CINXE.COM
Search results for: average height
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: average height</title> <meta name="description" content="Search results for: average height"> <meta name="keywords" content="average height"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="average height" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="average height"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6052</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: average height</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6052</span> Study of Hydrocarbons Metering Issues in Algerian Fields under the New Law Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hadjadj">A. Hadjadj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maamir"> S. Maamir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <span style="line-height: 20.8px;">Since the advent of the law 86/14 concerning the</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">exploitation of the national territory by foreign companies in</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">partnership with the Algerian oil and gas company, the problem of</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">hydrocarbons metering in the sharing production come out.</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">More generally, good management counting hydrocarbons can</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">provide data on the production wells, the field and the reservoir for</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">medium and long term planning, particularly in the context of the</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">management and field development.</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">In this work, we are interested in the transactional metering which</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">is a very delicate and crucial period in the current context of the new</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">hydrocarbon’s law characterized by assets system between the</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">various activities of Sonatrach and its foreign partners.</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">After a state of the art on hydrocarbons metering devices in</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">Algeria and elsewhere, we will decline the advantages and</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">disadvantages of each system, and then we describe the problem to</span><br style="line-height: 20.8px;" /> <span style="line-height: 20.8px;">try to reach an optimal solution.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transactional%20metering" title="transactional metering">transactional metering</a>, <a href="https://publications.waset.org/abstracts/search?q=flowmeter%20orifice" title=" flowmeter orifice"> flowmeter orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow" title=" heat flow"> heat flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonatrach" title=" Sonatrach"> Sonatrach</a> </p> <a href="https://publications.waset.org/abstracts/1901/study-of-hydrocarbons-metering-issues-in-algerian-fields-under-the-new-law-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6051</span> The Brand Value of Cosmetics in the View of Customers in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mananya%20Meenakorn">Mananya Meenakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to study the relationship customer perception and brand value of cosmetics in the view of customers in Thailand. The research is quantitative research using the survey method by questionnaire. Data were collected from female cosmetics consumer that residents in Bangkok, aged between 25-55 years. Researchers have determined the size of the sample by using Taro Yamane technic a total of 400 people. The study found the Shiseido cosmetics brand image always come with the new products innovation is in the height level. The average was 3.812, second is Shiseido brand has used innovation to produce the product for 3.792. And brand Shiseido looks luxury with an average of 3.707 respectively. In additional in terms of Lancôme cosmetic brand found the brand image is luxury at the height levels for 4.170 average. The seductive glamor is considered in the moderate with an average of 3.822 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brand%20image" title="brand image">brand image</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20fashion%20dress" title=" international fashion dress"> international fashion dress</a>, <a href="https://publications.waset.org/abstracts/search?q=values" title=" values"> values</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20women" title=" working women"> working women</a> </p> <a href="https://publications.waset.org/abstracts/55279/the-brand-value-of-cosmetics-in-the-view-of-customers-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6050</span> Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khatia%20Tavidashvili">Khatia Tavidashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Jamrishvili"> Nino Jamrishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerian%20Omsarashvili"> Valerian Omsarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in 2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hail" title="hail">hail</a>, <a href="https://publications.waset.org/abstracts/search?q=Kakheti" title=" Kakheti"> Kakheti</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorology" title=" meteorology"> meteorology</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20distribution%20of%20the%20air%20temperature" title=" vertical distribution of the air temperature"> vertical distribution of the air temperature</a> </p> <a href="https://publications.waset.org/abstracts/84155/vertical-distribution-of-the-monthly-average-values-of-the-air-temperature-above-the-territory-of-kakheti-in-2012-2017" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6049</span> Measuring the Height of a Person in Closed Circuit