CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;46 of 46 results for author: <span class="mathjax">Barton, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Barton, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Barton%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Barton, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11951">arXiv:2304.11951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.11951">pdf</a>, <a href="https://arxiv.org/format/2304.11951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A cell-centred Eulerian volume-of-fluid method for compressible multi-material flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Law%2C+T+R">Timothy R. Law</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Philip T. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11951v1-abstract-short" style="display: inline;"> We present a practical cell-centred volume-of-fluid method developed within a pure Eulerian setting for the simulation of compressible solid-fluid problems. The method builds on a previously published diffuse-interface Godunov-type scheme through the addition of a specialised mixed-cell update that is capable of maintaining sharp interfaces indefinitely. The mixed-cell update is local and may be v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11951v1-abstract-full').style.display = 'inline'; document.getElementById('2304.11951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11951v1-abstract-full" style="display: none;"> We present a practical cell-centred volume-of-fluid method developed within a pure Eulerian setting for the simulation of compressible solid-fluid problems. The method builds on a previously published diffuse-interface Godunov-type scheme through the addition of a specialised mixed-cell update that is capable of maintaining sharp interfaces indefinitely. The mixed-cell update is local and may be viewed as an interface-sharpening extension to the underlying diffuse-interface scheme along the lines of other techniques such as Tangent of Hyperbola INterface Capturing (THINC), and hence the method can be straightforwardly extended to include other coupled physics. We validate the method on a range of challenging test problems including a collapsing metal shell, cylinder impacts and the three-dimensional simulation of a buried explosive charge. Finally we demonstrate the robustness of the method, and its use in a multi-physics context, by modelling the BRL 105mm unconfined shaped charge with reactive high-explosive burn and rate-sensitive plasticity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11951v1-abstract-full').style.display = 'none'; document.getElementById('2304.11951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 15 figures, submitted to Journal of Computational Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04037">arXiv:2210.04037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04037">pdf</a>, <a href="https://arxiv.org/format/2210.04037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A multi-physics method for fracture and fragmentation at high strain-rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wallis%2C+T">Tim Wallis</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Philip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Nikiforakis%2C+N">Nikolaos Nikiforakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04037v1-abstract-short" style="display: inline;"> This work outlines a diffuse interface method for the study of fracture and fragmentation in ductile metals at high strain-rates in Eulerian finite volume simulations. The work is based on an existing diffuse interface method capable of simulating a broad range of different multi-physics applications, including multi-material interaction, damage and void opening. The work at hand extends this meth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04037v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04037v1-abstract-full" style="display: none;"> This work outlines a diffuse interface method for the study of fracture and fragmentation in ductile metals at high strain-rates in Eulerian finite volume simulations. The work is based on an existing diffuse interface method capable of simulating a broad range of different multi-physics applications, including multi-material interaction, damage and void opening. The work at hand extends this method with a technique to model realistic material inhomogeneities, and examines the performance of the method on a selection of challenging problems. Material inhomogeneities are included by evolving a scalar field that perturbs a material&#39;s plastic yield stress. This perturbation results in non-uniform fragments with a measurable statistical distribution, allowing for underlying defects in a material to be modelled. As the underlying numerical scheme is three dimensional, parallelisable and multi-physics-capable, the scheme can be tested on a range of strenuous problems. These problems especially include a three-dimensional explosively driven fracture study, with an explicitly resolved condensed phase explosive. The new scheme compares well with both experiment and previous numerical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04037v1-abstract-full').style.display = 'none'; document.getElementById('2210.04037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11285">arXiv:2209.11285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11285">pdf</a>, <a href="https://arxiv.org/format/2209.11285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.024116">10.1103/PhysRevE.107.024116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> B茅zier interpolation improves the inference of dynamical models from data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shimagaki%2C+K">Kai Shimagaki</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">John P. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11285v2-abstract-short" style="display: inline;"> Many dynamical systems, from quantum many-body systems to evolving populations to financial markets, are described by stochastic processes. Parameters characterizing such processes can often be inferred using information integrated over stochastic paths. However, estimating time-integrated quantities from real data with limited time resolution is challenging. Here, we propose a framework for accur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11285v2-abstract-full').style.display = 'inline'; document.getElementById('2209.11285v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11285v2-abstract-full" style="display: none;"> Many dynamical systems, from quantum many-body systems to evolving populations to financial markets, are described by stochastic processes. Parameters characterizing such processes can often be inferred using information integrated over stochastic paths. However, estimating time-integrated quantities from real data with limited time resolution is challenging. Here, we propose a framework for accurately estimating time-integrated quantities using B茅zier interpolation. We applied our approach to two dynamical inference problems: determining fitness parameters for evolving populations and inferring forces driving Ornstein-Uhlenbeck processes. We found that B茅zier interpolation reduces the estimation bias for both dynamical inference problems. This improvement was especially noticeable for data sets with limited time resolution. Our method could be broadly applied to improve accuracy for other dynamical inference problems using finitely sampled data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11285v2-abstract-full').style.display = 'none'; document.getElementById('2209.11285v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07638">arXiv:2207.07638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07638">pdf</a>, <a href="https://arxiv.org/format/2207.07638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.062501">10.1103/PhysRevLett.130.062501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Result of the MAJORANA DEMONSTRATOR&#39;s Search for Neutrinoless Double-$尾$ Decay in $^{76}$Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Buuck%2C+M">M. Buuck</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+T+S">T. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Y-D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+M+L">M. L. Clark</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Giovanetti%2C+G+K">G. K. Giovanetti</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Gruszko%2C+J">J. Gruszko</a>, <a href="/search/?searchtype=author&amp;query=Guinn%2C+I+S">I. S. Guinn</a>, <a href="/search/?searchtype=author&amp;query=Guiseppe%2C+V+E">V. E. Guiseppe</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07638v2-abstract-short" style="display: inline;"> The MAJORANA DEMONSTRATOR searched for neutrinoless double-$尾$ decay ($0谓尾尾$) of $^{76}$Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.2 kg enriched to $\sim$88\% in $^{76}$Ge). From these measurements, the DEMONSTRATOR has accumulated 64.5 kg yr of enriched active exposure. With a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07638v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07638v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07638v2-abstract-full" style="display: none;"> The MAJORANA DEMONSTRATOR searched for neutrinoless double-$尾$ decay ($0谓尾尾$) of $^{76}$Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.2 kg enriched to $\sim$88\% in $^{76}$Ge). From these measurements, the DEMONSTRATOR has accumulated 64.5 kg yr of enriched active exposure. With a world-leading energy resolution of 2.52 keV FWHM at the 2039 keV $Q_{尾尾}$ (0.12\%), we set a half-life limit of $0谓尾尾$ in $^{76}$Ge at $T_{1/2}&gt;8.3\times10^{25}$ yr (90\% C.L.). This provides a range of upper limits on $m_{尾尾}$ of $(113-269)$ meV (90\% C.L.), depending on the choice of nuclear matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07638v2-abstract-full').style.display = 'none'; document.getElementById('2207.07638v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 062501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08024">arXiv:2203.08024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08024">pdf</a>, <a href="https://arxiv.org/format/2203.08024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 CMB-S4 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/?searchtype=author&amp;query=Abdulghafour%2C+A">Arwa Abdulghafour</a>, <a href="/search/?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/?searchtype=author&amp;query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/?searchtype=author&amp;query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/?searchtype=author&amp;query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/?searchtype=author&amp;query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/?searchtype=author&amp;query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/?searchtype=author&amp;query=Archipley%2C+M">Melanie Archipley</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Ashby%2C+M">Matt Ashby</a>, <a href="/search/?searchtype=author&amp;query=Aung%2C+H">Han Aung</a>, <a href="/search/?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/?searchtype=author&amp;query=Baker%2C+C">Carina Baker</a>, <a href="/search/?searchtype=author&amp;query=Bakshi%2C+A">Abhishek Bakshi</a>, <a href="/search/?searchtype=author&amp;query=Bard%2C+D">Debbie Bard</a>, <a href="/search/?searchtype=author&amp;query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/?searchtype=author&amp;query=Barron%2C+D">Darcy Barron</a>, <a href="/search/?searchtype=author&amp;query=Barry%2C+P+S">Peter S. Barry</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08024v1-abstract-short" style="display: inline;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08024v1-abstract-full" style="display: none;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08024v1-abstract-full').style.display = 'none'; document.getElementById('2203.08024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11806">arXiv:2111.11806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11806">pdf</a>, <a href="https://arxiv.org/format/2111.11806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0079970">10.1063/5.0079970 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A unified diffuse interface method for the interaction of rigid bodies with elastoplastic solids and multi-phase mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wallis%2C+T">Tim Wallis</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">Philip Barton</a>, <a href="/search/?searchtype=author&amp;query=Nikiforakis%2C+N">Nikolaos Nikiforakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11806v2-abstract-short" style="display: inline;"> This work outlines a new multi-physics-compatible immersed rigid body method for Eulerian finite-volume simulations. To achieve this, rigid bodies are represented as a diffuse scalar field and an interface seeding method is employed to mediate the interface boundary conditions. The method is based on an existing multi-material diffuse interface method that is capable of handling an arbitrary mixtu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11806v2-abstract-full').style.display = 'inline'; document.getElementById('2111.11806v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11806v2-abstract-full" style="display: none;"> This work outlines a new multi-physics-compatible immersed rigid body method for Eulerian finite-volume simulations. To achieve this, rigid bodies are represented as a diffuse scalar field and an interface seeding method is employed to mediate the interface boundary conditions. The method is based on an existing multi-material diffuse interface method that is capable of handling an arbitrary mixture of fluids and elastoplastic solids. The underlying method is general and can be extended to a range of different applications including high-strain rate deformation in elastoplastic solids and reactive fluid mixtures. As such, the new method presented here is thoroughly tested through a variety of problems, including fluid-rigid body interaction, elastoplastic-rigid body interaction, and detonation-structure interaction. Comparison is drawn between both experimental work and previous numerical results, with excellent agreement in both cases. The new method is straightforward to implement, highly local, and parallelisable. This allows the method to be employed in three dimensions with multiple levels of adaptive mesh refinement using complex immersed geometries. The rigid body field can be static or dynamic, with the THINC interface reconstruction method being used to keep the interface sharp in the dynamic case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11806v2-abstract-full').style.display = 'none'; document.getElementById('2111.11806v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 131, 104901 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09351">arXiv:2111.09351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09351">pdf</a>, <a href="https://arxiv.org/format/2111.09351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/05/T05003">10.1088/1748-0221/17/05/T05003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MAJORANA DEMONSTRATOR Readout Electronics System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Amman%2C+M">M. Amman</a>, <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bertrand%2C+F+E">F. E. Bertrand</a>, <a href="/search/?