CINXE.COM
Search results for: aluminum alloy 8011
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aluminum alloy 8011</title> <meta name="description" content="Search results for: aluminum alloy 8011"> <meta name="keywords" content="aluminum alloy 8011"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aluminum alloy 8011" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aluminum alloy 8011"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1226</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aluminum alloy 8011</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Development and Characterization of Wear Properties of Aluminum 8011 Hybrid Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Shivanand">H. K. Shivanand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yogananda"> A. Yogananda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of present investigation is to study the effect of reinforcements on the wear properties of E-Glass short fibers and Flyash reinforced Al 8011 hybrid metal matrix composites. The alloy of Al 8011 reinforced with E-glass and fly ash particulates are prepared by simple stir casting method. The MMC is obtained for different composition of E-glass and flyash particulates (varying E-glass with constant fly ash and varying flyash with constant E-glass percentage). The wear results of ascast hybrid composites with different compositions of reinforcements at varying sliding speeds and different loads are discussed. The results reveals that as the percentage of reinforcement increases wear rate will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites" title="metal matrix composites">metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011" title=" aluminum alloy 8011"> aluminum alloy 8011</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20test" title=" wear test"> wear test</a> </p> <a href="https://publications.waset.org/abstracts/34617/development-and-characterization-of-wear-properties-of-aluminum-8011-hybrid-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajveer">Rajveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Saxena"> Abhinav Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das"> Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%206082" title="aluminum alloy 6082">aluminum alloy 6082</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a> </p> <a href="https://publications.waset.org/abstracts/82119/an-investigation-of-the-strength-deterioration-of-forged-aluminum-6082-t6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Esmailian">M. Esmailian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakouri"> M. Shakouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mottahedi"> A. Mottahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Shabestari"> S. G. Shabestari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=7055%20Aluminum%20alloy" title="7055 Aluminum alloy">7055 Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SCC%20resistance" title=" SCC resistance"> SCC resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20Treatment" title=" heat Treatment"> heat Treatment</a> </p> <a href="https://publications.waset.org/abstracts/34624/effect-of-t6-and-re-aging-heat-treatment-on-mechanical-properties-of-7055-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Nanocharacterization of PIII Treated 7075 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Bacci%20Fernandes">Bruno Bacci Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20M%C3%A4ndl"> Stephan Mändl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ata%C3%ADde%20Ribeiro%20da%20Silva%20Junior"> Ataíde Ribeiro da Silva Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Osvaldo%20Rossi"> José Osvaldo Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rio%20Ueda"> Mário Ueda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20immersion%20ion%20implantation" title=" plasma immersion ion implantation"> plasma immersion ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20properties" title=" tribological properties"> tribological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofatigue" title=" nanofatigue"> nanofatigue</a> </p> <a href="https://publications.waset.org/abstracts/57186/nanocharacterization-of-piii-treated-7075-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Abdelghani">May Abdelghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title="fatigue damage">fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behavior" title=" cyclic behavior"> cyclic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20analysis" title=" microstructural analysis"> microstructural analysis</a> </p> <a href="https://publications.waset.org/abstracts/20127/experimental-analysis-of-the-origins-of-the-anisotropy-behavior-in-the-2017-aa-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farnush">M. Farnush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al356%20alloy" title="Al356 alloy">Al356 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=HEEB" title=" HEEB"> HEEB</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20characteristics" title=" frictional characteristics"> frictional characteristics</a> </p> <a href="https://publications.waset.org/abstracts/47963/improvement-of-wear-resistance-of-356-aluminum-alloy-by-high-energy-electron-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loai%20Ben%20Naji">Loai Ben Naji</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Ibrahim"> Osama M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20J.%20Al-Fadhalah"> Khaled J. Al-Fadhalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al<sub>2</sub>O<sub>3</sub>, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 <sup>o</sup>C for 1 hour, followed by 1 hour at 960 <sup>o</sup>C, and finally at 990 <sup>o</sup>C for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al<sub>2</sub>O<sub>3</sub> platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy. Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20oxidation" title="high-temperature oxidation">high-temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-chromium-aluminum%20alloy" title=" iron-chromium-aluminum alloy"> iron-chromium-aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina%20protective%20layer" title=" alumina protective layer"> alumina protective layer</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered-metal-fibers" title=" sintered-metal-fibers"> sintered-metal-fibers</a> </p> <a href="https://publications.waset.org/abstracts/97290/formation-of-protective-aluminum-oxide-layer-on-the-surface-of-fe-cr-al-sintered-metal-fibers-via-multi-stage-thermal-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Jeyakumar"> C. V. Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Koteswara%20Rao"> S. R. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast%20Al-Mg-Sc%20alloy" title="cast Al-Mg-Sc alloy">cast Al-Mg-Sc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/18496/gas-tungsten-arc-welded-joints-of-cast-al-mg-sc-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> The Mechanical Properties of In-Situ Consolidated Nanocrystalline Aluminum Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Youssef">Khaled M. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20I.%20Ahmed"> Sara I. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, artifacts-free bulk nanocrystalline pure aluminum alloy samples were prepared through mechanical milling under ultra-high purity argon and at both liquid nitrogen and room temperatures. The nanostructure evolution during milling was examined using X-ray diffraction and transmission electron microscope techniques. The in-situ consolidated samples after milling exhibited an average grain size of 18 nm. The tensile properties of this novel material are reported in comparison with coarse-grained aluminum alloys. The 0.2% offset yield strength of the nanocrystalline aluminum was found to be 340 MPa. This value is at least one order of magnitude higher than that of the coarse-grained aluminum alloy. In addition to this extraordinarily high strength, the nanocrystalline aluminum showed a significant tensile ductility, with 6% uniform elongation and 11% elongation-to-failure. The transmission electron microscope observations in this study provide evidence of deformation twinning in the plastically deformed nanocrystalline aluminum. These results highlight a change of the deformation mechanism from a typical dislocation slip to twinning deformation induced by partial dislocation activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title="nanocrystalline">nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/147805/the-mechanical-properties-of-in-situ-consolidated-nanocrystalline-aluminum-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uwa%20C.%20A.">Uwa C. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamiru%20T."> Jamiru T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Nb-Mo" title="Al-Cu-Nb-Mo">Al-Cu-Nb-Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy" title=" alloy"> alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/165125/experimental-study-of-the-electrical-conductivity-and-thermal-conductivity-property-of-micro-based-al-cu-nb-mo-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Lin">Yuan-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin-Yu%20Chen"> Sin-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yu%20Wu"> Pei-Yu Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTAW%E3%80%81A6061%20aluminum%20alloy" title="GTAW、A6061 aluminum alloy">GTAW、A6061 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=%E3%80%81surface%20modification" title="、surface modification">、surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20study" title=" tribological study"> tribological study</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC%20powder%20cladding" title=" TiC powder cladding"> TiC powder cladding</a> </p> <a href="https://publications.waset.org/abstracts/25409/tribological-study-of-tic-powder-cladding-on-6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badr%20Alsulami">Badr Alsulami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Elamary"> Ahmed S. Elamary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title="shear resistance">shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cardiff%20theory" title=" Cardiff theory"> Cardiff theory</a>, <a href="https://publications.waset.org/abstracts/search?q=H%D3%A7glund%27s%20theory" title=" Hӧglund's theory"> Hӧglund's theory</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20girder" title=" plate girder"> plate girder</a> </p> <a href="https://publications.waset.org/abstracts/2896/a-new-developed-formula-to-determine-the-shear-buckling-stress-in-welded-aluminum-plate-girders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shadatul%20Hanom%20Rashid">Shadatul Hanom Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaorong%20Zhou"> Xiaorong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA6111" title="AA6111">AA6111</a>, <a href="https://publications.waset.org/abstracts/search?q=Ce%28NO3%293" title=" Ce(NO3)3"> Ce(NO3)3</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20sol-gel%20coatings" title=" hybrid sol-gel coatings"> hybrid sol-gel coatings</a> </p> <a href="https://publications.waset.org/abstracts/86720/hybrid-sol-gel-coatings-for-corrosion-protection-of-aa6111-t4-aluminium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wisutmethangoon">S. Wisutmethangoon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pannaray"> S. Pannaray</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Plookphol"> T. Plookphol</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wannasin"> J. Wannasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2024%20aluminium%20alloy" title="2024 