CINXE.COM
Search results for: quantum dots
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quantum dots</title> <meta name="description" content="Search results for: quantum dots"> <meta name="keywords" content="quantum dots"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantum dots" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantum dots"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 619</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantum dots</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengyu%20Yan">Zhengyu Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Yu"> Yan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqiu%20Chen"> Jianqiu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdS%20quantum%20dots" title="CdS quantum dots">CdS quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a> </p> <a href="https://publications.waset.org/abstracts/10172/cds-quantum-dots-as-fluorescent-probes-for-detection-of-naphthalene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Quantum Dots with Microwave Propagation in Future Quantum Internet Protocol for Mobile Telephony</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20R.%20Hazarika">A. B. R. Hazarika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, Quantum dots of ZnS are used to study the faster microwave propagation in space and on earth which will be difficult to bypass as quantum key encryption-decryption is difficult to decode. The present study deals with Quantum internet protocol which is much faster, safer and secure in microwave propagation than the present Internet Protocol v6, which forms the aspect of our study. Assimilation of hardware, Quantum dots with Quantum protocol theory beautifies the aspect of the study. So far to author’s best knowledge, the study on mobile telephony with Quantum dots long-term evolution (QDLTE) has not been studied earlier, which forms the aspect of the study found that the Bitrate comes out to be 102.4 Gbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encryption" title="encryption">encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20protocol" title=" internet protocol"> internet protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20telephony" title=" mobile telephony"> mobile telephony</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20key%20encryption" title=" quantum key encryption"> quantum key encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/89901/quantum-dots-with-microwave-propagation-in-future-quantum-internet-protocol-for-mobile-telephony" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> InP/ZnS Core-Shell and InP/ZnS/ZnS Core-Multishell Quantum Dots for Improved luminescence Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Harabi">Imen Harabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanae%20Toura"> Hanae Toura</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20Jemai"> Safa Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernabe%20Mari%20Soucase"> Bernabe Mari Soucase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A promising alternative to traditional Quantum Dots QD materials, which contain toxic heavy elements such as lead and cadmium, sheds light on indium phosphide quantum dots (InP QDs) Owing to improve the quantum yields of photoluminescence and other properties. InP, InP/ZnS core/shell and InP/ZnS/ZnS core/shell/shell Quantum Dots (QDs) were synthetized by the hot injection method. The optical and structural properties of the core InP QDs, InP/ZnS QDs, and InP/ZnS/ZnS QDs have being considered by several techniques such as X-ray diffraction, transmission electron microscopy, optical spectroscopy, and photoluminescence. The average diameter of InP, InP/ZnS, and InP/ZnS/ZnS Quantum Dots (QDs) was varying between 10 nm, 5.4 nm, and 4.10 nm. This experience revealed that the surface morphology of the Quantum Dots has a more regular spherical form with color variation of the QDs in solution. The emission peak of colloidal InP Quantum Dots was around 530 nm, while in InP/ZnS, the emission peak is displayed and located at 598 nm. whilst for InP/ZnS/ZnS is placed at 610 nm. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. Add the XRD information FWHM of the principal peak of InP QDs was 63 nm, while for InP/ZnS was 41 nm and InP/ZnS/ZnS was 33 nm. The effect of the Zinc stearate precursor concentration on the optical, structural, surface chemical of InP and InP/ZnS and InP/ZnS/ZnS QDs will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indium%20phosphide" title="indium phosphide">indium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=multishell" title=" multishell"> multishell</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/145518/inpzns-core-shell-and-inpznszns-core-multishell-quantum-dots-for-improved-luminescence-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Hassan%20Ismail">Nour Hassan Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmonem%20Nassar"> Abdelmonem Nassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Baz"> Khaled Baz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper, new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title="quantum dots">quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particles" title=" nano-particles"> nano-particles</a>, <a href="https://publications.waset.org/abstracts/search?q=LSPR" title=" LSPR"> LSPR</a> </p> <a href="https://publications.waset.org/abstracts/21099/novel-design-of-quantum-dot-arrays-to-enhance-near-fields-excitation-resonances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20impurity" title="coulomb impurity">coulomb impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/43687/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Two-Photon Fluorescence in N-Doped Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi%20Man%20Luk">Chi Man Luk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Kiu%20Tsang"> Ming Kiu Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Fan%20Chan"> Chi Fan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Ping%20Lau">Shu Ping Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20doping" title=" nitrogen doping"> nitrogen doping</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=two-photon%20fluorescence" title=" two-photon fluorescence"> two-photon fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/16856/two-photon-fluorescence-in-n-doped-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nouri">Abdelkader Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99hamed%20Bouslama"> M’hamed Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Saidi"> Faouzi Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Maaref"> Hassan Maaref</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gendry"> Michel Gendry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs%20QDs" title=" InAs QDs"> InAs QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=PL" title=" PL"> PL</a>, <a href="https://publications.waset.org/abstracts/search?q=SSMBE" title=" SSMBE"> SSMBE</a> </p> <a href="https://publications.waset.org/abstracts/20670/size-distribution-effect-of-inasinp-self-organized-quantum-dots-on-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Paredes%20Guti%C3%A9rrez">H. Paredes Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20T.%20P%C3%A9rez-Merchancano"> S. T. Pérez-Merchancano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20semiconductors" title="quantum semiconductors">quantum semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20polarization" title=" spin polarization"> spin polarization</a> </p> <a href="https://publications.waset.org/abstracts/49796/behavior-of-current-in-a-semiconductor-nanostructure-under-influence-of-embedded-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebat%E2%80%91Allah%20S.%20Tohamy">Hebat‑Allah S. Tohamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%E2%80%91Sakhawy"> Mohamed El‑Sakhawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20quantum%20dots" title="carbon quantum dots">carbon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20yield" title=" quantum yield"> quantum yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title=" agricultural wastes"> agricultural wastes</a> </p> <a href="https://publications.waset.org/abstracts/157843/eco-friendly-synthesis-of-carbon-quantum-dots-as-an-effective-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohan%20Singh%20%20Mehata">Mohan Singh Mehata</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Ratnesh"> R. K. Ratnesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20quantum%20dots" title=" core-shell quantum dots"> core-shell quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20and%20lifetime" title=" photoluminescence and lifetime"> photoluminescence and lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20ability" title=" sensing ability"> sensing ability</a> </p> <a href="https://publications.waset.org/abstracts/56638/biocompatibility-and-sensing-ability-of-highly-luminescent-synthesized-core-shell-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Comparison of Pbs/Zns Quantum Dots Synthesis Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahbobeh%20Bozhmehrani">Mahbobeh Bozhmehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farah%20Bakhsh"> Afshin Farah Bakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles with PbS core of 12 nm and shell of approximately 3 nm were synthesized at PbS:ZnS ratios of 1.01:0.1 using Merca Ptopropionic Acid as stabilizing agent. PbS/ZnS nanoparticles present a dramatically increase of Photoluminescence intensity, confirming the confinement of the PbS core by increasing the Quantum Yield from 0.63 to 0.92 by the addition of the ZnS shell. In this case, the synthesis by microwave method allows obtaining nanoparticles with enhanced optical characteristics than those of nanoparticles synthesized by colloidal method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pbs%2FZns" title="Pbs/Zns">Pbs/Zns</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20method" title=" colloidal method"> colloidal method</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a> </p> <a href="https://publications.waset.org/abstracts/47653/comparison-of-pbszns-quantum-dots-synthesis-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Li">Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenglin%20Du"> Chenglin Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxin%20Ren"> Mengxin Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzheng%20Zhang"> Xinzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Cai"> Wei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjun%20Xu"> Jingjun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20mode" title="breathing mode">breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title=" plasmonics"> plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20coupling" title=" strong coupling"> strong coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/105253/ultrastrong-coupling-of-cdznszns-quantum-dots-and-breathing-plasmons-in-aluminum-metal-insulator-metal-nanocavities-in-near-ultraviolet-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> High Harmonics Generation in Hexagonal Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenuhi%20Ghazaryan">Armenuhi Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qnarik%20Poghosyan"> Qnarik Poghosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadevos%20Markosyan"> Tadevos Markosyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strong%20wave%20field" title="strong wave field">strong wave field</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphoton" title=" multiphoton"> multiphoton</a>, <a href="https://publications.waset.org/abstracts/search?q=bandgap" title=" bandgap"> bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20field%20strength" title=" wave field strength"> wave field strength</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/168632/high-harmonics-generation-in-hexagonal-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Electrical and Optical Properties of Polyaniline: Cadmium Sulphide Quantum Dots Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Rasool">Akhtar Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasneem%20Zahra%20Rizvi"> Tasneem Zahra Rizvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a series of the cadmium sulphide quantum dots/polyaniline nanocomposites with varying compositions were prepared by in-situ polymerization technique and were characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology was studied by scanning electron microscopy. UV-Visible spectroscopy was used to find out the energy band