Television Video Footage Using 3D Human Body Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dojoon%20Jung">Dojoon Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiwoong%20Moon"> Kiwoong Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Joong%20Lee"> Joong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The height of criminals is one of the important clues that can determine the scope of the suspect's search or exclude the suspect from the search target. Although measuring the height of criminals by video alone is limited by various reasons, the 3D data of the scene and the Closed Circuit Television (CCTV) footage are matched, the height of the criminal can be measured. However, it is still difficult to measure the height of CCTV footage in the non-contact type measurement method because of variables such as position, posture, and head shape of criminals. In this paper, we propose a method of matching the CCTV footage with the 3D data on the crime scene and measuring the height of the person using the 3D human body model in the matched data. In the proposed method, the height is measured by using 3D human model in various scenes of the person in the CCTV footage, and the measurement value of the target person is corrected by the measurement error of the replay CCTV footage of the reference person. We tested for 20 people's walking CCTV footage captured from an indoor and an outdoor and corrected the measurement values with 5 reference persons. Experimental results show that the measurement error (true value-measured value) average is 0.45 cm, and this method is effective for the measurement of the person's height in CCTV footage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20height" title="human height">human height</a>, <a href="https://publications.waset.org/abstracts/search?q=CCTV%20footage" title=" CCTV footage"> CCTV footage</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%2F3D%20matching" title=" 2D/3D matching"> 2D/3D matching</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20human%20body%20model" title=" 3D human body model"> 3D human body model</a> </p> <a href="https://publications.waset.org/abstracts/93625/measuring-the-height-of-a-person-in-closed-circuit-television-video-footage-using-3d-human-body-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6048</span> Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Amadi">F. C. Amadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Enyi"> G. C. Enyi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracturing" title="hydraulic fracturing">hydraulic fracturing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20reservoir" title=" tight reservoir"> tight reservoir</a> </p> <a href="https://publications.waset.org/abstracts/35122/optimization-of-multi-zone-unconventional-shale-gas-reservoir-using-hydraulic-fracturing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6047</span> Physical and Physiological Characteristics of Young Soccer Players in Republic of Macedonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Manchevska">Sanja Manchevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaska%20Antevska"> Vaska Antevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Todorovska"> Lidija Todorovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Beti%20Dejanova"> Beti Dejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunchica%20Petrovska"> Sunchica Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivanka%20Karagjozova"> Ivanka Karagjozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeta%20Sivevska"> Elizabeta Sivevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmina%20Pluncevic%20Gligoroska"> Jasmina Pluncevic Gligoroska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: A number of positive effects on the player’s physical status, including the body mass components are attributed to training process. As young soccer players grow up qualitative and quantitative changes appear and contribute to better performance. Player’s anthropometric and physiologic characteristics are recognized as important determinants of performance. Material: A sample of 52 soccer players with an age span from 9 to 14 years were divided in two groups differentiated by age. The younger group consisted of 25 boys under 11 years (mean age 10.2) and second group consisted of 27 boys with mean age 12.64. Method: The set of basic anthropometric parameters was analyzed: height, weight, BMI (Body Mass Index) and body mass components. Maximal oxygen uptake was tested using the treadmill protocol by Brus. Results: The group aged under 11 years showed the following anthropometric and physiological features: average height= 143.39cm, average weight= 44.27 kg; BMI= 18.77; Err = 5.04; Hb= 13.78 g/l; VO2=37.72 mlO2/kg. Average values of analyzed parameters were as follows: height was 163.7 cm; weight= 56.3 kg; BMI = 19.6; VO2= 39.52 ml/kg; Err=5.01; Hb=14.3g/l for the participants aged 12 to14 years. Conclusion: Physiological parameters (maximal oxygen uptake, erythrocytes and Hb) were insignificantly higher in the older group compared to the younger group. There were no statistically significant differences between analyzed anthropometric parameters among the two groups except for the basic measurements (height and weight). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20soccer%20players" title=" young soccer players"> young soccer players</a>, <a href="https://publications.waset.org/abstracts/search?q=BMI" title=" BMI"> BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20status" title=" physical status"> physical status</a> </p> <a href="https://publications.waset.org/abstracts/10737/physical-and-physiological-characteristics-of-young-soccer-players-in-republic-of-macedonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6046</span> Whitnall’s Sling Will Be an Alternative Method for the Surgical Correction of Poor Function Ptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titap%20Yazicioglu">Titap Yazicioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To examine the results of two different surgery in patients with severe ptosis and poor levator function. The records of 10 bilateral congenital ptosis patients, who underwent Whitnall’s sling surgery on one eyelid and frontalis sling surgery on the other were analyzed retrospectively. All patients had severe congenital ptosis(>4mm) and poor levator function (LF<4mm). Data regarding eyelid position, cosmetic outcomes, and postoperative complications were evaluated. All patients were assessed for a minimum of one year with regard to the amount of correction, residual ptosis and lagophthalmos. The study consisted of 10 patients, with an average age of 9.2±2.4 years. Preoperative diagnosis for all patients was noted as, the average LF was 3.4±0.51mm, vertical lid height was 3.5±0.52 mm and margin reflex distance-1 (MRD-1) was 0.4±0.51mm. The mean vertical lid height was measured as 7.1±0.73 mm in the frontalis sling group and 7.2±0.63 mm in the Whitnall’s sling group at the postoperative 1st month control. However, in patients with Whitnall’s sling, revision was performed with frontalis sling surgery due to failure in vertical lid height in the late postoperative period, and an average of 7.5±0.52 mm was achieved. Satisfactory results were obtained in all patients. Although postoperative lagophthalmitis developed in the frontalis sling group, none of them developed exposure keratitis. Granuloma was observed as sling infection in 2(20%) of the patients. Although Whitnall’s sling technique provides a natural look appearance without interfering with the functional result, we did not find it as successful as frontalis sling surgery in severe ptosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital%20ptosis" title="congenital ptosis">congenital ptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=frontalis%20suspension" title=" frontalis suspension"> frontalis suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=Whitnall%20ligament" title=" Whitnall ligament"> Whitnall ligament</a>, <a href="https://publications.waset.org/abstracts/search?q=complications" title=" complications"> complications</a> </p> <a href="https://publications.waset.org/abstracts/152124/whitnalls-sling-will-be-an-alternative-method-for-the-surgical-correction-of-poor-function-ptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiba%20Akrout">Hiba Akrout</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Hidouri"> Khaoula Hidouri</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9chir%20Chaouachi"> Béchir Chaouachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Romdhane%20Ben%20Slama"> Romdhane Ben Slama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20height" title=" average height"> average height</a> </p> <a href="https://publications.waset.org/abstracts/119199/effect-of-the-distance-between-the-cold-surface-and-the-hot-surface-on-the-production-of-a-simple-solar-still" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> Plantation Forests Height Mapping Using Unmanned Aerial System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiming%20Li">Shiming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingwang%20Liu"> Qingwang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Honggan%20Wu"> Honggan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbing%20Zhang"> Jianbing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20height%20mapping" title="forest height mapping">forest height mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forests" title=" plantation forests"> plantation forests</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-from-motion%20photogrammetry" title=" structure-from-motion photogrammetry"> structure-from-motion photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a> </p> <a href="https://publications.waset.org/abstracts/63172/plantation-forests-height-mapping-using-unmanned-aerial-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Investigation of Various Physical and Physiological Properties of Ethiopian Elite Men Distances Runners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getaye%20Fisseha%20Gelaw">Getaye Fisseha Gelaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate the key physical and physiological characteristics of 16 elite male Ethiopian national team distance runners, who have an average age of 28.1±4.3 years, a height of 175.0 ±5.6 cm, a weight of 59.1 ±3.9 kg, a BMI of 19.6 ±1.5, and training age of 10.1 ±5.1 yrs. The average weekly distance is 196.3±13.8 km, the average 10,000m time is 27:14±0.5 min sec, the average half marathon time is 59:30±0.6 min sec, the average marathon time is 2hr 03min 39sec±0.02. In addition, the average Cooper test (12-minute run test) is 4525.4±139.7 meters, and the average VO2 max is 90.8±3.1ml/kg/m. All athletes have a high profile and compete on the international label, and according to the World Athletics athletes' ranking system in 2021, 56.3% of the 16 participants were platinum label status, while the remaining 43.7 % were gold label status-completed an incremental treadmill test for the assessment of VO2peak, submaximal running, lactate threshold and test during which they ran continuously at 21 km/h. The laboratory determined VO2peak was 91.4 ± 1.7 mL/kg/min with anaerobic threshold of 74.2±1.6 mL/min/Kg and VO2max 81%. The speed at the AT is 15.9 ±0.6 Kmh and the altitude is 4,0%. The respiratory compensation RC point was reached at 88.7±1.1 mL/min/Kg and 97% of VO2 max. On RCP, the speed is 17.6 ±0.4 km/h and the altitude/slope are 5.5% percent, and the speed at Maximum effort is 19.5 ±1.5 and the elevation is 6.0%. The data also suggest that Ethiopian distance top athletes have considerably higher VO2 max values than those found in earlier research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long-distance%20running" title="long-distance running">long-distance running</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopians" title=" Ethiopians"> Ethiopians</a>, <a href="https://publications.waset.org/abstracts/search?q=VO2%20max" title=" VO2 max"> VO2 max</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20athletics" title=" world