CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 98 results for author: <span class="mathjax">McMorrow, D F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="McMorrow, D F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=McMorrow%2C+D+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="McMorrow, D F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03829">arXiv:2404.03829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03829">pdf</a>, <a href="https://arxiv.org/format/2404.03829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and possible topological magnons in non-stoichiometric pyrochlore iridate Tb$_2$Ir$_2$O$_7$ studied by RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toschi%2C+A">A. Toschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+R">J. R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Detlefs%2C+B">B. Detlefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C+J">C. J. Sahle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03829v2-abstract-short" style="display: inline;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03829v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03829v2-abstract-full" style="display: none;"> We report a resonant inelastic X-ray scattering study on a single crystal of a non-stoichiometric pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ ($x \simeq 0.25$) that magnetically orders at $T_{\rm{N}}\simeq 50$ K. We find that the strength of the spin-orbit coupling and the trigonal distortion of the IrO$_6$ octahedra are comparable with the ones obtained in other pyrochlore iridates. We observe a propagating gapped magnon mode at low energy, and model it using a Hamiltonian consisting of a Heisenberg exchange [$J = 16.2(9)$ meV] and Dzyaloshinskii-Moriya interactions [$D = 5.2(3)$ meV], which shows the robustness of interactions despite Tb-stuffing at the Ir-site. Strikingly, the ratio $D/J = 0.32(3)$ supports possible non-trivial topological magnon band crossing. This material may thus host coexisting fermionic and bosonic topology, with potential for manipulating electronic and magnonic topological bands thanks to the $d-f$ interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03829v2-abstract-full').style.display = 'none'; document.getElementById('2404.03829v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">manuscript: 7 pages, 4 figures; Supplemental Material: 6 pages, 7 figures, 1 table. Accepted at PRB Letters (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12555">arXiv:2210.12555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12555">pdf</a>, <a href="https://arxiv.org/format/2210.12555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41714-8">10.1038/s41467-023-41714-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain control of a bandwidth-driven spin reorientation in Ca$_{3}$Ru$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+A+H">A. H. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwasigroch%2C+M+P">M. P. Kwasigroch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabelo%2C+O">O. Fabelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+F">F. Kr眉ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+A+G">A. G. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12555v2-abstract-short" style="display: inline;"> The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca$_{3}$Ru$_{2}$O$_{7}$, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a $90^{\circ}$ in-plane reorientat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12555v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12555v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12555v2-abstract-full" style="display: none;"> The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca$_{3}$Ru$_{2}$O$_{7}$, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a $90^{\circ}$ in-plane reorientation. Here, we show how the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial stress to single crystals of Ca$_{3}$Ru$_{2}$O$_{7}$, using neutron and resonant x-ray scattering to simultaneously probe the structural and magnetic responses. These measurements demonstrate that the transition can be driven by externally induced strain, stimulating the development of a theoretical model in which an internal strain is generated self-consistently to lower the electronic energy. We understand the strain to act by modifying tilts and rotations of the RuO$_{6}$ octahedra, which directly influences the nearest-neighbour hopping. Our results offer a blueprint for uncovering the driving force behind coupled phase transitions, as well as a route to controlling them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12555v2-abstract-full').style.display = 'none'; document.getElementById('2210.12555v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures (+ 12 pages, 6 figures of supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 6197 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09368">arXiv:2208.09368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09368">pdf</a>, <a href="https://arxiv.org/format/2208.09368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The magnetic structure and field dependence of the cycloid phase mediating the spin reorientation transition in Ca$_3$Ru$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stenning%2C+G+B+G">G. B. G. Stenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spratt%2C+J">J. Spratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09368v1-abstract-short" style="display: inline;"> We report a comprehensive experimental investigation of the magnetic structure of the cycloidal phase in Ca$_3$Ru$_2$O$_7$, which mediates the spin reorientation transition, and establishes its magnetic phase diagram. In zero applied field, single-crystal neutron diffraction data confirms the scenario deduced from an earlier resonant x-ray scattering study: between $46.7$~K $&lt; T &lt; 49.0$~K the magn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09368v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09368v1-abstract-full" style="display: none;"> We report a comprehensive experimental investigation of the magnetic structure of the cycloidal phase in Ca$_3$Ru$_2$O$_7$, which mediates the spin reorientation transition, and establishes its magnetic phase diagram. In zero applied field, single-crystal neutron diffraction data confirms the scenario deduced from an earlier resonant x-ray scattering study: between $46.7$~K $&lt; T &lt; 49.0$~K the magnetic moments form a cycloid in the $a-b$ plane with a propagation wavevector of $(未,0,1)$ with $未\simeq 0.025$ and an ordered moment of about 1 $渭_{\rm{B}}$, with the eccentricity of the cycloid evolving with temperature. In an applied magnetic field applied parallel to the $b$-axis, the intensity of the $(未,0,1)$ satellite peaks decreases continuously up to about $渭_0 H \simeq 5$ T, above which field the system becomes field polarised. Both the eccentricity of the cycloid and the wavevector increase with field, the latter suggesting an enhancement of the anti$-$symmetric Dzyaloshinskii$-$Moriya interaction via magnetostriction effects. Transitions between the various low-temperature magnetic phases have been carefully mapped out using magnetometry and resistivity. The resulting phase diagram reveals that the cycloid phase exists in a temperature window that expands rapidly with increasing field, before transitioning to a polarised paramagnetic state at 5 T. High-field magnetoresistance measurements show that below $T\simeq 70$ K the resistivity increases continuously with decreasing temperature, indicating the inherent insulating nature at low temperatures of our high-quality, untwinned, single-crystals. We discuss our results with reference to previous reports of the magnetic phase diagram of Ca$_3$Ru$_2$O$_7$ that utilised samples which were more metallic and/or poly-domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09368v1-abstract-full').style.display = 'none'; document.getElementById('2208.09368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09572">arXiv:2110.09572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09572">pdf</a>, <a href="https://arxiv.org/format/2110.09572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.041052">10.1103/PhysRevX.11.041052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geondzhian%2C+A">A. Geondzhian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pakpour-Tabrizi%2C+A+C">A. C. Pakpour-Tabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Howard%2C+C+A">C. A. Howard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolaou%2C+A">A. Nicolaou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jackman%2C+R+B">R. B. Jackman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">K. Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09572v2-abstract-short" style="display: inline;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09572v2-abstract-full" style="display: none;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We performed carbon $K$-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the $蟺^*$ and $蟽^*$ electronic states. Our high-resolution data reveals detailed structure in the multi-phonon RIXS features that directly encodes the momentum dependence of the e-ph interaction strength. We develop a Green&#39;s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e-ph interaction through the Brillouin zone, being concentrated at the $螕$ and $K$ points for the $蟺^*$ states, while being significant at all momenta for the $蟽^*$ states. Our results advance the interpretation of phonon excitations in RIXS, and extend its applicability as a probe of e-ph interactions to a new range of out-of-equilibrium situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'none'; document.getElementById('2110.09572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 041052 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07105">arXiv:2009.07105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07105">pdf</a>, <a href="https://arxiv.org/format/2009.07105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.094202">10.1103/PhysRevMaterials.4.094202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated electron metal properties of the honeycomb ruthenate Na$_2$RuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Etter%2C+M">M. Etter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cappelli%2C+E">E. Cappelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">H. Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D">D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07105v1-abstract-short" style="display: inline;"> We report the synthesis and characterisation of polycrystalline Na$_2$RuO$_3$, a layered material in which the Ru$^{4+}$ ($4d^4$ configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na$_2$RuO$_3$ ($C2/c$ phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07105v1-abstract-full').style.display = 'inline'; document.getElementById('2009.07105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07105v1-abstract-full" style="display: none;"> We report the synthesis and characterisation of polycrystalline Na$_2$RuO$_3$, a layered material in which the Ru$^{4+}$ ($4d^4$ configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na$_2$RuO$_3$ ($C2/c$ phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism ($蠂_0 \sim 1.42(2)\times10^{-3}$ emu/mol Oe) with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility ($蠂_0$) together with the Sommerfeld coeficient of $纬=11.7(2)$ mJ/Ru mol K$^2$ estimated from heat capacity measurements, gives an enhanced Wilson ratio of $R_W\approx8.9(1)$, suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behaviour, photoemission spectrocopy indicate a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near surface and interface effects, all other probes indicate that Na$_2$RuO$_3$ is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na$_2$RuO$_3$ is an antiferromagnetic insulator at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07105v1-abstract-full').style.display = 'none'; document.getElementById('2009.07105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 094202 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12882">arXiv:2006.12882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12882">pdf</a>, <a href="https://arxiv.org/format/2006.12882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.180410">10.1103/PhysRevB.102.180410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous cycloidal order mediating a spin-reorientation transition in a polar metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12882v2-abstract-short" style="display: inline;"> We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation in Ca$_3$Ru$_2$O$_7$ is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12882v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12882v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12882v2-abstract-full" style="display: none;"> We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation in Ca$_3$Ru$_2$O$_7$ is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be highly sensitive to magnetic fields, which appear to continuously generate higher harmonic modulations. Our results provide a unified picture of the rich magnetic phases of this correlated, multi-band polar metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12882v2-abstract-full').style.display = 'none'; document.getElementById('2006.12882v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures (+ 11 pages, 3 figures of supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 180410(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07301">arXiv:2002.07301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.07301">pdf</a>, <a href="https://arxiv.org/format/2002.07301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2103696118">10.1073/pnas.2103696118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-Induced Transient Magnons in Sr3Ir2O7 Throughout the Brillouin Zone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=James%2C+A+J+A">A. J. A. James</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+N+J">N. J. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J+Q">J. Q. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+Y">Y. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+S">A. S. