CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Mong, R S K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Mong%2C+R+S+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mong, R S K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mong%2C+R+S+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mong, R S K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10814">arXiv:2404.10814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10814">pdf</a>, <a href="https://arxiv.org/format/2404.10814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Higher Hall conductivity from a single wave function: Obstructions to symmetry-preserving gapped edge of (2+1)D topological order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10814v2-abstract-short" style="display: inline;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are &#34;higher&#34; versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10814v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10814v2-abstract-full" style="display: none;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are &#34;higher&#34; versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall conductivity. In this paper, we show that one can extract higher Hall conductivity from a single wave function of an FQH state, by evaluating the expectation value of the &#34;partial rotation&#34; unitary which is a combination of partial spatial rotation and a U(1) phase rotation. This result is verified numerically with the fermionic Laughlin state with $谓=1/3$, $1/5$, as well as the non-Abelian Moore-Read state. Together with topological entanglement entropy, we prove that the expectation values of the partial rotation completely determines if a bosonic/fermionic Abelian topological order with U(1) symmetry has a symmetry-preserving gappable edge state or not. We also show that thermal and electric Hall conductivity of Abelian topological order can be extracted by partial rotations. Even in non-Abelian FQH states, partial rotation provides the Lieb-Schultz-Mattis type theorem constraining the low-energy spectrum of the bulk-boundary system. The generalization of higher Hall conductivity to the case with Lie group symmetry is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'none'; document.getElementById('2404.10814v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, minor edits</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12586">arXiv:2402.12586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12586">pdf</a>, <a href="https://arxiv.org/format/2402.12586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pump-efficient Josephson parametric amplifiers with high saturation power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hougland%2C+N+M">Nicholas M. Hougland</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhuan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kaufman%2C+R">Ryan Kaufman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mesits%2C+B">Boris Mesits</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hatridge%2C+M">Michael Hatridge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pekker%2C+D">David Pekker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12586v1-abstract-short" style="display: inline;"> Circuit QED based quantum information processing relies on low noise amplification for signal readout. In the realm of microwave superconducting circuits, this amplification is often achieved via Josephson parametric amplifiers (JPA). In the past, these amplifiers exhibited low power added efficiency (PAE), which is roughly the fraction of pump power that is converted to output signal power. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12586v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12586v1-abstract-full" style="display: none;"> Circuit QED based quantum information processing relies on low noise amplification for signal readout. In the realm of microwave superconducting circuits, this amplification is often achieved via Josephson parametric amplifiers (JPA). In the past, these amplifiers exhibited low power added efficiency (PAE), which is roughly the fraction of pump power that is converted to output signal power. This is increasingly relevant because recent attempts to build high saturation power amplifiers achieve this at the cost of very low PAE, which in turn puts a high heat load on the cryostat and limits the number of these devices that a dilution refrigerator can host. Here, we numerically investigate upper bounds on PAE. We focus on a class of parametric amplifiers that consists of a capacitor shunted by a nonlinear inductive block. We first set a benchmark for this class of amplifiers by considering nonlinear blocks described by an arbitrary polynomial current-phase relation. Next, we propose two circuit implementations of the nonlinear block. Finally, we investigate chaining polynomial amplifiers. We find that while amplifiers with higher gain have a lower PAE, regardless of the gain there is considerable room to improve as compared to state of the art devices. For example, for a phase-sensitive amplifier with a power gain of 20 dB, the PAE is ~0.1% for typical JPAs, 5.9% for our simpler circuit JPAs, 34% for our more complex circuit JPAs, 48% for our arbitrary polynomial amplifiers, and at least 95% for our chained amplifiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12586v1-abstract-full').style.display = 'none'; document.getElementById('2402.12586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09516">arXiv:2402.09516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09516">pdf</a>, <a href="https://arxiv.org/format/2402.09516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Replica topological order in quantum mixed states and quantum error correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhuan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09516v1-abstract-short" style="display: inline;"> Topological phases of matter offer a promising platform for quantum computation and quantum error correction. Nevertheless, unlike its counterpart in pure states, descriptions of topological order in mixed states remain relatively under-explored. Our work give two definitions for replica topological order in mixed states, which involve $n$ copies of density matrices of the mixed state. Our