CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 152 results for author: <span class="mathjax">Wang, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Wang%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wang%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06127">arXiv:2411.06127</a> <span> [<a href="https://arxiv.org/pdf/2411.06127">pdf</a>, <a href="https://arxiv.org/ps/2411.06127">ps</a>, <a href="https://arxiv.org/format/2411.06127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dynamic manifestation of exception points in a non-Hermitian continuous model with an imaginary periodic potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y+T">Y. T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+R">R. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X+Z">X. Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06127v1-abstract-short" style="display: inline;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06127v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06127v1-abstract-full" style="display: none;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be effectively achieved through particle loss in recent quantum simulation setups. Leveraging the discrete Fourier transform, the dynamics of EPs within the low-energy sector can be well modeled by a Stark ladder system under the influence of a non-Hermitian tilted potential. To illustrate this, we systematically investigate continuous systems with finite imaginary potential wells and demonstrate the distinctive EP dynamics across different orders. Our investigation sheds light on EP behaviors, potentially catalyzing further exploration of EP phenomena across a variety of quantum simulation setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'none'; document.getElementById('2411.06127v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20090">arXiv:2410.20090</a> <span> [<a href="https://arxiv.org/pdf/2410.20090">pdf</a>, <a href="https://arxiv.org/format/2410.20090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear spin dynamics induced by feedback under continuous Larmor frequency distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tishuo Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Z">Zhihuang Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shizhong Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Z">Zhenhua Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20090v1-abstract-short" style="display: inline;"> Nonlinear spin dynamics are essential in exploring nonequilibrium quantum phenomena and have broad applications in precision measurement. Among these systems, the combination of a bias magnetic field and feedback mechanisms can induce self-sustained oscillations at the base Larmor frequency due to nonlinearity. These features have driven the development of single-species and multiple-species spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20090v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20090v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20090v1-abstract-full" style="display: none;"> Nonlinear spin dynamics are essential in exploring nonequilibrium quantum phenomena and have broad applications in precision measurement. Among these systems, the combination of a bias magnetic field and feedback mechanisms can induce self-sustained oscillations at the base Larmor frequency due to nonlinearity. These features have driven the development of single-species and multiple-species spin masers. The latter, with multiple discrete Larmor frequencies, provides significant advantages for precision measurement by mitigating uncertainties in precession frequencies due to long-term drifts in experimental conditions. The self-sustained oscillations of single-species and multiple-species spin masers correspond to limit cycles and quasi-periodic orbits of the stable nonlinear dynamics of the systems respectively; the correspondence is elucidated in a recent study on a related spin system featuring two discrete intrinsic Larmor frequencies under dual bias magnetic fields. Here, we extend the study to the case that the intrinsic Larmor frequencies of individual spins of the system, given rise to by an inhomogeneous bias magnetic field, form a continuum. We show that generically the stable dynamics of the system includes limit cycles, quasi-periodic orbits, and chaos. We establish the relation between the synchronization frequency of limit cycles and the field inhomogeneity and derive an equation determining the stability of limit cycles. Furthermore, detailed characteristics of different dynamical phases, especially the robustness of limit cycles and quasi-periodic orbits against experimental fluctuations, are discussed. Our findings not only encompass the case of discrete Larmor frequencies, but also provide crucial insights for precision measurement and the exploration of continuous time crystals and quasi-crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20090v1-abstract-full').style.display = 'none'; document.getElementById('2410.20090v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20087">arXiv:2410.20087</a> <span> [<a href="https://arxiv.org/pdf/2410.20087">pdf</a>, <a href="https://arxiv.org/format/2410.20087">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Bifurcations of nonlinear dynamics in coupled twin spin masers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tishuo Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Z">Zhenhua Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20087v1-abstract-short" style="display: inline;"> Spin masers are a prototype nonlinear dynamic system. They undergo a bifurcation at a critical amplification factor, transiting into a limit cycle phase characterized by a Larmor precession around the external bias magnetic field, thereby serving as a key frequency reference for precision measurements. Recently, a system of coupled twin spin masers placed in dual bias magnetic fields, involving si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20087v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20087v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20087v1-abstract-full" style="display: none;"> Spin masers are a prototype nonlinear dynamic system. They undergo a bifurcation at a critical amplification factor, transiting into a limit cycle phase characterized by a Larmor precession around the external bias magnetic field, thereby serving as a key frequency reference for precision measurements. Recently, a system of coupled twin spin masers placed in dual bias magnetic fields, involving simultaneously two intrinsic Larmor frequencies, has been studied. Compared with previous spin masers, this setup exhibits new attractors such as quasi-periodic orbits and chaos in addition to the usual limit cycles and the trivial no signal fixed point. The richer dynamic phases imply the existence of bifurcations, whose nature has not been fully analyzed. Here, to shed light on the nature of the bifurcations, we turn to a closely related system and systematically study the various bifurcations therein along different routes in parameter space. We identify the bifurcations as of the types including pitchfork, Hopf, homoclinic bifurcations, and saddle-node bifurcations of cycles. By both analytical and numerical methods, we reveal how various attractors interplay with each other and change their stability. We also quantitatively evaluate the locations where these bifurcations occur by tracking the both stable and even not easily detected unstable limit cycles. These findings deepen our understanding of the underlying mechanisms resulting in the rich dynamic phases in the coupled twin spin masers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20087v1-abstract-full').style.display = 'none'; document.getElementById('2410.20087v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00953">arXiv:2410.00953</a> <span> [<a href="https://arxiv.org/pdf/2410.00953">pdf</a>, <a href="https://arxiv.org/format/2410.00953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Song%2C+M">Menghan Song</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+Z">Zhaoyi Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00953v2-abstract-short" style="display: inline;"> We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process,we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polyno… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00953v2-abstract-full').style.display = 'inline'; document.getElementById('2410.00953v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00953v2-abstract-full" style="display: none;"> We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process,we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions,and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit's gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00953v2-abstract-full').style.display = 'none'; document.getElementById('2410.00953v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00497">arXiv:2409.00497</a> <span> [<a href="https://arxiv.org/pdf/2409.00497">pdf</a>, <a href="https://arxiv.org/format/2409.00497">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Security Loophole Induced by Photorefractive Effect in Continous-variable Quantum Key Distribution System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Z">Zehao Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+P">Peng Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00497v1-abstract-short" style="display: inline;"> Modulators based on the Mach-Zehnder interferometer (MZI) structure are widely used in continuous-variable quantum key distribution (CVQKD) systems. MZI-based variable optical attenuator (VOA) and amplitude modulator can reshape the waveform and control the intensity of coherent state signal to realize secret key information modulation in CVQKD system. However, these devices are not ideal, interna… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00497v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00497v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00497v1-abstract-full" style="display: none;"> Modulators based on the Mach-Zehnder interferometer (MZI) structure are widely used in continuous-variable quantum key distribution (CVQKD) systems. MZI-based variable optical attenuator (VOA) and amplitude modulator can reshape the waveform and control the intensity of coherent state signal to realize secret key information modulation in CVQKD system. However, these devices are not ideal, internal and external effects like non-linear effect and temperature may degrade their performance. In this paper, we analyzed the security loophole of CVQKD under the photorefractive effect (PE), which originates from the crystal characteristic of lithium niobate (LN). It is found that the refractive index change of modulators because of PE may lead to an overestimate or underestimate of the final secret key rate. This allows Eve to perform further attacks like intercept-resend to get more secret key information. To solve this problem, several countermeasures are proposed, which can effectively eliminate potential risks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00497v1-abstract-full').style.display = 'none'; document.getElementById('2409.00497v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15330">arXiv:2408.15330</a> <span> [<a href="https://arxiv.org/pdf/2408.15330">pdf</a>, <a href="https://arxiv.org/format/2408.15330">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight dark matter detection with levitated ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kalia%2C+S">Saarik Kalia</a>, <a href="/search/quant-ph?searchtype=author&query=Budker%2C+D">Dmitry Budker</a>, <a href="/search/quant-ph?searchtype=author&query=Kimball%2C+D+F+J">Derek F. Jackson Kimball</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Sushkov%2C+A+O">Alexander O. Sushkov</a>, <a href="/search/quant-ph?searchtype=author&query=Timberlake%2C+C">Chris Timberlake</a>, <a href="/search/quant-ph?searchtype=author&query=Ulbricht%2C+H">Hendrik Ulbricht</a>, <a href="/search/quant-ph?searchtype=author&query=Vinante%2C+A">Andrea Vinante</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15330v2-abstract-short" style="display: inline;"> Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due to their excellent isolation from the environment. These instruments can be utilized in searches for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15330v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15330v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15330v2-abstract-full" style="display: none;"> Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due to their excellent isolation from the environment. These instruments can be utilized in searches for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magnetic fields, ferromagnets are also sensitive to the effective magnetic field (or ``axion wind") produced by an axion-electron coupling. While the dynamics of a levitated ferromagnet in response to a DC magnetic field have been well studied, all of these couplings would produce AC fields. In this work, we study the response of a ferromagnet to an applied AC magnetic field and use these results to project their sensitivity to axion and dark-photon dark matter. We pay special attention to the direction of motion induced by an applied AC field, in particular, whether it precesses around the applied field (similar to an electron spin) or librates in the plane of the field (similar to a compass needle). We show that existing levitated ferromagnet setups can already have comparable sensitivity to an axion-electron coupling as comagnetometer or torsion balance experiments. In addition, future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling, for ultralight dark matter masses $m_\mathrm{DM}\lesssim\mathrm{feV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15330v2-abstract-full').style.display = 'none'; document.getElementById('2408.15330v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures; v2 updates Fig. 6 with new SuperMAG bounds, updates footnote 9, adds footnote 17, and adds Ref. [21]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09922">arXiv:2408.09922</a> <span> [<a href="https://arxiv.org/pdf/2408.09922">pdf</a>, <a href="https://arxiv.org/format/2408.09922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of Landau-Zener Rabi Oscillations on optical lattice clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tan%2C+W">Wei Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wei-Xin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ying-Xin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+C">Chi-Hua Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+G">Guo-Dong Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+H">Hong Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09922v1-abstract-short" style="display: inline;"> Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atom is one of the most prominent platforms for quantum computing and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09922v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09922v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09922v1-abstract-full" style="display: none;"> Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atom is one of the most prominent platforms for quantum computing and precision measurement. However, LZRO has never been observed in cold atoms due to its stringent requirements. By compensating for the linear drift of the clock laser and optimizing experimental parameters, we successfully measured LZRO on the strontium atomic optical clock platform under both fast and slow passage limits within $4$ to $6$ driving periods. Compared to previous results on other platforms, the duration of the plateau is $10^4$ times longer in the optical lattice clock. The experimental data also suggest that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock, paving the way for manipulating quantum states against various environmental effects in cold atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09922v1-abstract-full').style.display = 'none'; document.getElementById('2408.09922v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00069">arXiv:2408.00069</a> <span> [<a href="https://arxiv.org/pdf/2408.00069">pdf</a>, <a href="https://arxiv.org/format/2408.00069">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing Universal Thermalization Dynamics in a (2+1)D Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Mueller%2C+N">Niklas Mueller</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianyi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Katz%2C+O">Or Katz</a>, <a href="/search/quant-ph?