gap of the nanoparticles and the nanocomposites. Temperature dependence of DC electrical conductivity and temperature and frequency dependence of AC conductivity were investigated to study the charge transport mechanism in the nanocomposites. DC conductivity was found to be a typical for a semiconducting behavior following Mott’s 1D variable range hoping model. The frequency dependent AC conductivity followed the universal power law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymers" title="conducting polymers">conducting polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%20composites" title=" polyaniline composites"> polyaniline composites</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/78400/electrical-and-optical-properties-of-polyaniline-cadmium-sulphide-quantum-dots-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Shape Evolution of CdSe Quantum Dots during the Synthesis in the Presence of Silver Halides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Kotin">Pavel Kotin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Dotofeev"> Sergey Dotofeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniil%20Kozlov"> Daniil Kozlov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Garshev"> Alexey Garshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose the investigation of CdSe quantum dots which were synthesized in the presence of silver halides. To understand a process of nanoparticle formation in more detail, we varied the silver halide amount in the synthesis and proposed a sampling during colloidal growth. The attempts were focused on the investigation of shape, structure and optical properties of nanoparticles. We used the colloidal method of synthesis. Cadmium oleate, tri-n-octylphosphine selenide (TOPSe) and AgHal in TOP were precursors of cadmium, selenium and silver halides correspondingly. The molar Ag/Cd ratio in synthesis was varied from 1/16 to 1/1. The sampling was basically realized in 20 sec, 5 min, and 30 min after the beginning of quantum dots nucleation. To investigate nanoparticles we used transmission electron microscopy (including high resolution one), X-ray diffraction, and optical spectroscopy. It was established that silver halides lead to obtaining tetrapods with different leg length and large ellipsoidal nanoparticles possessing an intensive near IR photoluminescence. The change of the amount of silver halide in synthesis and the selection of an optimal growth time allows controlling the shape and the share of tetrapods or ellipsoidal nanoparticles in the product. Our main attempts were focused on a detailed investigation of the quantum dots structure and shape evolution and, finally, on mechanisms of such nanoparticle formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloidal%20quantum%20dots" title="colloidal quantum dots">colloidal quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20evolution" title=" shape evolution"> shape evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20doping" title=" silver doping"> silver doping</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrapods" title=" tetrapods"> tetrapods</a> </p> <a href="https://publications.waset.org/abstracts/75942/shape-evolution-of-cdse-quantum-dots-during-the-synthesis-in-the-presence-of-silver-halides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar">Rajendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title="quantum dots">quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=S-QD-S%20junction" title=" S-QD-S junction"> S-QD-S junction</a>, <a href="https://publications.waset.org/abstracts/search?q=BCS%20superconductors" title=" BCS superconductors"> BCS superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20model" title=" Anderson model"> Anderson model</a> </p> <a href="https://publications.waset.org/abstracts/3977/electronic-spectral-function-of-double-quantum-dots-superconductors-nanoscopic-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> In situ One-Step Synthesis of Graphene Quantum Dots-Metal Free and Zinc Phthalocyanines Conjugates: Investigation of Photophysicochemical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Fomo">G. Fomo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20J.%20Achadu"> O. J. Achadu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nyokong"> T. Nyokong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoconjugates of graphene quantum dots (GQDs) and 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyanine (H₂Pc(OPyF₃)₄) or 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyaninato) zinc (II) (ZnPc(OPyF₃)₄) were synthesized via a novel in situ one-step route. The bottom-up approach for the prepared conjugates could ensure the intercalation of the phthalocyanines (Pcs) directly onto the edges or surface of the GQDs and or non-covalent coordination using the π-electron systems of both materials. The as-synthesized GQDs and their Pcs conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. The singlet oxygen quantum yields of the Pcs in the presence of GQDs were enhanced due to Förster resonance energy transfer (FRET) occurrence within the conjugated hybrids. Hence, these nanoconjugates are potential materials for photodynamic therapy (PDT) and photocatalysis applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20free%20fluorinated%20phthalocyanine" title=" metal free fluorinated phthalocyanine"> metal free fluorinated phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20fluorinated%20phthalocyanine" title=" zinc fluorinated phthalocyanine"> zinc fluorinated phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=photophysicochemical%20properties" title=" photophysicochemical properties "> photophysicochemical properties </a> </p> <a href="https://publications.waset.org/abstracts/73210/in-situ-one-step-synthesis-of-graphene-quantum-dots-metal-free-and-zinc-phthalocyanines-conjugates-investigation-of-photophysicochemical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Eric">Deborah Eric</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ahmad%20Khan"> Abbas Ahmad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite" title="perovskite">perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20bandgap" title=" intermediate bandgap"> intermediate bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=miniband%20formation" title=" miniband formation"> miniband formation</a> </p> <a href="https://publications.waset.org/abstracts/142302/bandgap-engineering-of-csmapbi3-xbrx-quantum-dots-for-intermediate-band-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erhan%20Zor">Erhan Zor</a>, <a href="https://publications.waset.org/abstracts/search?q=Funda%20Copur"> Funda Copur</a>, <a href="https://publications.waset.org/abstracts/search?q=Asli%20I.