (8335 stages IA and 1B; 5944 stage II, 4594 stage III, and 2599 stage IV) were included in this study. RESULTS: The median age of the cohort was 66 years, with 63.0% male and 66.4% white. The median number of lymph nodes examined was 17.6. Median survival by stage was 96 months for stage I, 30 months for stage II, 20 months for stage III, and 14 months for stage IV. Using the SRC group as the reference group, for stage I patients, S had the most favorable cause-specific survival (hazard ratio [HR], 0.67; confidence interval, [CI] 0.60-0.76). For patients with stage II, III, or IV, those treated with SRC had the best outcome compared with the other treatment modalities. After 1999, the number of patients treated with surgery alone decreased by at least 14%, whereas the number treated with SRC increased by approximately 12%. CONCLUSIONS: This large SEER database analysis showed that stage I patients benefited most from surgery alone, whereas those at more advanced stages benefited most from adjuvant radiotherapy with chemotherapy. This result is consistent with INT-0116 for gastric adenocarcinoma in support of trimodality therapy and is reflected by the increased fraction of patients receiving chemotherapy and adjuvant radiation.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/4v11z6k0"><img src="/cms-assets/f1b27b8c73359394b3bb71efe3e06e788b0352182978b8890f67a424b161e82b" alt="Cover page: Benefit of Adjuvant Chemoradiotherapy for Gastric Adenocarcinoma: A SEER Population Analysis."/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/4kz5g036"><div class="c-clientmarkup">Cochlea-sparing acoustic neuroma treatment with 4蟺 radiation therapy</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AWoods%2C%20Kaley">Woods, Kaley</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li><a href="/search/?q=author%3AKaprealian%2C%20Tania">Kaprealian, Tania</a>; </li><li><a href="/search/?q=author%3AYang%2C%20Isaac">Yang, Isaac</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASheng%2C%20Ke">Sheng, Ke</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Purpose</h3>This study investigates whether 4蟺 noncoplanar radiation therapy can spare the cochleae and consequently potentially improve hearing preservation in patients with acoustic neuroma who are treated with radiation therapy.<h3>Methods and materials</h3>Clinical radiation therapy plans for 30 patients with acoustic neuroma were included (14 stereotactic radiation surgery [SRS], 6 stereotactic radiation therapy [SRT], and 10 intensity modulated radiation therapy [IMRT]). The 4蟺 plans were created for each patient with 20 optimal beams selected using a greedy column generation method and subsequently recalculated in Eclipse for comparison. Organ-at-risk (OAR) doses, homogeneity index, conformity, and tumor control probability (TCP) were compared. Normal tissue complication probability (NTCP) was calculated for sensorineural hearing loss (SNHL) at 3 and 5 years posttreatment. The dose for each plan was then escalated to achieve 99.5% TCP.<h3>Results</h3>4蟺 significantly reduced the mean dose to both cochleae by 2.0鈥塆y (32%) for SRS, 3.2鈥塆y (29%) for SRT, and 10.0鈥塆y (32%) for IMRT. The maximum dose to both cochleae was also reduced with 4蟺 by 1.6鈥塆y (20%), 2.2鈥塆y (15%), and 7.1鈥塆y (18%) for SRS, SRT, and IMRT plans, respectively. The reductions in mean/maximum brainstem dose with 4蟺 were also statistically significant. Mean doses to other OARs were reduced by 19% to 56% on average. 4蟺 plans had a similar CN and TCP, with a significantly higher average homogeneity index (0.93 vs 0.92) and significantly lower average NTCP for SNHL at both 3 years (30.8% vs 40.8%) and 5 years (43.3% vs 61.7%). An average dose escalation of approximately 116% of the prescription dose achieved 99.5% TCP, which resulted in 32.6% and 43.4% NTCP for SNHL at 3 years and 46.4% and 64.7% at 5 years for 4蟺 and clinical plans, respectively.<h3>Conclusions</h3>Compared with clinical planning methods, optimized 4蟺 radiation therapy enables statistically significant sparing of the cochleae in acoustic neuroma treatment as well as lowering of other OAR doses, potentially reducing the risk of hearing loss.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/4kz5g036"><img src="/cms-assets/70da99218b89202fb4a25ecf12de9f98dea6b62bd13e6f3b355d57b6cc79a757" alt="Cover page: Cochlea-sparing acoustic neuroma treatment with 4蟺 radiation therapy"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/1c77h467"><div class="c-clientmarkup">Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li><a href="/search/?q=author%3AKupelian%2C%20Patrick">Kupelian, Patrick</a>; </li><li><a href="/search/?q=author%3ACzernin%2C%20Johannes">Czernin, Johannes</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AGhosh%2C%20Partha">Ghosh, Partha</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2012<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory-gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT-based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/1c77h467"><img src="/cms-assets/b881ecb0df9c49f1b2dda23899aec2fd257fe044ffb22158093e875f08a4ac92" alt="Cover page: Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer"/></a><a href="https://creativecommons.org/licenses/by-nc/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-nc-small.svg" alt="Creative Commons 'BY-NC' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/660564tv"><div class="c-clientmarkup">A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ADou%2C%20Tai%20H">Dou, Tai H</a>; </li><li><a href="/search/?q=author%3AThomas%2C%20David%20H">Thomas, David H</a>; </li><li><a href="/search/?q=author%3AO'Connell%2C%20Dylan%20P">O'Connell, Dylan P</a>; </li><li><a href="/search/?q=author%3ALamb%2C%20James%20M">Lamb, James M</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALow%2C%20Daniel%20A">Low, Daniel A</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2015<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Purpose</h3>To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths.<h3>Methods</h3>Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the original 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs.<h3>Results</h3>Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung-chest wall boundary. The mean error across the patient cohort was 1.15 卤 0.37 mm, and the mean 95th percentile error was 2.47 卤 0.78 mm.<h3>Conclusion</h3>The proposed ground truth-based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/660564tv"><img src="/cms-assets/ee9a10db99b4ae618615ac0deac80ff3a2b6b11b530ed0b6b5488ec86418d9ed" alt="Cover page: A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/91m7p9gz"><div class="c-clientmarkup">Magnetic Resonance-guided Inter-fraction Monitoring Opens Doors to Delivering Safer Reirradiation: An Illustrative Case Report and Discussion</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ALevin-Epstein%2C%20Rebecca">Levin-Epstein, Rebecca</a>; </li><li><a href="/search/?q=author%3ACao%2C%20Minsong">Cao, Minsong</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li><a href="/search/?q=author%3ASteinberg%2C%20Michael%20L">Steinberg, Michael L</a>; </li><li><a href="/search/?q=author%3ALamb%2C%20James">Lamb, James</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ARaldow%2C%20Ann%20C">Raldow, Ann C</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Locoregional recurrence in the pelvis after definitive treatment for rectal cancer can lead to significant morbidity. Furthermore, the toxicity associated with reirradiation may also negatively impact the quality of life and even survival. Here we present the case of a 39-year-old male with locoregionally recurrent rectal cancer in a left pelvic sidewall lymph node, treated with stereotactic magnetic resonance (MR)-guided ablative radiotherapy after previously receiving long-course chemoradiation that had already exceeded ideal bowel dose constraints. We discuss the distinct advantages of MR-guidance in the setting of pelvic reirradiation, particularly with regard to inter- and intra-fraction visualization of the target and neighboring bowel anatomy. In this context, MR-guidance may allow radiation oncologists to increase target precision and accuracy, while simultaneously decreasing toxicity to neighboring tissues.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/91m7p9gz"><img src="/cms-assets/99723711eb514bc55ee922431de1197317cc61ef5bdca88fdb731b2ac10cdb3c" alt="Cover page: Magnetic Resonance-guided Inter-fraction Monitoring Opens Doors to Delivering Safer Reirradiation: An Illustrative Case Report and Discussion"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/35s9r97g"><div class="c-clientmarkup">Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ALuterstein%2C%20Elaine">Luterstein, Elaine</a>; </li><li><a href="/search/?q=author%3ACao%2C%20Minsong">Cao, Minsong</a>; </li><li><a href="/search/?q=author%3ALamb%2C%20James">Lamb, James</a>; </li><li><a href="/search/?q=author%3ARaldow%2C%20Ann%20C">Raldow, Ann C</a>; </li><li><a href="/search/?q=author%3ALow%2C%20Daniel%20A">Low, Daniel A</a>; </li><li><a href="/search/?q=author%3ASteinberg%2C%20Michael%20L">Steinberg, Michael L</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/35s9r97g"><img src="/cms-assets/0ca51bfc0460a65387302f5c4c2a7e9f034974a7c16ec4591e0788f892d7f3b8" alt="Cover page: Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9x2100b0"><div class="c-clientmarkup">Feasibility of deriving a novel imaging biomarker based on patient-specific lung elasticity for characterizing the degree of COPD in lung SBRT patients</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AHasse%2C%20Katelyn">Hasse, Katelyn</a>; </li><li><a href="/search/?q=author%3ANeylon%2C%20John">Neylon, John</a>; </li><li><a href="/search/?q=author%3AMin%2C%20Yugang">Min, Yugang</a>; </li><li><a href="/search/?q=author%3AO'Connell%2C%20Dylan">O'Connell, Dylan</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li><a href="/search/?q=author%3ALow%2C%20Daniel%20A">Low, Daniel A</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASanthanam%2C%20Anand%20P">Santhanam, Anand P</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2019<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Objective:</h3>Lung tissue elasticity is an effective spatial representation for Chronic Obstructive Pulmonary Disease phenotypes and pathophysiology. We investigated a novel imaging biomarker based on the voxel-by-voxel distribution of lung tissue elasticity. Our approach combines imaging and biomechanical modeling to characterize tissue elasticity.