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/quant-ph?searchtype=author&query=Cetina%2C+M">Marko Cetina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00069v1-abstract-short" style="display: inline;"> Simulating non-equilibrium phenomena in strongly-interacting quantum many-body systems, including thermalization, is a promising application of near-term and future quantum computation. By performing experiments on a digital quantum computer consisting of fully-connected optically-controlled trapped ions, we study the role of entanglement in the thermalization dynamics of a $Z_2$ lattice gauge the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00069v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00069v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00069v1-abstract-full" style="display: none;"> Simulating non-equilibrium phenomena in strongly-interacting quantum many-body systems, including thermalization, is a promising application of near-term and future quantum computation. By performing experiments on a digital quantum computer consisting of fully-connected optically-controlled trapped ions, we study the role of entanglement in the thermalization dynamics of a $Z_2$ lattice gauge theory in 2+1 spacetime dimensions. Using randomized-measurement protocols, we efficiently learn a classical approximation of non-equilibrium states that yields the gap-ratio distribution and the spectral form factor of the entanglement Hamiltonian. These observables exhibit universal early-time signals for quantum chaos, a prerequisite for thermalization. Our work, therefore, establishes quantum computers as robust tools for studying universal features of thermalization in complex many-body systems, including in gauge theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00069v1-abstract-full').style.display = 'none'; document.getElementById('2408.00069v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IQuS@UW-21-085, UMD-PP-024-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20500">arXiv:2407.20500</a> <span> [<a href="https://arxiv.org/pdf/2407.20500">pdf</a>, <a href="https://arxiv.org/format/2407.20500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> An analog of topological entanglement entropy for mixed states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+M">Menghan Song</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/quant-ph?searchtype=author&query=Grover%2C+T">Tarun Grover</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20500v1-abstract-short" style="display: inline;"> We propose the convex-roof extension of quantum conditional mutual information ("co(QCMI)") as a diagnostic of long-range entanglement in a mixed state. We focus primarily on topological states subjected to local decoherence, and employ the Levin-Wen scheme to define co(QCMI), so that for a pure state, co(QCMI) equals topological entanglement entropy (TEE). By construction, co(QCMI) is zero if and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20500v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20500v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20500v1-abstract-full" style="display: none;"> We propose the convex-roof extension of quantum conditional mutual information ("co(QCMI)") as a diagnostic of long-range entanglement in a mixed state. We focus primarily on topological states subjected to local decoherence, and employ the Levin-Wen scheme to define co(QCMI), so that for a pure state, co(QCMI) equals topological entanglement entropy (TEE). By construction, co(QCMI) is zero if and only if a mixed state can be decomposed as a convex sum of pure states with zero TEE. We show that co(QCMI) is non-increasing with increasing decoherence when Kraus operators are proportional to the product of onsite unitaries. This implies that unlike a pure state transition between a topologically trivial and a non-trivial phase, the long-range entanglement at a decoherence-induced topological phase transition as quantified by co(QCMI) is less than or equal to that in the proximate topological phase. For the 2d toric code decohered by onsite bit/phase-flip noise, we show that co(QCMI) is non-zero below the error-recovery threshold and zero above it. Relatedly, the decohered state cannot be written as a convex sum of short-range entangled pure states below the threshold. We conjecture and provide evidence that in this example, co(QCMI) equals TEE of a recently introduced pure state. In particular, we develop a tensor-assisted Monte Carlo (TMC) computation method to efficiently evaluate the R茅nyi TEE for the aforementioned pure state and provide non-trivial consistency checks for our conjecture. We use TMC to also calculate the universal scaling dimension of the anyon-condensation order parameter at this transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20500v1-abstract-full').style.display = 'none'; document.getElementById('2407.20500v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages main text, 3 pages of appendices, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19147">arXiv:2407.19147</a> <span> [<a href="https://arxiv.org/pdf/2407.19147">pdf</a>, <a href="https://arxiv.org/format/2407.19147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Reexamination of the realtime protection for user privacy in practical quantum private query </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wei%2C+C">Chun-Yan Wei</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+X">Xiao-Qiu Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Yin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19147v1-abstract-short" style="display: inline;"> Quantum private query (QPQ) is the quantum version for symmetrically private retrieval. However, the user privacy in QPQ is generally guarded in the non-realtime and cheat sensitive way. That is, the dishonest database holder's cheating to elicit user privacy can only be discovered after the protocol is finished (when the user finds some errors in the retrieved database item). Such delayed detecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19147v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19147v1-abstract-full" style="display: none;"> Quantum private query (QPQ) is the quantum version for symmetrically private retrieval. However, the user privacy in QPQ is generally guarded in the non-realtime and cheat sensitive way. That is, the dishonest database holder's cheating to elicit user privacy can only be discovered after the protocol is finished (when the user finds some errors in the retrieved database item). Such delayed detection may cause very unpleasant results for the user in real-life applications. Current efforts to protect user privacy in realtime in existing QPQ protocols mainly use two techniques, i.e., adding an honesty checking on the database or allowing the user to reorder the qubits. We reexamine these two kinds of QPQ protocols and find neither of them can work well. We give concrete cheating strategies for both participants and show that honesty checking of inner participant should be dealt more carefully in for example the choosing of checking qubits. We hope such discussion can supply new concerns when detection of dishonest participant is considered in quantum multi-party secure computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19147v1-abstract-full').style.display = 'none'; document.getElementById('2407.19147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17088">arXiv:2407.17088</a> <span> [<a href="https://arxiv.org/pdf/2407.17088">pdf</a>, <a href="https://arxiv.org/format/2407.17088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Continuously Expanding the Response Frequency of Rydberg Atom-Based Microwave Sensor by Using Quantum Mixer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+S">Sheng-Xian Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17088v1-abstract-short" style="display: inline;"> Microwave electric (MW) field measurements utilizing Rydberg atoms have witnessed significant advancements, achieving remarkable sensitivity, albeit limited to discrete MW frequencies resonant with Rydberg states. Recently, various continuous-frequency measurement schemes have emerged. However, when the MW detuning surpasses 1 GHz, the sensitivity degrades by over an order of magnitude compared to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17088v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17088v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17088v1-abstract-full" style="display: none;"> Microwave electric (MW) field measurements utilizing Rydberg atoms have witnessed significant advancements, achieving remarkable sensitivity, albeit limited to discrete MW frequencies resonant with Rydberg states. Recently, various continuous-frequency measurement schemes have emerged. However, when the MW detuning surpasses 1 GHz, the sensitivity degrades by over an order of magnitude compared to resonant measurements. In this paper, we successfully extend the response frequency range by harnessing a controlled driving field in conjunction with a quantum mixer and heterodyne technology, theoretically enabling infinite scalability. Notably, second-order effects stemming from quantum mixing necessitate careful consideration to ensure accurate electric field measurements. In addition, compared to resonant measurements, the sensitivity decline for far-detuned MW fields exceeding 1 GHz is less than twice, representing a significant improvement of several orders of magnitude over alternative schemes. Furthermore, the sensitivity of far-detuned MW fields can be efficiently enhanced by augmenting the intensity and frequency of the controlled field. For detunings ranging from 100 MHz to 2 GHz, we present optimal sensitivity values and the corresponding methods to achieve them. Our findings pave the way for Rydberg atom-based MW receivers characterized by both high sensitivity and an exceptionally broad bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17088v1-abstract-full').style.display = 'none'; document.getElementById('2407.17088v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13104">arXiv:2407.13104</a> <span> [<a href="https://arxiv.org/pdf/2407.13104">pdf</a>, <a href="https://arxiv.org/format/2407.13104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138876">10.1016/j.physletb.2024.138876 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entropic uncertainty relations in Schwarzschild space-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Yu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+D">Dong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13104v1-abstract-short" style="display: inline;"> The uncertainty principle is deemed as one of cornerstones in quantum mechanics, and exploring its lower limit of uncertainty will be helpful to understand the principle's nature. In this study, we propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system, and further derive a tighter lower bound by considering Holevo quality and mutual informatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13104v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13104v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13104v1-abstract-full" style="display: none;"> The uncertainty principle is deemed as one of cornerstones in quantum mechanics, and exploring its lower limit of uncertainty will be helpful to understand the principle's nature. In this study, we propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system, and further derive a tighter lower bound by considering Holevo quality and mutual information. Importantly, we detailedly discuss the proposed uncertainty relations and quantum coherence in the context of Schwarzschild space-time. It is interesting to find that Hawking radiation will damage the coherence of the physically accessible region and increase the uncertainty. Furthermore, we argue that the properties of the uncertainty in Schwarzschild space-time can be explained from the systems' purity and the information redistribution of the different regions. Therefore, it is believed that our findings provide the generalized entropic uncertainty relations in multipartite systems, which may facilitate us deeper understanding of quantumness and information paradox of the black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13104v1-abstract-full').style.display = 'none'; document.getElementById('2407.13104v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 855, 138876 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06687">arXiv:2407.06687</a> <span> [<a href="https://arxiv.org/pdf/2407.06687">pdf</a>, <a href="https://arxiv.org/format/2407.06687">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of Conditional Operations through Transition Pathway Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Duan%2C+P">Peng Duan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Le Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+R">Ren-Ze Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Z">Ze-An Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hai-Feng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+L">Lei Du</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+H">Hao-Ran Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhi-Fei Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+Z">Zhi-Long Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06687v2-abstract-short" style="display: inline;"> In the NISQ era, achieving large-scale quantum computing demands compact circuits to mitigate decoherence and gate error accumulation. Quantum operations with diverse degrees of freedom hold promise for circuit compression, but conventional approaches encounter challenges in simultaneously adjusting multiple parameters. Here, we propose a transition composite gate (TCG) scheme grounded on state-se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06687v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06687v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06687v2-abstract-full" style="display: none;"> In the NISQ era, achieving large-scale quantum computing demands compact circuits to mitigate decoherence and gate error accumulation. Quantum operations with diverse degrees of freedom hold promise for circuit compression, but conventional approaches encounter challenges in simultaneously adjusting multiple parameters. Here, we propose a transition composite gate (TCG) scheme grounded on state-selective transition path engineering, enabling more expressive conditional operations. We experimentally validate a controlled unitary (CU) gate as an example, with independent and continuous parameters. By adjusting the parameters of $\rm X^{12}$ gate, we obtain the CU family with a fidelity range of 95.2% to 99.0% leveraging quantum process tomography (QPT). To demonstrate the capability of circuit compression, we use TCG scheme to prepare 3-qubit Greenberger-Horne-Zeilinger (GHZ) and W states, with the fidelity of 96.77% and 95.72%. TCG can achieve the reduction in circuit depth of about 40% and 44% compared with the use of CZ gates only. Moreover, we show that short-path TCG (SPTCG) can further reduce the state-preparation circuit time cost. The TCG scheme exhibits advantages in certain quantum circuits and shows significant potential for large-scale quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06687v2-abstract-full').style.display = 'none'; document.getElementById('2407.06687v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12195">arXiv:2406.12195</a> <span> [<a href="https://arxiv.org/pdf/2406.12195">pdf</a>, <a href="https://arxiv.org/format/2406.12195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Compiling with Reinforcement Learning on a Superconducting Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+T">Z. T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Q">Qiuhao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+Y">Yuxuan Du</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z+H">Z. H. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+X">Xiaoxia Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jingning Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+J">Jun Du</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yinan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Y">Yuling Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+X">Xingyao Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+X">Xiliang Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+H">Huikai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+Y">Yirong Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+R">Ruixia Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+S+P">S. P. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12195v1-abstract-short" style="display: inline;"> To effectively implement quantum algorithms on noisy intermediate-scale quantum (NISQ) processors is a central task in modern quantum technology. NISQ processors feature tens to a few hundreds of noisy qubits with limited coherence times and gate operations with errors, so NISQ algorithms naturally require employing circuits of short lengths via quantum compilation. Here, we develop a reinforcemen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12195v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12195v1-abstract-full" style="display: none;"> To effectively implement quantum algorithms on noisy intermediate-scale quantum (NISQ) processors is a central task in modern quantum technology. NISQ processors feature tens to a few hundreds of noisy qubits with limited coherence times and gate operations with errors, so NISQ algorithms naturally require employing circuits of short lengths via quantum compilation. Here, we develop a reinforcement learning (RL)-based quantum compiler for a superconducting processor and demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths. We show that for the three-qubit quantum Fourier transformation, a compiled circuit using only seven CZ gates with unity circuit fidelity can be achieved. The compiler is also able to find optimal circuits under device topological constraints, with lengths considerably shorter than those by the conventional method. Our study exemplifies the codesign of the software with hardware for efficient quantum compilation, offering valuable insights for the advancement of RL-based compilers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12195v1-abstract-full').style.display = 'none'; document.getElementById('2406.12195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06063">arXiv:2406.06063</a> <span> [<a href="https://arxiv.org/pdf/2406.06063">pdf</a>, <a href="https://arxiv.org/format/2406.06063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+T">Teng-Yang Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+C">Chuang-Chao Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+L">Liang Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+M">Ming-Yang Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+L">Lei Du</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hai-Feng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+H">Hao-Ran Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Le Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Z">Ze-An Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+R">Ren-Ze Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Jia%2C+Z">Zhi-Long Jia</a>, <a href="/search/quant-ph?searchtype=author&query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+M">Meng-Han Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jun-Chao Wang</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06063v3-abstract-short" style="display: inline;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'inline'; document.getElementById('2406.06063v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06063v3-abstract-full" style="display: none;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation. The Poiseuille flow simulation achieved a relative error of less than $0.2\%$, and the unsteady acoustic wave simulation solved a 5043-dimensional matrix. We emphasize the utilization of the quantum-classical hybrid approach in applications of near-term quantum computers. By adapting to quantum hardware constraints and offering scalable solutions for large-scale CFD problems, our method paves the way for practical applications of near-term quantum computers in computational science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'none'; document.getElementById('2406.06063v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07197">arXiv:2405.07197</a> <span> [<a href="https://arxiv.org/pdf/2405.07197">pdf</a>, <a href="https://arxiv.org/format/2405.07197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Qsyn: A Developer-Friendly Quantum Circuit Synthesis Framework for NISQ Era and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lau%2C+M">Mu-Te Lau</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+C">Chin-Yi Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+C">Cheng-Hua Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Chuang%2C+C">Chia-Hsu Chuang</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+Y">Yi-Hsiang Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+H">Hsiang-Chun Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+C">Chien-Tung Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Hsin-Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Tung%2C+C">Chen-Ying Tung</a>, <a href="/search/quant-ph?searchtype=author&query=Tsai%2C+C">Cheng-En Tsai</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guan-Hao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+L">Leng-Kai Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Ching-Huan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tzu-Hsu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C+R">Chung-Yang Ric Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07197v3-abstract-short" style="display: inline;"> In this paper, we introduce a new quantum circuit synthesis (QCS) framework, Qsyn, for developers to research, develop, test, experiment, and then contribute their QCS algorithms and tools to the framework. Our framework is more developer-friendly than other modern QCS frameworks in three aspects: (1) We design a rich command-line interface so that developers can easily design various testing scen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07197v3-abstract-full').style.display = 'inline'; document.getElementById('2405.07197v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07197v3-abstract-full" style="display: none;"> In this paper, we introduce a new quantum circuit synthesis (QCS) framework, Qsyn, for developers to research, develop, test, experiment, and then contribute their QCS algorithms and tools to the framework. Our framework is more developer-friendly than other modern QCS frameworks in three aspects: (1) We design a rich command-line interface so that developers can easily design various testing scenarios and flexibly conduct experiments on their algorithms. (2) We offer detailed access to many data representations on different abstract levels of quantum circuits so that developers can optimize their algorithms to the extreme. (3) We define a rigid developing flow and environment so that developers can ensure their development qualities with the best modern software engineering practices. We illustrate the friendliness of our framework with a showcase of developing a T-Count Optimization algorithm and demonstrate our performance superiority with fair comparisons to other modern QCS frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07197v3-abstract-full').style.display = 'none'; document.getElementById('2405.07197v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05481">arXiv:2405.05481</a> <span> [<a href="https://arxiv.org/pdf/2405.05481">pdf</a>, <a href="https://arxiv.org/format/2405.05481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Achieving millisecond coherence fluxonium through overlap Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+K">Kannan Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+H">Huijuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+L">Lu Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Bai%2C+Y">Yang Bai</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+F">Feng Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+X">Xu Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+G">Guicheng Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+L">Lijuan Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+R">Ruizi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+H">Honghong Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Mao%2C+L">Liyong Mao</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+C">Chengchun Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hongcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Ziang Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+H">Hongxin Xu</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05481v1-abstract-short" style="display: inline;"> Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting loop. However, this complexity poses significant fabrication challenges, particularly in achieving high yield and junction uniformity with traditional methods. Here, we introduce an overlap process for Josephs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05481v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05481v1-abstract-full" style="display: none;"> Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting loop. However, this complexity poses significant fabrication challenges, particularly in achieving high yield and junction uniformity with traditional methods. Here, we introduce an overlap process for Josephson junction fabrication that achieves nearly 100% yield and maintains uniformity across a 2-inch wafer with less than 5% variation for the phase slip junction and less than 2% for the junction array. Our compact junction array design facilitates fluxonium qubits with energy relaxation times exceeding 1 millisecond at the flux frustration point, demonstrating consistency with state-of-the-art dielectric loss tangents and flux noise across multiple devices. This work suggests the scalability of high coherence fluxonium processors using CMOS-compatible processes, marking a significant step towards practical quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05481v1-abstract-full').style.display = 'none'; document.getElementById('2405.05481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10814">arXiv:2404.10814</a> <span> [<a href="https://arxiv.org/pdf/2404.10814">pdf</a>, <a href="https://arxiv.org/format/2404.10814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Higher Hall conductivity from a single wave function: Obstructions to symmetry-preserving gapped edge of (2+1)D topological order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Taige Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10814v2-abstract-short" style="display: inline;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are "higher" versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10814v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10814v2-abstract-full" style="display: none;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are "higher" versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall conductivity. In this paper, we show that one can extract higher Hall conductivity from a single wave function of an FQH state, by evaluating the expectation value of the "partial rotation" unitary which is a combination of partial spatial rotation and a U(1) phase rotation. This result is verified numerically with the fermionic Laughlin state with $谓=1/3$, $1/5$, as well as the non-Abelian Moore-Read state. Together with topological entanglement entropy, we prove that the expectation values of the partial rotation completely determines if a bosonic/fermionic Abelian topological order with U(1) symmetry has a symmetry-preserving gappable edge state or not. We also show that thermal and electric Hall conductivity of Abelian topological order can be extracted by partial rotations. Even in non-Abelian FQH states, partial rotation provides the Lieb-Schultz-Mattis type theorem constraining the low-energy spectrum of the bulk-boundary system. The generalization of higher Hall conductivity to the case with Lie group symmetry is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'none'; document.getElementById('2404.10814v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, minor edits</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12602">arXiv:2403.12602</a> <span> [<a href="https://arxiv.org/pdf/2403.12602">pdf</a>, <a href="https://arxiv.org/format/2403.12602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated distributed sensing and quantum communication networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Y">Yuehan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+P">Peng Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12602v1-abstract-short" style="display: inline;"> The integration of sensing and communication can achieve ubiquitous sensing while enabling ubiquitous communication. Within the gradually improving global communication, the integrated sensing and communication (ISAC) system based on optical fibers can accomplish various functionalities, such as urban structure imaging, seismic wave detection, and pipeline safety monitoring. With the development o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12602v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12602v1-abstract-full" style="display: none;"> The integration of sensing and communication can achieve ubiquitous sensing while enabling ubiquitous communication. Within the gradually improving global communication, the integrated sensing and communication (ISAC) system based on optical fibers can accomplish various functionalities, such as urban structure imaging, seismic wave detection, and pipeline safety monitoring. With the development of quantum communication, quantum networks based on optical fiber are gradually being established. In this paper, we propose an integrated sensing and quantum network (ISAQN) scheme, which can achieve secure key distribution among multiple nodes and distributed sensing under the standard quantum limit. CV-QKD protocol and the round-trip multi-band structure are adopted to achieve the multi-node secure key distribution. Meanwhile, the spectrum phase monitoring (SPM) protocol is proposed to realize distributed sensing. It determines which node is vibrating by monitoring the frequency spectrum and restores the vibration waveform by monitoring the phase change. The scheme is experimentally demonstrated by simulating the vibration in a star structure network. Experimental results indicate that this multi-user quantum network can achieve a secret key rate (SKR) of approximately 0.7 $\rm{Mbits/s}$ for each user under 10 $\rm{km}$ standard