athletics"> world athletics</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropometric" title=" anthropometric"> anthropometric</a> </p> <a href="https://publications.waset.org/abstracts/149125/investigation-of-various-physical-and-physiological-properties-of-ethiopian-elite-men-distances-runners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luen%20Chow%20Chan">Luen Chow Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bike%20frame%20sizes" title="bike frame sizes">bike frame sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=cadence%20rate" title=" cadence rate"> cadence rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pedaling%20power" title=" pedaling power"> pedaling power</a>, <a href="https://publications.waset.org/abstracts/search?q=seat%20height" title=" seat height"> seat height</a> </p> <a href="https://publications.waset.org/abstracts/121431/significance-of-bike-frame-geometric-factors-for-cycling-efficiency-and-muscle-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Al-Heuseen">K. Al-Heuseen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hashim"> M. R. Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title="electrical properties">electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20distribution" title=" Gaussian distribution"> Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd-GaN%20Schottky%20diodes" title=" Pd-GaN Schottky diodes"> Pd-GaN Schottky diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/7401/temperature-dependent-barrier-characteristics-of-inhomogeneous-pdn-gan-schottky-barrier-diodes-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Sarvestan">Javad Sarvestan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Svoboda"> Zdenek Svoboda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=net%20impulse" title="net impulse">net impulse</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20strength%20index" title=" reactive strength index"> reactive strength index</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20force%20development" title=" rate of force development"> rate of force development</a>, <a href="https://publications.waset.org/abstracts/search?q=stretch-shortening%20cycle" title=" stretch-shortening cycle"> stretch-shortening cycle</a> </p> <a href="https://publications.waset.org/abstracts/120356/rate-of-force-development-net-impulse-and-modified-reactive-strength-as-predictors-of-volleyball-spike-jump-height-among-young-elite-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Investigating the Effect of Height on Essential Oils of Urtica diocia L.: Case Study of Ramsar, Mazandaran, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Saeb">Keivan Saeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Kakouei"> Azade Kakouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Jafari%20Hajati"> Razieh Jafari Hajati</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Pourshamsian"> Khalil Pourshamsian</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Babakhani"> Babak Babakhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urtica Diocia L. from the Urticaceae family is a plant of herbal value and of a noticeable distribution in the north of Iran. The growth of different plants in various natural environments and ecosystems seems to be affected by factors such as the height (from sea surface).To investigate the effect of height on Urtica Diocia L. medicine compounds in its natural environment, three areas with the height of zero, 800 and 1800m were selected.The samples were randomly gathered three times and were dried; also, their compounds was extracted using the Clivenger with the water-distilling method. To determine the medicine compounds, the GC-MS as well as the GC machines were used. The analysis of variance was done in the form of the random-full-block design. The results indicated that there was a significant difference between the percent of EOs in the selected heights; however, such difference was not significant within each height. From among the eight flavors of the study, the phytol compound was more in terms of percentage. By increasing the height the percent of EOs would decrease. lower heights could be considered most appropriate for producing the studied effective materials despite of the moistened climate and soil there. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urtica%20diocia%20L." title="Urtica diocia L.">Urtica diocia L.</a>, <a href="https://publications.waset.org/abstracts/search?q=height" title=" height"> height</a>, <a href="https://publications.waset.org/abstracts/search?q=EOs" title=" EOs"> EOs</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/11544/investigating-the-effect-of-height-on-essential-oils-of-urtica-diocia-l-case-study-of-ramsar-mazandaran-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi">A. H. Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title="jet impingement">jet impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/57530/jet-impingement-heat-transfer-on-a-rib-roughened-flat-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Missina">Svetlana Missina</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoliy%20Shipilov"> Anatoliy Shipilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Vavaev"> Alexandr Vavaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agility" title="agility">agility</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20football%20players" title=" female football players"> female football players</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint%20performance" title=" sprint performance"> sprint performance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20jump%20height" title=" vertical jump height"> vertical jump height</a> </p> <a href="https://publications.waset.org/abstracts/59039/correlation-between-sprint-performance-and-vertical-jump-height-in-elite-female-football-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaige%20Shi">Kaige Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Jiang"> Chao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20gripper" title="swirl gripper">swirl gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=noncontact%20handling" title=" noncontact handling"> noncontact handling</a>, <a href="https://publications.waset.org/abstracts/search?q=levitation" title=" levitation"> levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20height%20estimation" title=" gap height estimation"> gap height estimation</a> </p> <a href="https://publications.waset.org/abstracts/109800/pressure-detecting-method-for-estimating-levitation-gap-height-of-swirl-gripper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.Jowkar.