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Bradley%2C+A+W">A. W. Bradley</a>, <a href="/search/?searchtype=author&amp;query=Burritt%2C+T+H">T. H. Burritt</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Buuck%2C+M">M. Buuck</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+T+S">T. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Y-D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+M+L">M. L. Clark</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Drobizhev%2C+A">A. Drobizhev</a>, <a href="/search/?searchtype=author&amp;query=Edwins%2C+D+W">D. W. Edwins</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09351v2-abstract-short" style="display: inline;"> The MAJORANA DEMONSTRATOR comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76-Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper prov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09351v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09351v2-abstract-full" style="display: none;"> The MAJORANA DEMONSTRATOR comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76-Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the MAJORANA DEMONSTRATOR readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09351v2-abstract-full').style.display = 'none'; document.getElementById('2111.09351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For submission to JINST, 17 figures. v2: revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11546">arXiv:2110.11546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11546">pdf</a>, <a href="https://arxiv.org/format/2110.11546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Enhancing interval observers for state estimation using constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Harwood%2C+S+M">Stuart M. Harwood</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+I">Paul I. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11546v1-abstract-short" style="display: inline;"> This work considers the problem of calculating an interval-valued state estimate for a nonlinear system subject to bounded inputs and measurement errors. Such state estimators are often called interval observers. Interval observers can be constructed using methods from reachability theory. Recent advances in the construction of interval enclosures of reachable sets for nonlinear systems inspire th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11546v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11546v1-abstract-full" style="display: none;"> This work considers the problem of calculating an interval-valued state estimate for a nonlinear system subject to bounded inputs and measurement errors. Such state estimators are often called interval observers. Interval observers can be constructed using methods from reachability theory. Recent advances in the construction of interval enclosures of reachable sets for nonlinear systems inspire the present work. These advances can incorporate constraints on the states to produce tighter interval enclosures. When applied to the state estimation problem, bounded-error measurements may be used as state constraints in these new theories. The result is a method that is easily implementable and which generally produces better, tighter interval state estimates. Furthermore, a novel linear programming-based method is proposed for calculating the observer gain, which must be tuned in practice. In contrast with previous approaches, this method does not rely on special system structure. The new approaches are demonstrated with numerical examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11546v1-abstract-full').style.display = 'none'; document.getElementById('2110.11546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11462">arXiv:2107.11462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11462">pdf</a>, <a href="https://arxiv.org/format/2107.11462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> LEGEND-1000 Preconceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LEGEND+Collaboration"> LEGEND Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Abt%2C+I">I. Abt</a>, <a href="/search/?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+A">A. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Andreoiu%2C+C">C. Andreoiu</a>, <a href="/search/?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Bae%2C+W">W. Bae</a>, <a href="/search/?searchtype=author&amp;query=Bakalyarov%2C+A">A. Bakalyarov</a>, <a href="/search/?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/?searchtype=author&amp;query=Bantel%2C+M">M. Bantel</a>, <a href="/search/?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Bernieri%2C+E">E. Bernieri</a>, <a href="/search/?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a> , et al. (239 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11462v1-abstract-short" style="display: inline;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11462v1-abstract-full" style="display: none;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay $Q$ value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the $^{76}$Ge half-life of $1.3\times10^{28}$ years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'none'; document.getElementById('2107.11462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04080">arXiv:2107.04080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04080">pdf</a>, <a href="https://arxiv.org/format/2107.04080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-021-99588-z">10.1038/s41598-021-99588-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free-moving Quantitative Gamma-ray Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hellfeld%2C+D">Daniel Hellfeld</a>, <a href="/search/?searchtype=author&amp;query=Bandstra%2C+M+S">Mark S. Bandstra</a>, <a href="/search/?searchtype=author&amp;query=Vavrek%2C+J+R">Jayson R. Vavrek</a>, <a href="/search/?searchtype=author&amp;query=Gunter%2C+D+L">Donald L. Gunter</a>, <a href="/search/?searchtype=author&amp;query=Curtis%2C+J+C">Joseph C. Curtis</a>, <a href="/search/?searchtype=author&amp;query=Salathe%2C+M">Marco Salathe</a>, <a href="/search/?searchtype=author&amp;query=Pavlovsky%2C+R">Ryan Pavlovsky</a>, <a href="/search/?searchtype=author&amp;query=Negut%2C+V">Victor Negut</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">Paul J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Cates%2C+J+W">Joshua W. Cates</a>, <a href="/search/?searchtype=author&amp;query=Quiter%2C+B+J">Brian J. Quiter</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">Reynold J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Vetter%2C+K">Kai Vetter</a>, <a href="/search/?searchtype=author&amp;query=Joshi%2C+T+H+Y">Tenzing H. Y. Joshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04080v2-abstract-short" style="display: inline;"> The ability to map and estimate the activity of radiological source distributions in unknown three-dimensional environments has applications in the prevention and response to radiological accidents or threats as well as the enforcement and verification of international nuclear non-proliferation agreements. Such a capability requires well-characterized detector response functions, accurate time-dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04080v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04080v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04080v2-abstract-full" style="display: none;"> The ability to map and estimate the activity of radiological source distributions in unknown three-dimensional environments has applications in the prevention and response to radiological accidents or threats as well as the enforcement and verification of international nuclear non-proliferation agreements. Such a capability requires well-characterized detector response functions, accurate time-dependent detector position and orientation data, a digitized representation of the surrounding 3D environment, and appropriate image reconstruction and uncertainty quantification methods. We have previously demonstrated 3D mapping of gamma-ray emitters with free-moving detector systems on a relative intensity scale using a technique called Scene Data Fusion (SDF). Here we characterize the detector response of a multi-element gamma-ray imaging system using experimentally benchmarked Monte Carlo simulations and perform 3D mapping on an absolute intensity scale. We present experimental reconstruction results from hand-carried and airborne measurements with point-like and distributed sources in known configurations, demonstrating quantitative SDF in complex 3D environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04080v2-abstract-full').style.display = 'none'; document.getElementById('2107.04080v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 4 supplementary figures, published in Scientific Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports, 11, 20515 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11318">arXiv:2104.11318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11318">pdf</a>, <a href="https://arxiv.org/format/2104.11318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2021.3113588">10.1109/TNS.2021.3113588 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Gamma-Ray Point Source Quantification in Three Dimensions by Modeling Attenuation in the Scene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bandstra%2C+M+S">M. S. Bandstra</a>, <a href="/search/?searchtype=author&amp;query=Hellfeld%2C+D">D. Hellfeld</a>, <a href="/search/?searchtype=author&amp;query=Vavrek%2C+J+R">J. R. Vavrek</a>, <a href="/search/?searchtype=author&amp;query=Quiter%2C+B+J">B. J. Quiter</a>, <a href="/search/?searchtype=author&amp;query=Meehan%2C+K">K. Meehan</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Cates%2C+J+W">J. W. Cates</a>, <a href="/search/?searchtype=author&amp;query=Moran%2C+A">A. Moran</a>, <a href="/search/?searchtype=author&amp;query=Negut%2C+V">V. Negut</a>, <a href="/search/?searchtype=author&amp;query=Pavlovsky%2C+R">R. Pavlovsky</a>, <a href="/search/?searchtype=author&amp;query=Joshi%2C+T+H+Y">T. H. Y. Joshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11318v2-abstract-short" style="display: inline;"> Using a series of detector measurements taken at different locations to localize a source of radiation is a well-studied problem. The source of radiation is sometimes constrained to a single point-like source, in which case the location of the point source can be found using techniques such as maximum likelihood. Recent advancements have shown the ability to locate point sources in 2D and even 3D,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11318v2-abstract-full').style.display = 'inline'; document.getElementById('2104.11318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11318v2-abstract-full" style="display: none;"> Using a series of detector measurements taken at different locations to localize a source of radiation is a well-studied problem. The source of radiation is sometimes constrained to a single point-like source, in which case the location of the point source can be found using techniques such as maximum likelihood. Recent advancements have shown the ability to locate point sources in 2D and even 3D, but few have studied the effect of intervening material on the problem. In this work we examine gamma-ray data taken from a freely moving system and develop voxelized 3-D models of the scene using data from the onboard LiDAR. Ray casting is used to compute the distance each gamma ray travels through the scene material, which is then used to calculate attenuation assuming a single attenuation coefficient for solids within the geometry. Parameter estimation using maximum likelihood is performed to simultaneously find the attenuation coefficient, source activity, and source position that best match the data. Using a simulation, we validate the ability of this method to reconstruct the true location and activity of a source, along with the true attenuation coefficient of the structure it is inside, and then we apply the method to measured data with sources and find good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11318v2-abstract-full').style.display = 'none'; document.getElementById('2104.11318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, accepted for publication in IEEE Transactions on Nuclear Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01309">arXiv:2104.01309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01309">pdf</a>, <a href="https://arxiv.org/format/2104.01309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Tighter bounds on transient moments of stochastic chemical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Holtorf%2C+F">Flemming Holtorf</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+I">Paul I. