CINXE.COM

Search results for: overhead lines

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: overhead lines</title> <meta name="description" content="Search results for: overhead lines"> <meta name="keywords" content="overhead lines"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="overhead lines" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="overhead lines"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1310</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: overhead lines</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Using a Hybrid Method to Eradicate Bamboo Growth along the Route of Overhead Power Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Eduful">Miriam Eduful</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electricity Company of Ghana (ECG) is under obligation, demanded by the Public Utility and Regulation Commission to meet set performance indices. However, in certain parts of the country, bamboo related power interruptions have become a challenge. Growth rate of the bamboo is such that the cost of regular vegetation maintenance along route of the overhead power lines has become prohibitive. To address the problem, several methods and techniques of bamboo eradication have being used. Some of these methods involved application of chemical compounds that are considered inimical and dangerous to the environment. In this paper, three methods of bamboo eradication along the route of the ECG overhead power lines have been investigated. A hybrid method has been found to be very effective and ecologically friendly. The method is locally available and comparatively inexpensive to apply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20method" title=" hybrid method"> hybrid method</a>, <a href="https://publications.waset.org/abstracts/search?q=gly%20gold" title=" gly gold"> gly gold</a> </p> <a href="https://publications.waset.org/abstracts/72571/using-a-hybrid-method-to-eradicate-bamboo-growth-along-the-route-of-overhead-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Investigation of Multiple Dynamic Vibration Absorbers&#039; Performance in Overhead Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20F.%20D.%20Oliveira">Pedro F. D. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangel%20S.%20Maia"> Rangel S. Maia</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20S.%20Paula"> Aline S. Paula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the electric energy consumption grows, the necessity of energy transmission lines increases. One of the problems caused by an oscillatory response to dynamical loads (such as wind effects) in transmission lines is the cable fatigue. Thus, the dynamical behavior of transmission cables understanding and its control is extremely important. The socioeconomic damage caused by a failure in these cables can be quite significant, from large economic losses to energy supply interruption in large regions. Dynamic Vibration Absorbers (DVA) are oscillatory elements used to mitigate the vibration of a primary system subjected to harmonic excitation. The positioning of Stockbridge (DVA for overhead transmission lines) plays an important role in mitigating oscillations of transmission lines caused by airflows. Nowadays, the positioning is defined by technical standards or commercial software. The aim of this paper is to conduct an analysis of multiple DVAs performances in cable conductors of overhead transmission lines. The cable is analyzed by a finite element method and the model is calibrated by experimental results. DVAs performance is analyzed by evaluating total cable energy, and a study of multiple DVAs positioning is conducted. The results are compared to the existing regulations showing situations where proper positioning, different from the standard, can lead to better performance of the DVA. Results also show situations where the use of multiple DVAs is appropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20vibration%20absorber" title="dynamical vibration absorber">dynamical vibration absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20transmission%20lines" title=" overhead transmission lines"> overhead transmission lines</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamics" title=" structural dynamics"> structural dynamics</a> </p> <a href="https://publications.waset.org/abstracts/104551/investigation-of-multiple-dynamic-vibration-absorbers-performance-in-overhead-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Feature Evaluation and Applications of Various Advanced Conductors with High Conductivity and Low Flash in Overhead Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Pourshafie">Atefeh Pourshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Bakhtiari"> Homayoun Bakhtiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power transmission lines, electricity conductors are main tools to carry electric power. Thus, other devices such as shield wires, insulators, towers, foundations etc. should be designed in a way that the conductors be able to successfully do their task which is appropriate power delivery to the customers. Non-stop increase of energy demand has led to saturated capacity of transmission lines which, in turn, causing line flash to exceed acceptable limits in some points. An approach which may be used to solve this issue is replacement of current conductors with new ones having the capability of withstanding higher heating such that reduced flash would be observed when heating increases. These novel conductors are able to transfer higher currents and operate in higher heating conditions while line flash will remain within standard limits. In this paper, we will attempt to introduce three types of advanced overhead conductors and