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assefa%2C+T+A">T. A. Assefa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alonso-Mori%2C+R">R. Alonso-Mori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yavas%2C+H">H. Yavas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katayama%2C+T">T. Katayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yabashi%2C+M">M. Yabashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Owada%2C+Y+K+S">Y. Kubota S. Owada</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07301v3-abstract-short" style="display: inline;"> Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic x-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped anti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07301v3-abstract-full').style.display = 'inline'; document.getElementById('2002.07301v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07301v3-abstract-full" style="display: none;"> Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic x-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets, and that they persist for several picoseconds which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07301v3-abstract-full').style.display = 'none'; document.getElementById('2002.07301v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, not including supplemental material; accepted in PNAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 118 e2103696118 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01364">arXiv:1912.01364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01364">pdf</a>, <a href="https://arxiv.org/format/1912.01364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab757a">10.1088/1361-648X/ab757a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of the $(蟺,0)$ anomaly in the excitation spectrum of the 2D quantum Heisenberg antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+W">W. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandvik%2C+A+W">A. W. Sandvik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tregenna-Piggott%2C+P">P. Tregenna-Piggott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frost%2C+C+D">C. D. Frost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01364v1-abstract-short" style="display: inline;"> It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the $(蟺,0)$ point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01364v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01364v1-abstract-full" style="display: none;"> It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the $(蟺,0)$ point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)$_2\cdot 4$D$_2$O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at $(蟺,0)$ evolves up to finite temperatures $T/J\sim2/3$. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the $(蟺,0)$ anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. At lower energies, in the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01364v1-abstract-full').style.display = 'none'; document.getElementById('1912.01364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Dedicated to the life and work of Professor Roger Cowley. 22 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07545">arXiv:1911.07545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07545">pdf</a>, <a href="https://arxiv.org/format/1911.07545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.224303">10.1103/PhysRevB.100.224303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution resonant inelastic x-ray scattering study of the electron-phonon coupling in honeycomb $伪$-Li$_2$IrO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">A. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pietsch%2C+I+-">I. -M. Pietsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesche%2C+A">A. Jesche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">R. Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07545v2-abstract-short" style="display: inline;"> The excitations in honeycomb $伪$-Li$_2$IrO$_3$ have been investigated with high-resolution resonant inelastic x-ray scattering (RIXS) at the O K edge. The low-energy response is dominated by a fully resolved ladder of excitations, which we interpret as being due to multi-phonon processes in the presence of strong electron-phonon coupling (EPC). At higher energies, the orbital excitations are shown&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07545v2-abstract-full').style.display = 'inline'; document.getElementById('1911.07545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07545v2-abstract-full" style="display: none;"> The excitations in honeycomb $伪$-Li$_2$IrO$_3$ have been investigated with high-resolution resonant inelastic x-ray scattering (RIXS) at the O K edge. The low-energy response is dominated by a fully resolved ladder of excitations, which we interpret as being due to multi-phonon processes in the presence of strong electron-phonon coupling (EPC). At higher energies, the orbital excitations are shown to be dressed by phonons. The high quality of the data permits a quantitative test of the analytical model for the RIXS cross-section, which has been proposed to describe EPC in transition metal oxides (TMOs). We find that the magnitude of the EPC is comparable to that found for a range of 3d TMOs. This indicates that EPC may be of equal importance in determining the phenomenology displayed by corresponding 5d based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07545v2-abstract-full').style.display = 'none'; document.getElementById('1911.07545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 224303 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05551">arXiv:1910.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05551">pdf</a>, <a href="https://arxiv.org/format/1910.05551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab2217">10.1088/1361-648X/ab2217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective probing of magnetic order on Tb and Ir sites in stuffed Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$ using resonant X-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nisbet%2C+G">G. Nisbet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05551v1-abstract-short" style="display: inline;"> We study the magnetic structure of the &#34;stuffed&#34; (Tb-rich) pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir $L_3$ and Tb $M_5$ edges, which provide selective sensitivity to Ir $5d$ and Tb $4f$ magnetic moments, respectively. At the Ir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05551v1-abstract-full').style.display = 'inline'; document.getElementById('1910.05551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05551v1-abstract-full" style="display: none;"> We study the magnetic structure of the &#34;stuffed&#34; (Tb-rich) pyrochlore iridate Tb$_{2+x}$Ir$_{2-x}$O$_{7-y}$, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir $L_3$ and Tb $M_5$ edges, which provide selective sensitivity to Ir $5d$ and Tb $4f$ magnetic moments, respectively. At the Ir $L_3$ edge, we found the onset of long-range ${\bf k}={\bf 0}$ magnetic order below $T_{N}^\text{Ir}\sim$ 71 K, consistent with the expected signal of all-in all-out (AIAO) magnetic order. Using a single-ion model to calculate REXS cross-sections, we estimate an ordered magnetic moment of $渭_{5d}^{\text{Ir}} \approx 0.34(3)\,渭_B$ at 5 K. At the Tb $M_5$ edge, long-range ${\bf k}={\bf 0}$ magnetic order appeared below $\sim40$ K, also consistent with an AIAO magnetic structure on the Tb site. Additional insight into the magnetism of the Tb sublattice is gleaned from measurements at the $M_5$ edge in applied magnetic fields up to 6 T, which is found to completely suppress the Tb AIAO magnetic order. In zero applied field, the observed gradual onset of the Tb sublattice magnetisation with temperature suggests that it is induced by the magnetic order on the Ir site. The persistence of AIAO magnetic order, despite the greatly reduced ordering temperature and moment size compared to stoichiometric Tb$_{2}$Ir$_{2}$O$_{7}$, for which $T_{N}^{\text{Ir}} =130$ K and $渭_{5d}^{\text{Ir}}=0.56\,渭_B$, indicates that stuffing could be a viable means of tuning the strength of electronic correlations, thereby potentially offering a new strategy to achieve topologically non-trivial band crossings in pyrochlore iridates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05551v1-abstract-full').style.display = 'none'; document.getElementById('1910.05551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 31 (2019) 344001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07819">arXiv:1909.07819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07819">pdf</a>, <a href="https://arxiv.org/format/1909.07819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.104404">10.1103/PhysRevB.101.104404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong quantum fluctuations due to competition between magnetic phases in a pyrochlore iridate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">Henrik Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">Cameron D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D">Dmitry Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+R">Ross Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07819v3-abstract-short" style="display: inline;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'inline'; document.getElementById('1909.07819v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07819v3-abstract-full" style="display: none;"> We report neutron diffraction measurements of the magnetic structures in two pyrochlore iridates, Yb2Ir2O7 and Lu2Ir2O7. Both samples exhibit the all-in-all-out magnetic structure on the Ir4+ sites below TN~ 150,K, with a low temperature moment of around 0.45 muB/Ir. Below 2\,K, the Yb moments in Yb2Ir2O7 begin to order ferromagnetically. However, even at 40 mK the ordered moment is only 0.57(3)muB/Yb, well below the saturated moment of the ground state doublet of Yb3+ (1.9 muB/Yb), deduced from magnetization measurements and from a refined model of the crystal field environment, and also significantly smaller than the ordered moment of Yb in Yb2Ti2O7 (0.9 muB/Yb). A mean-field analysis shows that the reduced moment on Yb is a consequence of enhanced phase competition caused by coupling to the all-in-all-out magnetic order on the Ir sublattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07819v3-abstract-full').style.display = 'none'; document.getElementById('1909.07819v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, resubmitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 104404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09519">arXiv:1907.09519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09519">pdf</a>, <a href="https://arxiv.org/ps/1907.09519">ps</a>, <a href="https://arxiv.org/format/1907.09519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577519008877">10.1107/S1600577519008877 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant inelastic x-ray scattering of magnetic excitations under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henriquet%2C+C">Christian Henriquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobs%2C+J">Jeroen Jacobs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">Christian Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">Stefano Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Zein%2C+A">Ali Al-Zein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fumagalli%2C+R">Roberto Fumagalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">James G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">Emily C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">Robin S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kantor%2C+I">Innokenty Kantor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">Gaston Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crichton%2C+W">Wilson Crichton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monaco%2C+G">Giulio Monaco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krisch%2C+M">Michael Krisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09519v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. Latest developments of this technique mostly aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09519v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09519v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. Latest developments of this technique mostly aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations. The feasibility of these experiments is proved by probing the magnetic excitations of the bilayer iridate Sr$_3$Ir$_2$O$_7$ at pressures up to 12 GPa. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09519v1-abstract-full').style.display = 'none'; document.getElementById('1907.09519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08211">arXiv:1905.08211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08211">pdf</a>, <a href="https://arxiv.org/format/1905.08211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.064104">10.1103/PhysRevB.100.064104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced structural dimerization in the hyperhoneycomb iridate $尾$-Li$_2$IrO$_3$ at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glazyrin%2C+K">K. Glazyrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Etter%2C+M">M. Etter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irifune%2C+T">T. Irifune</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascarelli%2C+S">S. Pascarelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haskel%2C+D">D. Haskel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08211v2-abstract-short" style="display: inline;"> A pressure-induced collapse of magnetic ordering in $尾$-Li$_2$IrO$_3$ at $P_m\sim1.5- 2$ GPa has previously been interpreted as evidence for possible emergence of spin liquid states in this hyperhoneycomb iridate, raising prospects for experimental realizations of the Kitaev model. Based on structural data obtained at \emph{room temperature}, this magnetic transition is believed to originate in sm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08211v2-abstract-full').style.display = 'inline'; document.getElementById('1905.08211v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08211v2-abstract-full" style="display: none;"> A pressure-induced collapse of magnetic ordering in $尾$-Li$_2$IrO$_3$ at $P_m\sim1.5- 2$ GPa has previously been interpreted as evidence for possible emergence of spin liquid states in this hyperhoneycomb iridate, raising prospects for experimental realizations of the Kitaev model. Based on structural data obtained at \emph{room temperature}, this magnetic transition is believed to originate in small lattice perturbations that preserve crystal symmetry, and related changes in bond-directional anisotropic exchange interactions. Here we report on the evolution of the crystal structure of $尾$-Li$_2$IrO$_3$ under pressure at low temperatures ($T\leq50$ K) and show that the suppression of magnetism coincides with a change in lattice symmetry involving Ir-Ir dimerization. The critical pressure for dimerization shifts from 4.4(2) GPa at room temperature to $\sim1.5-2$ GPa below 50 K. While a direct $Fddd \rightarrow C2/c$ transition is observed at room temperature, the low temperature transitions involve new as well as coexisting dimerized phases. Further investigation of the Ir ($L_3$/$L_2$) isotropic branching ratio in x-ray absorption spectra indicates that the previously reported departure of the electronic ground state from a $J_{\rm{eff}}=1/2$ state is closely related to the onset of dimerized phases. In essence, our results suggest that the predominant mechanism driving the collapse of magnetism in $尾$-Li$_2$IrO$_3$ is the pressure-induced formation of Ir$_2$ dimers in the hyperhoneycomb network. The results further confirm the instability of the $J_{\rm{eff}}=1/2$ moments and related non-collinear spiral magnetic ordering against formation of dimers in the low-temperature phase of compressed $尾$-Li$_2$IrO$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08211v2-abstract-full').style.display = 'none'; document.getElementById('1905.08211v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 