%20M.Samiee">L.Jowkar. M.Samiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20CN-Run%20off" title="Arc CN-Run off">Arc CN-Run off</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-runoff" title=" rain-runoff"> rain-runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20period" title=" return period"> return period</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/121495/estimation-of-the-curve-number-and-runoff-height-using-the-arc-cn-runoff-tool-in-sartang-ramon-watershed-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6034</span> Calibration of a Large Standard Step Height with Low Sampled Coherence Scanning Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahi%20Ghareab%20Abdelsalam%20Ibrahim">Dahi Ghareab Abdelsalam Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scanning interferometry is commonly used for measuring the three-dimensional profiling of surfaces. Here, we used a scanning stage calibrated with standard gauge blocks to measure a standard step height of 200μm. The stage measures precisely the envelope of interference at the platen and at the surface of the step height. From the difference between the two envelopes, we measured the step height of the sample. Experimental measurements show that the measured value matches well with the nominal value of the step height. A light beam of 532nm from a Tungsten Lamp is collimated and incident on the interferometer. By scanning, two envelopes were produced. The envelope at the platen surface and the envelope at the object surface were determined precisely by a written program code, and then the difference between them was measured from the calibrated scanning stage. The difference was estimated to be in the range of 198 ± 2 μm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20metrology" title="optical metrology">optical metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20holography" title=" digital holography"> digital holography</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometry" title=" interferometry"> interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20unwrapping" title=" phase unwrapping"> phase unwrapping</a> </p> <a href="https://publications.waset.org/abstracts/161440/calibration-of-a-large-standard-step-height-with-low-sampled-coherence-scanning-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6033</span> On Hyperbolic Gompertz Growth Model (HGGM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oyamakin">S. O. Oyamakin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Chukwu"> A. U. Chukwu</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=height" title="height">height</a>, <a href="https://publications.waset.org/abstracts/search?q=Dbh" title=" Dbh"> Dbh</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20caribaea" title=" Pinus caribaea"> Pinus caribaea</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic" title=" hyperbolic"> hyperbolic</a>, <a href="https://publications.waset.org/abstracts/search?q=gompertz" title=" gompertz"> gompertz</a> </p> <a href="https://publications.waset.org/abstracts/17739/on-hyperbolic-gompertz-growth-model-hggm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6032</span> Step Height Calibration Using Hamming Window: Band-Pass Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahi%20Ghareab%20Abdelsalam%20Ibrahim">Dahi Ghareab Abdelsalam Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20metrology" title="optical metrology">optical metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20heights" title=" step heights"> step heights</a>, <a href="https://publications.waset.org/abstracts/search?q=hamming%20window" title=" hamming window"> hamming window</a>, <a href="https://publications.waset.org/abstracts/search?q=band-pass%20filter" title=" band-pass filter"> band-pass filter</a> </p> <a href="https://publications.waset.org/abstracts/168134/step-height-calibration-using-hamming-window-band-pass-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6031</span> Morphometric and Radiographic Studies on the Tarsal Bones of Adult Chinkara (Gazella bennettii)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salahud%20Din">Salahud Din</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Masood"> Saima Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafsa%20Zaneb"> Hafsa Zaneb</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib-Ur%20Rehman"> Habib-Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Khan"> Imad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muqader%20Shah"> Muqader Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out on the gross anatomy, biometery and radiographic analysis of tarsal bones in twenty specimens of adult chinkara (Gazella bennettii). The desired bones were collected from the graveyards present in the locality of the different safari parks and zoos in Pakistan. To observe the edges and articulations between the bones, the radiographic images were acquired in craniocaudals and mediolateral views of the intact limbs. The gross and radiographic studies of the tarsus of adult Chinkara were carried out in University of Veterinary and Animal Sciences, Lahore, Pakistan. The tarsus of chinkara comprised of five bones both grossly and radiographically, settled in three transverse rows: tibial and fibular tarsal in the proximal, central and fourth fused tarsal in the middle row, the first, second and third fused tarsal in the distal row. The fibular tarsal was the largest and longest bone of the hock, situated on the lateral side and