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01309v2-abstract-short" style="display: inline;"> The use of approximate solution techniques for the Chemical Master Equation is common practice for the analysis of stochastic chemical systems. Despite their widespread use, however, many such techniques rely on unverifiable assumptions and only few provide mechanisms to control the approximation error quantitatively. Addressing this gap, Dowdy and Barton [The Journal of Chemical Physics, 149(7),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01309v2-abstract-full').style.display = 'inline'; document.getElementById('2104.01309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01309v2-abstract-full" style="display: none;"> The use of approximate solution techniques for the Chemical Master Equation is common practice for the analysis of stochastic chemical systems. Despite their widespread use, however, many such techniques rely on unverifiable assumptions and only few provide mechanisms to control the approximation error quantitatively. Addressing this gap, Dowdy and Barton [The Journal of Chemical Physics, 149(7), 074103 (2018)] proposed a method for the computation of guaranteed bounds on the moment trajectories associated with stochastic chemical systems described by the Chemical Master Equation, thereby providing a general framework for error quantification. Here, we present an extension of this method. The key contribution is a new hierarchy of convex necessary moment conditions crucially reflecting the temporal causality and other regularity conditions that are inherent to the moment trajectories associated with stochastic processes described by the Chemical Master Equation. Analogous to the original method, these conditions generate a hierarchy of semidefinite programs that furnishes monotonically improving bounds on the trajectories of the moments and related statistics. Compared to its predecessor, the presented hierarchy produces bounds that are at least as tight and it often enables the computation of dramatically tighter bounds as it enjoys superior scaling properties and the generated semidefinite programs are highly structured. We analyze the properties of the presented hierarchy, discuss some aspects of its practical implementation and demonstrate its merits with several examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01309v2-abstract-full').style.display = 'none'; document.getElementById('2104.01309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">corrected typos and added implementation details</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01521">arXiv:2102.01521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01521">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1128/mSystems.00095-21">10.1128/mSystems.00095-21 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rando%2C+H+M">Halie M. Rando</a>, <a href="/search/?searchtype=author&amp;query=MacLean%2C+A+L">Adam L. MacLean</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+J">Alexandra J. Lee</a>, <a href="/search/?searchtype=author&amp;query=Lordan%2C+R">Ronan Lordan</a>, <a href="/search/?searchtype=author&amp;query=Ray%2C+S">Sandipan Ray</a>, <a href="/search/?searchtype=author&amp;query=Bansal%2C+V">Vikas Bansal</a>, <a href="/search/?searchtype=author&amp;query=Skelly%2C+A+N">Ashwin N. Skelly</a>, <a href="/search/?searchtype=author&amp;query=Sell%2C+E">Elizabeth Sell</a>, <a href="/search/?searchtype=author&amp;query=Dziak%2C+J+J">John J. Dziak</a>, <a href="/search/?searchtype=author&amp;query=Shinholster%2C+L">Lamonica Shinholster</a>, <a href="/search/?searchtype=author&amp;query=McGowan%2C+L+D">Lucy D&#39;Agostino McGowan</a>, <a href="/search/?searchtype=author&amp;query=Guebila%2C+M+B">Marouen Ben Guebila</a>, <a href="/search/?searchtype=author&amp;query=Wellhausen%2C+N">Nils Wellhausen</a>, <a href="/search/?searchtype=author&amp;query=Knyazev%2C+S">Sergey Knyazev</a>, <a href="/search/?searchtype=author&amp;query=Boca%2C+S+M">Simina M. Boca</a>, <a href="/search/?searchtype=author&amp;query=Capone%2C+S">Stephen Capone</a>, <a href="/search/?searchtype=author&amp;query=Qi%2C+Y">Yanjun Qi</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+Y">YoSon Park</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+Y">Yuchen Sun</a>, <a href="/search/?searchtype=author&amp;query=Mai%2C+D">David Mai</a>, <a href="/search/?searchtype=author&amp;query=Boerckel%2C+J+D">Joel D. Boerckel</a>, <a href="/search/?searchtype=author&amp;query=Brueffer%2C+C">Christian Brueffer</a>, <a href="/search/?searchtype=author&amp;query=Byrd%2C+J+B">James Brian Byrd</a>, <a href="/search/?searchtype=author&amp;query=Kamil%2C+J+P">Jeremy P. Kamil</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Jinhui Wang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01521v4-abstract-short" style="display: inline;"> The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01521v4-abstract-full').style.display = 'inline'; document.getElementById('2102.01521v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01521v4-abstract-full" style="display: none;"> The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus&#39;s structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system&#39;s protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01521v4-abstract-full').style.display = 'none'; document.getElementById('2102.01521v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05569">arXiv:2011.05569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05569">pdf</a>, <a href="https://arxiv.org/format/2011.05569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2021.110499">10.1016/j.jcp.2021.110499 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Flux-enriched Godunov Method for Multi-material Problems with Interface Slide and Void Opening </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wallis%2C+T">Tim Wallis</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Philip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Nikiforakis%2C+N">Nikolaos Nikiforakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05569v2-abstract-short" style="display: inline;"> This work outlines a new three-dimensional diffuse interface finite volume method for the simulation of multiple solid and fluid components featuring large deformations, sliding and void opening. This is achieved by extending an existing reduced-equation diffuse interface method by means of a number of novel flux-modifiers and interface seeding routines that enable the application of different mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05569v2-abstract-full').style.display = 'inline'; document.getElementById('2011.05569v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05569v2-abstract-full" style="display: none;"> This work outlines a new three-dimensional diffuse interface finite volume method for the simulation of multiple solid and fluid components featuring large deformations, sliding and void opening. This is achieved by extending an existing reduced-equation diffuse interface method by means of a number of novel flux-modifiers and interface seeding routines that enable the application of different material boundary conditions. The method allows for slip boundary conditions across solid interfaces, material-void interaction, and interface separation. The method is designed to be straightforward to implement, inexpensive and highly parallelisable. This makes it suitable for use in large, multi-dimensional simulations that feature many complex materials and physical processes interacting over multiple levels of adaptive mesh refinement. Furthermore, the new method allows for the generation of new interfaces in a conservative fashion and therefore naturally facilitates the simulation of high-strain rate fracture. Hence, the governing model is augmented to include ductile damage to allow for validation of the method against demanding physical experiments. The method is shown to give excellent agreement with both experiment and existing Eulerian interface tracking algorithms that employ sharp interface methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05569v2-abstract-full').style.display = 'none'; document.getElementById('2011.05569v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2009.14555</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Computational Physics (2021) 110499 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14555">arXiv:2009.14555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14555">pdf</a>, <a href="https://arxiv.org/format/2009.14555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.compstruc.2021.106578">10.1016/j.compstruc.2021.106578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Diffuse Interface Model of Reactive-fluids and Solid-dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wallis%2C+T">Tim Wallis</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Philip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Nikiforakis%2C+N">Nikolaos Nikiforakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14555v2-abstract-short" style="display: inline;"> This article presents a multi-physics methodology for the numerical simulation of physical systems that involve the non-linear interaction of multi-phase reactive fluids and elastoplastic solids, inducing high strain-rates and high deformations. Each state of matter is governed by a single system of non-linear, inhomogeneous partial differential equations, which are solved simultaneously on the sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14555v2-abstract-full').style.display = 'inline'; document.getElementById('2009.14555v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14555v2-abstract-full" style="display: none;"> This article presents a multi-physics methodology for the numerical simulation of physical systems that involve the non-linear interaction of multi-phase reactive fluids and elastoplastic solids, inducing high strain-rates and high deformations. Each state of matter is governed by a single system of non-linear, inhomogeneous partial differential equations, which are solved simultaneously on the same computational grid, and do not require special treatment of immersed boundaries. To this end, the governing equations for solid and reactive multiphase fluid mechanics are written in the same mathematical form and are discretised on a regular Cartesian mesh. All phase and material boundaries are treated as diffuse interfaces. An interface-steepening technique is employed at material boundaries to keep interfaces sharp whilst maintaining the conservation properties of the system. These algorithms are implemented in a highly-parallelised hierarchical adaptive mesh refinement platform, and are verified and validated using numerical and experimental benchmarks. Results indicate very good agreement with experiment and an improvement of numerical performance compared to certain existing Eulerian methods, without loss of conservation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14555v2-abstract-full').style.display = 'none'; document.getElementById('2009.14555v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computers &amp; Structures, Volume 254, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03972">arXiv:2009.03972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.03972">pdf</a>, <a href="https://arxiv.org/format/2009.03972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0029006">10.1063/5.0029006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A cryogenic continuously rotating half-wave plate for the POLARBEAR-2b cosmic microwave background receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hill%2C+C+A">C. A. Hill</a>, <a href="/search/?searchtype=author&amp;query=Kusaka%2C+A">A. Kusaka</a>, <a href="/search/?searchtype=author&amp;query=Ashton%2C+P">P. Ashton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Adkins%2C+T">T. Adkins</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Bixler%2C+B">B. Bixler</a>, <a href="/search/?searchtype=author&amp;query=Ganjam%2C+S">S. Ganjam</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+T">A. T. Lee</a>, <a href="/search/?searchtype=author&amp;query=Matsuda%2C+F">F. Matsuda</a>, <a href="/search/?searchtype=author&amp;query=Matsumura%2C+T">T. Matsumura</a>, <a href="/search/?searchtype=author&amp;query=Sakurai%2C+Y">Y. Sakurai</a>, <a href="/search/?searchtype=author&amp;query=Tat%2C+R">R. Tat</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y">Y. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03972v2-abstract-short" style="display: inline;"> We present the design and laboratory evaluation of a cryogenic continuously rotating half-wave plate (CHWP) for the POLARBEAR-2b (PB-2b) cosmic microwave background (CMB) receiver, the second installment of the Simons Array. PB-2b will observe at 5,200 m elevation in the Atacama Desert of Chile in two frequency bands centered at 90 and 150 GHz. In order to suppress atmospheric 1/f noise and mitiga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03972v2-abstract-full').style.display = 'inline'; document.getElementById('2009.03972v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03972v2-abstract-full" style="display: none;"> We present the design and laboratory evaluation of a cryogenic continuously rotating half-wave plate (CHWP) for the POLARBEAR-2b (PB-2b) cosmic microwave background (CMB) receiver, the second installment of the Simons Array. PB-2b will observe at 5,200 m elevation in the Atacama Desert of Chile in two frequency bands centered at 90 and 150 GHz. In order to suppress atmospheric 1/f noise and mitigate systematic effects that arise when differencing orthogonal detectors, PB-2b modulates linear sky polarization using a CHWP rotating at 2 Hz. The CHWP has a 440 mm clear aperture diameter and is cooled to $\approx$ 50 K in the PB-2b receiver cryostat. It consists of a low-friction superconducting magnetic bearing (SMB) and a low-torque synchronous electromagnetic motor, which together dissipate &lt; 2 W. During cooldown, a grip-and-release mechanism centers the rotor to &lt; 0.5 mm, and during continuous rotation, an incremental optical encoder measures the rotor angle with a noise level of 0.1 $\mathrm{渭rad / \sqrt{Hz}}$. We discuss the experimental requirements for the PB-2b CHWP, the designs of its various subsystems, and the results of its evaluation in the laboratory. The presented CHWP has been deployed to Chile and is expected to see first light on PB-2b in 2020 or 2021. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03972v2-abstract-full').style.display = 'none'; document.getElementById('2009.03972v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PREPRINT. Submitted to Review of Scientific Instruments, September 2020. v2 updates refs 41-42</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12793">arXiv:1907.12793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12793">pdf</a>, <a href="https://arxiv.org/format/1907.12793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.101.012309">10.1103/PhysRevE.101.012309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inference of compressed Potts graphical models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rizzato%2C+F">Francesca Rizzato</a>, <a href="/search/?searchtype=author&amp;query=Coucke%2C+A">Alice Coucke</a>, <a href="/search/?searchtype=author&amp;query=de+Leonardis%2C+E">Eleonora de Leonardis</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">J. P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Tubiana%2C+J">J茅r么me Tubiana</a>, <a href="/search/?searchtype=author&amp;query=Monasson%2C+R">Remi Monasson</a>, <a href="/search/?searchtype=author&amp;query=Cocco%2C+S">Simona Cocco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12793v2-abstract-short" style="display: inline;"> We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of parameters, often larger than the number of available data, and, hence, requires the introduction of regularization. We study here a double regularization sch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12793v2-abstract-full').style.display = 'inline'; document.getElementById('1907.12793v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12793v2-abstract-full" style="display: none;"> We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of parameters, often larger than the number of available data, and, hence, requires the introduction of regularization. We study here a double regularization scheme, in which the number of colors available to each variable is reduced, and interaction networks are made sparse. To achieve this color compression scheme, only Potts states with large empirical frequency (exceeding some threshold) are explicitly modeled on each site, while the others are grouped into a single state. We benchmark the performances of this mixed regularization approach, with two inference algorithms, the Adaptive Cluster Expansion (ACE) and the PseudoLikelihood Maximization (PLM) on synthetic data obtained by sampling disordered Potts models on an Erdos-Renyi random graphs. We show in particular that color compression does not affect the quality of reconstruction of the parameters corresponding to high-frequency symbols, while drastically reducing the number of the other parameters and thus the computational time. Our procedure is also applied to multi-sequence alignments of protein families, with similar results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12793v2-abstract-full').style.display = 'none'; document.getElementById('1907.12793v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 101, 012309 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10403">arXiv:1805.10403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.10403">pdf</a>, <a href="https://arxiv.org/format/1805.10403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-018-1980-6">10.1007/s10909-018-1980-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A large-diameter cryogenic rotation stage for half-wave plate polarization modulation on the POLARBEAR-2 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hill%2C+C+A">Charles A. Hill</a>, <a href="/search/?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">Paul Barton</a>, <a href="/search/?searchtype=author&amp;query=Bixler%2C+B">Bryce Bixler</a>, <a href="/search/?searchtype=author&amp;query=Droster%2C+A+G">Alex G. Droster</a>, <a href="/search/?searchtype=author&amp;query=Flament%2C+M">Mael Flament</a>, <a href="/search/?searchtype=author&amp;query=Ganjam%2C+S">Suhas Ganjam</a>, <a href="/search/?searchtype=author&amp;query=Jadbabaie%2C+A">Arian Jadbabaie</a>, <a href="/search/?searchtype=author&amp;query=Jeong%2C+O">Oliver Jeong</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/?searchtype=author&amp;query=Madurowicz%2C+A">Alex Madurowicz</a>, <a href="/search/?searchtype=author&amp;query=Matsuda%2C+F+T">Fred T. Matsuda</a>, <a href="/search/?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/?searchtype=author&amp;query=Rutkowski%2C+A">Adam Rutkowski</a>, <a href="/search/?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/?searchtype=author&amp;query=Sponseller%2C+D+R">Danielle R. Sponseller</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Tat%2C+R">Raymond Tat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10403v1-abstract-short" style="display: inline;"> We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third installments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10403v1-abstract-full').style.display = 'inline'; document.getElementById('1805.10403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10403v1-abstract-full" style="display: none;"> We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third installments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence and allows a single polarimeter to measure both polarization states, mitigating systematic effects that arise when differencing orthogonal detectors. To modulate the full detector array while avoiding excess photon loading due to thermal emission, the CHWP must have a clear-aperture diameter of &gt; 450 mm and be cooled to &lt; 100 K. We have designed a 454-mm-clear-aperture, &lt; 65 K CRS using a superconducting magnetic bearing driven by a synchronous magnetic motor. We present the specifications for the CRS, its interfacing to the PB2b/c receiver cryostat, its performance in a stand-alone test, and plans for future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10403v1-abstract-full').style.display = 'none'; document.getElementById('1805.10403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PREPRINT VERSION. Accepted to the Journal of Low Temperature Physics, Article JLTP-D-17-00265R1 See DOI link, supplied by Springer Publishing, for the fully-reviewed published article and citation information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04409">arXiv:1802.04409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.04409">pdf</a>, <a href="https://arxiv.org/ps/1802.04409">ps</a>, <a href="https://arxiv.org/format/1802.04409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5029926">10.1063/1.5029926 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Bounds on Stochastic Chemical Kinetic Systems Using Semidefinite Programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dowdy%2C+G+R">Garrett R. Dowdy</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+I">Paul I. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04409v2-abstract-short" style="display: inline;"> Applying the method of moments to the chemical master equation (CME) appearing in stochastic chemical kinetics often leads to the so-called closure problem. Recently, several authors showed that this problem can be partially overcome using moment-based semidefinite programs (SDPs). In particular, they showed that moment-based SDPs can be used to calculate rigorous bounds on various descriptions of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04409v2-abstract-full').style.display = 'inline'; document.getElementById('1802.04409v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04409v2-abstract-full" style="display: none;"> Applying the method of moments to the chemical master equation (CME) appearing in stochastic chemical kinetics often leads to the so-called closure problem. Recently, several authors showed that this problem can be partially overcome using moment-based semidefinite programs (SDPs). In particular, they showed that moment-based SDPs can be used to calculate rigorous bounds on various descriptions of the stochastic chemical kinetic system&#39;s stationary distribution(s) -- for example, mean molecular counts, variances in these counts, and so on. In this paper, we show that these ideas can be extended to the corresponding dynamic problem, calculating time-varying bounds on the same descriptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04409v2-abstract-full').style.display = 'none'; document.getElementById('1802.04409v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Chemical Physics 149, 074103 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02567">arXiv:1802.02567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02567">pdf</a>, <a href="https://arxiv.org/ps/1802.02567">ps</a>, <a href="https://arxiv.org/format/1802.02567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akbari%2C+A">Amir Akbari</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+I">Paul I. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02567v2-abstract-short" style="display: inline;"> Flux balance analysis has proven an effective tool for analyzing metabolic networks. In flux balance analysis, reaction rates and optimal pathways are ascertained by solving a linear program, in which the growth rate is maximized subject to mass-balance constraints. A variety of cell functions in response to environmental stimuli can be quantified using flux balance analysis by parameterizing the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02567v2-abstract-full').style.display = 'inline'; document.getElementById('1802.02567v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02567v2-abstract-full" style="display: none;"> Flux balance analysis has proven an effective tool for analyzing metabolic networks. In flux balance analysis, reaction rates and optimal pathways are ascertained by solving a linear program, in which the growth rate is maximized subject to mass-balance constraints. A variety of cell functions in response to environmental stimuli can be quantified using flux balance analysis by parameterizing the linear program with respect to extracellular conditions. However, for most large, genome-scale metabolic networks of practical interest, the resulting parametric problem has multiple and highly degenerate optimal solutions, which are computationally challenging to handle. An improved multi-parametric programming algorithm based on active-set methods is introduced in this paper to overcome these computational difficulties. Degeneracy and multiplicity are handled, respectively, by introducing generalized inverses and auxiliary objective functions into the formulation of the optimality conditions. These improvements are especially effective for metabolic networks because their stoichiometry matrices are generally sparse; thus, fast and efficient algorithms from sparse linear algebra can be leveraged to compute generalized inverses and null-space bases. We illustrate the application of our algorithm to flux balance analysis of metabolic networks by studying a reduced metabolic model of Corynebacterium glutamicum and a genome-scale model of Escherichia coli. We then demonstrate how the critical regions resulting from these studies can be associated with optimal metabolic modes and discuss the physical relevance of optimal pathways arising from various auxiliary objective functions. Achieving more than five-fold improvement in computational speed over existing multi-parametric programming tools, the proposed algorithm proves promising in handling genome-scale metabolic models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02567v2-abstract-full').style.display = 'none'; document.getElementById('1802.02567v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in J. Optim. Theory Appl. First draft was submitted on August 4th, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.11608">arXiv:1710.11608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.11608">pdf</a>, <a href="https://arxiv.org/format/1710.11608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.132502">10.1103/PhysRevLett.120.132502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Aguayo%2C+E">E. Aguayo</a>, <a href="/search/?searchtype=author&amp;query=Alvis%2C+S+I">S. I. Alvis</a>, <a href="/search/?searchtype=author&amp;query=Amman%2C+M">M. Amman</a>, <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bertrand%2C+F+E">F. E. Bertrand</a>, <a href="/search/?searchtype=author&amp;query=Bode%2C+T">T. Bode</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Boswell%2C+M">M. Boswell</a>, <a href="/search/?searchtype=author&amp;query=Brodzinski%2C+R+L">R. L. Brodzinski</a>, <a href="/search/?searchtype=author&amp;query=Bradley%2C+A+W">A. W. Bradley</a>, <a href="/search/?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Buuck%2C+M">M. Buuck</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+A+S">A. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+T+S">T. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Y-D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.11608v2-abstract-short" style="display: inline;"> The \MJ\ Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The \MJ\ \DEM\ comprises 44.1~kg of Ge detectors (29.7 kg enriched in $^{76}$Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11608v2-abstract-full').style.display = 'inline'; document.getElementById('1710.11608v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.11608v2-abstract-full" style="display: none;"> The \MJ\ Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The \MJ\ \DEM\ comprises 44.1~kg of Ge detectors (29.7 kg enriched in $^{76}$Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at \qval\ and a very low background with no observed candidate events in 10 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of $1.9\times10^{25}$ yr (90\% CL). This result constrains the effective Majorana neutrino mass to below 240 to 520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is $4.0_{-2.5}^{+3.1}$ counts/(FWHM t yr). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11608v2-abstract-full').style.display = 'none'; document.getElementById('1710.11608v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typos fixed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 132502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01980">arXiv:1709.01980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01980">pdf</a>, <a href="https://arxiv.org/ps/1709.01980">ps</a>, <a href="https://arxiv.org/format/1709.01980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5007652">10.1063/1.5007652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LEGEND+Collaboration"> LEGEND Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Abramov%2C+A">A. Abramov</a>, <a href="/search/?searchtype=author&amp;query=Abrosimov%2C+N">N. Abrosimov</a>, <a href="/search/?searchtype=author&amp;query=Abt%2C+I">I. Abt</a>, <a href="/search/?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/?searchtype=author&amp;query=Ajjaq%2C+A">A. Ajjaq</a>, <a href="/search/?searchtype=author&amp;query=Alvis%2C+S+I">S. I. Alvis</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/?searchtype=author&amp;query=Bode%2C+T">T. Bode</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Borowicz%2C+D">D. Borowicz</a>, <a href="/search/?searchtype=author&amp;query=Boston%2C+A">A. Boston</a>, <a href="/search/?searchtype=author&amp;query=Boston%2C+H">H. Boston</a>, <a href="/search/?searchtype=author&amp;query=Boyd%2C+S+T+P">S. T. P. Boyd</a>, <a href="/search/?searchtype=author&amp;query=Breier%2C+R">R. Breier</a>, <a href="/search/?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a> , et al. (208 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01980v1-abstract-short" style="display: inline;"> The observation of neutrinoless double-beta decay (0$谓尾尾$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01980v1-abstract-full').style.display = 'inline'; document.getElementById('1709.01980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01980v1-abstract-full" style="display: none;"> The observation of neutrinoless double-beta decay (0$谓尾尾$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $\sim$0.1 count /(FWHM$\cdot$t$\cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0$谓尾尾$ signal region of all 0$谓尾尾$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0$谓尾尾$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01980v1-abstract-full').style.display = 'none'; document.getElementById('1709.01980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the MEDEX&#39;17 meeting (Prague, May 29 - June 2, 2017)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conference Proceedings 1894, 020027 (2017); </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.00113">arXiv:1603.00113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.00113">pdf</a>, <a href="https://arxiv.org/ps/1603.00113">ps</a>, <a href="https://arxiv.org/format/1603.00113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Directed Self-Assembly of Linear Nanostructures by Optimal Control of External Electrical Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Komaee%2C+A">Arash Komaee</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+I">Paul I. Barton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.00113v1-abstract-short" style="display: inline;"> An optimal control strategy is developed to construct nanostructures of desired geometry along line segments by means of directed self-assembly of charged particles. Such a control strategy determines the electric potentials of a set of electrodes located at fixed points in the line segment. The particles move under the electric forces generated by these electrodes and by the interactions between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00113v1-abstract-full').style.display = 'inline'; document.getElementById('1603.00113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.00113v1-abstract-full" style="display: none;"> An optimal control strategy is developed to construct nanostructures of desired geometry along line segments by means of directed self-assembly of charged particles. Such a control strategy determines the electric potentials of a set of electrodes located at fixed points in the line segment. The particles move under the electric forces generated by these electrodes and by the interactions between the particles themselves to form a desired pattern eventually. Due to technology limitations, the particle positions cannot be measured during the course of control, so that the control is open-loop in nature. Such an open-loop control optimally changes the electrode potentials in time in order to create a desired pattern with the highest probability, despite the inherent uncertainty in the initial positions and the dynamical behaviors of the particles. Two models are proposed to describe the uncertain dynamics of the particles: a continuous model relying on a set of nonlinear stochastic differential equations, and a discrete Ising model consisting of a large dimensional continuous-time Markov chain. While the first model is more mathematically tractable, the second one more precisely describes particles at the nanometer scale. The control design procedure begins with the continuous model and identifies the structure of its stable equilibria, which is used later to propose a piecewise constant structure for the control and to demonstrate that the optimal value of each piece is independently obtained from a certain static optimization problem. It is shown next that the design procedure can be applied to the discrete model with only minor modifications. A numerical example of control design is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00113v1-abstract-full').style.display = 'none'; document.getElementById('1603.00113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00574">arXiv:1512.00574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.00574">pdf</a>, <a href="https://arxiv.org/format/1512.00574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2015.12.031">10.1016/j.nima.2015.12.031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-Low Noise Mechanically Cooled Germanium Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P">Paul Barton</a>, <a href="/search/?searchtype=author&amp;query=Amman%2C+M">Mark Amman</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+R">Ryan Martin</a>, <a href="/search/?searchtype=author&amp;query=Vetter%2C+K">Kai Vetter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00574v1-abstract-short" style="display: inline;"> Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00574v1-abstract-full').style.display = 'inline'; document.getElementById('1512.00574v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00574v1-abstract-full" style="display: none;"> Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00574v1-abstract-full').style.display = 'none'; document.getElementById('1512.00574v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures, submitted to Nuclear Instruments and Methods in Physics Research Section A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.08702">arXiv:1509.08702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.08702">pdf</a>, <a href="https://arxiv.org/format/1509.08702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The COHERENT Experiment at the Spallation Neutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Dolgolenko%2C+A+G">A. G. Dolgolenko</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Etenko%2C+A">A. Etenko</a>, <a href="/search/?searchtype=author&amp;query=Fields%2C+N">N. Fields</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M">M. Green</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.08702v2-abstract-short" style="display: inline;"> The COHERENT collaboration&#39;s primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08702v2-abstract-full').style.display = 'inline'; document.getElementById('1509.08702v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.08702v2-abstract-full" style="display: none;"> The COHERENT collaboration&#39;s primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08702v2-abstract-full').style.display = 'none'; document.getElementById('1509.08702v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures: corrections to author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05757">arXiv:1508.05757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05757">pdf</a>, <a href="https://arxiv.org/format/1508.05757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/10/12/P12002">10.1088/1748-0221/10/12/P12002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-background temperature sensors fabricated on parylene substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dhar%2C+A">A. Dhar</a>, <a href="/search/?searchtype=author&amp;query=Loach%2C+J+C">J. C. Loach</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Larsen%2C+J+T">J. T. Larsen</a>, <a href="/search/?searchtype=author&amp;query=Poon%2C+A+W+P">A. W. P. Poon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05757v2-abstract-short" style="display: inline;"> Temperature sensors fabricated from ultra-low radioactivity materials have been developed for low-background experiments searching for neutrinoless double-beta decay and the interactions of WIMP dark matter. The sensors consist of electrical traces photolithographically-patterned onto substrates of vapor-deposited parylene. They are demonstrated to function as expected, to do so reliably and robus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05757v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05757v2-abstract-full" style="display: none;"> Temperature sensors fabricated from ultra-low radioactivity materials have been developed for low-background experiments searching for neutrinoless double-beta decay and the interactions of WIMP dark matter. The sensors consist of electrical traces photolithographically-patterned onto substrates of vapor-deposited parylene. They are demonstrated to function as expected, to do so reliably and robustly, and to be highly radio-pure. This work is a proof-of-concept study of a technology that can be applied to broad class of electronic circuits used in low-background experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05757v2-abstract-full').style.display = 'none'; document.getElementById('1508.05757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 10 P12002 (2105) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.01469">arXiv:1508.01469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.01469">pdf</a>, <a href="https://arxiv.org/format/1508.01469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.93.022412">10.1103/PhysRevE.93.022412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of drug resistance mutations in HIV from constraints on natural evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Butler%2C+T+C">Thomas C. Butler</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">John P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Kardar%2C+M">Mehran Kardar</a>, <a href="/search/?searchtype=author&amp;query=Chakraborty%2C+A+K">Arup K. Chakraborty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.01469v1-abstract-short" style="display: inline;"> Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution is constrained by interactions between mutations in its fitness landscape. Here we show that an Ising model describing these interactions, inferred from sequence data obtained prior to the use of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations. Successfu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01469v1-abstract-full').style.display = 'inline'; document.getElementById('1508.01469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.01469v1-abstract-full" style="display: none;"> Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution is constrained by interactions between mutations in its fitness landscape. Here we show that an Ising model describing these interactions, inferred from sequence data obtained prior to the use of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations. Successful predictions of the resistance sites indicate progress in the development of successful models of real viral evolution at the single residue level, and suggest that our approach may be applied to help design new therapies that are less prone to failure even where resistance data is not yet available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01469v1-abstract-full').style.display = 'none'; document.getElementById('1508.01469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 93, 022412 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.8065">arXiv:1412.8065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.8065">pdf</a>, <a href="https://arxiv.org/format/1412.8065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Remarks on the energy costs of insulators in enzymatic cascades </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">John P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Sontag%2C+E+D">Eduardo D. Sontag</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.8065v1-abstract-short" style="display: inline;"> The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as ins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8065v1-abstract-full').style.display = 'inline'; document.getElementById('1412.8065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.8065v1-abstract-full" style="display: none;"> The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8065v1-abstract-full').style.display = 'none'; document.getElementById('1412.8065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.7099">arXiv:1405.7099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.7099">pdf</a>, <a href="https://arxiv.org/format/1405.7099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.064105">10.1103/PhysRevB.90.064105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural distortion below the N茅el temperature in spinel GeCo$_2$O$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Kemei%2C+M+C">Moureen