fiber transmission and its network capacity is 8. In terms of distributed sensing, it can achieve a vibration response bandwidth ranging from 1 $\rm{Hz}$ to 2 $\rm{kHz}$, a strain resolution of 0.50 $\rm{n}$$\varepsilon$$/\sqrt{\rm{Hz}}$, and a spatial resolution of 0.20 $\rm{m}$ under shot-noise-limited detection. The proposed ISAQN scheme enables simultaneous quantum communication and distributed sensing in a multi-point network, laying a foundation for future large-scale quantum networks and high-precision sensing networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12602v1-abstract-full').style.display = 'none'; document.getElementById('2403.12602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14916">arXiv:2402.14916</a> <span> [<a href="https://arxiv.org/pdf/2402.14916">pdf</a>, <a href="https://arxiv.org/format/2402.14916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Microscopy: Tomography and Entanglement Measures via Quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+M">Menghan Song</a>, <a href="/search/quant-ph?searchtype=author&query=Lyu%2C+L">Liuke Lyu</a>, <a href="/search/quant-ph?searchtype=author&query=Witczak-Krempa%2C+W">William Witczak-Krempa</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14916v4-abstract-short" style="display: inline;"> We employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of microscopic subregion both in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14916v4-abstract-full').style.display = 'inline'; document.getElementById('2402.14916v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14916v4-abstract-full" style="display: none;"> We employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of microscopic subregion both in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions. Our main results are: i) the Ising QCP exhibits short-range entanglement with a finite sudden death of the LN both in space and temperature; ii) the Gross-Neveu QCP has a power-law decaying fermionic LN consistent with conformal field theory (CFT) exponents; iii) going beyond bipartite entanglement, we find no detectable 3-party entanglement with our two witnesses in a large parameter window near the Ising QCP in 2d, in contrast to 1d. We further establish the singular scaling of general multipartite entanglement measures at criticality, and present an explicit analysis in the tripartite case. We also analytically obtain the large-temperature power-law scaling of the fermionic LN for general interacting systems. Entanglement microscopy opens a rich window into quantum matter, with countless systems waiting to be explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14916v4-abstract-full').style.display = 'none'; document.getElementById('2402.14916v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+10 pages, 4+12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06267">arXiv:2402.06267</a> <span> [<a href="https://arxiv.org/pdf/2402.06267">pdf</a>, <a href="https://arxiv.org/format/2402.06267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient initialization of fluxonium qubits based on auxiliary energy levels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Gengyan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jianjun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+R">Ruizi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+L">Lu Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+M">Make Ying</a>, <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+H">Huijuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+H">Hui-Hai Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+C">Chunqing Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06267v1-abstract-short" style="display: inline;"> Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06267v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06267v1-abstract-full" style="display: none;"> Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wavefunctions, the sideband transitions are only enabled by multi-photon processes which requires multi-tone or strong driving. Leveraging the flux-tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a non-computational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06267v1-abstract-full').style.display = 'none'; document.getElementById('2402.06267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09933">arXiv:2401.09933</a> <span> [<a href="https://arxiv.org/pdf/2401.09933">pdf</a>, <a href="https://arxiv.org/format/2401.09933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-integer Floquet Sidebands Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ou-Yang%2C+D">Du-Yi Ou-Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yan-Hua Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Ya Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+X">Xiao-Tong Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+H">Hong Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09933v1-abstract-short" style="display: inline;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09933v1-abstract-full" style="display: none;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propose the Floquet channel interference hypothesis (FCIH) which surprisingly matches quantitatively well with both experimental and numerical results. With its help, we found both Rabi and Ramsey spectra are very sensitive to the initial phase and exhibit additional two symmetries. More importantly, the height of Ramsey NIFBs is comparable to the integer one at larger $g/蠅_s$ which indicates an exotic phenomenon beyond the perturbative description. Our work provides new insight into the spectroscopy of the Floquet system and has potential application in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'none'; document.getElementById('2401.09933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, comments are welcome, and more information at http://cqutp.org/users/xfzhang/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06119">arXiv:2401.06119</a> <span> [<a href="https://arxiv.org/pdf/2401.06119">pdf</a>, <a href="https://arxiv.org/format/2401.06119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly multimode visible squeezed light with programmable spectral correlations through broadband up-conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Presutti%2C+F">Federico Presutti</a>, <a href="/search/quant-ph?searchtype=author&query=Wright%2C+L+G">Logan G. Wright</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+S">Shi-Yuan Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianyu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Malia%2C+B+K">Benjamin K. Malia</a>, <a href="/search/quant-ph?searchtype=author&query=Onodera%2C+T">Tatsuhiro Onodera</a>, <a href="/search/quant-ph?searchtype=author&query=McMahon%2C+P+L">Peter L. McMahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06119v1-abstract-short" style="display: inline;"> Multimode squeezed states of light have been proposed as a resource for achieving quantum advantage in computing and sensing. Recent experiments that demonstrate multimode Gaussian states to this end have most commonly opted for spatial or temporal modes, whereas a complete system based on frequency modes has yet to be realized. Instead, we show how to use the frequency modes simultaneously squeez… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06119v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06119v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06119v1-abstract-full" style="display: none;"> Multimode squeezed states of light have been proposed as a resource for achieving quantum advantage in computing and sensing. Recent experiments that demonstrate multimode Gaussian states to this end have most commonly opted for spatial or temporal modes, whereas a complete system based on frequency modes has yet to be realized. Instead, we show how to use the frequency modes simultaneously squeezed in a conventional, single-spatial-mode, optical parametric amplifier when pumped by ultrashort pulses. Specifically, we show how adiabatic frequency conversion can be used not only to convert the quantum state from infrared to visible wavelengths, but to concurrently manipulate the joint spectrum. This near unity-efficiency quantum frequency conversion, over a bandwidth >45 THz and, to our knowledge, the broadest to date, allows us to measure the state with an electron-multiplying CCD (EMCCD) camera-based spectrometer, at non-cryogenic temperatures. We demonstrate the squeezing of >400 frequency modes, with a mean of approximately 700 visible photons per shot. Our work shows how many-mode quantum states of light can be generated, manipulated, and measured with efficient use of hardware resources -- in our case, using one pulsed laser, two nonlinear crystals, and one camera. This ability to produce, with modest hardware resources, large multimode squeezed states with partial programmability motivates the use of frequency encoding for photonics-based quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06119v1-abstract-full').style.display = 'none'; document.getElementById('2401.06119v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06405">arXiv:2312.06405</a> <span> [<a href="https://arxiv.org/pdf/2312.06405">pdf</a>, <a href="https://arxiv.org/format/2312.06405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Resonator Frequency Stability in Flip-Chip Architectures: A Novel Experimental Design Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianhui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+J">Jingjing Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+D">Dengfeng Li</a>, <a href="/search/quant-ph?searchtype=author&query=An%2C+S">Shuoming An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06405v1-abstract-short" style="display: inline;"> In multi-qubit superconducting systems utilizing flip-chip technology, achieving high accuracy in resonator frequencies is of paramount importance, particularly when multiple resonators share a common Purcell filter with restricted bandwidth. Nevertheless, variations in inter-chip spacing can considerably influence these frequencies. To tackle this issue, we present and experimentally validate the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06405v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06405v1-abstract-full" style="display: none;"> In multi-qubit superconducting systems utilizing flip-chip technology, achieving high accuracy in resonator frequencies is of paramount importance, particularly when multiple resonators share a common Purcell filter with restricted bandwidth. Nevertheless, variations in inter-chip spacing can considerably influence these frequencies. To tackle this issue, we present and experimentally validate the effectiveness of a resonator design. In our design, we etch portions of the metal on the bottom chip that faces the resonator structure on the top chip. This enhanced design substantially improves frequency stability by a factor of over 3.5 compared to the non-optimized design, as evaluated by the root mean square error of a linear fitting of the observed frequency distribution, which is intended to be linear. This advancement is crucial for successful scale-up and achievement of high-fidelity quantum operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06405v1-abstract-full').style.display = 'none'; document.getElementById('2312.06405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10955">arXiv:2311.10955</a> <span> [<a href="https://arxiv.org/pdf/2311.10955">pdf</a>, <a href="https://arxiv.org/format/2311.10955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of Maxwell Demon-assistant Einstein-Podolsky-Rosen Steering via Superconducting Quantum Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+T">Z. T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+R">Ruixia Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+P">Peng Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z+H">Z. H. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yong-Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+S+P">S. P. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+M">Meng-Jun Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+H">Haifeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10955v1-abstract-short" style="display: inline;"> The concept of Maxwell demon plays an essential role in connecting thermodynamics and information theory, while entanglement and non-locality are fundamental features of quantum theory. Given the rapid advancements in the field of quantum information science, there is a growing interest and significance in investigating the connection between Maxwell demon and quantum correlation. The majority of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10955v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10955v1-abstract-full" style="display: none;"> The concept of Maxwell demon plays an essential role in connecting thermodynamics and information theory, while entanglement and non-locality are fundamental features of quantum theory. Given the rapid advancements in the field of quantum information science, there is a growing interest and significance in investigating the connection between Maxwell demon and quantum correlation. The majority of research endeavors thus far have been directed towards the extraction of work from quantum correlation through the utilization of Maxwell demon. Recently, a novel concept called Maxwell demon-assistant Einstein-Podolsky-Rosen (EPR) steering has been proposed, which suggests that it is possible to simulate quantum correlation by doing work. This seemingly counterintuitive conclusion is attributed to the fact that Alice and Bob need classical communication during EPR steering task, a requirement that does not apply in the Bell test. In this study, we demonstrate Maxwell demon-assistant EPR steering with superconducting quantum circuits. By compiling and optimizing a quantum circuit to be implemented on a 2D superconducting chip, we were able to achieve a steering parameter of $S_{2} = 0.770 \pm 0.005$ in the case of two measurement settings, which surpasses the classical bound of $1/\sqrt{2}$ by 12.6 standard deviations. In addition, experimental observations have revealed a linear correlation between the non-locality demonstrated in EPR steering and the work done by the demon. Considering the errors in practical operation, the experimental results are highly consistent with theoretical predictions. Our findings not only suggest the presence of a Maxwell demon loophole in the EPR steering, but also contribute to a deeper comprehension of the interplay between quantum correlation, information theory, and thermodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10955v1-abstract-full').style.display = 'none'; document.getElementById('2311.10955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02020">arXiv:2311.02020</a> <span> [<a href="https://arxiv.org/pdf/2311.02020">pdf</a>, <a href="https://arxiv.org/format/2311.02020">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00824-x">10.1038/s41534-024-00824-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating Photosynthetic Energy Transport on a Photonic Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Shang%2C+X">Xiao-Wen Shang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Z">Zi-Yu Shi</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+T">Tian-Shen He</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Yu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+R">Ruoxi Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui-Ming Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+X">Xi Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+M+S">M. S. Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02020v1-abstract-short" style="display: inline;"> Quantum effects in photosynthetic energy transport in nature, especially for the typical Fenna-Matthews-Olson (FMO) complexes, are extensively studied in quantum biology. Such energy transport processes can be investigated as open quantum systems that blend the quantum coherence and environmental noises, and have been experimentally simulated on a few quantum devices. However, the existing experim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02020v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02020v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02020v1-abstract-full" style="display: none;"> Quantum effects in photosynthetic energy transport in nature, especially for the typical Fenna-Matthews-Olson (FMO) complexes, are extensively studied in quantum biology. Such energy transport processes can be investigated as open quantum systems that blend the quantum coherence and environmental noises, and have been experimentally simulated on a few quantum devices. However, the existing experiments always lack a solid quantum simulation for the FMO energy transport due to their constraints to map a variety of issues in actual FMO complexes that have rich biological meanings. Here we successfully map the full coupling profile of the seven-site FMO structure by comprehensive characterization and precise control of the evanescent coupling of the three-dimensional waveguide array. By applying a stochastic dynamical modulation on each waveguide, we introduce the base site energy and the dephasing term in colored noises to faithfully simulate the power spectral density of the FMO complexes. We show our photonic model well interprets the issues including the reorganization energy, vibrational assistance, exciton transfer and energy localization. We further experimentally demonstrate the existence of an optimal transport efficiency at certain dephasing strength, providing a window to closely investigate environment-assisted quantum transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02020v1-abstract-full').style.display = 'none'; document.getElementById('2311.02020v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 10, 29 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15084">arXiv:2310.15084</a> <span> [<a href="https://arxiv.org/pdf/2310.15084">pdf</a>, <a href="https://arxiv.org/format/2310.15084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Federated Learning With Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tyler Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Tseng%2C+H">Huan-Hsin Tseng</a>, <a href="/search/quant-ph?searchtype=author&query=Yoo%2C+S">Shinjae Yoo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15084v1-abstract-short" style="display: inline;"> A major concern of deep learning models is the large amount of data that is required to build and train them, much of which is reliant on sensitive and personally identifiable information that is vulnerable to access by third parties. Ideas of using the quantum internet to address this issue have been previously proposed, which would enable fast and completely secure online communications. Previou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15084v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15084v1-abstract-full" style="display: none;"> A major concern of deep learning models is the large amount of data that is required to build and train them, much of which is reliant on sensitive and personally identifiable information that is vulnerable to access by third parties. Ideas of using the quantum internet to address this issue have been previously proposed, which would enable fast and completely secure online communications. Previous work has yielded a hybrid quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology. While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory. Here we seek to improve this model by implementing a decentralized ring topology for the federated learning scheme, where each client is given a portion of the entire dataset and only performs training on that set. We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15084v1-abstract-full').style.display = 'none'; document.getElementById('2310.15084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01490">arXiv:2310.01490</a> <span> [<a href="https://arxiv.org/pdf/2310.01490">pdf</a>, <a href="https://arxiv.org/format/2310.01490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115117">10.1103/PhysRevB.110.115117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resummation-based Quantum Monte Carlo for Entanglement Entropy Computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Song%2C+M">Menghan Song</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01490v6-abstract-short" style="display: inline;"> Based on the recently developed resummation-based quantum Monte Carlo method for the SU($N$) spin and loop-gas models, we develop a new algorithm, dubbed ResumEE, to compute the entanglement entropy (EE) with greatly enhanced efficiency. Our ResumEE exponentially speeds up the computation of the exponentially small value of the $\langle e^{-S^{(2)}}\rangle$, where $S^{(2)}$ is the 2nd order R茅nyi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01490v6-abstract-full').style.display = 'inline'; document.getElementById('2310.01490v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01490v6-abstract-full" style="display: none;"> Based on the recently developed resummation-based quantum Monte Carlo method for the SU($N$) spin and loop-gas models, we develop a new algorithm, dubbed ResumEE, to compute the entanglement entropy (EE) with greatly enhanced efficiency. Our ResumEE exponentially speeds up the computation of the exponentially small value of the $\langle e^{-S^{(2)}}\rangle$, where $S^{(2)}$ is the 2nd order R茅nyi EE, such that the $S^{(2)}$ for a generic 2D quantum SU($N$) spin models can be readily computed with high accuracy. We benchmark our algorithm with the previously proposed estimators of $S^{(2)}$ on 1D and 2D SU($2$) Heisenberg spin systems to reveal its superior performance and then use it to detect the entanglement scaling data of the N茅el-to-VBS transition on 2D SU($N$) Heisenberg model with continuously varying $N$. Our ResumEE algorithm is efficient for precisely evaluating the entanglement entropy of SU($N$) spin models with continuous $N$ and reliable access to the conformal field theory data for the highly entangled quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01490v6-abstract-full').style.display = 'none'; document.getElementById('2310.01490v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115117 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00793">arXiv:2309.00793</a> <span> [<a href="https://arxiv.org/pdf/2309.00793">pdf</a>, <a href="https://arxiv.org/format/2309.00793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Control of free induction decay with quantum state preparation in a weakly coupled multi-spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cao%2C+Q">Qian Cao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianzi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wenxian Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00793v1-abstract-short" style="display: inline;"> Nuclear magnetic resonance (NMR) has been a widely used tool in various scientific fields and practical applications, with quantum control emerging as a promising strategy for synergistic advancements. In this paper, we propose a novel approach that combines NMR and quantum state preparation techniques to control free induction decay (FID) signals in weakly coupled spin systems, specifically Trifl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00793v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00793v1-abstract-full" style="display: none;"> Nuclear magnetic resonance (NMR) has been a widely used tool in various scientific fields and practical applications, with quantum control emerging as a promising strategy for synergistic advancements. In this paper, we propose a novel approach that combines NMR and quantum state preparation techniques to control free induction decay (FID) signals in weakly coupled spin systems, specifically Trifluoroiodoethylene $C_2F_3I$. We investigate the FID signal of the three-spin system and compare the differences between the FID signals in the thermal state and the pseudo-pure state (PPS), where the latter is generated using quantum state preparation techniques. Our approach aims to demonstrate a single exponentially decaying FID in weakly coupled spins, in which oscillatory FID signals are often observed. We validate our findings through numerical simulations and experimental measurements, and justify the validity of the theory. Our method opens a door to advancing spin system research and extending the capabilities of NMR with current quantum technologies in various scientific and practical fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00793v1-abstract-full').style.display = 'none'; document.getElementById('2309.00793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16040">arXiv:2308.16040</a> <span> [<a href="https://arxiv.org/pdf/2308.16040">pdf</a>, <a href="https://arxiv.org/format/2308.16040">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Native approach to controlled-Z gates in inductively coupled fluxonium qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Gengyan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+F">Feng Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+X">Xu Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jianjun Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+L">Lijuan Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+H">Honghong Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Hsiang-Sheng Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+K">Kannan Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+L">Lu Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Mao%2C+L">Liyong Mao</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+C">Chengchun Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hongcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Ying%2C+M">Make Ying</a>, <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+H">Huijuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+T">Tao Zhou</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16040v1-abstract-short" style="display: inline;"> The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX-interactions. Consequently, effective XX- or XZ-interactions are only constructed either by temporarily populating higher-energy stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16040v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16040v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16040v1-abstract-full" style="display: none;"> The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX-interactions. Consequently, effective XX- or XZ-interactions are only constructed either by temporarily populating higher-energy states, or by exploiting perturbative effects under microwave driving. Instead, we propose and demonstrate an inductive coupling scheme, which offers a wide selection of native qubit-qubit interactions for fluxonium. In particular, we leverage a built-in, flux-controlled ZZ-interaction to perform qubit entanglement. To combat the increased flux-noise-induced dephasing away from the flux-insensitive position, we use a continuous version of the dynamical decoupling scheme to perform noise filtering. Combining these, we demonstrate a 20 ns controlled-Z (CZ) gate with a mean fidelity of 99.53%. More than confirming the efficacy of our gate scheme, this high-fidelity result also reveals a promising but rarely explored parameter space uniquely suitable for gate operations between fluxonium qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16040v1-abstract-full').style.display = 'none'; document.getElementById('2308.16040v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03344">arXiv:2308.03344</a> <span> [<a href="https://arxiv.org/pdf/2308.03344">pdf</a>, <a href="https://arxiv.org/format/2308.03344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> A Parallel and Distributed Quantum SAT Solver Based on Entanglement and Quantum Teleportation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S">Shang-Wei Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tzu-Fan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yean-Ru Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Hou%2C+Z">Zhe Hou</a>, <a href="/search/quant-ph?searchtype=author&query=San%C3%A1n%2C+D">David San谩n</a>, <a href="/search/quant-ph?searchtype=author&query=Teo%2C+Y+S">Yon Shin Teo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03344v1-abstract-short" style="display: inline;"> Boolean satisfiability (SAT) solving is a fundamental problem in computer science. Finding efficient algorithms for SAT solving has broad implications in many areas of computer science and beyond. Quantum SAT solvers have been proposed in the literature based on Grover's algorithm. Although existing quantum SAT solvers can consider all possible inputs at once, they evaluate each clause in the form… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03344v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03344v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03344v1-abstract-full" style="display: none;"> Boolean satisfiability (SAT) solving is a fundamental problem in computer science. Finding efficient algorithms for SAT solving has broad implications in many areas of computer science and beyond. Quantum SAT solvers have been proposed in the literature based on Grover's algorithm. Although existing quantum SAT solvers can consider all possible inputs at once, they evaluate each clause in the formula one by one sequentially, making the time complexity O(m) -- linear to the number of clauses m -- per Grover iteration. In this work, we develop a parallel quantum SAT solver, which reduces the time complexity in each iteration from linear time O(m) to constant time O(1) by utilising extra entangled qubits. To further improve the scalability of our solution in case of extremely large problems, we develop a distributed version of the proposed parallel SAT solver based on quantum teleportation such that the total qubits required are shared and distributed among a set of quantum computers (nodes), and the quantum SAT solving is accomplished collaboratively by all the nodes. We have proved the correctness of our approaches and demonstrated them in simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03344v1-abstract-full').style.display = 'none'; document.getElementById('2308.03344v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02647">arXiv:2308.02647</a> <span> [<a href="https://arxiv.org/pdf/2308.02647">pdf</a>, <a href="https://arxiv.org/format/2308.02647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing variational Monte Carlo using a programmable quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Moss%2C+M+S">M. Schuyler Moss</a>, <a href="/search/quant-ph?searchtype=author&query=Ebadi%2C+S">Sepehr Ebadi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T+T">Tout T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Semeghini%2C+G">Giulia Semeghini</a>, <a href="/search/quant-ph?searchtype=author&query=Bohrdt%2C+A">Annabelle Bohrdt</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+M+D">Mikhail D. Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=Melko%2C+R+G">Roger G. Melko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02647v1-abstract-short" style="display: inline;"> Programmable quantum simulators based on Rydberg atom arrays are a fast-emerging quantum platform, bringing together long coherence times, high-fidelity operations, and large numbers of interacting qubits deterministically arranged in flexible geometries. Today's Rydberg array devices are demonstrating their utility as quantum simulators for studying phases and phase transitions in quantum matter.