had a bulbous tuber calcis 'point of the hock' at the proximal extremity which projects upward and backward. The average maximum height and breadth for fibular tarsal was 5.61 ± 0.23 cm and 2.06 ± 0.13 cm, respectively. The tibial tarsal bones were the 2nd largest bone of the proximal row and lie on the medial side of the tarsus bears trochlea at either end. The average maximum height and breadth for tibial tarsal was 2.79 ± 0.05 cm and 1.74 ± 0.01 cm, respectively. The central and the fourth tarsals were fused to form a large bone which extends across the entire width of the tarsus and articulates with all bones of the tarsus. A nutrient foramen was present in the center of the non auricular area, more prominent on the ventral surface. The average maximum height and breadth for central and fourth fused tarsal was 1.51 ± 0.13 cm and 2.08 ± 0.07 cm, respectively. The first tarsal was a quadrilateral piece of bone placed on the poteriomedial surface of the hock. The greatest length and maximum breadth of the first tarsal was 0.94 ± 0.01 cm and 1.01 ± 0.01 cm, respectively. The second and third fused tarsal bone resembles the central but was smaller and triangular in outline. It was situated between the central above and the large metatarsal bone below. The greatest length and maximum breadth of second and third fused tarsal was 0.98 ± 0.01 cm and 1.49 ± 0.01 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chinkara" title="chinkara">chinkara</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=radiography" title=" radiography"> radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=tarsal%20bone" title=" tarsal bone"> tarsal bone</a> </p> <a href="https://publications.waset.org/abstracts/100203/morphometric-and-radiographic-studies-on-the-tarsal-bones-of-adult-chinkara-gazella-bennettii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6030</span> Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Abd-Rahman">R. Abd-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Isa"> M. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh"> H. H. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20trough%20concentrator" title="compound parabolic trough concentrator">compound parabolic trough concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20modelling" title=" optical modelling"> optical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ray-tracing%20analysis" title=" ray-tracing analysis"> ray-tracing analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20performance" title=" improved performance"> improved performance</a> </p> <a href="https://publications.waset.org/abstracts/29904/design-optimisation-of-compound-parabolic-concentrator-cpc-for-improved-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6029</span> Study on The Pile Height Loss of Tunisian Handmade Carpets Under Dynamic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Abidi">Fatma Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Harizi"> Taoufik Harizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Slah%20Msahli"> Slah Msahli</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Sakli"> Faouzi Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nine different Tunisian handmade carpets were used for the investigation. The raw material of the carpet pile yarns was wool. The influence of the different structure parameters (linear density and pile height) on the carpet compression was investigated. Carpets were tested under dynamic loading in order to evaluate and observe the thickness loss and carpet behavior under dynamic loads. To determine the loss of pile height under dynamic loading, the pile height carpets were measured. The test method was treated according to the Tunisian standard NT 12.165 (corresponds to the standard ISO 2094). The pile height measurements are taken and recorded at intervals up to 1000 impacts (measures of this study were made after 50, 100, 200, 500, and 1000 impacts). The loss of pile height is calculated using the variation between the initial height and those measured after the number of reported impacts. The experimental results were statistically evaluated using Design Expert Analysis of Variance (ANOVA) software. As regards the deformation, results showed that both of the structure parameters of the pile yarn and the pile height have an influence. The carpet with the higher pile and the less linear density of pile yarn showed the worst performance. Results of a polynomial regression analysis are highlighted. There is a good correlation between the loss of pile height and the impacts number of dynamic loads. These equations are in good agreement with measured data. Because the prediction is reasonably accurate for all samples, these equations can also be taken into account when calculating the theoretical loss of pile height for the considered carpet samples. Statistical evaluations of the experimen¬tal data showed that the pile material and number of impacts have a significant effect on mean thickness and thickness loss variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunisian%20handmade%20carpet" title="Tunisian handmade carpet">Tunisian handmade carpet</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20of%20pile%20height" title=" loss of pile height"> loss of pile height</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loads" title=" dynamic loads"> dynamic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/51785/study-on-the-pile-height-loss-of-tunisian-handmade-carpets-under-dynamic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6028</span> On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oyamakin">S. O. Oyamakin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Chukwu"> A. U. Chukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=height" title="height">height</a>, <a href="https://publications.waset.org/abstracts/search?q=Dbh" title=" Dbh"> Dbh</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20caribaea" title=" Pinus caribaea"> Pinus