CINXE.COM

Search results for: Waveguides

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Waveguides</title> <meta name="description" content="Search results for: Waveguides"> <meta name="keywords" content="Waveguides"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Waveguides" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Waveguides"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Waveguides</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Sol-Gel Erbium-Doped Silica-Hafnia Planar Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Mataouy">Mustapha El Mataouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abellatif%20Aaliti"> Abellatif Aaliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Khaddor"> Mouhamed Khaddor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erbium actived silica-hafnia planar waveguides have been prepared by sol-gel route. The films were deposited on vitreous silica substrates using dip-coating technique. The parameters of preparation have been chosen to optimize the waveguides for operation in the near infrared (NIR) region, and to increase the luminescence efficiency of the metastable 4I13/2 state of Erbium ions. The waveguides properties were determined by m-lines spectroscopy, loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical process related to the emission in the C telecom band (1530nm-1565nm) of the Erbium ions. The results are discussed with the aim of comparing the structural and optical properties of Erbium activated silica-hafnia planar waveguides with different molar ratio of Si / Hf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erbium" title="erbium">erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title=" optical amplifiers"> optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-hafnia" title=" silica-hafnia"> silica-hafnia</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/59785/sol-gel-erbium-doped-silica-hafnia-planar-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasra%20%20Khorsand-Kazemi">Kasra Khorsand-Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bianca%20%20Vizcaino"> Bianca Vizcaino</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20%20Chhajer%20Jain"> Mandeep Chhajer Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20%20Moradpour"> Maryam Moradpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waveguides" title="Waveguides">Waveguides</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave%20sensors" title=" Microwave sensors"> Microwave sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=Standard%20liquids%20characterization" title=" Standard liquids characterization"> Standard liquids characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-contact%20sensing" title=" Non-contact sensing"> Non-contact sensing</a> </p> <a href="https://publications.waset.org/abstracts/121599/non-contact-characterization-of-standard-liquids-using-waveguide-at-124-to18-ghz-frequency-span" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Proficiency%20Munsaka">Proficiency Munsaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Baricholo"> Peter Baricholo</a>, <a href="https://publications.waset.org/abstracts/search?q=Erich%20%20Rohwer"> Erich Rohwer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20germanium%20photonic%20waveguide" title="silicon germanium photonic waveguide">silicon germanium photonic waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercontinuum%20generation" title=" supercontinuum generation"> supercontinuum generation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mid%20infrared" title=" mid infrared"> mid infrared</a> </p> <a href="https://publications.waset.org/abstracts/132277/simulation-of-mid-infrared-supercontinuum-generation-in-silicon-germanium-photonic-waveguides-for-gas-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonnel%20Mhuka">Leonnel Mhuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Additive%20Manufacturing" title="Additive Manufacturing">Additive Manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Microstructured%20Optical%20Waveguides" title=" Microstructured Optical Waveguides"> Microstructured Optical Waveguides</a>, <a href="https://publications.waset.org/abstracts/search?q=Two-Photon%20Polymerization" title=" Two-Photon Polymerization"> Two-Photon Polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=Photonics%20Applications" title=" Photonics Applications"> Photonics Applications</a> </p> <a href="https://publications.waset.org/abstracts/171074/additive-manufacturing-of-microstructured-optical-waveguides-using-two-photon-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Modeling and Simulations of Surface Plasmon Waveguide Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Hamdan">Moussa Hamdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulati%20Abdullah"> Abdulati Abdullah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmons" title="surface plasmons">surface plasmons</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20waveguides" title=" optical waveguides"> optical waveguides</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20lasers" title=" semiconductor lasers"> semiconductor lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=slab%20dialectical" title=" slab dialectical"> slab dialectical</a> </p> <a href="https://publications.waset.org/abstracts/52966/modeling-and-simulations-of-surface-plasmon-waveguide-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Paranhos%20Lima">Emanuela Paranhos Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20F%C3%A9lix%20Rodr%C3%ADguez%20Esquerre"> Vitaly Félix Rodríguez