C. Kemei</a>, <a href="/search/?searchtype=author&amp;query=Gaultois%2C+M+W">Michael W. Gaultois</a>, <a href="/search/?searchtype=author&amp;query=Moffitt%2C+S+L">Stephanie L. Moffitt</a>, <a href="/search/?searchtype=author&amp;query=Darago%2C+L+E">Lucy E. Darago</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Suchomel%2C+M+R">Matthew R. Suchomel</a>, <a href="/search/?searchtype=author&amp;query=Melot%2C+B+C">Brent C. Melot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.7099v1-abstract-short" style="display: inline;"> A structural phase transition from cubic $Fd\bar{3}m$ to tetragonal $I$4$_1$/$amd$ symmetry with $c/a &gt;$ 1 is observed at $T_{\rm{S}}$ = 16 K in spinel GeCo$_2$O$_4$ below the N茅el temperature $T_N$ = 21 K. Structural and magnetic ordering appear to be decoupled with the structural distortion occurring at 16 K while magnetic order occurs at 21 K as determined by magnetic susceptibility and heat ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7099v1-abstract-full').style.display = 'inline'; document.getElementById('1405.7099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.7099v1-abstract-full" style="display: none;"> A structural phase transition from cubic $Fd\bar{3}m$ to tetragonal $I$4$_1$/$amd$ symmetry with $c/a &gt;$ 1 is observed at $T_{\rm{S}}$ = 16 K in spinel GeCo$_2$O$_4$ below the N茅el temperature $T_N$ = 21 K. Structural and magnetic ordering appear to be decoupled with the structural distortion occurring at 16 K while magnetic order occurs at 21 K as determined by magnetic susceptibility and heat capacity measurements. An elongation of CoO$_6$ octahedra is observed in the tetragonal phase of GeCo$_2$O$_4$. We present the complete crystallographic description of GeCo$_2$O$_4$ in the tetragonal $I$4$_1$/$amd$ space group and discuss the possible origin of this distortion in the context of known structural transitions in magnetic spinels. GeCo$_2$O$_4$ exhibits magnetodielectric coupling below $T_{\rm{N}}$. The related spinels GeFe$_2$O$_4$ and GeNi$_2$O$_4$ have also been examined for comparison. Structural transitions were not detected in either compound down to $T \approx$ 8 K. Magnetometry experiments reveal in GeFe$_2$O$_4$ a second antiferromagnetic transition, with $T_{\rm{N1}}$ = 7.9 K and $T_{\rm{N2}}$ = 6.2 K, that was previously unknown, and that bear a similarity to the magnetism of GeNi$_2$O$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7099v1-abstract-full').style.display = 'none'; document.getElementById('1405.7099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.0233">arXiv:1405.0233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.0233">pdf</a>, <a href="https://arxiv.org/format/1405.0233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.90.012132">10.1103/PhysRevE.90.012132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Pseudo-Counts and $L_2$-Norm Penalties Are Necessary for the Mean-Field Inference of Ising and Potts Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">J. P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Cocco%2C+S">S. Cocco</a>, <a href="/search/?searchtype=author&amp;query=De+Leonardis%2C+E">E. De Leonardis</a>, <a href="/search/?searchtype=author&amp;query=Monasson%2C+R">R. Monasson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.0233v1-abstract-short" style="display: inline;"> Mean field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an em&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0233v1-abstract-full').style.display = 'inline'; document.getElementById('1405.0233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.0233v1-abstract-full" style="display: none;"> Mean field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly understood. In this work, we study the influence of pseudo-count and $L_2$-norm regularization schemes on the quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We argue, based on the analysis of small systems, that the optimal value of the regularization strength remains finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the analytical study of the $m$-component spin model, for large but finite $m$. Additionally we find that pseudo-count regularization is robust against sampling noise, and often outperforms $L_2$-norm regularization, particularly when the underlying network of interactions is strongly heterogeneous. Much better performances are generally obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency symbols are reliably inferred. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0233v1-abstract-full').style.display = 'none'; document.getElementById('1405.0233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Rev E 90 (2014) 012132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.0125">arXiv:1310.0125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.0125">pdf</a>, <a href="https://arxiv.org/format/1310.0125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P">P. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/?searchtype=author&amp;query=Cianciolo%2C+V">V. Cianciolo</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J">J. Collar</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Etenko%2C+A">A. Etenko</a>, <a href="/search/?searchtype=author&amp;query=Fields%2C+N">N. Fields</a>, <a href="/search/?searchtype=author&amp;query=Foxe%2C+M">M. Foxe</a>, <a href="/search/?searchtype=author&amp;query=Figueroa-Feliciano%2C+E">E. Figueroa-Feliciano</a>, <a href="/search/?searchtype=author&amp;query=Fomin%2C+N">N. Fomin</a>, <a href="/search/?searchtype=author&amp;query=Gallmeier%2C+F">F. Gallmeier</a>, <a href="/search/?searchtype=author&amp;query=Garishvili%2C+I">I. Garishvili</a>, <a href="/search/?searchtype=author&amp;query=Gerling%2C+M">M. Gerling</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M">M. Green</a>, <a href="/search/?searchtype=author&amp;query=Greene%2C+G">G. Greene</a>, <a href="/search/?searchtype=author&amp;query=Hatzikoutelis%2C+A">A. Hatzikoutelis</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+R">R. Henning</a>, <a href="/search/?searchtype=author&amp;query=Hix%2C+R">R. Hix</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.0125v1-abstract-short" style="display: inline;"> The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of dif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0125v1-abstract-full').style.display = 'inline'; document.getElementById('1310.0125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.0125v1-abstract-full" style="display: none;"> The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0125v1-abstract-full').style.display = 'none'; document.getElementById('1310.0125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass white paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.3041">arXiv:1309.3041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.3041">pdf</a>, <a href="https://arxiv.org/format/1309.3041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> First-principles study of band alignments in the p-type hosts BaM2X2 (M = Cu, Ag; X = S, Se) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Krishnapriyan%2C+A">Aditi Krishnapriyan</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Miao%2C+M">Maosheng Miao</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.3041v1-abstract-short" style="display: inline;"> The electronic structures of four semiconductor compounds BaCu2S2, BaCu2Se2, BaAg2S2, and BaAg2Se2 are studied by density functional theory using both semi-local and hybrid functionals. The ionization energies and electron affinities were determined by aligning the electronic states with the vacuum level by calculating the electrostatic profile within a supercell slab model. The ionization energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3041v1-abstract-full').style.display = 'inline'; document.getElementById('1309.3041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.3041v1-abstract-full" style="display: none;"> The electronic structures of four semiconductor compounds BaCu2S2, BaCu2Se2, BaAg2S2, and BaAg2Se2 are studied by density functional theory using both semi-local and hybrid functionals. The ionization energies and electron affinities were determined by aligning the electronic states with the vacuum level by calculating the electrostatic profile within a supercell slab model. The ionization energy and electron affinity of the compounds were calculated using the Heyd-Scuseria-Ernzerhof (HSE) functionals and range from 4.5 to 5.4 eV and 3.1 to 3.4 eV, respectively. The replacement of Cu by Ag slightly increases the ionization energy and electron affinity, while the replacement of S by Se decreases the ionization energy but slightly increases the electron affinity. Overall, the low ionization energies and small electron affinities suggest that these compounds possess good p-type doping propensities. The band gaps are somewhat small to be ideal candidates for transparent semiconducting behavior. The replacement of Cu with Ag in the barium sulfide compounds can increase the band gap from 1.62 eV to 2.01 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3041v1-abstract-full').style.display = 'none'; document.getElementById('1309.3041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.0016">arXiv:1309.0016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.0016">pdf</a>, <a href="https://arxiv.org/format/1309.0016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.024405">10.1103/PhysRevB.89.024405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetocapacitance as a sensitive probe of magnetostructural changes in NiCr$_2$O$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sparks%2C+T+D">Taylor D. Sparks</a>, <a href="/search/?searchtype=author&amp;query=Kemei%2C+M+C">Moureen C. Kemei</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">R. Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Mun%2C+E">Eun-Deok Mun</a>, <a href="/search/?searchtype=author&amp;query=Zapf%2C+V">Vivien Zapf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.0016v1-abstract-short" style="display: inline;"> The spinel NiCr$_2$O$_4$ is characterized using dielectric and high magnetic field measurements. The trends in the magnetodielectric response fall into three clear temperature regimes corresponding to known magnetic and structural transitions. Above 65\,K, weak magnetic field dependence of the dielectric constant is observed with no hysteresis. When 30\,K\,$\leq\,T\,\leq$\,65\,K, a strong dependen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.0016v1-abstract-full').style.display = 'inline'; document.getElementById('1309.0016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.0016v1-abstract-full" style="display: none;"> The spinel NiCr$_2$O$_4$ is characterized using dielectric and high magnetic field measurements. The trends in the magnetodielectric response fall into three clear temperature regimes corresponding to known magnetic and structural transitions. Above 65\,K, weak magnetic field dependence of the dielectric constant is observed with no hysteresis. When 30\,K\,$\leq\,T\,\leq$\,65\,K, a strong dependence of the dielectric constant on the magnetic field is observed and hysteresis develops resulting in so called butterfly loops. Below 30\,K, magnetodielectric hysteresis is enhanced. Magnetodielectric hysteresis mirrors magnetic hysteresis suggesting that spin-spin interactions are the mechanism for the magnetoelectric effect in NiCr$_2$O$_4$. At high fields however, the magnetization continues to increase while the dielectric constant saturates. Magnetodielectric measurements of NiCr$_2$O$_4$ suggest an additional, previously unobserved transition at 20\,K. Subtle changes in magnetism and structure suggest that this 20\,K anomaly corresponds to the completion of ferrimagnetic ordering and the spin driven structural distortion. We demonstrate that magnetocapacitance is a sensitive probe of magnetostructural distortion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.0016v1-abstract-full').style.display = 'none'; document.getElementById('1309.0016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.2029">arXiv:1306.2029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.2029">pdf</a>, <a href="https://arxiv.org/ps/1306.2029">ps</a>, <a href="https://arxiv.org/format/1306.2029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.88.062705">10.1103/PhysRevE.88.062705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin models inferred from patient data faithfully describe HIV fitness landscapes and enable rational vaccine design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shekhar%2C+K">Karthik Shekhar</a>, <a href="/search/?searchtype=author&amp;query=Ruberman%2C+C+F">Claire F. Ruberman</a>, <a href="/search/?searchtype=author&amp;query=Ferguson%2C+A+L">Andrew L. Ferguson</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+J+P">John P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Kardar%2C+M">Mehran Kardar</a>, <a href="/search/?searchtype=author&amp;query=Chakraborty%2C+A+K">Arup K. Chakraborty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.2029v1-abstract-short" style="display: inline;"> Mutational escape from vaccine induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus&#39; fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine induced immune responses to target mutational vulnerabilities of the vi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.2029v1-abstract-full').style.display = 'inline'; document.getElementById('1306.2029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.2029v1-abstract-full" style="display: none;"> Mutational escape from vaccine induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus&#39; fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of non-equilibrium viral evolution driven by patient-specific immune responses, and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory 谩 la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.2029v1-abstract-full').style.display = 'none'; document.getElementById('1306.2029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures and supplementary methods