caribaea</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic" title=" hyperbolic"> hyperbolic</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%27s" title=" Richard's"> Richard's</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/17738/on-differential-growth-equation-to-stochastic-growth-model-using-hyperbolic-sine-function-in-heightdiameter-modeling-of-pines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6027</span> Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakiul%20Fuady">Zakiul Fuady</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Spiske"> Michaela Spiske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tsunami%20wave%20height" title="tsunami wave height">tsunami wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20wave%20height" title=" storm wave height"> storm wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20velocity" title=" flow velocity"> flow velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=boulders" title=" boulders"> boulders</a>, <a href="https://publications.waset.org/abstracts/search?q=Anegada" title=" Anegada"> Anegada</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakarang%20Cape" title=" Pakarang Cape"> Pakarang Cape</a> </p> <a href="https://publications.waset.org/abstracts/91781/tsunami-wave-height-and-flow-velocity-calculations-based-on-density-measurements-of-boulders-case-studies-from-anegada-and-pakarang-cape" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6026</span> An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwafemi%20Oyamakin">Samuel Oluwafemi Oyamakin</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Unna%20Chukwu"> Angela Unna Chukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=height" title="height">height</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter%20at%20breast%20height" title=" diameter at breast height"> diameter at breast height</a>, <a href="https://publications.waset.org/abstracts/search?q=DBH" title=" DBH"> DBH</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20sine%20function" title=" hyperbolic sine function"> hyperbolic sine function</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20caribaea" title=" Pinus caribaea"> Pinus caribaea</a>, <a href="https://publications.waset.org/abstracts/search?q=Richards%27%20growth%20model" title=" Richards' growth model"> Richards' growth model</a> </p> <a href="https://publications.waset.org/abstracts/66329/an-alternative-richards-growth-model-based-on-hyperbolic-sine-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6025</span> A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Arabghahestani">M. Arabghahestani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Darwish%20Ahmad"> A. Darwish Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Akafuah"> N. K. Akafuah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20profile" title="boundary layer profile">boundary layer profile</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20whirls" title=" fire whirls"> fire whirls</a>, <a href="https://publications.waset.org/abstracts/search?q=near-ground%20height" title=" near-ground height"> near-ground height</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20interactions" title=" vortex interactions"> vortex interactions</a> </p> <a href="https://publications.waset.org/abstracts/107924/a-small-scale-study-of-fire-whirls-and-investigation-of-the-effects-of-near-ground-height-on-the-behavior-of-fire-whirls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6024</span> Numerical Analysis of a Pilot Solar Chimney Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Gholamalizadeh">Ehsan Gholamalizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Dong%20Chung"> Jae Dong Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy-driven%20flow" title="buoyancy-driven flow">buoyancy-driven flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chimney%20power%20plant" title=" solar chimney power plant"> solar chimney power plant</a> </p> <a href="https://publications.waset.org/abstracts/60063/numerical-analysis-of-a-pilot-solar-chimney-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6023</span> Developing Norms for Sit and Reach Test in the Local Environment of Khyber Pakhtunkhwa, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazratullah%20Khattak">Hazratullah Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Waheed%20Mughal"> Abdul Waheed Mughal</a>, <a href="https://publications.waset.org/abstracts/search?q=Inamullah%20Khattak"> Inamullah Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is envisaged as vital contribution as it intends to develop norms for the Sit and Reach Test in the Local Environment of Khyber Pakhtunkhwa Pakistan, for the age group between 12-14 years which will be used to measure the flexibility level of early adolescents (12-14 years). Sit and Reach test was applied on 2000 volunteers, 400 subjects from each selected district (Five (5) Districts, Peshawar, Nowshera, Karak, Dera Ismail Khan and Swat (20% percent of the total 25 districts) using convenient sampling technique. The population for this study is comprised of all the early adolescents aging 12-14 years (Age Mean 13 + 0.63, Height 154 + 046, Weight 46 + 7.17, BMI 19 + 1.45) representing various public and private sectors educational institutions of the Khyber Pakhtunkhwa. As for as the norms developed for Sit and Reach test, the score below 6.8 inches comes in the category of poor, 6.9 to 9.6 inches (below Average), 9.7 to 10.8 inches (Average), 10.9 to 13 inches (Above average) and above 13 inches score is considered as Excellent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fitness" title="fitness">fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=norms" title=" norms"> norms</a>, <a href="https://publications.waset.org/abstracts/search?q=sit%20and%20reach" title=" sit and reach"> sit and reach</a> </p> <a href="https://publications.waset.org/abstracts/74867/developing-norms-for-sit-and-reach-test-in-the-local-environment-of-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=201">201</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=average%20height&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>