Esquerre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20coupler" title="directional coupler">directional coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20nanowire" title=" metallic nanowire"> metallic nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic" title=" plasmonic"> plasmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a>, <a href="https://publications.waset.org/abstracts/search?q=superfocusing" title=" superfocusing"> superfocusing</a> </p> <a href="https://publications.waset.org/abstracts/60580/numerical-analysis-and-design-of-dielectric-to-plasmonic-waveguides-couplers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Motamed-Jahromi">Leila Motamed-Jahromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Hatami"> Mohsen Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Keshavarz"> Alireza Keshavarz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As<sub>2</sub>S<sub>3</sub> chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title="nonlinear optics">nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20waveguide" title=" plasmonic waveguide"> plasmonic waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcogenide" title=" chalcogenide"> chalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20equation" title=" propagation equation"> propagation equation</a> </p> <a href="https://publications.waset.org/abstracts/52758/equations-of-pulse-propagation-in-three-layer-structure-of-as2s3-chalcogenide-plasmonic-nano-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Thermal Effect on Wave Interaction in Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thierry"> V. Thierry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependency" title=" temperature dependency"> temperature dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion%20characteristics" title=" wave dispersion characteristics"> wave dispersion characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20finite%20element" title=" wave finite element"> wave finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20scattering%20properties" title=" wave scattering properties"> wave scattering properties</a> </p> <a href="https://publications.waset.org/abstracts/58484/thermal-effect-on-wave-interaction-in-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Planar Plasmonic Terahertz Waveguides for Sensor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maidul%20Islam">Maidul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Roy%20Chowdhury"> Dibakar Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Kumar"> Gagan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title="plasmonics">plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-wavelength%20structures" title=" sub-wavelength structures"> sub-wavelength structures</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a> </p> <a href="https://publications.waset.org/abstracts/78757/planar-plasmonic-terahertz-waveguides-for-sensor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Wave Interaction with Defects in Pressurized Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thierry"> V. Thierry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element" title="Finite Element">Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Prestressed%20Structures" title=" Prestressed Structures"> Prestressed Structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Finite%20Element" title="Wave Finite Element">Wave Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Propagation%20Properties" title=" Wave Propagation Properties"> Wave Propagation Properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Scattering%20Coefficients." title=" Wave Scattering Coefficients."> Wave Scattering Coefficients.</a> </p> <a href="https://publications.waset.org/abstracts/58482/wave-interaction-with-defects-in-pressurized-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Veremey">Vladimir Veremey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H<sub>00</sub> mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20arrays" title=" antenna arrays"> antenna arrays</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple-Input-Multiple-Output%20%28MIMO%29" title=" Multiple-Input-Multiple-Output (MIMO)"> Multiple-Input-Multiple-Output (MIMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20bands" title=" millimeter wave bands"> millimeter wave bands</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title=" slot antenna"> slot antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=flush%20installation" title=" flush installation"> flush installation</a>, <a href="https://publications.waset.org/abstracts/search?q=directivity" title=" directivity"> directivity</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20waveguide" title=" open waveguide"> open waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20antennas" title=" conformal antennas"> conformal antennas</a> </p> <a href="https://publications.waset.org/abstracts/97097/analysis-and-design-of-dual-polarization-antennas-for-wireless-communication-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20S.%20Perin">Anton S. Perin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20M.