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02647v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02647v1-abstract-full" style="display: none;"> Programmable quantum simulators based on Rydberg atom arrays are a fast-emerging quantum platform, bringing together long coherence times, high-fidelity operations, and large numbers of interacting qubits deterministically arranged in flexible geometries. Today's Rydberg array devices are demonstrating their utility as quantum simulators for studying phases and phase transitions in quantum matter. In this paper, we show that unprocessed and imperfect experimental projective measurement data can be used to enhance in silico simulations of quantum matter, by improving the performance of variational Monte Carlo simulations. As an example, we focus on data spanning the disordered-to-checkerboard transition in a $16 \times 16$ square lattice array [S. Ebadi et al. Nature 595, 227 (2021)] and employ data-enhanced variational Monte Carlo to train powerful autoregressive wavefunction ans盲tze based on recurrent neural networks (RNNs). We observe universal improvements in the convergence times of our simulations with this hybrid training scheme. Notably, we also find that pre-training with experimental data enables relatively simple RNN ans盲tze to accurately capture phases of matter that are not learned with a purely variational training approach. Our work highlights the promise of hybrid quantum--classical approaches for large-scale simulation of quantum many-body systems, combining autoregressive language models with experimental data from existing quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02647v1-abstract-full').style.display = 'none'; document.getElementById('2308.02647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15712">arXiv:2307.15712</a> <span> [<a href="https://arxiv.org/pdf/2307.15712">pdf</a>, <a href="https://arxiv.org/format/2307.15712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-noise-limited optical neural networks operating at a few quanta per activation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ma%2C+S">Shi-Yuan Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianyu Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Laydevant%2C+J">J茅r茅mie Laydevant</a>, <a href="/search/quant-ph?searchtype=author&query=Wright%2C+L+G">Logan G. Wright</a>, <a href="/search/quant-ph?searchtype=author&query=McMahon%2C+P+L">Peter L. McMahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15712v1-abstract-short" style="display: inline;"> Analog physical neural networks, which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10). What happens if an analog system is instead operated in an ultra-low-power regime, in which the behavior of the system becomes highly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15712v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15712v1-abstract-full" style="display: none;"> Analog physical neural networks, which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10). What happens if an analog system is instead operated in an ultra-low-power regime, in which the behavior of the system becomes highly stochastic and the noise is no longer a small perturbation on the signal? In this paper, we study this question in the setting of optical neural networks operated in the limit where some layers use only a single photon to cause a neuron activation. Neuron activations in this limit are dominated by quantum noise from the fundamentally probabilistic nature of single-photon detection of weak optical signals. We show that it is possible to train stochastic optical neural networks to perform deterministic image-classification tasks with high accuracy in spite of the extremely high noise (SNR ~ 1) by using a training procedure that directly models the stochastic behavior of photodetection. We experimentally demonstrated MNIST classification with a test accuracy of 98% using an optical neural network with a hidden layer operating in the single-photon regime; the optical energy used to perform the classification corresponds to 0.008 photons per multiply-accumulate (MAC) operation, which is equivalent to 0.003 attojoules of optical energy per MAC. Our experiment used >40x fewer photons per inference than previous state-of-the-art low-optical-energy demonstrations, to achieve the same accuracy of >90%. Our work shows that some extremely stochastic analog systems, including those operating in the limit where quantum noise dominates, can nevertheless be used as layers in neural networks that deterministically perform classification tasks with high accuracy if they are appropriately trained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15712v1-abstract-full').style.display = 'none'; document.getElementById('2307.15712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 27 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11995">arXiv:2307.11995</a> <span> [<a href="https://arxiv.org/pdf/2307.11995">pdf</a>, <a href="https://arxiv.org/format/2307.11995">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Rabi Spectroscopy of Super-Bloch Oscillations in Optical Lattice Clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+S">Sheng-Xian Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Ying Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Ya Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11995v1-abstract-short" style="display: inline;"> Super-Bloch oscillations(SBOs) is giant Bloch oscillations (BOs) when applying both static and periodically driving force to free atoms in lattice at the condition that Bloch oscillations are close to integer times of driving frequencies. Rather than observe SBOs in real space, this paper presents a method to observe it using Rabi spectroscopy of Optical lattice clock(OLC). An effective model of O… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11995v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11995v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11995v1-abstract-full" style="display: none;"> Super-Bloch oscillations(SBOs) is giant Bloch oscillations (BOs) when applying both static and periodically driving force to free atoms in lattice at the condition that Bloch oscillations are close to integer times of driving frequencies. Rather than observe SBOs in real space, this paper presents a method to observe it using Rabi spectroscopy of Optical lattice clock(OLC). An effective model of OLC with atoms been added both static and time-periodical forces is derived. Based on that, we propose an experimental scheme and give the Rabi spectrum under lab achievable parameters. Utilizing the precision spectroscopy of OLC, force with a large range could be accurately measured by measuring the Period of SBOs. We also gave the best parameter condition of measuring gravity by calculating Fisher information. Our work paves the way to study other exotic dynamics behaviors in Floquet driving OLC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11995v1-abstract-full').style.display = 'none'; document.getElementById('2307.11995v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11794">arXiv:2306.11794</a> <span> [<a href="https://arxiv.org/pdf/2306.11794">pdf</a>, <a href="https://arxiv.org/format/2306.11794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of microscopic confinement dynamics by a tunable topological $胃$-angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Ying Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Y">Yanting Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+M">Ming-Gen He</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+G">Guo-Xian Su</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Z">Zhao-Yu Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+H">Hui Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+B">Bing Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Hauke%2C+P">Philipp Hauke</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Halimeh%2C+J+C">Jad C. Halimeh</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11794v1-abstract-short" style="display: inline;"> The topological $胃$-angle is central to the understanding of a plethora of phenomena in condensed matter and high-energy physics such as the strong CP problem, dynamical quantum topological phase transitions, and the confinement--deconfinement transition. Difficulties arise when probing the effects of the topological $胃$-angle using classical methods, in particular through the appearance of a sign… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11794v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11794v1-abstract-full" style="display: none;"> The topological $胃$-angle is central to the understanding of a plethora of phenomena in condensed matter and high-energy physics such as the strong CP problem, dynamical quantum topological phase transitions, and the confinement--deconfinement transition. Difficulties arise when probing the effects of the topological $胃$-angle using classical methods, in particular through the appearance of a sign problem in numerical simulations. Quantum simulators offer a powerful alternate venue for realizing the $胃$-angle, which has hitherto remained an outstanding challenge due to the difficulty of introducing a dynamical electric field in the experiment. Here, we report on the experimental realization of a tunable topological $胃$-angle in a Bose--Hubbard gauge-theory quantum simulator, implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the rich physics due to this angle by the direct observation of the confinement--deconfinement transition of $(1+1)$-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle--antiparticle pairs, which exhibit constrained (ballistic) propagation for a finite (vanishing) deviation of the $胃$-angle from $蟺$. Our work provides a major step forward in the realization of topological terms on modern quantum simulators, and the exploration of rich physics they have been theorized to entail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11794v1-abstract-full').style.display = 'none'; document.getElementById('2306.11794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">$7+7$ pages, $4+7$ figures, $1+0$ table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09568">arXiv:2306.09568</a> <span> [<a href="https://arxiv.org/pdf/2306.09568">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.35848/1347-4065/acfde6">10.35848/1347-4065/acfde6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial 伪-Ta (110) film on a-plane sapphire substrate for superconducting qubits on wafer scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+B">Boyi Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+L">Lina Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yanfu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+J">Jiagui Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09568v2-abstract-short" style="display: inline;"> Realization of practical superconducting quantum computing requires many qubits of long coherence time. Compared to the commonly used Ta deposited on c-plane sapphire, which occasionally form 伪-Ta (111) grains and \b{eta}-tantalum grains, high quality Ta (110) film can grow epitaxial on a-plane sapphire because of the atomic relationships at the interface. Well-ordered 伪-Ta (110) film on wafer-sca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09568v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09568v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09568v2-abstract-full" style="display: none;"> Realization of practical superconducting quantum computing requires many qubits of long coherence time. Compared to the commonly used Ta deposited on c-plane sapphire, which occasionally form 伪-Ta (111) grains and \b{eta}-tantalum grains, high quality Ta (110) film can grow epitaxial on a-plane sapphire because of the atomic relationships at the interface. Well-ordered 伪-Ta (110) film on wafer-scale a-plane sapphire has been prepared. The film exhibits high residual resistance ratio. Transmon qubits fabricated using these film shows relaxation times exceeding 150 渭s. The results suggest Ta film on a-plane sapphire is a promising choice for long coherence time qubit on wafer scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09568v2-abstract-full').style.display = 'none'; document.getElementById('2306.09568v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Jpn. J. Appl. Phys. 62 100901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08885">arXiv:2306.08885</a> <span> [<a href="https://arxiv.org/pdf/2306.08885">pdf</a>, <a href="https://arxiv.org/ps/2306.08885">ps</a>, <a href="https://arxiv.org/format/2306.08885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Shadow-based quantum subspace algorithm for the nuclear shell model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+R">Ruyu Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tianren Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+B">Bing-Nan Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Ying Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaosi Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08885v4-abstract-short" style="display: inline;"> In recent years, researchers have been exploring the applications of noisy intermediate-scale quantum (NISQ) computation in various fields. One important area in which quantum computation can outperform classical computers is the ground state problem of a many-body system, e.g., the nucleus. However, using a quantum computer in the NISQ era to solve a meaningful-scale system remains a challenge.