framewo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09516v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09516v1-abstract-full" style="display: none;"> Topological phases of matter offer a promising platform for quantum computation and quantum error correction. Nevertheless, unlike its counterpart in pure states, descriptions of topological order in mixed states remain relatively under-explored. Our work give two definitions for replica topological order in mixed states, which involve $n$ copies of density matrices of the mixed state. Our framework categorizes topological orders in mixed states as either quantum, classical, or trivial, depending on the type of information that can be encoded. For the case of the toric code model in the presence of decoherence, we associate for each phase a quantum channel and describes the structure of the code space. We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the quantum information, while in the classical-topological phase, the quantum information has decohere and cannot be fully recovered. We accomplish this by describing the mixed state as a projected entangled pairs state (PEPS) and identifying the symmetry-protected topological order of its boundary state to the bulk topology. We discuss the extent that our findings can be extrapolated to $n \to 1$ limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09516v1-abstract-full').style.display = 'none'; document.getElementById('2402.09516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01277">arXiv:2304.01277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01277">pdf</a>, <a href="https://arxiv.org/format/2304.01277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement Quantum Cellular Automata and Anomalies in Floquet Codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Aasen%2C+D">David Aasen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Haah%2C+J">Jeongwan Haah</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01277v2-abstract-short" style="display: inline;"> We investigate the evolution of quantum information under Pauli measurement circuits. We focus on the case of one- and two-dimensional systems, which are relevant to the recently introduced Floquet topological codes. We define local reversibility in context of measurement circuits, which allows us to treat finite depth measurement circuits on a similar footing to finite depth unitary circuits. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01277v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01277v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01277v2-abstract-full" style="display: none;"> We investigate the evolution of quantum information under Pauli measurement circuits. We focus on the case of one- and two-dimensional systems, which are relevant to the recently introduced Floquet topological codes. We define local reversibility in context of measurement circuits, which allows us to treat finite depth measurement circuits on a similar footing to finite depth unitary circuits. In contrast to the unitary case, a finite depth locally reversible measurement circuit can implement a translation in one dimension. A locally reversible measurement circuit in two dimensions may also induce a flow of logical information along the boundary. We introduce &#34;measurement quantum cellular automata&#34; which unifies these ideas and define an index in one dimension to characterize the flow of logical operators. We find a $\mathbb{Z}_2$ bulk invariant for two-dimensional Floquet topological codes which indicates an obstruction to having a trivial boundary. We prove that the Hastings-Haah honeycomb code belongs to a class with such obstruction, which means that any boundary must have either nonlocal dynamics, period doubled, or admits anomalous boundary flow of quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01277v2-abstract-full').style.display = 'none'; document.getElementById('2304.01277v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 changes: clarified the definition of &#34;locally reversible measurement cycle&#34; (LRMC), and added more examples of boundary circuits for the HH code</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04822">arXiv:2303.04822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04822">pdf</a>, <a href="https://arxiv.org/format/2303.04822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.016602">10.1103/PhysRevLett.132.016602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extracting higher central charge from a single wave function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04822v4-abstract-short" style="display: inline;"> A (2+1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central charge $c_-$ is vanishing. Recently, it is discovered that a quantity regarded as a &#34;higher&#34; version of chiral central charge gives a further obstruction beyond $c_-$ to gapping out the edge. In this Letter, we show that the higher central charges can be characterized by the expectation value of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04822v4-abstract-full').style.display = 'inline'; document.getElementById('2303.04822v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04822v4-abstract-full" style="display: none;"> A (2+1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central charge $c_-$ is vanishing. Recently, it is discovered that a quantity regarded as a &#34;higher&#34; version of chiral central charge gives a further obstruction beyond $c_-$ to gapping out the edge. In this Letter, we show that the higher central charges can be characterized by the expectation value of the \textit{partial rotation} operator acting on the wavefunction of the topologically ordered state. This allows us to extract the higher central charge from a single wavefunction, which can be evaluated on a quantum computer. Our characterization of the higher central charge is analytically derived from the modular properties of edge conformal field theory, as well as the numerical results with the $谓=1/2$ bosonic Laughlin state and the non-Abelian gapped phase of the Kitaev honeycomb model, which corresponds to $\mathrm{U}(1)_2$ and Ising topological order respectively. The letter establishes a numerical method to obtain a set of obstructions to the gappable edge of (2+1)D bosonic topological order beyond $c_-$, which enables us to completely determine if a (2+1)D bosonic Abelian topological order has a gappable edge or not. We also point out that the expectation values of the partial rotation on a single wavefunction put a constraint on the low-energy spectrum of the bulk-boundary system of (2+1)D bosonic topological order, reminiscent of the Lieb-Schultz-Mattis type theorems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04822v4-abstract-full').style.display = 'none'; document.getElementById('2303.04822v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures. v4: added numerical simulations for the non-chiral 谓=2/3 FQH state. Accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132 (2024) 016602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04325">arXiv:2302.04325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04325">pdf</a>, <a href="https://arxiv.org/format/2302.04325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041042">10.1103/PhysRevX.13.041042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-altered Ising quantum criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Murciano%2C+S">Sara Murciano</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sala%2C+P">Pablo Sala</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yue Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alicea%2C+J">Jason Alicea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04325v3-abstract-short" style="display: inline;"> Quantum critical systems constitute appealing platforms for the exploration of novel measurement-induced phenomena due to their innate sensitivity to perturbations. We study the impact of measurement on paradigmatic Ising quantum critical chains using an explicit protocol, whereby correlated ancilla are entangled with the critical chain and then projectively measured. Using a perturbative analytic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04325v3-abstract-full').style.display = 'inline'; document.getElementById('2302.04325v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04325v3-abstract-full" style="display: none;"> Quantum critical systems constitute appealing platforms for the exploration of novel measurement-induced phenomena due to their innate sensitivity to perturbations. We study the impact of measurement on paradigmatic Ising quantum critical chains using an explicit protocol, whereby correlated ancilla are entangled with the critical chain and then projectively measured. Using a perturbative analytic framework supported by extensive numerical simulations, we demonstrate that measurements can qualitatively alter long-distance correlations in a manner dependent on the choice of entangling gate, ancilla measurement basis, measurement outcome, and nature of ancilla correlations. We derive numerous quantitative predictions for the behavior of correlations in select measurement outcomes, and also identify two strategies for detecting measurement-altered Ising criticality in measurement-averaged quantities. First, averaging the square of the order-parameter expectation value over measurement outcomes retains memory of order parameter condensation germinated in fixed measurement outcomes -- even though on average the order parameter itself vanishes. Second, we show that, in certain cases, observables can be averaged separately over measurement outcomes residing in distinct symmetry sectors, and that these `symmetry-resolved averages&#39; reveal measurement effects even when considering standard linearly averaged observables. We identify complementary regimes in which symmetry-resolved averages and post-selection can be pursued reasonably efficiently in experiment, with the former generically outperforming the latter in the limit of sufficiently weak ancilla-critical chain entanglement. Our framework naturally adapts to more exotic quantum critical points and highlights opportunities for potential experimental realization in NISQ hardware and in Rydberg arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04325v3-abstract-full').style.display = 'none'; document.getElementById('2302.04325v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 22 figures, comments added, new section and appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 13, 041042 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00013">arXiv:2204.00013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00013">pdf</a>, <a href="https://arxiv.org/format/2204.00013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115122">10.1103/PhysRevB.106.115122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum spin liquids bootstrapped from Ising criticality in Rydberg arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Slagle%2C+K">Kevin Slagle</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yue Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aasen%2C+D">David Aasen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pichler%2C+H">Hannes Pichler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xie Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Endres%2C+M">Manuel Endres</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alicea%2C+J">Jason Alicea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00013v1-abstract-short" style="display: inline;"> Arrays of Rydberg atoms constitute a highly tunable, strongly interacting venue for the pursuit of exotic states of matter. We develop a new strategy for accessing a family of fractionalized phases known as quantum spin liquids in two-dimensional Rydberg arrays. We specifically use effective field theory methods to study arrays assembled from Rydberg chains tuned to an Ising phase transition that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00013v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00013v1-abstract-full" style="display: none;"> Arrays of Rydberg atoms constitute a highly tunable, strongly interacting venue for the pursuit of exotic states of matter. We develop a new strategy for accessing a family of fractionalized phases known as quantum spin liquids in two-dimensional Rydberg arrays. We specifically use effective field theory methods to study arrays assembled from Rydberg chains tuned to an Ising phase transition that famously hosts emergent fermions propagating within each chain. This highly entangled starting point allows us to