%20Shandarov"> Vladimir M. Shandarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-action" title="self-action">self-action</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobate" title=" lithium niobate"> lithium niobate</a>, <a href="https://publications.waset.org/abstracts/search?q=piroliton" title=" piroliton"> piroliton</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20effect" title=" photorefractive effect"> photorefractive effect</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroelectric%20effect" title=" pyroelectric effect"> pyroelectric effect</a> </p> <a href="https://publications.waset.org/abstracts/89331/self-action-of-pyroelectric-spatial-soliton-in-undoped-lithium-niobate-samples-with-pyroelectric-mechanism-of-nonlinear-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Marini">Dimitra Marini</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Bakogiannis"> Konstantinos Bakogiannis</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyros%20Polychronopoulos"> Spyros Polychronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Kouroupetroglou"> Georgios Kouroupetroglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeomusicology" title="archaeomusicology">archaeomusicology</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20waveguides" title=" digital waveguides"> digital waveguides</a>, <a href="https://publications.waset.org/abstracts/search?q=musical%20acoustics" title=" musical acoustics"> musical acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/132330/physical-modeling-of-woodwind-ancient-greek-musical-instruments-the-case-of-plagiaulos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Study of Waveguide Silica Glasses by Raman Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelmounim%20Bakkali">Mohamed Abdelmounim Bakkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Mataouy"> Mustapha El Mataouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abellatif%20Aaliti"> Abellatif Aaliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Khaddor"> Mouhamed Khaddor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title="optical amplifiers">optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-bridging%20oxygen" title=" non-bridging oxygen"> non-bridging oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=erbium" title=" erbium"> erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-hafnia" title=" silica-hafnia"> silica-hafnia</a> </p> <a href="https://publications.waset.org/abstracts/60116/study-of-waveguide-silica-glasses-by-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Akta%C5%9F">Ömer Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Suvorova"> Olga A. Suvorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Tretyakov"> Oleg Tretyakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20regularization%20method" title="analytical regularization method">analytical regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20theory%20evolutionary%20equations%20of%20time-domain" title=" electromagnetic theory evolutionary equations of time-domain"> electromagnetic theory evolutionary equations of time-domain</a>, <a href="https://publications.waset.org/abstracts/search?q=TM%20Field" title=" TM Field"> TM Field</a> </p> <a href="https://publications.waset.org/abstracts/44904/analysis-and-simulation-of-tm-fields-in-waveguides-with-arbitrary-cross-section-shapes-by-means-of-evolutionary-equations-of-time-domain-electromagnetic-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ghazaryan">K. B. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ghazaryan"> R. A. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20waves" title="shear elastic waves">shear elastic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20anisotropic%20media" title=" monoclinic anisotropic media"> monoclinic anisotropic media</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structure" title=" periodic structure"> periodic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20multilayer%20laminae" title=" disordered multilayer laminae"> disordered multilayer laminae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layered%20waveguide" title=" multi-layered waveguide"> multi-layered waveguide</a> </p> <a href="https://publications.waset.org/abstracts/48365/shear-elastic-waves-in-disordered-anisotropic-multi-layered-periodic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for a Microwave Conveyor-Belt Drier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Hyeon%20Bae">Sang-Hyeon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Yeon%20Kim"> Sung-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gyo%20Jeong"> Min-Gyo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Hong%20Kim"> Ji-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Sang%20Lee"> Wang-Sang Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional heating methods such as electric ovens or steam heating are slow and not very efficient. For continuously heating the objects, a microwave conveyor-belt drier is widely used in the industrial microwave heating systems. However, there is a problem in which electromagnetic wave leaks toward outside of the heating cavity through the insertion opening. To achieve the prevention of the leakage of microwaves and improved heating characteristics, the corrugated rectangular waveguide at the entrance and exit openings of a microwave conveyor-belt drier is proposed and its electromagnetic interference (EMI) shielding effectiveness is analyzed and verified. The corrugated waveguides in the proposed microwave heating system achieve at least 20 dB shielding effectiveness while ensuring a sufficient height of the openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated" title="corrugated">corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave" title=" electromagnetic wave"> electromagnetic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20conveyor-belt%20drier" title=" microwave conveyor-belt drier"> microwave conveyor-belt drier</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20waveguide" title=" rectangular waveguide"> rectangular waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effectiveness" title=" shielding