%20Dogan"> Asli I. Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Bingol"> Haluk Bingol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20quantum%20dots" title="carbon quantum dots">carbon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=chirality" title=" chirality"> chirality</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=tartaric%20acid" title=" tartaric acid"> tartaric acid</a> </p> <a href="https://publications.waset.org/abstracts/52635/chiral-carbon-quantum-dots-for-paper-based-photoluminescent-sensing-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Mostafavi">Mehrnaz Mostafavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite%20nanocrystals" title="perovskite nanocrystals">perovskite nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20technologies" title=" photovoltaic technologies"> photovoltaic technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=light-harvesting" title=" light-harvesting"> light-harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20conversion" title=" solar energy conversion"> solar energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20designs" title=" device designs"> device designs</a> </p> <a href="https://publications.waset.org/abstracts/179215/perovskite-nanocrystals-and-quantum-dots-advancements-in-light-harvesting-capabilities-for-photovoltaic-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20R.%20Horrocks"> Ben R. Horrocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20quantum%20dots" title="silicon quantum dots">silicon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles%20%28AgNPs%29" title=" silver nanoparticles (AgNPs)"> silver nanoparticles (AgNPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a> </p> <a href="https://publications.waset.org/abstracts/34663/enhancing-the-luminescence-of-alkyl-capped-silicon-quantum-dots-by-using-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Perikala">Manasa Perikala</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Bhardwaj"> Asha Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effects%20on%20emission%20in%20CDs" title=" size effects on emission in CDs"> size effects on emission in CDs</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification%20of%20carbon%20dots" title=" surface modification of carbon dots"> surface modification of carbon dots</a> </p> <a href="https://publications.waset.org/abstracts/116515/white-light-emitting-carbon-dots-surface-modification-of-carbon-dots-using-auxochromes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradthana%20Sianglam">Pradthana Sianglam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wittaya%20Ngeontae"> Wittaya Ngeontae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20dichroism%20sensor" title="circular dichroism sensor">circular dichroism sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=enaniomer" title=" enaniomer"> enaniomer</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20generation" title=" in-situ generation"> in-situ generation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title=" chemical sensor"> chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ion" title=" heavy metal ion"> heavy metal ion</a> </p> <a href="https://publications.waset.org/abstracts/48121/selective-circular-dichroism-sensor-based-on-the-generation-of-quantum-dots-for-cadmium-ion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdem%20Elibol">Erdem Elibol</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Cad%C4%B1rc%C4%B1"> Musa Cadırcı</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedim%20Tutkun"> Nedim Tutkun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, colloidal quantum dots (CQDs) have drawn increasing attention due to their unique size tunability, which makes them potential candidates for numerous applications including photovoltaic, LEDs, and imaging. However, the main challenge to exploit CQDs properly is that there has not been an effective method to produce them with highly crystalline form and narrow size dispersion. Hot injection method is one of the widely used techniques to produce high-quality nanoparticles. In this method, the key parameter is to reduce the time for injection of the precursors into each other, which yields fast and constant nucleation rate and hence to highly monodisperse QDs. In conventional hot injection method, the injection of precursors is carried out using standard lab syringes with long needles. However, this technique is relatively slow and thus will result in poor optical properties in QDs. In this work, highly luminescent CdTe QDs were synthesised by transferring hot precursors into each other using cannula method. Unlike regular syringe technique, with the help of high pressure difference between two precursors’ flasks and wide cross-section of cannula, the hot cannulation process is too short which yields narrow size distribution and high quantum yield of CdTe QDs. Here QDs with full width half maximum (FWHM) of 28 nm was achieved. In addition, the photoluminescence quantum yield of our samples was measured to be about 21 ± 0.9 which is at least twice the previous record values for CdTe QDs wherein syringe was used to transfer precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdTe" title="CdTe">CdTe</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20injection%20method" title=" hot injection method"> hot injection method</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescent" title=" luminescent"> luminescent</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/72859/synthesising-highly-luminescent-cdte-quantum-dots-using-cannula-hot-injection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Nano-Sensors: Search for New Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Filikhin">I. Filikhin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vlahovic"> B. Vlahovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20quantum%20dots" title="double