<h3>Methods:</h3>We acquired 4DCT images for 13 lung cancer patients with known COPD diagnoses based on GOLD 2017 criteria. Deformation vector fields (DVFs) from the deformable registration of end-inhalation and end-exhalation breathing phases were taken to be the ground-truth. A linear elastic biomechanical model was assembled from end-exhalation datasets with a density-guided initial elasticity distribution. The elasticity estimation was formulated as an iterative process, where the elasticity was optimized based on its ability to reconstruct the ground-truth. An imaging biomarker (denoted YM<sub>1-3</sub>) derived from the optimized elasticity distribution, was compared with the current gold standard, RA<sub>950</sub> using confusion matrix and area under the receiver operating characteristic (AUROC) curve analysis.<h3>Results:</h3>The estimated elasticity had 90 % accuracy when representing the ground-truth DVFs. The YM<sub>1-3</sub> biomarker had higher diagnostic accuracy (86% vs 71 %), higher sensitivity (0.875 vs 0.5), and a higher AUROC curve (0.917 vs 0.875) as compared to RA<sub>950</sub>. Along with acting as an effective spatial indicator of lung pathophysiology, the YM<sub>1-3</sub> biomarker also proved to be a better indicator for diagnostic purposes than RA<sub>950</sub>.<h3>Conclusions:</h3>Overall, the results suggest that, as a biomarker, lung tissue elasticity will lead to new end points for clinical trials and new targeted treatment for COPD subgroups.<h3>Advances in knowledge:</h3>The derivation of elasticity information directly from 4DCT imaging data is a novel method for performing lung elastography. The work demonstrates the need for a mechanics-based biomarker for representing lung pathophysiology.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9x2100b0"><img src="/cms-assets/3cc716f64e655099066c2a6daddb8fa6dcd84a0ba0d6e97a256c0446595b6b65" alt="Cover page: Feasibility of deriving a novel imaging biomarker based on patient-specific lung elasticity for characterizing the degree of COPD in lung SBRT patients"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/2gt0r3qc"><div class="c-clientmarkup">Irradiation of the Potential Cancer Stem Cell Niches in the Adult Brain Improves Progression-free Survival of Patients with Malignant Glioma</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AEvers%2C%20Patrick">Evers, Patrick</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy%20P">Lee, Percy P</a>; </li><li><a href="/search/?q=author%3ADeMarco%2C%20John">DeMarco, John</a>; </li><li><a href="/search/?q=author%3AAgazaryan%2C%20Nzhde">Agazaryan, Nzhde</a>; </li><li><a href="/search/?q=author%3ASayre%2C%20James%20W">Sayre, James W</a>; </li><li><a href="/search/?q=author%3ASelch%2C%20Michael">Selch, Michael</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APajonk%2C%20Frank">Pajonk, Frank</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2010<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Abstract Background Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. Methods 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Results Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Conclusions Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/2gt0r3qc"><img src="/cms-assets/8ef1f244a9467523f9c5291bb19de702f5b3b06179fe41dad2b181665a5778ee" alt="Cover page: Irradiation of the Potential Cancer Stem Cell Niches in the Adult Brain Improves Progression-free Survival of Patients with Malignant Glioma"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/2gc742n1"><div class="c-clientmarkup">Accelerating Dynamic Magnetic Resonance Imaging (MRI) for Lung Tumor Tracking Based on Low-Rank Decomposition in the Spatial鈥揟emporal Domain: A Feasibility Study Based on Simulation and Preliminary Prospective Undersampled MRI</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASarma%2C%20Manoj">Sarma, Manoj</a>; </li><li><a href="/search/?q=author%3AHu%2C%20Peng">Hu, Peng</a>; </li><li><a href="/search/?q=author%3ARapacchi%2C%20Stanislas">Rapacchi, Stanislas</a>; </li><li><a href="/search/?q=author%3AEnnis%2C%20Daniel">Ennis, Daniel</a>; </li><li><a href="/search/?q=author%3AThomas%2C%20Albert">Thomas, Albert</a>; </li><li><a href="/search/?q=author%3ALee%2C%20Percy">Lee, Percy</a>; </li><li><a href="/search/?q=author%3AKupelian%2C%20Patrick">Kupelian, Patrick</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASheng%2C%20Ke">Sheng, Ke</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Purpose</h3>To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking.<h3>Methods and materials</h3>Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 脳 -20 脳 before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis of autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data.<h3>Results</h3>In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 脳 undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 脳 down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details.<h3>Conclusions</h3>Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/2gc742n1"><img src="/cms-assets/15a18d63d83770859d004d74286dc6a3540b7af78b94251c76aa6c040d6cd99e" alt="Cover page: Accelerating Dynamic Magnetic Resonance Imaging (MRI) for Lung Tumor Tracking Based on Low-Rank Decomposition in the Spatial鈥揟emporal Domain: A&nbsp;Feasibility Study Based on Simulation and Preliminary Prospective Undersampled MRI"/></a></div></section><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 5" class="c-pagination__item">5</a></li></ul></nav></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright 漏 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-3c8ebc2ec05dcc3202fd.js"></script> </body> </html>