aluminium alloy">2024 aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20induced%20semi%20solid" title=" gas induced semi solid"> gas induced semi solid</a>, <a href="https://publications.waset.org/abstracts/search?q=T6%20heat%20treatment" title=" T6 heat treatment"> T6 heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aged%20hardening" title=" aged hardening"> aged hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/4350/effect-of-aging-condition-on-semisolid-cast-2024-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20preheat%20temperature" title=" shell preheat temperature"> shell preheat temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20temperature" title=" firing temperature"> firing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/94264/effect-of-process-parameters-on-tensile-strength-of-aluminum-alloy-adc-10-produced-through-ceramic-shell-investment-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangfang%20Xu">Xiangfang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bintao%20Wu"> Bintao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugang%20Miao"> Yugang Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Duanfeng%20Han"> Duanfeng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%2FFe%20dissimilar%20metals" title="Al/Fe dissimilar metals">Al/Fe dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-TIG%20hybrid%20heat%20source" title=" laser-TIG hybrid heat source"> laser-TIG hybrid heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=shearing%20strength" title=" shearing strength"> shearing strength</a>, <a href="https://publications.waset.org/abstracts/search?q=welding-brazing%20method" title=" welding-brazing method"> welding-brazing method</a> </p> <a href="https://publications.waset.org/abstracts/17285/laser-tig-welding-brazing-for-dissimilar-metals-between-aluminum-alloy-and-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20May">Abdelghani May</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructural%20investigation" title="microstructural investigation">microstructural investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage%20quantification" title=" fatigue damage quantification"> fatigue damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20behavior" title=" anisotropic behavior"> anisotropic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2017%20aluminum%20alloy" title=" AA2017 aluminum alloy"> AA2017 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallographic%20texture" title=" crystallographic texture"> crystallographic texture</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/165414/microstructural-investigation-and-fatigue-damage-quantification-of-anisotropic-behavior-in-aa2017-aluminum-alloy-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Emara">Mohamed M. Emara</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Ashraf"> Heba Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%202124%20metal%20matrix%20composite" title="aluminum 2124 metal matrix composite">aluminum 2124 metal matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC%20nano-sized%20reinforcements" title=" SiC nano-sized reinforcements"> SiC nano-sized reinforcements</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20mechanical%20ball%20mill" title=" extrusion mechanical ball mill"> extrusion mechanical ball mill</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a> </p> <a href="https://publications.waset.org/abstracts/20367/influence-of-silicon-carbide-particle-size-and-thermo-mechanical-processing-on-dimensional-stability-of-al-2124sic-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> The Use of Superplastic Tin-Lead Alloy as A solid Lubricant in Free Upsetting of Aluminum and Brass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hebah%20B.%20Melhem"> Hebah B. Melhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Qandil"> Ahmad Qandil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main function of a lubricant in any forming process is to reduce friction between the work piece and the die set, hence reducing the force and energy requirement for forming process and to achieve homogeneous deformation. The free upsetting test is an important open forging test. In this paper, super plastic tin-lead alloy is used as solid lubricant in the free upsetting test of non-ferrous metals and compared with eight different lubricants using the following three criteria: one comparing the value of the reduction in height percentages, i.e. the engineering strain, in identical specimens of the same material under the effect of the same compressive force. The second is comparing the amount of barreling produced in each of the identical specimens, at each lubricant. The third criterion is using the specific energy, i.e. the energy per unit volume consumed in forming each material, using the different lubricants to produce the same reduction in height percentage of identical specimens from each of the two materials, namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work, under the same compression force among the different used lubricants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=brass" title=" brass"> brass</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20lubricants" title=" different lubricants"> different lubricants</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20upsetting" title=" free upsetting"> free upsetting</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lubricants" title=" solid lubricants"> solid lubricants</a>, <a href="https://publications.waset.org/abstracts/search?q=superplastic%20tin-lead%20alloy" title=" superplastic tin-lead alloy "> superplastic tin-lead alloy </a> </p> <a href="https://publications.waset.org/abstracts/32061/the-use-of-superplastic-tin-lead-alloy-as-a-solid-lubricant-in-free-upsetting-of-aluminum-and-brass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1207</span> Normal Spectral Emissivity of Roughened Aluminum Alloy AL 6061 Surfaces at High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeet%20Kumar">Sumeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Krishnamurthy"> C. V. Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Balasubramaniam"> Krishnan Balasubramaniam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normal spectral emissivity of Al 6061 alloys with different surface finishes was experimentally measured at 833°K. Four different samples were prepared by polishing the surfaces of the alloy by 80, 220, 600 grit sizes of SiC abrasive papers and diamond paste. The samples were heated in air for 6 h at 833°K, and the emissivity was measured during the process from pyrometers operating at wavelengths of 3.9, 5.14 and 7.8 μm. The results indicated that the emissivity was increasing with heating time and the rate of increase was rapid during the initial stage of heating in comparison with the later stage. This appears to be because of the parabolic rate law followed by the process of oxidation. Further, it is found that the increase in emissivity with heating time was higher for rough surfaces than that for polished surfaces. Both the results were analyzed at all the three wavelengths, and qualitatively similar results were obtained for all of them. In this way emissivity of the alloy can be increased by roughening the surfaces and heating it at high temperature until the surfaces are oxidized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20spectral%20emissivity" title=" normal spectral emissivity"> normal spectral emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/101984/normal-spectral-emissivity-of-roughened-aluminum-alloy-al-6061-surfaces-at-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1206</span> Effect of Aluminium Content on Bending Properties and Microstructure of AlₓCoCrFeNi Alloy Fabricated by Induction Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzena%20Tokarewicz">Marzena Tokarewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Gradzka-Dahlke"> Malgorzata Gradzka-Dahlke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-entropy alloys (HEAs) have gained significant attention due to their great potential as functional and structural materials. HEAs have very good mechanical properties (in particular, alloys based on CoCrNi). They also show the ability to maintain their strength at high temperatures, which is extremely important in some applications. AlCoCrFeNi alloy is one of the most studied high-entropy alloys. Scientists often study the effect of changing the aluminum content in this alloy because it causes significant changes in phase presence and microstructure and consequently affects its hardness, ductility, and other properties. Research conducted by the authors also investigates the effect of aluminium content in AlₓCoCrFeNi alloy on its microstructure and mechanical properties. AlₓCoCrFeNi alloys were prepared by vacuum induction melting. The obtained samples were examined for chemical composition, microstructure, and microhardness. The three-point bending method was carried out to determine the bending strength, bending modulus, and conventional bending yield strength. The obtained results confirm the influence of aluminum content on the properties of AlₓCoCrFeNi alloy. Most studies on AlₓCoCrFeNi alloy focus on the determination of mechanical properties in compression or tension, much less in bending. The achieved results provide valuable information on the bending properties of AlₓCoCrFeNi alloy and lead to interesting conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20properties" title="bending properties">bending properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high-entropy%20alloys" title=" high-entropy alloys"> high-entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/137068/effect-of-aluminium-content-on-bending-properties-and-microstructure-of-alcocrfeni-alloy-fabricated-by-induction-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1205</span> Heat Forging Analysis Method on Blank Consist of Two Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ueda">Takashi Ueda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forging" title="forging">forging</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow" title=" hollow"> hollow</a> </p> <a href="https://publications.waset.org/abstracts/17370/heat-forging-analysis-method-on-blank-consist-of-two-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1204</span> Analysis of Friction Stir Welding Process for Joining Aluminum Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Khourshid">A. M. Khourshid</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sabry"> I. Sabry </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=al%20alloys" title=" al alloys"> al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/16416/analysis-of-friction-stir-welding-process-for-joining-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1203</span> Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Alihosseini">Hamid Alihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Dehghani"> Kamran Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bake%20hardening" title="bake hardening">bake hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20grain" title=" ultrafine grain"> ultrafine grain</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20grain" title=" nano grain"> nano grain</a>, <a href="https://publications.waset.org/abstracts/search?q=AA6061%20aluminum" title=" AA6061 aluminum"> AA6061 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/33963/bake-hardening-behavior-of-ultrafine-grained-and-nano-grained-aa6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1202</span> Relationship between Extrusion Ratio and Mechanical Properties of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jeon">C. H. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Kim"> Y. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Lee"> G. A. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing resource consumption and carbon dioxide emission are recognized as urgent issues. One way of resolving these issues is to reduce product weight. Magnesium alloys are considered promising candidates because of their lightness. Various studies have been conducted on using magnesium alloy instead of conventional iron or aluminum in mechanical parts, due to the light weight and superior specific strength of magnesium alloy. However, even stronger magnesium alloys are needed for mechanical parts. One common way to enhance the strength of magnesium alloy is by extruding the ingot. In order to enhance the mechanical properties, magnesium alloy ingot were extruded at various extrusion ratios. Relationship between extrusion ratio and mechanical properties was examined on extruded material of magnesium alloy. And Textures and microstructures of the extruded materials were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20ratio" title=" extrusion ratio"> extrusion ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20material" title=" lightweight material"> lightweight material</a> </p> <a href="https://publications.waset.org/abstracts/30018/relationship-between-extrusion-ratio-and-mechanical-properties-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1201</span> Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Khethier%20Abbass">Muna Khethier Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassma%20Finner%20Sultan"> Bassma Finner Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composites" title=" nano composites"> nano composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Mg%20alloy" title=" Al-Cu-Mg alloy"> Al-Cu-Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20corrosion" title=" electrochemical corrosion"> electrochemical corrosion</a> </p> <a href="https://publications.waset.org/abstracts/68464/effect-of-al2o3-nanoparticles-on-corrosion-behavior-of-aluminum-alloy-fabricated-by-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1200</span> Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Ahmed">Tarek M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20El%20Mesalamy"> Ahmed S. El Mesalamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amro%20M.%20Youssef"> Amro M. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfik%20T.%20El%20Midany"> Tawfik T. El Midany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20waterjet%20machining" title="abrasive waterjet machining">abrasive waterjet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20of%20aluminum%20alloy" title=" machining of aluminum alloy"> machining of aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-traditional%20cutting" title=" non-traditional cutting"> non-traditional cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/108629/surface-quality-improvement-of-abrasive-waterjet-cutting-for-spacecraft-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanawaz%20Patil">Shanawaz Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haneef"> Mohamed Haneef</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Narayanaswamy"> K. S. Narayanaswamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 <sup>o</sup>C for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beryl" title="beryl">beryl</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/102073/effect-of-heat-treatment-on-mechanical-properties-and-wear-behavior-of-al7075-alloy-reinforced-with-beryl-and-graphene-hybrid-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Chih%20Wei">Chia-Chih Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Qi%20Li"> Yun-Qi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ssu-Ying%20Chen"> Ssu-Ying Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan-Jung%20Chen"> Hsuan-Jung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsi-Wen%20Yang"> Hsi-Wen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yuan%20Chen"> Chih-Yuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chon%20Chen"> Chien-Chon Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodization" title="anodization">anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=colored" title=" colored"> colored</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality" title=" high quality"> high quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20chime" title=" wind chime"> wind chime</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-tube" title=" nano-tube"> nano-tube</a> </p> <a href="https://publications.waset.org/abstracts/176112/the-high-quality-colored-wind-chimes-by-anodization-on-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bendarma">A. Bendarma</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jankowiak"> T. Jankowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rusinek"> A. Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lodygowski"> T. Lodygowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kl%C3%B3sak"> M. Klósak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouslikhane"> S. Bouslikhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20behavior" title=" ballistic behavior"> ballistic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criterion" title=" failure criterion"> failure criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/60677/perforation-analysis-of-the-aluminum-alloy-sheets-subjected-to-high-rate-of-loading-and-heated-using-thermal-chamber-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>