064104 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10391">arXiv:1904.10391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10391">pdf</a>, <a href="https://arxiv.org/format/1904.10391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.085131">10.1103/PhysRevB.100.085131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-resolved lattice dynamics of parent and electron-doped Sr$_{2}$IrO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikawa%2C+D">D. Ishikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prishchenko%2C+D+A">D. A. Prishchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazurenko%2C+V+V">V. V. Mazurenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazurenko%2C+V+G">V. G. Mazurenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Torre%2C+A">A. de la Torre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baron%2C+A+Q+R">A. Q. R. Baron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10391v2-abstract-short" style="display: inline;"> The mixing of orbital and spin character in the wave functions of the $5d$ iridates has led to predictions of strong couplings among their lattice, electronic and magnetic degrees of freedom. As well as realizing a novel spin-orbit assisted Mott-insulating ground state, the perovskite iridate Sr$_{2}$IrO$_{4}$ has strong similarities with the cuprate La$_{2}$CuO$_{4}$, which on doping hosts a char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10391v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10391v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10391v2-abstract-full" style="display: none;"> The mixing of orbital and spin character in the wave functions of the $5d$ iridates has led to predictions of strong couplings among their lattice, electronic and magnetic degrees of freedom. As well as realizing a novel spin-orbit assisted Mott-insulating ground state, the perovskite iridate Sr$_{2}$IrO$_{4}$ has strong similarities with the cuprate La$_{2}$CuO$_{4}$, which on doping hosts a charge-density wave that appears intimately connected to high-temperature superconductivity. These phenomena can be sensitively probed through momentum-resolved measurements of the lattice dynamics, made possible by meV-resolution inelastic x-ray scattering. Here we report the first such measurements for both parent and electron-doped Sr$_{2}$IrO$_{4}$. We find that the low-energy phonon dispersions and intensities in both compounds are well described by the same nonmagnetic density functional theory calculation. In the parent compound, no changes of the phonons on magnetic ordering are discernible within the experimental resolution, and in the doped compound no anomalies are apparent due to charge-density waves. These measurements extend our knowledge of the lattice properties of (Sr$_{1-x}$La$_{x}$)$_{2}$IrO$_{4}$ and constrain the couplings of the phonons to magnetic and charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10391v2-abstract-full').style.display = 'none'; document.getElementById('1904.10391v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures (+ 12 pages, 6 figures of supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 085131 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08689">arXiv:1812.08689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08689">pdf</a>, <a href="https://arxiv.org/ps/1812.08689">ps</a>, <a href="https://arxiv.org/format/1812.08689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.014441">10.1103/PhysRevB.101.014441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin and orbital dynamics through the metal-to-insulator transition in Cd$_2$Os$_2$O$_7$ probed with high-resolution RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanov%2C+N+A">N. A. Bogdanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davies%2C+N+R">N. R. Davies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaura%2C+J">J. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hiroi%2C+Z">Z. Hiroi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">D. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">J. van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08689v2-abstract-short" style="display: inline;"> High-resolution resonant inelastic x-ray scattering (RIXS) measurements ($螖$E = 46 meV) have been performed on Cd$_2$Os$_2$O$_7$ through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MIT, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08689v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08689v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08689v2-abstract-full" style="display: none;"> High-resolution resonant inelastic x-ray scattering (RIXS) measurements ($螖$E = 46 meV) have been performed on Cd$_2$Os$_2$O$_7$ through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MIT, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this feature is likely a result of coupling between the electronic and magnetic degrees of freedom. We also observe a broad continuum of interband excitations centered at 0.3 eV energy loss. This is indicative of significant hybridization between Os 5$d$ and O 2$p$ states, and concurrent itinerant nature of the system. In turn, this suggests a possible break down of the free-ion model for Cd$_2$Os$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08689v2-abstract-full').style.display = 'none'; document.getElementById('1812.08689v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review B (10 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 014441 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08682">arXiv:1812.08682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08682">pdf</a>, <a href="https://arxiv.org/ps/1812.08682">ps</a>, <a href="https://arxiv.org/format/1812.08682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab0471">10.1088/1361-648X/ab0471 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical fluctuations in the spin-orbit Mott insulator Sr$_3$Ir$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R+S">R. S. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08682v2-abstract-short" style="display: inline;"> X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr$_3$Ir$_2$O$_7$. We find that the magnetic interactions close to the N茅el temperature $T_N$ = 283.4(2) K are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like Sr$_2$IrO$_4$. Violation of the Harris criterion ($d谓&gt;2$) means that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08682v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08682v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08682v2-abstract-full" style="display: none;"> X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr$_3$Ir$_2$O$_7$. We find that the magnetic interactions close to the N茅el temperature $T_N$ = 283.4(2) K are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like Sr$_2$IrO$_4$. Violation of the Harris criterion ($d谓&gt;2$) means that weak disorder becomes relevant. This leads a rounding of the antiferromagnetic phase transition at $T_N$, and modifies the critical exponents relative to the clean system. Specifically, we determine that the critical behaviour of Sr$_3$Ir$_2$O$_7$ is representative of the diluted 3D Ising universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08682v2-abstract-full').style.display = 'none'; document.getElementById('1812.08682v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Journal of Physics: Condensed Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.07178">arXiv:1811.07178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.07178">pdf</a>, <a href="https://arxiv.org/format/1811.07178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.257201">10.1103/PhysRevLett.124.257201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal control of spin excitations in the coupled Ising-chain material RbCoCl3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mena%2C+M">M. Mena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4nni%2C+N">N. H盲nni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+S">S. Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirtenlechner%2C+E">E. Hirtenlechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R">R. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hubig%2C+C">C. Hubig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schollw%C3%B6ck%2C+U">U. Schollw枚ck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.07178v2-abstract-short" style="display: inline;"> We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S = 1/2) antiferromagnetic Ising chains in RbCoCl3. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure of two-domain-wall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07178v2-abstract-full').style.display = 'inline'; document.getElementById('1811.07178v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.07178v2-abstract-full" style="display: none;"> We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S = 1/2) antiferromagnetic Ising chains in RbCoCl3. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure of two-domain-wall excitations therefore characterize precisely both the continuum response of isolated chains and the &#34;Zeeman-ladder&#34; bound states of chains in three different effective staggered fields in one and the same material. We apply an extended Matsubara formalism to obtain a quantitative description of the entire dataset, Monte Carlo simulations to interpret the magnetic order, and finite-temperature DMRG calculations to fit the spectral features of all three phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07178v2-abstract-full').style.display = 'none'; document.getElementById('1811.07178v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplemental material included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 257201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11044">arXiv:1810.11044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11044">pdf</a>, <a href="https://arxiv.org/format/1810.11044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.075125">10.1103/PhysRevB.99.075125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning of the Ru$^{\mathbf{4+}}$ ground-state orbital population in the $\mathbf{4d^4}$ Mott insulator Ca$_2$RuO$_4$ achieved by La doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">D. Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forte%2C+F">F. Forte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">M. Cuoco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bencok%2C+P">P. Bencok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11044v2-abstract-short" style="display: inline;"> The ground-state orbital occupancy of the Ru$^{4+}$ ion in Ca$_{2-x}$La$_x$RuO$_4$ [x=0, 0.05(1), 0.07(1) and 0.12(1)] was investigated by performing X-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of angle between the incident beam and the surface of the crystals. A minimal model of the hybridization between the O 2p states probed at the K edge and the Ru 4d orbi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11044v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11044v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11044v2-abstract-full" style="display: none;"> The ground-state orbital occupancy of the Ru$^{4+}$ ion in Ca$_{2-x}$La$_x$RuO$_4$ [x=0, 0.05(1), 0.07(1) and 0.12(1)] was investigated by performing X-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of angle between the incident beam and the surface of the crystals. A minimal model of the hybridization between the O 2p states probed at the K edge and the Ru 4d orbitals was used to analyze the XAS data, allowing the ratio of hole occupancies $n_{xy}/n_{yz,zx}$ to be determined as a function of doping and temperature. For the samples displaying a low-temperature insulating ground-state ($x\leq0.07$), $n_{xy}/n_{yz,zx}$ is found to increase significantly with increasing doping. For x=0.12, which has a metallic ground-state, the XAS spectra are found to be independent of temperature, and not to be describable by the minimal hybridization model. To understand the origin of the evolution of the electronic structure across the phase diagram, we have performed theoretical calculations based on a model Hamiltonian, comprising electron-electron correlations, crystal field ($螖$) and spin-orbit coupling ($位$), of a Ru-O-Ru cluster. Our calculations of the Ru hole occupancy as a function of $螖/位$ establish that the enhancement of $n_{xy}/n_{yz,zx}$ is driven by significant changes to the crystal field as the tetragonal distortion of the RuO$_6$ octahedral changes from compressive to tensile with La doping. It also shows that the hole occupancy of the O 2p and Ru 4d orbitals display the same trend as a function of $螖/位$, thus validating the minimal hybridization model. In essence, our results suggest that the predominant mechanism driving the emergence of the low-temperature metallic phase in La doped Ca$_2$RuO$_4$ is the structurally induced redistribution of holes within the t2g orbitals, rather that the injection of free carriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11044v2-abstract-full').style.display = 'none'; document.getElementById('1810.11044v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 075125 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01530">arXiv:1808.01530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01530">pdf</a>, <a href="https://arxiv.org/format/1808.01530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.174442">10.1103/PhysRevB.99.174442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for $J_{\rm eff} = 0$ ground state and defect-induced spin glass behaviour in the pyrochlore osmate Y$_{2}$Os$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davies%2C+N+R">N. R. Davies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Topping%2C+C+V">C. V. Topping</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobsen%2C+H">H. Jacobsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Princep%2C+A+J">A. J. Princep</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirschner%2C+F+K+K">F. K. K. Kirschner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bristow%2C+M">M. Bristow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=da+Silva%2C+I">I. da Silva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C+J">Ch. J. Sahle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+-">Y. -F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D+-">D. -Y. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+-">Y. -G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01530v1-abstract-short" style="display: inline;"> We present AC and DC magnetometry, heat capacity, muon spin relaxation ($渭$SR) and resonant inelastic X-ray scattering (RIXS) studies of the pyrochlore osmate Y$_2$Os$_2$O$_7$. We observe a non-zero effective moment governed by $\sqrt{f}渭_{\rm{eff}} = 0.417(1)\,渭_{\rm{B}}$ where $f$ is the fraction of Os sites which exhibit a spin, and spin freezing at temperature $T_{\rm f} \simeq 5\,$K, consiste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01530v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01530v1-abstract-full" style="display: none;"> We present AC and DC magnetometry, heat capacity, muon spin relaxation ($渭$SR) and resonant inelastic X-ray scattering (RIXS) studies of the pyrochlore osmate Y$_2$Os$_2$O$_7$. We observe a non-zero effective moment governed by $\sqrt{f}渭_{\rm{eff}} = 0.417(1)\,渭_{\rm{B}}$ where $f$ is the fraction of Os sites which exhibit a spin, and spin freezing at temperature $T_{\rm f} \simeq 5\,$K, consistent with previous results. The field dependence of magnetisation data shows that the paramagnetic moment is most likely due to large moments $渭_{\rm eff} \simeq 3\,渭_{\rm B}$ on only a small fraction $f \simeq 0.02$ of Os sites. Comparison of single-ion energy level calculations with the RIXS data yields a non-magnetic $J_{\rm eff} = 0$ ground state on the Os$^{4+}$ sites. The spin-orbit interaction, Hund&#39;s coupling and trigonal distortion of OsO$_{6}$ octahedra are all important in modelling the experimentally observed spectra. We are able to rule out impurity effects, leaving disorder-related effects such as oxygen non-stoichiometry or site interchange between Os and Y ions as the most plausible explanation for the magnetic response in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01530v1-abstract-full').style.display = 'none'; document.getElementById('1808.01530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 174442 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05796">arXiv:1805.05796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05796">pdf</a>, <a href="https://arxiv.org/format/1805.05796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.014429">10.1103/PhysRevB.98.014429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistence of antiferromagnetic order upon La substitution in the $4d^4$ Mott insulator Ca$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">D. Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R">R. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutmann%2C+M+J">M. J. Gutmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ricc%C3%B2%2C+S">S. Ricc貌</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nisbet%2C+G">G. Nisbet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05796v2-abstract-short" style="display: inline;"> The chemical and magnetic structures of the series of compounds Ca$_{2-x}$La$_x$RuO$_4$ [$x = 0$, $0.05(1)$, $0.07(1)$, $0.12(1)$] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low temperature S-Pbca space group of the parent compound is retained in all insulating samples [$x\leq0.07(1)$], but with significant changes to the atomic posi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05796v2-abstract-full').style.display = 'inline'; document.getElementById('1805.05796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05796v2-abstract-full" style="display: none;"> The chemical and magnetic structures of the series of compounds Ca$_{2-x}$La$_x$RuO$_4$ [$x = 0$, $0.05(1)$, $0.07(1)$, $0.12(1)$] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low temperature S-Pbca space group of the parent compound is retained in all insulating samples [$x\leq0.07(1)$], but with significant changes to the atomic positions within the unit cell. These changes can be characterised in terms of the local RuO$_6$ octahedral coordination: with increasing doping the structure, crudely speaking, evolves from an orthorhombic unit cell with compressed octahedra to a quasi-tetragonal unit cell with elongated ones. The magnetic structure on the other hand, is found to be robust, with the basic $k=(0,0,0)$, $b$-axis antiferromagnetic order of the parent compound preserved below the critical La doping concentration of $x\approx0.11$. The only effects of La doping on the magnetic structure are to suppress the A-centred mode, favouring the B mode instead, and to reduce the N茅el temperature somewhat. Our results are discussed with reference to previous experimental reports on the effects of cation substitution on the $d^4$ Mott insulator Ca$_2$RuO$_4$, as well as with regard to theoretical studies on the evolution of its electronic and magnetic structure. In particular, our results rule out the presence of a proposed ferromagnetic phase, and suggest that the structural effects associated with La substitution play an important role in the physics of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05796v2-abstract-full').style.display = 'none'; document.getElementById('1805.05796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 014429 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03176">arXiv:1805.03176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03176">pdf</a>, <a href="https://arxiv.org/ps/1805.03176">ps</a>, <a href="https://arxiv.org/format/1805.03176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.227203">10.1103/PhysRevLett.120.227203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the magnetic excitations in NaOsO$_3$ through its metal-insulator transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">James G Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">Christian Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">Davide Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+Y">Yoshihiro Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaura%2C+K">Kazunari Yamaura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">Andrew D Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Des F McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03176v1-abstract-short" style="display: inline;"> The temperature dependence of the excitation spectrum in NaOsO$_{\text{3}}$ through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic X-ray scattering (RIXS) at the Os L$_{\text{3}}$ edge. High resolution ($螖E \sim$ 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metalli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03176v1-abstract-full').style.display = 'inline'; document.getElementById('1805.03176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03176v1-abstract-full" style="display: none;"> The temperature dependence of the excitation spectrum in NaOsO$_{\text{3}}$ through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic X-ray scattering (RIXS) at the Os L$_{\text{3}}$ edge. High resolution ($螖E \sim$ 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in NaOsO$_{\text{3}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03176v1-abstract-full').style.display = 'none'; document.getElementById('1805.03176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review Letters, part of a joint submission to Physical Review B. Supersedes arXiv:1707.05551</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 227203 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02234">arXiv:1801.02234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.02234">pdf</a>, <a href="https://arxiv.org/ps/1801.02234">ps</a>, <a href="https://arxiv.org/format/1801.02234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.035106">10.1103/PhysRevB.97.035106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-pressure insulator-to-metal transition in Sr$_3$Ir$_2$O$_7$ studied by x-ray absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascarelli%2C+S">S. Pascarelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+A+D">A. D. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andreev%2C+S+N">S. N. Andreev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazurenko%2C+V+V">V. V. Mazurenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irifune%2C+T">T. Irifune</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02234v1-abstract-short" style="display: inline;"> High-pressure x-ray absorption spectroscopy was performed at the Ir $L_3$ and $L_2$ absorption edges of Sr$_3$Ir$_2$O$_7$. The branching ratio of white line intensities continuously decreases with pressure, reflecting a reduction in the angular part of the expectation value of the spin-orbit coupling operator, $\left\langle {\bf L} \cdot {\bf S} \right\rangle$. Up to the high-pressure structural t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02234v1-abstract-full').style.display = 'inline'; document.getElementById('1801.02234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02234v1-abstract-full" style="display: none;"> High-pressure x-ray absorption spectroscopy was performed at the Ir $L_3$ and $L_2$ absorption edges of Sr$_3$Ir$_2$O$_7$. The branching ratio of white line intensities continuously decreases with pressure, reflecting a reduction in the angular part of the expectation value of the spin-orbit coupling operator, $\left\langle {\bf L} \cdot {\bf S} \right\rangle$. Up to the high-pressure structural transition at 53 GPa, this behavior can be explained within a single-ion model, where pressure increases the strength of the cubic crystal field, which suppresses the spin-orbit induced hybridization of $J_{\text{eff}} = 3/2$ and $e_g$ levels. We observe a further reduction of the branching ratio above the structural transition, which cannot be explained within a single-ion model of spin-orbit coupling and cubic crystal fields. This change in $\left\langle {\bf L} \cdot {\bf S} \right\rangle$ in the high-pressure, metallic phase of Sr$_3$Ir$_2$O$_7$ could arise from non-cubic crystal fields or a bandwidth-driven hybridization of $J_{\text{eff}}=1/2,\,3/2$ states, and suggests that the electronic ground state significantly deviates from the $J_{\text{eff}}=1/2$ limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02234v1-abstract-full').style.display = 'none'; document.getElementById('1801.02234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 97, 035106 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06895">arXiv:1712.06895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06895">pdf</a>, <a href="https://arxiv.org/format/1712.06895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.041102">10.1103/PhysRevB.97.041102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dispersive Magnetic and Electronic Excitations in Iridate Perovskites Probed with Oxygen $K$-Edge Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olalde-Velasco%2C+P">Paul Olalde-Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatale%2C+S">Sarah Fatale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">James. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grioni%2C+M">Marco Grioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Des. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06895v1-abstract-short" style="display: inline;"> Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {\SIOS} and {\SION} reveal a sequence of well-defined dispersive modes over the energy range up to $\sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electroni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06895v1-abstract-full').style.display = 'inline'; document.getElementById('1712.06895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06895v1-abstract-full" style="display: none;"> Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {\SIOS} and {\SION} reveal a sequence of well-defined dispersive modes over the energy range up to $\sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electronic excitation processes, including single and bi-magnons, and spin-orbit and electron-hole excitons. We thus demonstrated that dispersive magnetic and electronic excitations are observable at the O-$K$ edge in the presence of the strong spin-orbit coupling in the $5d$ shell of iridium and strong hybridization between Ir $5d$ and O $2p$ orbitals, which confirm and expand theoretical expectations. More generally, our results establish the utility of O-$K$ edge RIXS for studying the collective excitations in a range of $5d$ materials that are attracting increasing attention due to their novel magnetic and electronic properties. Especially, the strong RIXS response at O-$K$ edge opens up the opportunity for investigating collective excitations in thin films and heterostructures fabricated from these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06895v1-abstract-full').style.display = 'none'; document.getElementById('1712.06895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures with supplementary material. Accepted by PRB Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 041102 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05551">arXiv:1707.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05551">pdf</a>, <a href="https://arxiv.org/ps/1707.05551">ps</a>, <a href="https://arxiv.org/format/1707.05551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.184429">10.1103/PhysRevB.97.184429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover from itinerant to localized magnetic excitations through the metal-insulator transition in NaOsO$_{\text{3}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">D. Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+Y">Y. Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">J. van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05551v2-abstract-short" style="display: inline;"> NaOsO$_{\text{3}}$ undergoes a metal-insulator transition (MIT) at 410 K, concomitant with the onset of antiferromagnetic order. The excitation spectra have been investigated through the MIT by resonant inelastic x-ray scattering (RIXS) at the Os L$_{\text{3}}$ edge. Low resolution ($螖E \sim$ 300 meV) measurements over a wide range of energies reveal that local electronic excitations do not change&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05551v2-abstract-full').style.display = 'inline'; document.getElementById('1707.05551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05551v2-abstract-full" style="display: none;"> NaOsO$_{\text{3}}$ undergoes a metal-insulator transition (MIT) at 410 K, concomitant with the onset of antiferromagnetic order. The excitation spectra have been investigated through the MIT by resonant inelastic x-ray scattering (RIXS) at the Os L$_{\text{3}}$ edge. Low resolution ($螖E \sim$ 300 meV) measurements over a wide range of energies reveal that local electronic excitations do not change appreciably through the MIT. This is consistent with a picture in which structural distortions do not drive the MIT. In contrast, high resolution ($螖E \sim $ 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in \naoso. In particular, the presence of weak correlations in the paramagnetic phase implies a degree of departure from the ideal Slater limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05551v2-abstract-full').style.display = 'none'; document.getElementById('1707.05551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Joint submission with Physical Review Letters [Phys. Rev. Lett. 120, 227203 (2018), accepted version at arXiv:1805.03176]. This article includes further discussion about the calculations performed, models used, and so on</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 184429 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.09051">arXiv:1703.09051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.09051">pdf</a>, <a href="https://arxiv.org/format/1703.09051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.075162">10.1103/PhysRevB.96.075162 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic exchange and spin-wave damping in pure and electron-doped Sr$_2$IrO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">Davide Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">James G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">Christian Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Torre%2C+A">Alberto de la Torre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">Emily C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R">Robin Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">Felix Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.09051v4-abstract-short" style="display: inline;"> The collective magnetic excitations in the spin-orbit Mott insulator (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ ($x=0,\,0.01,\,0.04,\, 0.1$) were investigated by means of resonant inelastic x-ray scattering. We report significant magnon energy gaps at both the crystallographic and antiferromagnetic zone centers at all doping levels, along with a remarkably pronounced momentum-dependent lifetime broadening. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.09051v4-abstract-full').style.display = 'inline'; document.getElementById('1703.09051v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.09051v4-abstract-full" style="display: none;"> The collective magnetic excitations in the spin-orbit Mott insulator (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ ($x=0,\,0.01,\,0.04,\, 0.1$) were investigated by means of resonant inelastic x-ray scattering. We report significant magnon energy gaps at both the crystallographic and antiferromagnetic zone centers at all doping levels, along with a remarkably pronounced momentum-dependent lifetime broadening. The spin-wave gap is accounted for by a significant anisotropy in the interactions between $J_\text{eff}=1/2$ isospins, thus marking the departure of Sr$_2$IrO$_4$ from the essentially isotropic Heisenberg model appropriate for the superconducting cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.09051v4-abstract-full').style.display = 'none'; document.getElementById('1703.09051v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 075162 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00198">arXiv:1609.00198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00198">pdf</a>, <a href="https://arxiv.org/format/1609.00198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.177202">10.1103/PhysRevLett.118.177202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bound states and field-polarized Haldane modes in a quantum spin ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+S">S. Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouillot%2C+P">P. Bouillot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kollath%2C+C">C. Kollath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giamarchi%2C+T">T. Giamarchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+K+P">K. P. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biner%2C+D">D. Biner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+R">R. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guidi%2C+T">T. Guidi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehm%2C+M">M. Boehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00198v1-abstract-short" style="display: inline;"> The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00198v1-abstract-full').style.display = 'inline'; document.getElementById('1609.00198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00198v1-abstract-full" style="display: none;"> The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling of the dynamical response demonstrates our complete quantitative understanding of these states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00198v1-abstract-full').style.display = 'none'; document.getElementById('1609.00198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures plus supplementary material 7 pages 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 177202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08477">arXiv:1608.08477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08477">pdf</a>, <a href="https://arxiv.org/format/1608.08477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.020413">10.1103/PhysRevB.95.020413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly Gapped Spin-Wave Excitation in the Insulating Phase of NaOsO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanov%2C+N">N. Bogdanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">D. Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+Y">Y. Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+J+P">J. P. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">J. van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08477v2-abstract-short" style="display: inline;"> NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d3 system. The excitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08477v2-abstract-full').style.display = 'inline'; document.getElementById('1608.08477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08477v2-abstract-full" style="display: none;"> NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9 meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08477v2-abstract-full').style.display = 'none'; document.getElementById('1608.08477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 020413 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06401">arXiv:1604.06401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.06401">pdf</a>, <a href="https://arxiv.org/ps/1604.06401">ps</a>, <a href="https://arxiv.org/format/1604.06401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.037201">10.1103/PhysRevLett.117.037201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-in all-out magnetic order and propagating spin-waves in Sm2Ir2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pincini%2C+D">D. Pincini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krisch%2C+M">M. Krisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06401v1-abstract-short" style="display: inline;"> Using resonant magnetic x-ray scattering we address the unresolved nature of the magnetic groundstate and the low-energy effective Hamiltonian of Sm$_2$Ir$_2$O$_7$, a prototypical pyrochlore iridate with a finite temperature metal-insulator transition. Through a combination of elastic and inelastic measurements, we show that the magnetic ground state is an all-in all-out (AIAO) antiferromagnet. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06401v1-abstract-full').style.display = 'inline'; document.getElementById('1604.06401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06401v1-abstract-full" style="display: none;"> Using resonant magnetic x-ray scattering we address the unresolved nature of the magnetic groundstate and the low-energy effective Hamiltonian of Sm$_2$Ir$_2$O$_7$, a prototypical pyrochlore iridate with a finite temperature metal-insulator transition. Through a combination of elastic and inelastic measurements, we show that the magnetic ground state is an all-in all-out (AIAO) antiferromagnet. The magnon dispersion indicates significant electronic correlations and can be well-described by a minimal Hamiltonian that includes Heisenberg exchange ($J=27.3(6)$ meV) and Dzyaloshinskii-Moriya interaction ($D=4.9(3)$ meV), which provides a consistent description of the magnetic order and excitations. In establishing that Sm$_2$Ir$_2$O$_7$ has the requisite inversion symmetry preserving AIAO magnetic groundstate, our results support the notion that pyrochlore iridates may host correlated Weyl semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06401v1-abstract-full').style.display = 'none'; document.getElementById('1604.06401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 037201 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02439">arXiv:1604.02439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.02439">pdf</a>, <a href="https://arxiv.org/format/1604.02439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4641">10.1038/nmat4641 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast energy and momentum resolved dynamics of magnetic correlations in photo-doped Mott insulator Sr$_2$IrO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wall%2C+S">S. Wall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thampy%2C+V">V. Thampy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+M">X. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juhas%2C+P">P. Juhas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alonso-Mori%2C+R">R. Alonso-Mori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">J. M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert%2C+A">A. Robert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+J">J. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sikorski%2C+M">M. Sikorski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozina%2C+M">M. Kozina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H">H. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patthey%2C+L">L. Patthey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Owada%2C+S">S. Owada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katayama%2C+T">T. Katayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yabashi%2C+M">M. Yabashi</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02439v2-abstract-short" style="display: inline;"> Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02439v2-abstract-full').style.display = 'inline'; document.getElementById('1604.02439v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02439v2-abstract-full" style="display: none;"> Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane N茅el correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02439v2-abstract-full').style.display = 'none'; document.getElementById('1604.02439v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 page, 4 figures; to appear in Nature Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 15, 601-605 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.02039">arXiv:1603.02039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.02039">pdf</a>, <a href="https://arxiv.org/format/1603.02039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4190">10.1038/nphys4190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a 4-spin Plaquette Singlet State in the Shastry-Sutherland compound SrCu2(BO3)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zayed%2C+M+E">Mohamed E. Zayed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larrea%2C+J">Julio Larrea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">Andreas M. L盲uchli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">Siddharth S. Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellerby%2C+M">Mark Ellerby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Straessle%2C+T">Thierry Straessle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klotz%2C+S">Stefan Klotz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamel%2C+G">Gerard Hamel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadykov%2C+R+A">Ravil A. Sadykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehm%2C+M">Martin Boehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jimenez-Ruiz%2C+M">Monica Jimenez-Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneidewind%2C+A">Astrid Schneidewind</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stingaciu%2C+M">Marian Stingaciu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">Henrik M. Ronnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.02039v1-abstract-short" style="display: inline;"> The study of interacting spin systems is of fundamental importance for modern condensed matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated 2D Shastry-Sutherland lattice realized by SrCu2(BO3)2 is an important test to our understanding of quantum magnetism. It was constructe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02039v1-abstract-full').style.display = 'inline'; document.getElementById('1603.02039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.02039v1-abstract-full" style="display: none;"> The study of interacting spin systems is of fundamental importance for modern condensed matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated 2D Shastry-Sutherland lattice realized by SrCu2(BO3)2 is an important test to our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning at 21.5 kbar. This gapped plaquette singlet state with strong 4-spin correlations leads to a transition to an ordered Neel state above 40 kbar, which can realize a deconfined quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02039v1-abstract-full').style.display = 'none'; document.getElementById('1603.02039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.04320">arXiv:1508.04320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.04320">pdf</a>, <a href="https://arxiv.org/format/1508.04320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.174118">10.1103/PhysRevB.93.174118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure dependence of the structure and electronic properties of Sr3Ir2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Z. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andreev%2C+S+N">S. N. Andreev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solovyev%2C+I+V">I. V. Solovyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanfland%2C+M">M. Hanfland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+M+I">M. I. McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazurenko%2C+V+V">V. V. Mazurenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.04320v2-abstract-short" style="display: inline;"> We study the structural evolution of Sr$_3$Ir$_2$O$_7$ as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry, and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04320v2-abstract-full').style.display = 'inline'; document.getElementById('1508.04320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.04320v2-abstract-full" style="display: none;"> We study the structural evolution of Sr$_3$Ir$_2$O$_7$ as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry, and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovskite bilayers. As the positions of the oxygen atoms could not be reliably refined from the data, we use density functional theory (local-density approximation+$U$+spin orbit) to optimize the crystal structure, and to elucidate the electronic and magnetic properties of Sr$_3$Ir$_2$O$_7$ at high pressure. In the low-pressure tetragonal phase, we find that the in-plane rotation of the IrO$_6$ octahedra increases with pressure. The calculations further indicate that a bandwidth-driven insulator-metal transition occurs at $\sim$20 GPa, along with a quenching of the magnetic moment. In the high-pressure monoclinic phase, structural optimization resulted in complex tilting and rotation of the oxygen octahedra, and strongly overlapping $t_{2g}$ and $e_g$ bands. The $t_{2g}$ bandwidth renders both the spin-orbit coupling and electronic correlations ineffectual in opening an electronic gap, resulting in a robust metallic state for the high-pressure phase of Sr$_3$Ir$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04320v2-abstract-full').style.display = 'none'; document.getElementById('1508.04320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures, accepted in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 174118 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.01848">arXiv:1508.01848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.01848">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms11651">10.1038/ncomms11651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent excitation at the magnetic metal-insulator transition in the pyrochlore osmate Cd2Os2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanov%2C+N+A">N. A. Bogdanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Donnerer%2C+C">C. Donnerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">D. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimoto%2C+S">S. Nishimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">J. van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+J+P">J. P. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.01848v1-abstract-short" style="display: inline;"> The rich physics manifested by 5d oxides falls outside the Mott-Hubbard paradigm used to successfully explain the electronic and magnetic properties of 3d oxides. Much consideration has been given to the extent to which strong spin-orbit coupling (SOC), in the limit of increased bandwidth and reduced electron correlation, drives the formation of novel electronic states, as manifested through the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01848v1-abstract-full').style.display = 'inline'; document.getElementById('1508.01848v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.01848v1-abstract-full" style="display: none;"> The rich physics manifested by 5d oxides falls outside the Mott-Hubbard paradigm used to successfully explain the electronic and magnetic properties of 3d oxides. Much consideration has been given to the extent to which strong spin-orbit coupling (SOC), in the limit of increased bandwidth and reduced electron correlation, drives the formation of novel electronic states, as manifested through the existence of metal-insulator transitions (MITs). SOC is believed to play a dominant role in 5d5 systems such as iridates (Ir4+), undergoing MITs which may or may not be intimately connected to magnetic order, with pyrochlore and perovksite systems being examples of the former and latter, respectively. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (e.g Os5+) systems are expected to have an orbital singlet and consequently a reduced effect of SOC in the groundstate. The pyrochlore osmate Cd2Os2O7 nonetheless exhibits a MIT intimately entwined with magnetic order with phenomena similar to pyrochlore iridates. Here we report the first resonant inelastic X-ray scattering (RIXS) measurements on an osmium compound, allowing us to determine the salient electronic and magnetic energy scales controlling the MIT in Cd2Os2O7, which we benchmark against detailed quantum chemistry calculations. In particular, we reveal the emergence at the MIT of a magnetic excitation corresponding to a superposition of multiple spin-flip processes from an Ising-like all-in/all-out magnetic groundstate. We discuss our results with respect to the role of SOC in magnetically mediated MITs in 5d systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01848v1-abstract-full').style.display = 'none'; document.getElementById('1508.01848v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7:11651 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.07720">arXiv:1506.07720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.07720">pdf</a>, <a href="https://arxiv.org/ps/1506.07720">ps</a>, <a href="https://arxiv.org/format/1506.07720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.020406">10.1103/PhysRevB.92.020406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The importance of XY anisotropy in Sr2IrO4 revealed by magnetic critical scattering experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R">R. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Z. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.07720v1-abstract-short" style="display: inline;"> The magnetic critical scattering in Sr$_2$IrO$_4$ has been characterized using X-ray resonant magnetic scattering (XRMS) both below and above the 3D antiferromagnetic ordering temperature, T$_{\text{N}}$. The order parameter critical exponent below T$_{\text{N}}$ is found to be 尾=0.195(4), in the range of the 2D XYh$_4$ universality class. Over an extended temperature range above T$_{\text{N}}$, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07720v1-abstract-full').style.display = 'inline'; document.getElementById('1506.07720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.07720v1-abstract-full" style="display: none;"> The magnetic critical scattering in Sr$_2$IrO$_4$ has been characterized using X-ray resonant magnetic scattering (XRMS) both below and above the 3D antiferromagnetic ordering temperature, T$_{\text{N}}$. The order parameter critical exponent below T$_{\text{N}}$ is found to be 尾=0.195(4), in the range of the 2D XYh$_4$ universality class. Over an extended temperature range above T$_{\text{N}}$, the amplitude and correlation length of the intrinsic critical fluctuations are well described by the 2D Heisenberg model with XY anisotropy. This contrasts with an earlier study of the critical scattering over a more limited range of temperature which found agreement with the theory of the isotropic 2D Heisenberg quantum antiferromagnet, developed to describe the critical fluctuations of the conventional Mott insulator La$_2$CuO$_4$ and related systems. Our study therefore establishes the importance of XY anisotropy in the low-energy effective Hamiltonian of Sr$_2$IrO$_4$, the prototypical spin-orbit Mott insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07720v1-abstract-full').style.display = 'none'; document.getElementById('1506.07720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 020406(R), 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.04877">arXiv:1506.04877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.04877">pdf</a>, <a href="https://arxiv.org/ps/1506.04877">ps</a>, <a href="https://arxiv.org/format/1506.04877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.024405">10.1103/PhysRevB.92.024405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of quantum dimer excitations in Sr$_3$Ir$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnells%2C+V">V. Schnells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simonelli%2C+L">L. Simonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Zein%2C+A">A. Al-Zein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paolasini%2C+L">L. Paolasini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krisch%2C+M">M. Krisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monaco%2C+G">G. Monaco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+H+M+R+D+F">H. M. Ronnow D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mila%2C+F">F. Mila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.04877v1-abstract-short" style="display: inline;"> The magnetic excitation spectrum in the bilayer iridate Sr$_3$Ir$_2$O$_7$ has been investigated using high-resolution resonant inelastic x-ray scattering (RIXS) performed at the iridium L$_3$ edge and theoretical techniques. A study of the systematic dependence of the RIXS spectrum on the orientation of the wavevector transfer, $\mathbf{Q}$, with respect to the iridium-oxide bilayer has revealed t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.04877v1-abstract-full').style.display = 'inline'; document.getElementById('1506.04877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.04877v1-abstract-full" style="display: none;"> The magnetic excitation spectrum in the bilayer iridate Sr$_3$Ir$_2$O$_7$ has been investigated using high-resolution resonant inelastic x-ray scattering (RIXS) performed at the iridium L$_3$ edge and theoretical techniques. A study of the systematic dependence of the RIXS spectrum on the orientation of the wavevector transfer, $\mathbf{Q}$, with respect to the iridium-oxide bilayer has revealed that the magnon dispersion is comprised of two branches well separated in energy and gapped across the entire Brillouin zone. Our results contrast with those of an earlier study which reported the existence of a single dominant branch. While these earlier results were interpreted as two overlapping modes within a spin-wave model of weakly coupled iridium-oxide planes, our results are more reminiscent of those expected for a system of weakly coupled dimers. In this latter approach the lower and higher energy modes find a natural explanation as those corresponding to transverse and longitudinal fluctuations, respectively. We have therefore developed a bond-operator theory which describes the magnetic dispersion in Sr$_3$Ir$_2$O$_7$ in terms of quantum dimer excitations. In our model dimerisation is produced by the leading Heisenberg exchange, $J_c$, which couples iridium ions in adjacent planes of the bilayer. The Hamiltonian also includes in plane exchange, $J$, as well as further neighbour couplings and relevant anisotropies. The bond-operator theory provides an excellent account of the dispersion of both modes, while the measured $\mathbf{Q}$ dependence of the RIXS intensities is in reasonable qualitative accord with the spin-spin correlation function calculated from the theory. We discuss our results in the context of the quantum criticality of bilayer dimer systems in the presence of anisotropic interactions derived from strong spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.04877v1-abstract-full').style.display = 'none'; document.getElementById('1506.04877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 024405 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01767">arXiv:1501.01767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01767">pdf</a>, <a href="https://arxiv.org/format/1501.01767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3172">10.1038/nphys3172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractional excitations in the square-lattice quantum antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Piazza%2C+B+D">B. Dalla Piazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tregenna-Piggott%2C+P">P. Tregenna-Piggott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enderle%2C+M">M. Enderle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+D+A">D. A. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01767v1-abstract-short" style="display: inline;"> The square-lattice quantum Heisenberg antiferromagnet displays a pronounced anomaly of unknown origin in its magnetic excitation spectrum. The anomaly manifests itself only for short wavelength excitations propagating along the direction connecting nearest neighbors. Using polarized neutron spectroscopy, we have fully characterized the magnetic fluctuations in the model metal-organic compound CFTD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01767v1-abstract-full').style.display = 'inline'; document.getElementById('1501.01767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01767v1-abstract-full" style="display: none;"> The square-lattice quantum Heisenberg antiferromagnet displays a pronounced anomaly of unknown origin in its magnetic excitation spectrum. The anomaly manifests itself only for short wavelength excitations propagating along the direction connecting nearest neighbors. Using polarized neutron spectroscopy, we have fully characterized the magnetic fluctuations in the model metal-organic compound CFTD, revealing an isotropic continuum at the anomaly indicative of fractional excitations. A theoretical framework based on the Gutzwiller projection method is developed to explain the origin of the continuum at the anomaly. This indicates that the anomaly arises from deconfined fractional spin-1/2 quasiparticle pairs, the 2D analog of 1D spinons. Away from the anomaly the conventional spin-wave spectrum is recovered as pairs of fractional quasiparticles bind to form spin-1 magnons. Our results therefore establish the existence of fractional quasiparticles in the simplest model two dimensional antiferromagnet even in the absence of frustration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01767v1-abstract-full').style.display = 'none'; document.getElementById('1501.01767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 11 (2015) 62-68 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.7418">arXiv:1406.7418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.7418">pdf</a>, <a href="https://arxiv.org/format/1406.7418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.035103">10.1103/PhysRevB.91.035103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitation spectrum of LuFe2O4 measured with inelastic neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gaw%2C+S+M">S. M. Gaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewtas%2C+H+J">H. J. Lewtas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulda%2C+J">J. Kulda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McKinnon%2C+R+A">R. A. McKinnon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.7418v1-abstract-short" style="display: inline;"> We report neutron inelastic scattering measurements and analysis of the spectrum of magnons propagating within the Fe2O4 bilayers of LuFe2O4. The observed spectrum is consistent with six magnetic modes and a single prominent gap, which is compatible with a single bilayer magnetic unit cell containing six spins. We model the magnon dispersion by linear spin-wave theory and find very good agreement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7418v1-abstract-full').style.display = 'inline'; document.getElementById('1406.7418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.7418v1-abstract-full" style="display: none;"> We report neutron inelastic scattering measurements and analysis of the spectrum of magnons propagating within the Fe2O4 bilayers of LuFe2O4. The observed spectrum is consistent with six magnetic modes and a single prominent gap, which is compatible with a single bilayer magnetic unit cell containing six spins. We model the magnon dispersion by linear spin-wave theory and find very good agreement with the domain-averaged spectrum of a spin-charge bilayer superstructure comprising one Fe3+ -rich monolayer and one Fe2+ -rich monolayer. These findings indicate the existence of polar bilayers in LuFe2O4, contrary to recent studies that advocate a charge-segregated non-polar bilayer model. Weak scattering observed below the magnon gap suggests that a fraction of the bilayers contain other combinations of charged monolayers not included in the model. Refined values for the dominant exchange interactions are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7418v1-abstract-full').style.display = 'none'; document.getElementById('1406.7418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91 (2015) 035103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.6522">arXiv:1405.6522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.6522">pdf</a>, <a href="https://arxiv.org/ps/1405.6522">ps</a>, <a href="https://arxiv.org/format/1405.6522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.085126">10.1103/PhysRevB.90.085126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal field splitting in Sr$_{n+1}$Ir$_n$O$_{3n+1}$ ($n$ = 1, 2) iridates probed by x-ray Raman spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Zein%2C+A">A. Al-Zein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+E+C">E. C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monaco%2C+G">G. Monaco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krisch%2C+M">M. Krisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.6522v1-abstract-short" style="display: inline;"> Non-resonant Raman spectroscopy in the hard X-ray regime has been used to explore the electronic structure of the first two members of the Ruddlesden-Popper series Sr$_{n+1}$Ir$_n$O$_{3n+1}$ of iridates. By tuning the photon energy transfer around 530 eV we have been able to explore the oxygen K near edge structure with bulk sensitivity. The angular dependence of the spectra has been exploited to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6522v1-abstract-full').style.display = 'inline'; document.getElementById('1405.6522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.6522v1-abstract-full" style="display: none;"> Non-resonant Raman spectroscopy in the hard X-ray regime has been used to explore the electronic structure of the first two members of the Ruddlesden-Popper series Sr$_{n+1}$Ir$_n$O$_{3n+1}$ of iridates. By tuning the photon energy transfer around 530 eV we have been able to explore the oxygen K near edge structure with bulk sensitivity. The angular dependence of the spectra has been exploited to assign features in the 528-535 eV energy range to specific transitions involving the Ir 5d orbitals. This has allowed us to extract reliable values for both the t2g-eg splitting arising from the cubic component of the crystal field (10Dq), in addition to the splitting of the eg orbitals due to tetragonal distortions. The values we obtain are (3.8, 1.6) eV and (3.55, 1.9) eV for Sr$_2$IrO$_4$ and Sr$_3$Ir$_2$O$_7$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6522v1-abstract-full').style.display = 'none'; document.getElementById('1405.6522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 085126 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2391">arXiv:1405.2391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2391">pdf</a>, <a href="https://arxiv.org/format/1405.2391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2902">10.1038/nphys2902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum and classical criticality in a dimerized quantum antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Merchant%2C+P">P. Merchant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehm%2C+M">M. Boehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2391v1-abstract-short" style="display: inline;"> A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. Howev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2391v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2391v1-abstract-full" style="display: none;"> A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (&#34;Higgs&#34;) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2391v1-abstract-full').style.display = 'none'; document.getElementById('1405.2391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Original version, published version available from Nature Physics website</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 10, 373-379 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2284">arXiv:1405.2284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2284">pdf</a>, <a href="https://arxiv.org/format/1405.2284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.047202">10.1103/PhysRevLett.113.047202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mena%2C+M">M. Mena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guerrero%2C+S">S. Guerrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Storni%2C+M">M. Storni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruegg%2C+C">Ch. Ruegg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2284v1-abstract-short" style="display: inline;"> Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined spin waves are observed at all energies and wavevectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest- neighbour Heis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2284v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2284v1-abstract-full" style="display: none;"> Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined spin waves are observed at all energies and wavevectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term revealed by our study is broadly consistent with the model developed by Onose et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although our ratio of D=J = 0:18(1) is roughly half of their value and three times larger than calculated by ab initio methods [2]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2284v1-abstract-full').style.display = 'none'; document.getElementById('1405.2284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.0857">arXiv:1312.0857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.0857">pdf</a>, <a href="https://arxiv.org/ps/1312.0857">ps</a>, <a href="https://arxiv.org/format/1312.0857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.121101">10.1103/PhysRevB.89.121101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital occupancies and the putative jeff = 1/2 groundstate in Ba2IrO4: a combined oxygen K edge XAS and RIXS study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akimitsu%2C+J">J. Akimitsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">M. Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okabe%2C+H">H. Okabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">H. M. Ronnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simonelli%2C+L">L. Simonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monaco%2C+G">G. Monaco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.0857v1-abstract-short" style="display: inline;"> The nature of the electronic groundstate of Ba2IrO4 has been addressed using soft X-ray absorption and inelastic scattering techniques in the vicinity of the oxygen K edge. From the polarization and angular dependence of XAS we deduce an approximately equal superposition of xy, yz and zx Ir4+ 5d orbitals. By combining the measured orbital occupancies, with the value of the spin-orbit coupling prov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.0857v1-abstract-full').style.display = 'inline'; document.getElementById('1312.0857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.0857v1-abstract-full" style="display: none;"> The nature of the electronic groundstate of Ba2IrO4 has been addressed using soft X-ray absorption and inelastic scattering techniques in the vicinity of the oxygen K edge. From the polarization and angular dependence of XAS we deduce an approximately equal superposition of xy, yz and zx Ir4+ 5d orbitals. By combining the measured orbital occupancies, with the value of the spin-orbit coupling provided by RIXS, we estimate the crystal field splitting associated with the tetragonal distortion of the IrO6 octahedra to be small, 螖=50(50) meV. We thus conclude definitively that Ba2IrO4 is a close realization of a spin-orbit Mott insulator with a jeff = 1/2 groundstate, thereby overcoming ambiguities in this assignment associated with the interpretation of X-ray resonant scattering experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.0857v1-abstract-full').style.display = 'none'; document.getElementById('1312.0857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 121101(R) (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.6617">arXiv:1311.6617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.6617">pdf</a>, <a href="https://arxiv.org/ps/1311.6617">ps</a>, <a href="https://arxiv.org/format/1311.6617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.214415">10.1103/PhysRevB.88.214415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circularly Polarised X-ray Scattering Investigation of Spin-Lattice Coupling in TbMnO$_3$ in Crossed Electric and Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizi%2C+F">F. Fabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paolasini%2C+L">L. Paolasini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Bergevin%2C+F">F. de Bergevin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.6617v2-abstract-short" style="display: inline;"> We present a study of the magnetic and crystallographic structure of TbMnO$_3$ in the presence of crossed electric and magnetic fields using circularly polarised X-ray non-resonant scattering. A comprehensive account is presented of the scattering theory and data analysis methods used in our earlier studies, and in addition we present new high magnetic field data and its analysis. We discuss in de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6617v2-abstract-full').style.display = 'inline'; document.getElementById('1311.6617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.6617v2-abstract-full" style="display: none;"> We present a study of the magnetic and crystallographic structure of TbMnO$_3$ in the presence of crossed electric and magnetic fields using circularly polarised X-ray non-resonant scattering. A comprehensive account is presented of the scattering theory and data analysis methods used in our earlier studies, and in addition we present new high magnetic field data and its analysis. We discuss in detail how polarisation analysis was used to reveal structural information, including the arrangement of Tb moments which we proposed for $H = 0$ T, and how the diffraction data for $H&lt;H_C$ can be used to determine specific magnetostrictively induced atomic displacements with femto-metre accuracy. The connection between the electric polarisation and magnetostrictive mechanisms is discussed. Similar magnetostrictive displacements have been observed for $H &gt; H_C$ as for $H &lt; H_C$. Finally some observations regarding the kinetics and the conservation of domain population at the transition are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6617v2-abstract-full').style.display = 'none'; document.getElementById('1311.6617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 214415 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.6460">arXiv:1308.6460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.6460">pdf</a>, <a href="https://arxiv.org/ps/1308.6460">ps</a>, <a href="https://arxiv.org/format/1308.6460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/42/422202">10.1088/0953-8984/25/42/422202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slaving of the magnetic moment canting to the correlated oxygen rotation in Sr2IrO4 revealed by X-ray resonant scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J">J. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R">R. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Z. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.6460v2-abstract-short" style="display: inline;"> Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin-orbit interaction (SOI) limit described by a $J_{\mathrm{eff}}=1/2$ ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the slaving of the canting of the magnetic moments to the correlated rotation by 11.8(1)$^{\circ}$ of the oxygen octahedra that characterizes its distorted layered perovskite structu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.6460v2-abstract-full').style.display = 'inline'; document.getElementById('1308.6460v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.6460v2-abstract-full" style="display: none;"> Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin-orbit interaction (SOI) limit described by a $J_{\mathrm{eff}}=1/2$ ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the slaving of the canting of the magnetic moments to the correlated rotation by 11.8(1)$^{\circ}$ of the oxygen octahedra that characterizes its distorted layered perovskite structure. Using X-ray resonant scattering at the Ir $L_3$ edge we have measured accurately the intensities of Bragg peaks arising from different components of the magnetic structure. From a careful comparison of integrated intensities of peaks due to basal-plane antiferromagnetism, with those due to b-axis ferromagnetism, we deduce a canting of the magnetic moments of 12.2(8)$^{\circ}$. We thus confirm that in Sr2IrO4 the magnetic moments rigidly follow the rotation of the oxygen octahedra, indicating that, even in the presence of significant non-cubic structural distortions, it is a close realization of the $J_{\mathrm{eff}}=1/2$ state <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.6460v2-abstract-full').style.display = 'none'; document.getElementById('1308.6460v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 25 (2013) 422202 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.0128">arXiv:1308.0128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.0128">pdf</a>, <a href="https://arxiv.org/ps/1308.0128">ps</a>, <a href="https://arxiv.org/format/1308.0128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.026403">10.1103/PhysRevLett.112.026403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant X-ray scattering and the $j_{\mathrm{eff}}=1/2$ electronic ground state in iridate perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monaco%2C+G">G. Monaco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.0128v1-abstract-short" style="display: inline;"> The resonant X-ray scattering (magnetic elastic, RXMS, and inelastic, RIXS) of Ir$^{4+}$ at the L$_{2,3}$ edges relevant to spin-orbit Mott insulators A$_{n+1}$Ir$_{n}$O$_{3n+1}$ (A=Sr, Ba, etc.) are calculated using a single-ion model which treats the spin-orbit and tetragonal crystal-field terms on an equal footing. Both RXMS and RIXS in the spin-flip channel are found to display a non-trivial d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0128v1-abstract-full').style.display = 'inline'; document.getElementById('1308.0128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.0128v1-abstract-full" style="display: none;"> The resonant X-ray scattering (magnetic elastic, RXMS, and inelastic, RIXS) of Ir$^{4+}$ at the L$_{2,3}$ edges relevant to spin-orbit Mott insulators A$_{n+1}$Ir$_{n}$O$_{3n+1}$ (A=Sr, Ba, etc.) are calculated using a single-ion model which treats the spin-orbit and tetragonal crystal-field terms on an equal footing. Both RXMS and RIXS in the spin-flip channel are found to display a non-trivial dependence on the direction of the magnetic moment, $\boldsymbol渭$. Crucially, we show that for $\boldsymbol渭$ in the \emph{ab}-plane, RXMS at the L$_2$ edge is zero \emph{irrespective} of the tetragonal crystal-field; spin-flip RIXS, relevant to measurements of magnons, behaves reciprocally being zero at L$_2$ when $\boldsymbol渭$ is perpendicular to the \emph{ab}-plane. Our results provide important insights into the interpretation of X-ray data from the iridates, including that a $j_{\mathrm{eff}}=1/2$ ground state cannot be assigned on the basis of L$_2$/L$_3$ intensity ratio alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0128v1-abstract-full').style.display = 'none'; document.getElementById('1308.0128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 026403 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5912">arXiv:1212.5912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.5912">pdf</a>, <a href="https://arxiv.org/ps/1212.5912">ps</a>, <a href="https://arxiv.org/format/1212.5912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.117207">10.1103/PhysRevLett.110.117207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robustness of basal-plane antiferromagnetic order and the $J_{eff}=1/2$ state in single-layer iridate spin-orbit Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R">R. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okabe%2C+H">H. Okabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">M. Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5912v1-abstract-short" style="display: inline;"> The magnetic structure and electronic groundstate of the layered perovskite Ba2IrO4 have been investigated using x-ray resonant magnetic scattering (XRMS). Our results are compared with those for Sr2IrO4, for which we provide supplementary data on its magnetic structure. We find that the dominant, long-range antiferromagnetic order is remarkably similar in the two compounds, and that the electroni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5912v1-abstract-full').style.display = 'inline'; document.getElementById('1212.5912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5912v1-abstract-full" style="display: none;"> The magnetic structure and electronic groundstate of the layered perovskite Ba2IrO4 have been investigated using x-ray resonant magnetic scattering (XRMS). Our results are compared with those for Sr2IrO4, for which we provide supplementary data on its magnetic structure. We find that the dominant, long-range antiferromagnetic order is remarkably similar in the two compounds, and that the electronic groundstate in Ba2IrO4, deduced from an investigation of the XRMS $L_3/L_2$ intensity ratio, is consistent with a $J_{eff}=1/2$ description. The robustness of these two key electronic properties to the considerable structural differences between the Ba and Sr analogues is discussed in terms of the enhanced role of the spin-orbit interaction in 5d transition metal oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5912v1-abstract-full').style.display = 'none'; document.getElementById('1212.5912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 117207 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.1556">arXiv:1207.1556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.1556">pdf</a>, <a href="https://arxiv.org/ps/1207.1556">ps</a>, <a href="https://arxiv.org/format/1207.1556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/24/41/415602">10.1088/0953-8984/24/41/415602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The J_{eff}=1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wojek%2C+B+M">B. M. Wojek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berntsen%2C+M+H">M. H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">O. Tjernberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.1556v2-abstract-short" style="display: inline;"> The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J_{eff}=1/2 bandwidths for the two materials, but also pronounced differ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.1556v2-abstract-full').style.display = 'inline'; document.getElementById('1207.1556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.1556v2-abstract-full" style="display: none;"> The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J_{eff}=1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particuar, photoemission from the J_{eff}=1/2 states appears to be suppressed. Yet, it is found that the Sr3Ir2O7 data are in overall better agreement with band-structure calculations than the data for Sr2IrO4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.1556v2-abstract-full').style.display = 'none'; document.getElementById('1207.1556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 24, 415602 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.0173">arXiv:1207.0173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.0173">pdf</a>, <a href="https://arxiv.org/ps/1207.0173">ps</a>, <a href="https://arxiv.org/format/1207.0173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/24/31/312202">10.1088/0953-8984/24/31/312202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the magnetic structure of Sr3Ir2O7: an x-ray resonant scattering study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R">R Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H C Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A T Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S P Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D F McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.0173v1-abstract-short" style="display: inline;"> This report presents azimuthal dependent and polarisation dependent x-ray resonant magnetic scattering at the Ir L3 edge for the bilayered iridate compound, Sr3Ir2O7. Two magnetic wave vectors, k1=(1/2,1/2,0) and k2=(1/2,-1/2,0), result in domains of two symmetry-related G-type antiferromagnetic structures, noted A and B, respectively. These domains are approximately 0.02 mm^2 and are independent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0173v1-abstract-full').style.display = 'inline'; document.getElementById('1207.0173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.0173v1-abstract-full" style="display: none;"> This report presents azimuthal dependent and polarisation dependent x-ray resonant magnetic scattering at the Ir L3 edge for the bilayered iridate compound, Sr3Ir2O7. Two magnetic wave vectors, k1=(1/2,1/2,0) and k2=(1/2,-1/2,0), result in domains of two symmetry-related G-type antiferromagnetic structures, noted A and B, respectively. These domains are approximately 0.02 mm^2 and are independent of the thermal history. An understanding of this key aspect of the magnetism is necessary for an overall picture of the magnetic behaviour in this compound. Azimuthal and polarisation dependence of magnetic reflections, relating to both magnetic wave vectors, show that the Ir magnetic moments in the bilayer compound are oriented along the c axis. This contrasts with single layer Sr2IrO4 where the moments are confined to the ab plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0173v1-abstract-full').style.display = 'none'; document.getElementById('1207.0173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2012 J. Phys.: Condens. Matter 24 312202 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1482">arXiv:1202.1482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1482">pdf</a>, <a href="https://arxiv.org/format/1202.1482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.257209">10.1103/PhysRevLett.108.257209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically driven metal-insulator transition in NaOsO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">S. Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garlea%2C+V+O">V. O. Garlea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+J+C">J. C. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+-">J. -W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">J. A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+S">Y. S. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+Y">Y. Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1482v1-abstract-short" style="display: inline;"> The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1482v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1482v1-abstract-full" style="display: none;"> The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1482v1-abstract-full').style.display = 'none'; document.getElementById('1202.1482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 257209 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.1452">arXiv:1201.1452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.1452">pdf</a>, <a href="https://arxiv.org/format/1201.1452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.184432">10.1103/PhysRevB.85.184432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic order and domains in Sr3Ir2O7 probed by x-ray resonant scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boseggia%2C+S">S. Boseggia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R">R. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wermeille%2C+D">D. Wermeille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchenoire%2C+L">L. Bouchenoire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.1452v1-abstract-short" style="display: inline;"> This article reports a detailed x-ray resonant scattering study of the bilayer iridate compound, Sr3Ir2O7, at the Ir L2 and L3 edges. Resonant scattering at the Ir L3 edge has been used to determine that Sr3Ir2O7 is a long-range ordered antiferromagnet below TN 230K with an ordering wavevector, q=(1/2,1/2,0). The energy resonance at the L3 edge was found to be a factor of ~30 times larger than tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1452v1-abstract-full').style.display = 'inline'; document.getElementById('1201.1452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.1452v1-abstract-full" style="display: none;"> This article reports a detailed x-ray resonant scattering study of the bilayer iridate compound, Sr3Ir2O7, at the Ir L2 and L3 edges. Resonant scattering at the Ir L3 edge has been used to determine that Sr3Ir2O7 is a long-range ordered antiferromagnet below TN 230K with an ordering wavevector, q=(1/2,1/2,0). The energy resonance at the L3 edge was found to be a factor of ~30 times larger than that at the L2. This remarkable effect has been seen in the single layer compound Sr2IrO4 and has been linked to the observation of a Jeff=1/2 spin-orbit insulator. Our result shows that despite the modified electronic structure of the bilayer compound, caused by the larger bandwidth, the effect of strong spin-orbit coupling on the resonant magnetic scattering persists. Using the programme SARAh, we have determined that the magnetic order consists of two domains with propagation vectors k1=(1/2,1/2,0) and k2=(1/2,-1/2,0), respectively. A raster measurement of a focussed x-ray beam across the surface of the sample yielded images of domains of the order of 100 microns size, with odd and even L components, respectively. Fully relativistic, monoelectronic calculations (FDMNES), using the Green&#39;s function technique for a muffin-tin potential have been employed to calculate the relative intensities of the L2,3 edge resonances, comparing the effects of including spin-orbit coupling and the Hubbard, U, term. A large L3 to L2 edge intensity ratio (~5) was found for calculations including spin-orbit coupling. Adding the Hubbard, U, term resulted in changes to the intensity ratio &lt;5%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1452v1-abstract-full').style.display = 'none'; document.getElementById('1201.1452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2012 Phys. Rev. B 85, 184432 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.2875">arXiv:1110.2875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.2875">pdf</a>, <a href="https://arxiv.org/format/1110.2875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1208085">10.1126/science.1208085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizi%2C+F">F. Fabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paolasini%2C+L">L. Paolasini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Bergevin%2C+F">F. de Bergevin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrero-Martin%2C+J">J. Herrero-Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.2875v1-abstract-short" style="display: inline;"> Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.2875v1-abstract-full').style.display = 'inline'; document.getElementById('1110.2875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.2875v1-abstract-full" style="display: none;"> Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we use an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference charge-magnetic X-ray scattering arises, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a significant contribution to the zero-field ferroelectric moment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.2875v1-abstract-full').style.display = 'none'; document.getElementById('1110.2875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the author&#39;s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science VOL 333, (2011), doi:10.1126/science.1208085</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science VOL 333, 1273 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.1778">arXiv:1107.1778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.1778">pdf</a>, <a href="https://arxiv.org/ps/1107.1778">ps</a>, <a href="https://arxiv.org/format/1107.1778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.054419">10.1103/PhysRevB.84.054419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nandi%2C+S">S. Nandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Y. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Price%2C+S">S. Price</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+F">X. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrero-Mart%C3%ADn%2C+J">J. Herrero-Mart铆n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paolasini%2C+L">L. Paolasini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterji%2C+T">T. Chatterji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mittal%2C+R">R. Mittal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%BCckel%2C+T">Th. Br眉ckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.1778v1-abstract-short" style="display: inline;"> The magnetic structures adopted by the Fe and Sm sublattices in SmFeAsO have been investigated using element specific x-ray resonant and non-resonant magnetic scattering techniques. Between 110 and 5 K, the Sm and Fe moments are aligned along the c and a directions, respectively according to the same magnetic representation $螕_{5}$ and the same propagation vector (1, 0, 0.5). Below 5 K, magnetic o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1778v1-abstract-full').style.display = 'inline'; document.getElementById('1107.1778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.1778v1-abstract-full" style="display: none;"> The magnetic structures adopted by the Fe and Sm sublattices in SmFeAsO have been investigated using element specific x-ray resonant and non-resonant magnetic scattering techniques. Between 110 and 5 K, the Sm and Fe moments are aligned along the c and a directions, respectively according to the same magnetic representation $螕_{5}$ and the same propagation vector (1, 0, 0.5). Below 5 K, magnetic order of both sublattices change to a different magnetic structure and the Sm moments reorder in a magnetic unit cell equal to the chemical unit cell. Modeling of the temperature dependence for the Sm sublattice as well as a change in the magnetic structure below 5 K provide a clear evidence of a surprisingly strong coupling between the two sublattices, and indicate the need to include anisotropic exchange interactions in models of SmFeAsO and related compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1778v1-abstract-full').style.display = 'none'; document.getElementById('1107.1778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 054419 (2011) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10