file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.5000">arXiv:1304.5000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.5000">pdf</a>, <a href="https://arxiv.org/format/1304.5000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.024403">10.1103/PhysRevB.88.024403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetostructural transition, metamagnetism, and magnetic phase coexistence in Co10Ge3O16 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Llobet%2C+A">Anna Llobet</a>, <a href="/search/?searchtype=author&amp;query=Suchomel%2C+M+R">Matthew R. Suchomel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.5000v3-abstract-short" style="display: inline;"> Co10Ge3O16 crystallizes in an intergrowth structure featuring alternating layers of spinel and rock salt. Variable-temperature powder synchrotron X-ray and neutron diffraction, magnetometry, and heat capacity experiments reveal a magnetostructural transition at T_N = 203 K. This rhombohedral-to-monoclinic transition involves a slight elongation of the CoO6 octahedra along the apical axis. Below T_&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.5000v3-abstract-full').style.display = 'inline'; document.getElementById('1304.5000v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.5000v3-abstract-full" style="display: none;"> Co10Ge3O16 crystallizes in an intergrowth structure featuring alternating layers of spinel and rock salt. Variable-temperature powder synchrotron X-ray and neutron diffraction, magnetometry, and heat capacity experiments reveal a magnetostructural transition at T_N = 203 K. This rhombohedral-to-monoclinic transition involves a slight elongation of the CoO6 octahedra along the apical axis. Below T_N, the application of a large magnetic field causes a reorientation of the Co^2+ Ising spins. This metamagnetic transition is first-order as evidenced by a latent heat observed in temperature-dependent measurements. This transition is initially seen at T = 180 K as a broad upturn in the M-H near H_C = 3.9 T. The upturn sharpens into a kink at T = 120 K and a &#34;butterfly&#34; shape emerges, with the transition causing hysteresis at high fields while linear and reversible behavior persists at low fields. H_C decreases as temperature is lowered and the loops at positive and negative fields merge beneath T = 20 K. The antiferromagnetism is described by k_M = (00 1/2) and below T = 20 K a small uncompensated component with k_M = (000) spontaneously emerges. Despite the Curie-Weiss analysis and ionic radius indicating the Co2+ is in its high-spin state, the low-temperature M-H trends toward saturation at M_S = 1.0 uB/Co. We conclude that the field-induced state is a ferrimagnet, rather than a S = 1/2 ferromagnet. The unusual H-T phase diagram is discussed with reference to other metamagnets and Co(II) systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.5000v3-abstract-full').style.display = 'none'; document.getElementById('1304.5000v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 024403 (2013) [7 pages] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.5746">arXiv:1302.5746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.5746">pdf</a>, <a href="https://arxiv.org/format/1302.5746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/32/326001">10.1088/0953-8984/25/32/326001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal structures of spin-Jahn-Teller ordered MgCr_2O_4 and ZnCr_2O_4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kemei%2C+M+C">Moureen C. Kemei</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Moffitt%2C+S+L">Stephanie L. Moffitt</a>, <a href="/search/?searchtype=author&amp;query=Gaultois%2C+M+W">Michael W. Gaultois</a>, <a href="/search/?searchtype=author&amp;query=Kurzman%2C+J+A">Joshua A. Kurzman</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Suchomel%2C+M+R">Matthew R. Suchomel</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Young-II Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.5746v2-abstract-short" style="display: inline;"> Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr_2O_4 and ZnCr_2O_4 is accompanied by a structural change that helps relieve the frustration. Analysis of high-resolution synchrotron X-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I4_1/amd and orthorhombic Fddd symmetries. The Cr_4 tetrahedra of the pyro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5746v2-abstract-full').style.display = 'inline'; document.getElementById('1302.5746v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.5746v2-abstract-full" style="display: none;"> Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr_2O_4 and ZnCr_2O_4 is accompanied by a structural change that helps relieve the frustration. Analysis of high-resolution synchrotron X-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I4_1/amd and orthorhombic Fddd symmetries. The Cr_4 tetrahedra of the pyrochlore lattice are distorted at these low-temperatures, with the Fddd phase displaying larger distortions than the I4_1/amd phase. The spin-Jahn-Teller distortion is approximately one order of magnitude smaller than is observed in first-order Jahn-Teller spinels such as NiCr_2O_4 and CuCr_2O_4. In analogy with NiCr_2O_4 and CuCr_2O_4, we further suggest that the precise nature of magnetic ordering can itself provide a second driving force for structural change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5746v2-abstract-full').style.display = 'none'; document.getElementById('1302.5746v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.6661">arXiv:1301.6661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.6661">pdf</a>, <a href="https://arxiv.org/format/1301.6661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/18/186004">10.1088/0953-8984/25/18/186004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gaultois%2C+M+W">Michael W. Gaultois</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Birkel%2C+C+S">Christina S. Birkel</a>, <a href="/search/?searchtype=author&amp;query=Misch%2C+L+M">Lauren M. Misch</a>, <a href="/search/?searchtype=author&amp;query=Rodriguez%2C+E+E">Efrain E. Rodriguez</a>, <a href="/search/?searchtype=author&amp;query=Stucky%2C+G+D">Galen D. Stucky</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.6661v1-abstract-short" style="display: inline;"> Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6661v1-abstract-full').style.display = 'inline'; document.getElementById('1301.6661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.6661v1-abstract-full" style="display: none;"> Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6661v1-abstract-full').style.display = 'none'; document.getElementById('1301.6661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.2678">arXiv:1210.2678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.2678">pdf</a>, <a href="https://arxiv.org/format/1210.2678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The MAJORANA DEMONSTRATOR: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Finnerty%2C+P">P. Finnerty</a>, <a href="/search/?searchtype=author&amp;query=Aguayo%2C+E">E. Aguayo</a>, <a href="/search/?searchtype=author&amp;query=Amman%2C+M">M. Amman</a>, <a href="/search/?searchtype=author&amp;query=Avignone.%2C+F+T">F. T. Avignone. III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Beene%2C+J+R">J. R. Beene</a>, <a href="/search/?searchtype=author&amp;query=Bertrand%2C+F+E">F. E. Bertrand</a>, <a href="/search/?searchtype=author&amp;query=Boswell%2C+M">M. Boswell</a>, <a href="/search/?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+-">Y. -D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Combs%2C+D+C">D. C. Combs</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Doe%2C+P+J">P. J. Doe</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Esterline%2C+J">J. Esterline</a>, <a href="/search/?searchtype=author&amp;query=Fast%2C+J+E">J. E. Fast</a>, <a href="/search/?searchtype=author&amp;query=Fields%2C+N">N. Fields</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.2678v1-abstract-short" style="display: inline;"> The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The DEMONSTRATOR is being assembl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2678v1-abstract-full').style.display = 'inline'; document.getElementById('1210.2678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.2678v1-abstract-full" style="display: none;"> The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the DEMONSTRATOR are: demonstrating a background rate less than 3 t$^{-1}$ y$^{-1}$ in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of neutrinoless double-beta decay [H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A21, 1547 (2006)]; and performing a direct search for light WIMPs (3-10 GeV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2678v1-abstract-full').style.display = 'none'; document.getElementById('1210.2678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures. Proceedings from the 18th International Symposium on Particles, Strings and Cosmology in Merida, Mexico, June 3-8, 2012. To be published in IOP Conference Series. http://www.fisica.unam.mx/pascos2012/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.6716">arXiv:1207.6716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.6716">pdf</a>, <a href="https://arxiv.org/ps/1207.6716">ps</a>, <a href="https://arxiv.org/format/1207.6716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Characteristics of Signals Originating Near the Lithium-Diffused N+ Contact of High Purity Germanium P-Type Point Contact Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+MAJORANA+Collaboration"> The MAJORANA Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aguayo%2C+E">E. Aguayo</a>, <a href="/search/?searchtype=author&amp;query=Amman%2C+M">M. Amman</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Beene%2C+J+R">J. R. Beene</a>, <a href="/search/?searchtype=author&amp;query=Bertrand%2C+F+E">F. E. Bertrand</a>, <a href="/search/?searchtype=author&amp;query=Boswell%2C+M">M. Boswell</a>, <a href="/search/?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Y-D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Combs%2C+D+C">D. C. Combs</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Doe%2C+P+J">P. J. Doe</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Esterline%2C+J">J. Esterline</a>, <a href="/search/?searchtype=author&amp;query=Fast%2C+J+E">J. E. Fast</a>, <a href="/search/?searchtype=author&amp;query=Fields%2C+N">N. Fields</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.6716v1-abstract-short" style="display: inline;"> A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a wel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6716v1-abstract-full').style.display = 'inline'; document.getElementById('1207.6716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.6716v1-abstract-full" style="display: none;"> A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6716v1-abstract-full').style.display = 'none'; document.getElementById('1207.6716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures, submitted to Nucl. Instrum. Meth. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.0250">arXiv:1110.0250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.0250">pdf</a>, <a href="https://arxiv.org/format/1110.0250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/24/1/016002">10.1088/0953-8984/24/1/016002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Kn%C3%B6ller%2C+A">Andrea Kn枚ller</a>, <a href="/search/?searchtype=author&amp;query=Rosseinsky%2C+M+J">Matthew J. Rosseinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.0250v3-abstract-short" style="display: inline;"> We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Vegard law and increase with x as expected. The effective moment i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.0250v3-abstract-full').style.display = 'inline'; document.getElementById('1110.0250v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.0250v3-abstract-full" style="display: none;"> We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Vegard law and increase with x as expected. The effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the entire solid solution. Theta is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, J_BB was estimated by mean-field theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic order does not develop until very large x, and is preceeded by glassy behavior. Data presented here, and that on dilute Al-substitution from Okuda et al., suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Neel temperature, consistent with its magnetic frustration. Uncompensated short-range interactions are present in the Al-substituted samples and are likely a result of chemical disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.0250v3-abstract-full').style.display = 'none'; document.getElementById('1110.0250v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 24 (2012) 016002 [6 pages] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2766">arXiv:1010.2766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2766">pdf</a>, <a href="https://arxiv.org/format/1010.2766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.064417">10.1103/PhysRevB.83.064417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical and magnetic properties of the complete solid solution series between SrRuO3 and LaRhO3: Filling t2g versus tilting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P+T">Phillip T. Barton</a>, <a href="/search/?searchtype=author&amp;query=Seshadri%2C+R">Ram Seshadri</a>, <a href="/search/?searchtype=author&amp;query=Rosseinsky%2C+M+J">Matthew J. Rosseinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2766v2-abstract-short" style="display: inline;"> A complete solid solution series between the t2g^4 perovskite ferromagnet SrRuO3 and the diamagnetic t2g^6 perovskite LaRhO3 has been prepared. The evolution with composition x in (SrRuO3)(1-x)(LaRhO3)(x) of the crystal structure and electrical and magnetic properties has been studied and is reported here. As x increases, the octahedral tilt angle gradually increases, along with the pseudocubic la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2766v2-abstract-full').style.display = 'inline'; document.getElementById('1010.2766v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2766v2-abstract-full" style="display: none;"> A complete solid solution series between the t2g^4 perovskite ferromagnet SrRuO3 and the diamagnetic t2g^6 perovskite LaRhO3 has been prepared. The evolution with composition x in (SrRuO3)(1-x)(LaRhO3)(x) of the crystal structure and electrical and magnetic properties has been studied and is reported here. As x increases, the octahedral tilt angle gradually increases, along with the pseudocubic lattice parameter and unit cell volume. Electrical resistivity measurements reveal a compositionally driven metal to insulator transition between x = 0.1 and 0.2. Ferromagnetic ordering gives over to glassy magnetism for x &gt; 0.3 and no magnetic ordering is found above 2 K for x &gt; 0.5. M_sat and Theta_CW decrease with increasing x and remain constant after x = 0.5. The magnetism appears poised between localized and itinerant behavior, and becomes more localized with increasing x as evidenced by the evolution of the Rhodes-Wohlfarth ratio. mu_eff per Ru is equal to the quenched spin-only S value across the entire solid solution. Comparisons with Sr(1-x)Ca(x)RuO3 reinforce the important role of structural distortions in determining magnetic ground state. It is suggested that electrical transport and magnetic properties are not strongly coupled in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2766v2-abstract-full').style.display = 'none'; document.getElementById('1010.2766v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 064417 (2011) [8 pages] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0009105">arXiv:quant-ph/0009105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0009105">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0009105">ps</a>, <a href="https://arxiv.org/format/quant-ph/0009105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1354345">10.1063/1.1354345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experiments towards quantum information with trapped Calcium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/?searchtype=author&amp;query=Roos%2C+C">C. Roos</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Rohde%2C+H">H. Rohde</a>, <a href="/search/?searchtype=author&amp;query=Gulde%2C+S">S. Gulde</a>, <a href="/search/?searchtype=author&amp;query=Mundt%2C+A+B">A. B. Mundt</a>, <a href="/search/?searchtype=author&amp;query=Reymond%2C+G">G. Reymond</a>, <a href="/search/?searchtype=author&amp;query=Lederbauer%2C+M">M. Lederbauer</a>, <a href="/search/?searchtype=author&amp;query=Schmidt-Kaler%2C+F">F. Schmidt-Kaler</a>, <a href="/search/?searchtype=author&amp;query=Eschner%2C+J">J. Eschner</a>, <a href="/search/?searchtype=author&amp;query=Blatt%2C+R">R. Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0009105v1-abstract-short" style="display: inline;"> Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0009105v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0009105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0009105v1-abstract-full" style="display: none;"> Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the motional ground state we have demonstrated coherent quantum state manipulation on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations within 1.4 ms have been observed in the motional ground state and in the n=1 Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more than 5 micron for up to 4 ions. We are able to cool two ions to the ground state in the trap and individually address the ions with laser pulses through a special optical addressing channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0009105v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0009105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the ICAP 2000, Firenze</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0009031">arXiv:quant-ph/0009031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0009031">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0009031">ps</a>, <a href="https://arxiv.org/format/quant-ph/0009031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1464-4266/3/1/357">10.1088/1464-4266/3/1/357 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sympathetic ground state cooling and coherent manipulation with two-ion-crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rohde%2C+H">H. Rohde</a>, <a href="/search/?searchtype=author&amp;query=Gulde%2C+S+T">S. T. Gulde</a>, <a href="/search/?searchtype=author&amp;query=Roos%2C+C+F">C. F. Roos</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+A">P. A. Barton</a>, <a href="/search/?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/?searchtype=author&amp;query=Eschner%2C+J">J. Eschner</a>, <a href="/search/?searchtype=author&amp;query=Schmidt-Kaler%2C+F">F. Schmidt-Kaler</a>, <a href="/search/?searchtype=author&amp;query=Blatt%2C+R">R. Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0009031v1-abstract-short" style="display: inline;"> We have cooled a two-ion-crystal to the ground state of its collective modes of motion. Laser cooling, more specific resolved sideband cooling is performed sympathetically by illuminating only one of the two $^{40}$Ca$^+$ ions in the crystal. The heating rates of the motional modes of the crystal in our linear trap have been measured, and we found them considerably smaller than those previously&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0009031v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0009031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0009031v1-abstract-full" style="display: none;"> We have cooled a two-ion-crystal to the ground state of its collective modes of motion. Laser cooling, more specific resolved sideband cooling is performed sympathetically by illuminating only one of the two $^{40}$Ca$^+$ ions in the crystal. The heating rates of the motional modes of the crystal in our linear trap have been measured, and we found them considerably smaller than those previously reported by Q. Turchette {\em et. al.} Phys. Rev. A 61, 063418 (2000) in the case of trapped $^9$Be$^+$ ions. After the ground state is prepared, coherent quantum state manipulation of the atomic population can be performed. Within the coherence time, up to 12 Rabi oscillations are observed, showing that many coherent manipulations can be achieved. Coherent excitation of each ion individually and ground state cooling are important tools for the realization of quantum information processing in ion traps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0009031v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0009031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2000. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0003096">arXiv:quant-ph/0003096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0003096">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0003096">ps</a>, <a href="https://arxiv.org/format/quant-ph/0003096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/09500340008232182">10.1080/09500340008232182 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schmidt-Kaler%2C+F">F. Schmidt-Kaler</a>, <a href="/search/?searchtype=author&amp;query=Roos%2C+C">Ch. Roos</a>, <a href="/search/?searchtype=author&amp;query=Naegerl%2C+H+C">H. C. Naegerl</a>, <a href="/search/?searchtype=author&amp;query=Rohde%2C+H">H. Rohde</a>, <a href="/search/?searchtype=author&amp;query=Gulde%2C+S">S. Gulde</a>, <a href="/search/?searchtype=author&amp;query=Mundt%2C+A">A. Mundt</a>, <a href="/search/?searchtype=author&amp;query=Lederbauer%2C+M">M. Lederbauer</a>, <a href="/search/?searchtype=author&amp;query=Thalhammer%2C+G">G. Thalhammer</a>, <a href="/search/?searchtype=author&amp;query=Zeiger%2C+T">Th. Zeiger</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P">P. Barton</a>, <a href="/search/?searchtype=author&amp;query=Hornekaer%2C+L">L. Hornekaer</a>, <a href="/search/?searchtype=author&amp;query=Reymond%2C+G">G. Reymond</a>, <a href="/search/?searchtype=author&amp;query=Leibfried%2C+D">D. Leibfried</a>, <a href="/search/?searchtype=author&amp;query=Eschner%2C+J">J. Eschner</a>, <a href="/search/?searchtype=author&amp;query=Blatt%2C+R">R. Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0003096v1-abstract-short" style="display: inline;"> We investigate single ions of $^{40}Ca^+$ in Paul traps for quantum information processing. Superpositions of the S$_{1/2}$ electronic ground state and the metastable D$_{5/2}$ state are used to implement a qubit. Laser light on the S$_{1/2} \leftrightarrow$ D$_{5/2}$ transition is used for the manipulation of the ion&#39;s quantum state. We apply sideband cooling to the ion and reach the ground sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0003096v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0003096v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0003096v1-abstract-full" style="display: none;"> We investigate single ions of $^{40}Ca^+$ in Paul traps for quantum information processing. Superpositions of the S$_{1/2}$ electronic ground state and the metastable D$_{5/2}$ state are used to implement a qubit. Laser light on the S$_{1/2} \leftrightarrow$ D$_{5/2}$ transition is used for the manipulation of the ion&#39;s quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state $|n=0&gt;$, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0003096v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0003096v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 2000</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0003085">arXiv:physics/0003085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0003085">pdf</a>, <a href="https://arxiv.org/ps/physics/0003085">ps</a>, <a href="https://arxiv.org/format/physics/0003085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/epl/i2000-00506-9">10.1209/epl/i2000-00506-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for correlation effects in linear chains of trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Donald%2C+C+J+S">C. J. S. Donald</a>, <a href="/search/?searchtype=author&amp;query=Lucas%2C+D+M">D. M. Lucas</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+A">P. A. Barton</a>, <a href="/search/?searchtype=author&amp;query=McDonnell%2C+M+J">M. J. McDonnell</a>, <a href="/search/?searchtype=author&amp;query=Stacey%2C+J+P">J. P. Stacey</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+D+A">D. A. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Stacey%2C+D+N">D. N. Stacey</a>, <a href="/search/?searchtype=author&amp;query=Steane%2C+A+M">A. M. Steane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0003085v2-abstract-short" style="display: inline;"> We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0003085v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0003085v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0003085v2-abstract-full" style="display: none;"> We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0003085v2-abstract-full').style.display = 'none'; document.getElementById('physics/0003085v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2000; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhys. Lett., 51(4), pp. 388-394 (2000). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0002026">arXiv:physics/0002026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0002026">pdf</a>, <a href="https://arxiv.org/ps/physics/0002026">ps</a>, <a href="https://arxiv.org/format/physics/0002026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.62.032503">10.1103/PhysRevA.62.032503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Measurement of the Lifetime of the 3d D_{5/2} state in 40Ca+ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barton%2C+P+A">P. A. Barton</a>, <a href="/search/?searchtype=author&amp;query=Donald%2C+C+J+S">C. J. S. Donald</a>, <a href="/search/?searchtype=author&amp;query=Lucas%2C+D+M">D. M. Lucas</a>, <a href="/search/?searchtype=author&amp;query=Stevens%2C+D+A">D. A. Stevens</a>, <a href="/search/?searchtype=author&amp;query=Steane%2C+A+M">A. M. Steane</a>, <a href="/search/?searchtype=author&amp;query=Stacey%2C+D+N">D. N. Stacey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0002026v1-abstract-short" style="display: inline;"> We report a measurement of the lifetime of the 3d 2D_{5/2} metastable level in 40Ca+, using quantum jumps of a single cold calcium ion in a linear Paul trap. The 4s S_{1/2} - 3d D_{5/2} transition is significant for single-ion optical frequency standards, astrophysical references, and tests of atomic structure calculations. We obtain tau = 1.168 +- 0.007 s from observation of nearly 64,000 quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0002026v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0002026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0002026v1-abstract-full" style="display: none;"> We report a measurement of the lifetime of the 3d 2D_{5/2} metastable level in 40Ca+, using quantum jumps of a single cold calcium ion in a linear Paul trap. The 4s S_{1/2} - 3d D_{5/2} transition is significant for single-ion optical frequency standards, astrophysical references, and tests of atomic structure calculations. We obtain tau = 1.168 +- 0.007 s from observation of nearly 64,000 quantum jumps during approximately 32 hours. Our result is more precise and significantly larger than previous measurements. Experiments carried out to quantity systematic effects included a study of a previously unremarked source of systematic error, namely excitation by the broad background of radiation emitted by a semiconductor diode laser. Combining our result with atomic structure calculations yields 1.20 +- 0.01 s for the lifetime of 3d D_{3/2}. We also use quantum jump observations to demonstrate photon anti-bunching, and to estimate background pressure and heating rates in the ion trap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0002026v1-abstract-full').style.display = 'none'; document.getElementById('physics/0002026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages including 8 figures, submitted to Physical Review A</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10