naturally access spin liquids familiar from Kitaev&#39;s honeycomb model, albeit from an entirely different framework. In particular, we argue that finite-range repulsive Rydberg interactions, which frustrate nearby symmetry-breaking orders, can enable coherent propagation of emergent fermions between the chains in which they were born. Delocalization of emergent fermions across the full two-dimensional Rydberg array yields a gapless Z2 spin liquid with a single massless Dirac cone. Here, the Rydberg occupation numbers exhibit universal power-law correlations that provide a straightforward experimental diagnostic of this phase. We further show that explicitly breaking symmetries perturbs the gapless spin liquid into gapped, topologically ordered descendants: Breaking lattice symmetries generates toric-code topological order, whereas introducing chirality generates non-Abelian Ising topological order. In the toric-code phase, we analytically construct microscopic incarnations of non-Abelian defects, which can be created and transported by dynamically controlling the atom positions in the array. Our work suggests that appropriately tuned Rydberg arrays provide a cold-atoms counterpart of solid-state &#39;Kitaev materials&#39; and, more generally, spotlights a new angle for pursuing experimental platforms for Abelian and non-Abelian fractionalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00013v1-abstract-full').style.display = 'none'; document.getElementById('2204.00013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11965">arXiv:2110.11965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11965">pdf</a>, <a href="https://arxiv.org/format/2110.11965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L041107">10.1103/PhysRevB.106.L041107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A universal tripartite entanglement signature of ungappable edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Siva%2C+K">Karthik Siva</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yijian Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11965v1-abstract-short" style="display: inline;"> Gapped two-dimensional topological phases can feature ungappable edge states which are robust even in the absence of protecting symmetries. In this work we show that a multipartite entanglement measure recently proposed in the context of holography, the Markov gap, provides a universal diagnostic of ungappable edge states. Defined as a difference of the reflected entropy and mutual information&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11965v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11965v1-abstract-full" style="display: none;"> Gapped two-dimensional topological phases can feature ungappable edge states which are robust even in the absence of protecting symmetries. In this work we show that a multipartite entanglement measure recently proposed in the context of holography, the Markov gap, provides a universal diagnostic of ungappable edge states. Defined as a difference of the reflected entropy and mutual information $h(A:B) = S_R(A:B) - I(A:B)$ between two parties, we argue that for $A,B$ being adjacent subregions in the bulk, $h=\frac{c_+}{3}\log 2$, where $c_+$ is the minimal total central charge of the boundary theory. As evidence, we prove that $h=0$ for string-net models, and numerically verify that $h=\frac{|C|}{3}\log 2$ for a Chern-$C$ insulator. Our work establishes a unique bulk entanglement criteria for the presence of a conformal field theory on the boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11965v1-abstract-full').style.display = 'none'; document.getElementById('2110.11965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+11 pages, 4+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09309">arXiv:2108.09309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09309">pdf</a>, <a href="https://arxiv.org/format/2108.09309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.235109">10.1103/PhysRevB.104.235109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic characterization of Ising conformal field theory in Rydberg chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Slagle%2C+K">Kevin Slagle</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aasen%2C+D">David Aasen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pichler%2C+H">Hannes Pichler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fendley%2C+P">Paul Fendley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xie Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Endres%2C+M">Manuel Endres</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alicea%2C+J">Jason Alicea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09309v2-abstract-short" style="display: inline;"> Rydberg chains provide an appealing platform for probing conformal field theories (CFTs) that capture universal behavior in a myriad of physical settings. Focusing on a Rydberg chain at the Ising transition separating charge density wave and disordered phases, we establish a detailed link between microscopics and low-energy physics emerging at criticality. We first construct lattice incarnations o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09309v2-abstract-full').style.display = 'inline'; document.getElementById('2108.09309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09309v2-abstract-full" style="display: none;"> Rydberg chains provide an appealing platform for probing conformal field theories (CFTs) that capture universal behavior in a myriad of physical settings. Focusing on a Rydberg chain at the Ising transition separating charge density wave and disordered phases, we establish a detailed link between microscopics and low-energy physics emerging at criticality. We first construct lattice incarnations of primary fields in the underlying Ising CFT including chiral fermions -- a nontrivial task given that the Rydberg chain Hamiltonian does not admit an exact fermionization. With this dictionary in hand, we compute correlations of microscopic Rydberg operators, paying special attention to finite, open chains of immediate experimental relevance. We further develop a method to quantify how second-neighbor Rydberg interactions tune the sign and strength of four-fermion couplings in the Ising CFT. Finally, we determine how the Ising fields evolve when