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08885v4-abstract-full').style.display = 'inline'; document.getElementById('2306.08885v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08885v4-abstract-full" style="display: none;"> In recent years, researchers have been exploring the applications of noisy intermediate-scale quantum (NISQ) computation in various fields. One important area in which quantum computation can outperform classical computers is the ground state problem of a many-body system, e.g., the nucleus. However, using a quantum computer in the NISQ era to solve a meaningful-scale system remains a challenge. To calculate the ground energy of nuclear systems, we propose a new algorithm that combines classical shadow and subspace diagonalization techniques. Our subspace is composed of matrices, with the basis of the subspace being the classical shadow of the quantum state. We test our algorithm on nuclei described by Cohen-Kurath shell model and USD shell model. We find that the accuracy of the results improves as the number of shots increases, following the Heisenberg scaling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08885v4-abstract-full').style.display = 'none'; document.getElementById('2306.08885v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10755">arXiv:2305.10755</a> <span> [<a href="https://arxiv.org/pdf/2305.10755">pdf</a>, <a href="https://arxiv.org/format/2305.10755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement-Device-Independent Quantum Secret Sharing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cai%2C+X">Xiao-Qiu Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zi-Fan Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tian-Yin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10755v1-abstract-short" style="display: inline;"> Quantum secret sharing plays an important role in quantum communications and secure multiparty computation. In this paper, we present a new measurement-device-independent quantum secret sharing protocol, which can double the space distance between the dealer and each sharer for quantum transmission compared with prior works. Furthermore, it is experimentally feasible with current technology for re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10755v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10755v1-abstract-full" style="display: none;"> Quantum secret sharing plays an important role in quantum communications and secure multiparty computation. In this paper, we present a new measurement-device-independent quantum secret sharing protocol, which can double the space distance between the dealer and each sharer for quantum transmission compared with prior works. Furthermore, it is experimentally feasible with current technology for requiring just three-particle Greenberger-Horne-Zeilinger states and Bell state measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10755v1-abstract-full').style.display = 'none'; document.getElementById('2305.10755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05919">arXiv:2305.05919</a> <span> [<a href="https://arxiv.org/pdf/2305.05919">pdf</a>, <a href="https://arxiv.org/format/2305.05919">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A round-trip multi-band quantum access network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Y">Yuehan Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+H">Huanxi Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+P">Peng Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+G">Guihua Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05919v1-abstract-short" style="display: inline;"> The quantum network makes use of the quantum states to transmit data, which will revolutionize classical communication and allow for some breakthrough applications. The quantum key distribution (QKD) is one prominent application of quantum networks, and can protect the data transmission through quantum mechanics. In this work, we propose an expandable and cost-effective quantum access network, in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05919v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05919v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05919v1-abstract-full" style="display: none;"> The quantum network makes use of the quantum states to transmit data, which will revolutionize classical communication and allow for some breakthrough applications. The quantum key distribution (QKD) is one prominent application of quantum networks, and can protect the data transmission through quantum mechanics. In this work, we propose an expandable and cost-effective quantum access network, in which the round-trip structure makes quantum states travel in a circle to carry the information, and the multi-band technique is proposed to support multi-user access. Based on the round-trip multi-band quantum access network, we realize multi-user secure key sharing through the continuous-variable QKD (CV-QKD) protocol. Due to the encoding characteristics of CV-QKD, the quadrature components in different frequency bands can be used to transmit key information for different users. The feasibility of this scheme is confirmed by comprehensive noise analysis, and is verified by a proof-of-principle experiment. The results show that each user can achieve excess noise suppression and 600 bps level secure key generation under 30 km standard fiber transmission. Such networks have the ability of multi-user access theoretically and could be expanded by plugging in simple modules. Therefore, it paves the way for near-term large-scale quantum secure networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05919v1-abstract-full').style.display = 'none'; document.getElementById('2305.05919v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14846">arXiv:2304.14846</a> <span> [<a href="https://arxiv.org/pdf/2304.14846">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00213">10.1021/acs.nanolett.3c00213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast and Electrically Tunable Rabi Frequency in a Germanium Hut Wire Hole Spin Qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">He Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+F">Fei Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Leng%2C+J">Jin Leng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yu-Chen Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Cao%2C+G">Gang Cao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jianjun Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+P">Peihao Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14846v1-abstract-short" style="display: inline;"> Hole spin qubits based on germanium (Ge) have strong tunable spin orbit interaction (SOI) and ultrafast qubit operation speed. Here we report that the Rabi frequency (f_Rabi) of a hole spin qubit in a Ge hut wire (HW) double quantum dot (DQD) is electrically tuned through the detuning energy and middle gate voltage (V_M). f_Rabi gradually decreases with increasing detuning energy; on the contrary,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14846v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14846v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14846v1-abstract-full" style="display: none;"> Hole spin qubits based on germanium (Ge) have strong tunable spin orbit interaction (SOI) and ultrafast qubit operation speed. Here we report that the Rabi frequency (f_Rabi) of a hole spin qubit in a Ge hut wire (HW) double quantum dot (DQD) is electrically tuned through the detuning energy and middle gate voltage (V_M). f_Rabi gradually decreases with increasing detuning energy; on the contrary, f_Rabi is positively correlated with V_M. We attribute our results to the change of electric field on SOI and the contribution of the excited state in quantum dots to f_Rabi. We further demonstrate an ultrafast f_Rabi exceeding 1.2 GHz, which evidences the strong SOI in our device. The discovery of an ultrafast and electrically tunable f_Rabi in a hole spin qubit has potential applications in semiconductor quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14846v1-abstract-full').style.display = 'none'; document.getElementById('2304.14846v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 23, 3810-3817 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05420">arXiv:2304.05420</a> <span> [<a href="https://arxiv.org/pdf/2304.05420">pdf</a>, <a href="https://arxiv.org/format/2304.05420">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06481-y">10.1038/s41586-023-06481-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity parallel entangling gates on a neutral atom quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Evered%2C+S+J">Simon J. Evered</a>, <a href="/search/quant-ph?searchtype=author&query=Bluvstein%2C+D">Dolev Bluvstein</a>, <a href="/search/quant-ph?searchtype=author&query=Kalinowski%2C+M">Marcin Kalinowski</a>, <a href="/search/quant-ph?searchtype=author&query=Ebadi%2C+S">Sepehr Ebadi</a>, <a href="/search/quant-ph?searchtype=author&query=Manovitz%2C+T">Tom Manovitz</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+S+H">Sophie H. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Geim%2C+A+A">Alexandra A. Geim</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T+T">Tout T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Maskara%2C+N">Nishad Maskara</a>, <a href="/search/quant-ph?searchtype=author&query=Levine%2C+H">Harry Levine</a>, <a href="/search/quant-ph?searchtype=author&query=Semeghini%2C+G">Giulia Semeghini</a>, <a href="/search/quant-ph?searchtype=author&query=Greiner%2C+M">Markus Greiner</a>, <a href="/search/quant-ph?searchtype=author&query=Vuletic%2C+V">Vladan Vuletic</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05420v1-abstract-short" style="display: inline;"> The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing. Neutral atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture. The major outsta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05420v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05420v1-abstract-full" style="display: none;"> The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing. Neutral atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture. The major outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface code threshold for error correction. Our method employs fast single-pulse gates based on optimal control, atomic dark states to reduce scattering, and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications, characterize the physical error sources, and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05420v1-abstract-full').style.display = 'none'; document.getElementById('2304.05420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Methods: 13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 268-272 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00214">arXiv:2304.00214</a> <span> [<a href="https://arxiv.org/pdf/2304.00214">pdf</a>, <a href="https://arxiv.org/format/2304.00214">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Pulsed Vector Atomic Magnetometer Using an Alternating Fast-Rotating Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+W">Wonjae Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Limes%2C+M">Mark Limes</a>, <a href="/search/quant-ph?searchtype=author&query=Kornack%2C+T">Tom Kornack</a>, <a href="/search/quant-ph?searchtype=author&query=Foley%2C+E">Elizabeth Foley</a>, <a href="/search/quant-ph?searchtype=author&query=Romalis%2C+M">Michael Romalis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00214v3-abstract-short" style="display: inline;"> We present a vector atomic magnetometer based on applying a fast-rotating magnetic field to a pulsed $^{87}$Rb scalar atomic magnetometer. This method enables simultaneous measurements of the total magnetic field and two polar angles relative to the plane of magnetic field rotation. Using two channels in a gradiometer mode, it provides simultaneous measurements of the total field gradient with a s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00214v3-abstract-full').style.display = 'inline'; document.getElementById('2304.00214v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00214v3-abstract-full" style="display: none;"> We present a vector atomic magnetometer based on applying a fast-rotating magnetic field to a pulsed $^{87}$Rb scalar atomic magnetometer. This method enables simultaneous measurements of the total magnetic field and two polar angles relative to the plane of magnetic field rotation. Using two channels in a gradiometer mode, it provides simultaneous measurements of the total field gradient with a sensitivity of 35 $\mathrm{fT/\sqrt{Hz}}$ (0.7 part per billion), as well as two polar angles with resolutions of 6 $\mathrm{nrad/\sqrt{Hz}}$ at 50 $渭$T Earth field strength. The noise spectrums of these measurements are flat down to 1 Hz and 0.1 Hz, respectively. Crucially, this approach avoids several metrological difficulties associated with vector magnetometers and gradiometers. We detail the fundamental, systematic, and practical limits of such vector magnetometers. Notably, we provide a comprehensive study of the systematic effects of vector atomic magnetometers. We introduce a new concept of dynamic heading error and investigate several other systematic effects. A unique peak-altering fast rotating field modulation is proposed to cancel out these systematics. Additionally, we derive fundamental limits on the sensitivity of such sensors and demonstrate that the vector sensitivity of the sensor can approach its scalar sensitivity while retaining the accuracy and metrological advantages of scalar sensors. This high-dynamic-range vector magnetometer, with ultrahigh resolution and inherent calibration, is suitable for a wide array of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00214v3-abstract-full').style.display = 'none'; document.getElementById('2304.00214v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16395">arXiv:2303.16395</a> <span> [<a href="https://arxiv.org/pdf/2303.16395">pdf</a>, <a href="https://arxiv.org/ps/2303.16395">ps</a>, <a href="https://arxiv.org/format/2303.16395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad0fa9">10.1088/1367-2630/ad0fa9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity Rydberg controlled-Z gates with optimal pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chang%2C+T+H">T. H. Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T+N">T. N. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Jen%2C+H+H">H. H. Jen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y+-">Y. -C. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16395v3-abstract-short" style="display: inline;"> High-fidelity control-$Z$ ($C_Z$) gates are essential and mandatory to build a large-scale quantum computer. In neutral atoms, the strong dipole-dipole interactions between their Rydberg states make them one of the pioneering platforms to implement $C_Z$ gates. Here we numerically investigate the time-optimal pulses to generate a high-fidelity Rydberg $C_{Z}$ gate in a three-level ladder-type atom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16395v3-abstract-full').style.display = 'inline'; document.getElementById('2303.16395v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16395v3-abstract-full" style="display: none;"> High-fidelity control-$Z$ ($C_Z$) gates are essential and mandatory to build a large-scale quantum computer. In neutral atoms, the strong dipole-dipole interactions between their Rydberg states make them one of the pioneering platforms to implement $C_Z$ gates. Here we numerically investigate the time-optimal pulses to generate a high-fidelity Rydberg $C_{Z}$ gate in a three-level ladder-type atomic system. By tuning the temporal shapes of Gaussian or segmented pulses, the populations on the intermediate excited states are shown to be suppressed within the symmetric gate operation protocol, which leads to a $C_{Z}$ gate with a high Bell fidelity up to $99.92\%$. These optimized pulses are robust to thermal fluctuations and the excitation field variations. Our results promise a high-fidelity and fast gate operation under amenable and controllable experimental parameters, which goes beyond the adiabatic operation regime under a finite Blockade strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16395v3-abstract-full').style.display = 'none'; document.getElementById('2303.16395v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 25, 123007 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09353">arXiv:2303.09353</a> <span> [<a href="https://arxiv.org/pdf/2303.09353">pdf</a>, <a href="https://arxiv.org/format/2303.09353">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Quantum SMT Solver for Bit-Vector Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S">Shang-Wei Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Si-Han Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tzu-Fan Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yean-Ru Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09353v1-abstract-short" style="display: inline;"> Given a formula $F$ of satisfiability modulo theory (SMT), the classical SMT solver tries to (1) abstract $F$ as a Boolean formula $F_B$, (2) find a Boolean solution to $F_B$, and (3) check whether the Boolean solution is consistent with the theory. Steps~{(2)} and (3) may need to be performed back and forth until a consistent solution is found. In this work, we develop a quantum SMT solver for th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09353v1-abstract-full').style.display = 'inline'; document.getElementById('2303.09353v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09353v1-abstract-full" style="display: none;"> Given a formula $F$ of satisfiability modulo theory (SMT), the classical SMT solver tries to (1) abstract $F$ as a Boolean formula $F_B$, (2) find a Boolean solution to $F_B$, and (3) check whether the Boolean solution is consistent with the theory. Steps~{(2)} and (3) may need to be performed back and forth until a consistent solution is found. In this work, we develop a quantum SMT solver for the bit-vector theory. With the characteristic of superposition in quantum system, our solver is able to consider all the inputs simultaneously and check their consistency between Boolean and the theory domains in one shot. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09353v1-abstract-full').style.display = 'none'; document.getElementById('2303.09353v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04822">arXiv:2303.04822</a> <span> [<a href="https://arxiv.org/pdf/2303.04822">pdf</a>, <a href="https://arxiv.org/format/2303.04822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.016602">10.1103/PhysRevLett.132.016602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extracting higher central charge from a single wave function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Taige Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04822v4-abstract-short" style="display: inline;"> A (2+1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central charge $c_-$ is vanishing. Recently, it is discovered that a quantity regarded as a "higher" version of chiral central charge gives a further obstruction beyond $c_-$ to gapping out the edge. In this Letter, we show that the higher central charges can be characterized by the expectation value of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04822v4-abstract-full').style.display = 'inline'; document.getElementById('2303.04822v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04822v4-abstract-full" style="display: none;"> A (2+1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central charge $c_-$ is vanishing. Recently, it is discovered that a quantity regarded as a "higher" version of chiral central charge gives a further obstruction beyond $c_-$ to gapping out the edge. In this Letter, we show that the higher central charges can be characterized by the expectation value of the \textit{partial rotation} operator acting on the wavefunction of the topologically ordered state. This allows us to extract the higher central charge from a single wavefunction, which can be evaluated on a quantum computer. Our characterization of the higher central charge is analytically derived from the modular properties of edge conformal field theory, as well as the numerical results with the $谓=1/2$ bosonic Laughlin state and the non-Abelian gapped phase of the Kitaev honeycomb model, which corresponds to $\mathrm{U}(1)_2$ and Ising topological order respectively. The letter establishes a numerical method to obtain a set of obstructions to the gappable edge of (2+1)D bosonic topological order beyond $c_-$, which enables us to completely determine if a (2+1)D bosonic Abelian topological order has a gappable edge or not. We also point out that the expectation values of the partial rotation on a single wavefunction put a constraint on the low-energy spectrum of the bulk-boundary system of (2+1)D bosonic topological order, reminiscent of the Lieb-Schultz-Mattis type theorems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04822v4-abstract-full').style.display = 'none'; document.getElementById('2303.04822v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures. v4: added numerical simulations for the non-chiral 谓=2/3 FQH state. Accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132 (2024) 016602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08110">arXiv:2302.08110</a> <span> [<a href="https://arxiv.org/pdf/2302.08110">pdf</a>, <a href="https://arxiv.org/format/2302.08110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterization of loss mechanisms in a fluxonium qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Hsiang-Sheng Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+J">Jin Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Gengyan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Jingwei Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yaoyun Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+H">Hui-Hai Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+C">Chunqing Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08110v1-abstract-short" style="display: inline;"> Using a fluxonium qubit with in situ tunability of its Josephson energy, we characterize its energy relaxation at different flux biases as well as different Josephson energy values. The relaxation rate at qubit energy values, ranging more than one order of magnitude around the thermal energy $k_B T$, can be quantitatively explained by a combination of dielectric loss and $1/f$ flux noise with a cr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08110v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08110v1-abstract-full" style="display: none;"> Using a fluxonium qubit with in situ tunability of its Josephson energy, we characterize its energy relaxation at different flux biases as well as different Josephson energy values. The relaxation rate at qubit energy values, ranging more than one order of magnitude around the thermal energy $k_B T$, can be quantitatively explained by a combination of dielectric loss and $1/f$ flux noise with a crossover point. The amplitude of the $1/f$ flux noise is consistent with that extracted from the qubit dephasing measurements at the flux sensitive points. In the dielectric loss dominant regime, the loss is consistent with that arises from the electric dipole interaction with two-level-system (TLS) defects. In particular, as increasing Josephson energy thus decreasing qubit frequency at the flux insensitive spot, we find that the qubit exhibits increasingly weaker coupling to TLS defects thus desirable for high-fidelity quantum operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08110v1-abstract-full').style.display = 'none'; document.getElementById('2302.08110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05643">arXiv:2302.05643</a> <span> [<a href="https://arxiv.org/pdf/2302.05643">pdf</a>, <a href="https://arxiv.org/format/2302.05643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photon-phonon quantum cloning in optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Mu%2C+Q">Qingxia Mu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Ting Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+W">Wen-Zhao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05643v1-abstract-short" style="display: inline;"> Quantum cloning is an essential operation in quantum information and quantum computing. Similar to the `copy' operation in classical computing, the cloning of flying bits for further processing from the solid-state quantum bits in storage is an operation frequently used in quantum information processing. Here we propose a high-fidelity and controllable quantum cloning scheme between solid bits and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05643v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05643v1-abstract-full" style="display: none;"> Quantum cloning is an essential operation in quantum information and quantum computing. Similar to the `copy' operation in classical computing, the cloning of flying bits for further processing from the solid-state quantum bits in storage is an operation frequently used in quantum information processing. Here we propose a high-fidelity and controllable quantum cloning scheme between solid bits and flying bits. In order to overcome the obstacles from the no-cloning theorem and the weak phonon-photon interaction, we introduce a hybrid optomechanical system that performs both the probabilistic cloning and deterministic cloning closed to the theoretical optimal limit with the help of designed driving pulse in the presence of dissipation. In addition, our scheme allows a highly tunable switching between two cloning methods, namely the probabilistic and deterministic cloning, by simply changing the input laser pulse. This provides a promising platform for experimental executability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05643v1-abstract-full').style.display = 'none'; document.getElementById('2302.05643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05169">arXiv:2302.05169</a> <span> [<a href="https://arxiv.org/pdf/2302.05169">pdf</a>, <a href="https://arxiv.org/format/2302.05169">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-level approximation of transmons in quantum quench experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yan%2C+H+S">H. S. Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+S+K">S. K. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z+H">Z. H. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+T">Z. T. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Tian%2C+Y">Ye Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+H+F">H. F. Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+S+P">S. P. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05169v2-abstract-short" style="display: inline;"> Quantum quench is a typical protocol in the study of nonequilibrium dynamics of quantum many-body systems. Recently, a number of experiments with superconducting transmon qubits are reported, in which the spin and hard-core boson models with two energy levels on individual sites are used. The transmons are a multilevel system and the coupled qubits are governed by the Bose-Hubbard model. How well… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05169v2-abstract-full').style.display = 'inline'; document.getElementById('2302.05169v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05169v2-abstract-full" style="display: none;"> Quantum quench is a typical protocol in the study of nonequilibrium dynamics of quantum many-body systems. Recently, a number of experiments with superconducting transmon qubits are reported, in which the spin and hard-core boson models with two energy levels on individual sites are used. The transmons are a multilevel system and the coupled qubits are governed by the Bose-Hubbard model. How well they can be approximated by a two-level system has been discussed and analysed in different ways for specific experiments in the literature. Here, we numerically investigate the accuracy and validity of the two-level approximation for the multilevel transmons based on the concept of Loschmidt echo. Using this method, we are able to calculate the fidelity decay (i.e., the time-dependent overlap of evolving wave functions) due to the state leakage to transmon high energy levels. We present the results for different system Hamiltonians with various initial states, qubit coupling strength, and external driving, and for two kinds of quantum quench experiments with time reversal and time evolution in one direction. We show quantitatively the extent to which the fidelity decays with time for changing coupling strength (or on-site interaction over coupling strength) and filled particle number or locations in the initial states under specific system Hamiltonians, which may serve as a way for assessing the two-level approximation of transmons. Finally, we compare our results with the reported experiments using transmon qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05169v2-abstract-full').style.display = 'none'; document.getElementById('2302.05169v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00043">arXiv:2211.00043</a> <span> [<a href="https://arxiv.org/pdf/2211.00043">pdf</a>, <a href="https://arxiv.org/format/2211.00043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermionic Isometric Tensor Network States in Two Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dai%2C+Z">Zhehao Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yantao Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Taige Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00043v3-abstract-short" style="display: inline;"> We generalize isometric tensor network states to fermionic systems, paving the way for efficient adaptations of 1D tensor network algorithms to 2D fermionic systems. As the first application of this formalism, we developed and benchmarked a time-evolution block-decimation (TEBD) algorithm for real-time and imaginary-time evolution. The imaginary-time evolution produces ground-state energies for ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00043v3-abstract-full').style.display = 'inline'; document.getElementById('2211.00043v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00043v3-abstract-full" style="display: none;"> We generalize isometric tensor network states to fermionic systems, paving the way for efficient adaptations of 1D tensor network algorithms to 2D fermionic systems. As the first application of this formalism, we developed and benchmarked a time-evolution block-decimation (TEBD) algorithm for real-time and imaginary-time evolution. The imaginary-time evolution produces ground-state energies for gapped systems, systems with a Dirac point, and systems with gapless edge modes to good accuracy. The real-time TEBD captures the scattering of two fermions and the chiral edge dynamics on the boundary of a Chern insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00043v3-abstract-full').style.display = 'none'; document.getElementById('2211.00043v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Simplified main text + more results, 7 + 6 pages, 6 + 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16518">arXiv:2210.16518</a> <span> [<a href="https://arxiv.org/pdf/2210.16518">pdf</a>, <a href="https://arxiv.org/format/2210.16518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> ViSNet: an equivariant geometry-enhanced graph neural network with vector-scalar interactive message passing for molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yusong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+S">Shaoning Li</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+X">Xinheng He</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+M">Mingyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zun Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+N">Nanning Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Shao%2C+B">Bin Shao</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+T">Tie-Yan Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16518v3-abstract-short" style="display: inline;"> Geometric deep learning has been revolutionizing the molecular modeling field. Despite the state-of-the-art neural network models are approaching ab initio accuracy for molecular property prediction, their applications, such as drug discovery and molecular dynamics (MD) simulation, have been hindered by insufficient utilization of geometric information and high computational costs. Here we propose… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16518v3-abstract-full').style.display = 'inline'; document.getElementById('2210.16518v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16518v3-abstract-full" style="display: none;"> Geometric deep learning has been revolutionizing the molecular modeling field. Despite the state-of-the-art neural network models are approaching ab initio accuracy for molecular property prediction, their applications, such as drug discovery and molecular dynamics (MD) simulation, have been hindered by insufficient utilization of geometric information and high computational costs. Here we propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures with low computational costs. Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets. Additionally, ViSNet achieved the top winners of PCQM4Mv2 track in the OGB-LCS@NeurIPS2022 competition. Furthermore, through a series of simulations and case studies, ViSNet can efficiently explore the conformational space and provide reasonable interpretability to map geometric representations to molecular structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16518v3-abstract-full').style.display = 'none'; document.getElementById('2210.16518v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wang%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Wang%2C+T&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>