quantum dots">double quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20electron%20levels" title=" single electron levels"> single electron levels</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20localizations" title=" electron localizations"> electron localizations</a> </p> <a href="https://publications.waset.org/abstracts/24024/nano-sensors-search-for-new-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Structural and Magnetic Properties of Undoped and Ni Doped CdZnS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabit%20Horoz">Sabit Horoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Ekicibil"> Ahmet Ekicibil</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Sahin"> Omer Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akyol"> M. Akyol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, CdZnS and Ni-doped CdZnS quantum dots(QDs) were prepared by the wet-chemical method at room temperature using mercaptoethanol as a capping agent. The structural and magnetic properties of the CdZnS and CdZnS doped with different concentrations of Ni QDs were examined by XRD and magnetic susceptibility measurements, respectively. The average particles size of cubic QDs obtained by full-width half maxima (FWHM) analysis, increases with increasing doping concentrations. The investigation of the magnetic properties showed that the Ni-doped samples exhibit signs of ferromagnetism, on the other hand, un-doped CdZnS is diamagnetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=un-doped%20and%20Ni%20doped%20CdZnS%20Quantum%20Dots%20%28QDs%29" title="un-doped and Ni doped CdZnS Quantum Dots (QDs)">un-doped and Ni doped CdZnS Quantum Dots (QDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation%20method" title=" co-precipitation method"> co-precipitation method</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20optical%20properties%20of%20QDs" title=" structural and optical properties of QDs"> structural and optical properties of QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductor%20materials%20%28DMSMs%29" title=" diluted magnetic semiconductor materials (DMSMs)"> diluted magnetic semiconductor materials (DMSMs)</a> </p> <a href="https://publications.waset.org/abstracts/55093/structural-and-magnetic-properties-of-undoped-and-ni-doped-cdzns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Giripunje">S. M. Giripunje</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Jindal"> Shikha Jindal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 10<sup>4</sup> times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=heterojunction" title=" heterojunction"> heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20confinement%20effect" title=" quantum confinement effect"> quantum confinement effect</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots%28QDs%29" title=" quantum dots(QDs)"> quantum dots(QDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20sulphide%28ZnS%29" title=" zinc sulphide(ZnS)"> zinc sulphide(ZnS)</a> </p> <a href="https://publications.waset.org/abstracts/77200/zns-and-graphene-quantum-dots-nanocomposite-as-potential-electron-acceptor-for-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quan%20Li">Quan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongcai%20Shen"> Dongcai Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengting%20Xiao"> Zhengting Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Liu%20Mingrui%20Wu"> Xin Liu Mingrui Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Licheng%20Liu"> Licheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Li"> Qin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianguo%20Li"> Xianguo Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Wang"> Wentai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic%20N%E2%82%82%20oxidation" title="electrocatalytic N₂ oxidation">electrocatalytic N₂ oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20production" title=" nitrate production"> nitrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=CeO%E2%82%82" title=" CeO₂"> CeO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=MXene%20quantum%20dots" title=" MXene quantum dots"> MXene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=double-shelled%20hollow%20spheres" title=" double-shelled hollow spheres"> double-shelled hollow spheres</a> </p> <a href="https://publications.waset.org/abstracts/185272/mxene-quantum-dots-decorated-double-shelled-ceo2-hollow-spheres-for-efficient-electrocatalytic-nitrogen-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Quantum Dot Biosensing for Advancing Precision Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourav%20Sarkar">Sourav Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashjit%20Gogoi"> Manashjit Gogoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title="quantum dots">quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=device" title=" device"> device</a> </p> <a href="https://publications.waset.org/abstracts/179627/quantum-dot-biosensing-for-advancing-precision-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Huwayz">M. Al Huwayz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salhi"> A. Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alhassan"> S. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alotaibi"> S. Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Almalki"> A. Almalki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Almunyif"> M.Almunyif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhassni"> A. Alhassni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Henini"> M. Henini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots%20laser%20structures" title="quantum dots laser structures">quantum dots laser structures</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=DLTS" title=" DLTS"> DLTS</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=nAs%2FIngaAs" title=" nAs/IngaAs"> nAs/IngaAs</a> </p> <a href="https://publications.waset.org/abstracts/141942/investigation-of-the-effects-of-gamma-radiation-on-the-electrically-active-defects-in-inasingaas-quantum-dots-laser-structures-grown-by-molecular-beam-epitaxy-on-gaas-substrates-using-deep-level-transient-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20dots&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>