four-fermion couplings drive an instability to Ising tricriticality. Our results pave the way to a thorough experimental characterization of Ising criticality in Rydberg arrays, and can inform the design of novel higher-dimensional phases based on coupled critical chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09309v2-abstract-full').style.display = 'none'; document.getElementById('2108.09309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18+3 pages, 17+1 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 235109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02222">arXiv:2012.02222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.02222">pdf</a>, <a href="https://arxiv.org/ps/2012.02222">ps</a>, <a href="https://arxiv.org/format/2012.02222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Anyonic Partial Transpose I: Quantum Information Aspects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shapourian%2C+H">Hassan Shapourian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02222v1-abstract-short" style="display: inline;"> A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02222v1-abstract-full').style.display = 'inline'; document.getElementById('2012.02222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02222v1-abstract-full" style="display: none;"> A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the apparent similarity between the partial transpose and the braiding operation. We then define the anyonic version of the logarithmic negativity and show that it satisfies the standard requirements such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free categories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02222v1-abstract-full').style.display = 'none'; document.getElementById('2012.02222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 3 figures, 5 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11864">arXiv:2011.11864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11864">pdf</a>, <a href="https://arxiv.org/format/2011.11864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.120501">10.1103/PhysRevLett.126.120501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal tripartite entanglement in one-dimensional many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yijian Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Siva%2C+K">Karthik Siva</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11864v2-abstract-short" style="display: inline;"> Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross-section, we introduce two related non-negative measures of tripartite entanglement $g$ and $h$. We prove structure theorems which show that states with nonzero $g$ or $h$ have nontrivial tripartite entanglement. We then establish that in 1D these tripartite entangl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11864v2-abstract-full').style.display = 'inline'; document.getElementById('2011.11864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11864v2-abstract-full" style="display: none;"> Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross-section, we introduce two related non-negative measures of tripartite entanglement $g$ and $h$. We prove structure theorems which show that states with nonzero $g$ or $h$ have nontrivial tripartite entanglement. We then establish that in 1D these tripartite entanglement measures are universal quantities that depend only on the emergent low-energy theory. For a gapped system, we argue that either $g\neq 0$ and $h=0$ or $g=h=0$, depending on whether the ground state has long-range order. For a critical system, we develop a numerical algorithm for computing $g$ and $h$ from a lattice model. We compute $g$ and $h$ for various CFTs and show that $h$ depends only on the central charge whereas $g$ depends on the whole operator content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11864v2-abstract-full').style.display = 'none'; document.getElementById('2011.11864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+16 pages, 4+5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 120501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01658">arXiv:1906.01658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.01658">pdf</a>, <a href="https://arxiv.org/format/1906.01658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.042338">10.1103/PhysRevA.101.042338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 1D Error Correcting Code for Majorana Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Stenger%2C+J+P+T">John P. T. Stenger</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01658v3-abstract-short" style="display: inline;"> Although Majorana platforms are promising avenues to realizing topological quantum computing, they are still susceptible to errors from thermal noise and other sources. We show that the error rate of Majorana qubits can be drastically reduced using a 1D repetition code. The success of the code is due the imbalance between the phase error rate and the flip error rate. We demonstrate how a repetitio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01658v3-abstract-full').style.display = 'inline'; document.getElementById('1906.01658v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01658v3-abstract-full" style="display: none;"> Although Majorana platforms are promising avenues to realizing topological quantum computing, they are still susceptible to errors from thermal noise and other sources. We show that the error rate of Majorana qubits can be drastically reduced using a 1D repetition code. The success of the code is due the imbalance between the phase error rate and the flip error rate. We demonstrate how a repetition code can be naturally constructed from segments of Majorana nanowires. We find the optimal lifetime may be extended from a millisecond to over one second. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01658v3-abstract-full').style.display = 'none'; document.getElementById('1906.01658v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 042338 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01859">arXiv:1902.01859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.01859">pdf</a>, <a href="https://arxiv.org/format/1902.01859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.030601">10.1103/PhysRevLett.125.030601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent hydrodynamics in non-equilibrium quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+B">Bingtian Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Machado%2C+F">Francisco Machado</a>, <a href="/search/quant-ph?searchtype=author&amp;query=White%2C+C+D">Christopher David White</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+N+Y">Norman Y. Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01859v3-abstract-short" style="display: inline;"> A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed `density matrix truncation&#39; (DMT) to investigate the late-time dynamics of large-scale Floquet systems. We find that DMT accurately captures two essential pieces of Floquet physics, namely, prethermalization and late-tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01859v3-abstract-full').style.display = 'inline'; document.getElementById('1902.01859v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01859v3-abstract-full" style="display: none;"> A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed `density matrix truncation&#39; (DMT) to investigate the late-time dynamics of large-scale Floquet systems. We find that DMT accurately captures two essential pieces of Floquet physics, namely, prethermalization and late-time heating to infinite temperature. Moreover, by implementing a spatially inhomogeneous drive, we demonstrate that an interplay between Floquet heating and diffusive transport is crucial to understanding the system&#39;s dynamics. Finally, we show that DMT also provides a powerful method for quantitatively capturing the emergence of hydrodynamics in static (un-driven) Hamiltonians; in particular, by simulating the dynamics of generic, large-scale quantum spin chains (up to L = 100), we are able to directly extract the energy diffusion coefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01859v3-abstract-full').style.display = 'none'; document.getElementById('1902.01859v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+21 pages, 4+23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 030601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00594">arXiv:1608.00594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00594">pdf</a>, <a href="https://arxiv.org/ps/1608.00594">ps</a>, <a href="https://arxiv.org/format/1608.00594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.155106">10.1103/PhysRevB.94.155106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constructing topological models by symmetrization: A PEPS study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fernandez-Gonzalez%2C+C">Carlos Fernandez-Gonzalez</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Landon-Cardinal%2C+O">Olivier Landon-Cardinal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Perez-Garcia%2C+D">David Perez-Garcia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Schuch%2C+N">Norbert Schuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00594v2-abstract-short" style="display: inline;"> Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group $G$ in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group $\tilde G$ which is always non-abelian. We prove that by sym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00594v2-abstract-full').style.display = 'inline'; document.getElementById('1608.00594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00594v2-abstract-full" style="display: none;"> Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group $G$ in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group $\tilde G$ which is always non-abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wavefunctions in the same phase as the double model of $\tilde G$. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of $\tilde G$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00594v2-abstract-full').style.display = 'none'; document.getElementById('1608.00594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages. v2: accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 155106 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.1832">arXiv:1407.1832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.1832">pdf</a>, <a href="https://arxiv.org/format/1407.1832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.165112">10.1103/PhysRevB.91.165112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-evolving a matrix product state with long-ranged interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Karrasch%2C+C">Christoph Karrasch</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Moore%2C+J+E">Joel E. Moore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.1832v1-abstract-short" style="display: inline;"> We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-ranged Hamiltonian. In the effectively one-dimensional representation of a system by matrix product states, long-ranged interactions are necessary to simulate not just many physical interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1832v1-abstract-full').style.display = 'inline'; document.getElementById('1407.1832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.1832v1-abstract-full" style="display: none;"> We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-ranged Hamiltonian. In the effectively one-dimensional representation of a system by matrix product states, long-ranged interactions are necessary to simulate not just many physical interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes the restriction to short-ranged Hamiltonians of most existing methods, it proves particularly useful for studying the dynamics of both power-law interacting one-dimensional systems, such as Coulombic and dipolar systems, and quasi two-dimensional systems, such as strips or cylinders. First, we benchmark the method by verifying a long-standing theoretical prediction for the dynamical correlation functions of the Haldane-Shastry model. Second, we simulate the time evolution of an expanding cloud of particles in the two-dimensional Bose-Hubbard model, a subject of several recent experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1832v1-abstract-full').style.display = 'none'; document.getElementById('1407.1832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 3 pages appendices, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 165112 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10