effectiveness"> shielding effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/62070/electromagnetic-interference-shielding-effectiveness-of-a-corrugated-rectangular-waveguide-for-a-microwave-conveyor-belt-drier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of all-silicon Raman lasers for an output wavelength of 1.3 &mu;m is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-&mu;m laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-&mu;m III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 &mu;m (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 &mu;m)2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=All-Silicon%20Raman%20Laser" title="All-Silicon Raman Laser">All-Silicon Raman Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=FTTH" title=" FTTH"> FTTH</a>, <a href="https://publications.waset.org/abstracts/search?q=GE-PON" title=" GE-PON"> GE-PON</a>, <a href="https://publications.waset.org/abstracts/search?q=Quasi-Phase-Matched%20Structure" title=" Quasi-Phase-Matched Structure"> Quasi-Phase-Matched Structure</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator" title=" resonator"> resonator</a> </p> <a href="https://publications.waset.org/abstracts/63334/all-silicon-raman-laser-with-quasi-phase-matched-structures-and-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagaraju%20Pendam">Nagaraju Pendam</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Vardhani"> C. P. Vardhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation%20method" title="beam propagation method">beam propagation method</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion%20loss" title=" insertion loss"> insertion loss</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20power%20splitter" title=" optical power splitter"> optical power splitter</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20waveguide" title=" rib waveguide"> rib waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=transmitted%20power" title=" transmitted power"> transmitted power</a> </p> <a href="https://publications.waset.org/abstracts/16984/compact-low-loss-design-of-soi-1x2-y-branch-optical-power-splitter-with-s-bend-waveguide-and-study-on-the-variation-of-transmitted-power-with-various-waveguide-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Polarization of Glass with Positive and Negative Charge Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20V.%20Zhurikhina">Valentina V. Zhurikhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20I.%20Petrov"> Mihail I. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20A.%20Rtischeva"> Alexandra A. Rtischeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Dussauze"> Mark Dussauze</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Cardinal"> Thierry Cardinal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Lipovskii"> Andrey A. Lipovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20poling" title="glass poling">glass poling</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20transport" title=" charge transport"> charge transport</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20profiles" title=" concentration profiles"> concentration profiles</a> </p> <a href="https://publications.waset.org/abstracts/67507/polarization-of-glass-with-positive-and-negative-charge-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Design of Reconfigurable and Non-reciprocal Metasurface with Independent Controls of Transmission Gain, Attenuation and Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi%20Yu%20Wang">Shi Yu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Wei%20Zhang"> Qian Wei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Li"> He Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Han%20He"> Hao Han He</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Bo%20Li"> Yun Bo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial controls of electromagnetic (EM) waves have always been a research hot spot in recent years. And the rapid development of metasurface-based technologies has provided more freedoms for manipulating the EM waves. Here we propose the design of reconfigurable and non-reciprocal metasurface with independent controls of transmission gain, attenuation and phase. The proposed meta-atom mainly consists of the cascaded textures including the receiving antenna, the middle layer in which the power amplifiers (PAs), programmable attenuator and phase shifter locate, and the transmitting antenna. The programmable attenuator and phase shifter can realize the dynamic controls of transmission amplitude and phase independently, and the PA devices in the meta-atom can actualize the performance of non-reciprocal transmission. The proposed meta-atom is analyzed applying field-circuit co-simulation and a sample of the meta-atom is fabricated and measured under using two standard waveguides. The measured results verify the ability of the independent manipulation for transmission amplitude and phase of the proposed the meta-atom and the design method has been verified very well correspondingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20circuits" title="active circuits">active circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20controls%20of%20multiple%20electromagnetic%20features" title=" independent controls of multiple electromagnetic features"> independent controls of multiple electromagnetic features</a>, <a href="https://publications.waset.org/abstracts/search?q=non-reciprocal%20electromagnetic%20transmission" title=" non-reciprocal electromagnetic transmission"> non-reciprocal electromagnetic transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20and%20programmable" title=" reconfigurable and programmable"> reconfigurable and programmable</a> </p> <a href="https://publications.waset.org/abstracts/162275/design-of-reconfigurable-and-non-reciprocal-metasurface-with-independent-controls-of-transmission-gain-attenuation-and-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishu%20Gupta">Mishu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Gupta"> Rama Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-E-Bose-Einstein" title="B-E-Bose-Einstein">B-E-Bose-Einstein</a>, <a href="https://publications.waset.org/abstracts/search?q=DNLSE-Discrete%20non%20linear%20schrodinger%20equation" title=" DNLSE-Discrete non linear schrodinger equation"> DNLSE-Discrete non linear schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=NLSE-non%20linear%20schrodinger%20equation" title=" NLSE-non linear schrodinger equation"> NLSE-non linear schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=SDNLSE%20-%20saturable%20discrete%20non%20linear%20Schrodinger%20equation" title=" SDNLSE - saturable discrete non linear Schrodinger equation"> SDNLSE - saturable discrete non linear Schrodinger equation</a> </p> <a href="https://publications.waset.org/abstracts/121074/analytical-solution-of-non-autonomous-discrete-non-linear-schrodinger-equation-with-saturable-non-linearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Beam Expansion Method, A Simplified and Efficient Approach of Field Propagation and Resonators Modes Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaia%20Derrar%20Kaddour">Zaia Derrar Kaddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of a beam throughout an optical path is generally achieved by means of diffraction integral. Unfortunately, in some problems, this tool turns out to be not very friendly and hard to implement. Instead, the beam expansion method for computing field profiles appears to be an interesting alternative. The beam expansion method consists of expanding the field pattern as a series expansion in a set of orthogonal functions. Propagating each individual component through a circuit and adding up the derived elements leads easily to the result. The problem is then reduced to finding how the expansion coefficients change in a circuit. The beam expansion method requires a systematic study of each type of optical element that can be met in the considered optical path. In this work, we analyze the following fundamental elements: first order optical systems, hard apertures and waveguides. We show that the former element type is completely defined thanks to the Gouy phase shift expression we provide and the latters require a suitable mode conversion. For endorsing the usefulness and relevance of the beam expansion approach, we show here some of its applications such as the treatment of the thermal lens effect and the study of unstable resonators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gouy%20phase%20shift" title="gouy phase shift">gouy phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=modes" title=" modes"> modes</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20resonators" title=" optical resonators"> optical resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=unstable%20resonators" title=" unstable resonators"> unstable resonators</a> </p> <a href="https://publications.waset.org/abstracts/181610/the-beam-expansion-method-a-simplified-and-efficient-approach-of-field-propagation-and-resonators-modes-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhao">Yu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainer%20Gruenheid"> Rainer Gruenheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Bauch"> Gerhard Bauch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bandpass%20channel" title="bandpass channel">bandpass channel</a>, <a href="https://publications.waset.org/abstracts/search?q=eye-opening" title=" eye-opening"> eye-opening</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20frequency" title=" switching frequency"> switching frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate-integrated%20waveguide" title=" substrate-integrated waveguide"> substrate-integrated waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20shaping%20scheme" title=" spectrum shaping scheme"> spectrum shaping scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20reshaping%20code" title=" spread reshaping code"> spread reshaping code</a> </p> <a href="https://publications.waset.org/abstracts/97740/an-energy-efficient-spectrum-shaping-scheme-for-substrate-integrated-waveguides-based-on-spread-reshaping-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Dropiewski">Katherine Dropiewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Yakimov"> Michael Yakimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadim%20Tokranov"> Vadim Tokranov</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20Minns"> Allan Minns</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Murat"> Pavel Murat</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Oktyabrsky"> Serge Oktyabrsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaAs" title="GaAs">GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs" title=" InAs"> InAs</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20beam%20epitaxy" title=" molecular beam epitaxy"> molecular beam epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=III-V%20semiconductor" title=" III-V semiconductor"> III-V semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/94371/waveguiding-in-an-inas-quantum-dots-nanomaterial-for-scintillation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10