analyze the replacement of current conductors by new ones technically and economically in transmission lines. In this regard, progressive conductors of transmission lines are introduced such as ACC (Aluminum Conductor Composite Core), AAAC-UHC (Ultra High Conductivity, All Aluminum Alloy Conductors), and G(Z)TACSR-Gap Type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ACC" title="ACC">ACC</a>, <a href="https://publications.waset.org/abstracts/search?q=AAAC-UHC" title=" AAAC-UHC"> AAAC-UHC</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20type" title=" gap type"> gap type</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20lines" title=" transmission lines"> transmission lines</a> </p> <a href="https://publications.waset.org/abstracts/52730/feature-evaluation-and-applications-of-various-advanced-conductors-with-high-conductivity-and-low-flash-in-overhead-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Ammar">Abdi Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouazir%20Youcef"> Ouazir Youcef</a>, <a href="https://publications.waset.org/abstracts/search?q=Laissaoui%20Abdelmalek"> Laissaoui Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20surge" title="lightning surge">lightning surge</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20overvoltage" title=" transient overvoltage"> transient overvoltage</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title=" eddy current"> eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title=" electromagnetic compatibility"> electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20wire" title=" ground wire"> ground wire</a> </p> <a href="https://publications.waset.org/abstracts/175409/overhead-lines-induced-transient-overvoltage-analysis-using-finite-difference-time-domain-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> A Monitoring System to Detect Vegetation Growth along the Route of Power Overhead Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Eduful">Eugene Eduful</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces an approach that utilizes a Wireless Sensor Network (WSN) to detect vegetation encroachment between segments of distribution lines. The WSN was designed and implemented, involving the seamless integration of Arduino Uno and Mega systems. This integration demonstrates a method for addressing the challenges posed by vegetation interference. The primary aim of the study is to improve the reliability of power supply in areas characterized by forested terrain, specifically targeting overhead powerlines. The experimental results validate the effectiveness of the proposed system, revealing its ability to accurately identify and locate instances of vegetation encroachment with a remarkably high degree of precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20encroachment" title=" vegetation encroachment"> vegetation encroachment</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20of%20sight" title=" line of sight"> line of sight</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20Uno" title=" Arduino Uno"> Arduino Uno</a>, <a href="https://publications.waset.org/abstracts/search?q=XBEE" title=" XBEE"> XBEE</a> </p> <a href="https://publications.waset.org/abstracts/176409/a-monitoring-system-to-detect-vegetation-growth-along-the-route-of-power-overhead-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Improving Electrical Safety through Enhanced Work Permits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuwan%20Karunarathna">Nuwan Karunarathna</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemali%20Seneviratne"> Hemali Seneviratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distribution Utilities inherently present electrical hazards for their workers in addition to the general public especially due to bare overhead lines spreading out over a large geographical area. Therefore, certain procedures such as; de-energization, verification of de-energization, isolation, lock-out tag-out and earthing are carried out to ensure safe working conditions when conducting maintenance work on de-energized overhead lines. However, measures must be taken to coordinate the above procedures and to ensure successful and accurate execution of those procedures. Issuing of 'Work Permits' is such a measure that is used by the Distribution Utility considered in this paper. Unfortunately, the Work Permit method adopted by the Distribution Utility concerned here has not been successful in creating the safe working conditions as expected which was evidenced by four (4) number of fatalities of workers due to electrocution occurred in the Distribution Utility from 2016 to 2018. Therefore, this paper attempts to identify deficiencies in the Work Permit method and related contributing factors through careful analysis of the four (4) fatalities and work place practices to rectify the short comings to prevent future incidents. The analysis shows that the present level of coordination between the 'Authorized Person' who issues the work permit and the 'Competent Person' who performs the actual work is grossly inadequate to achieve the intended safe working conditions. The paper identifies the need of active participation of a 'Control Person' who oversees the whole operation from a bird’s eye perspective and recommends further measures that are derived through the analysis of the fatalities to address the identified lapses in the current work permit system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authorized%20person" title="authorized person">authorized person</a>, <a href="https://publications.waset.org/abstracts/search?q=competent%20person" title=" competent person"> competent person</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20person" title=" control person"> control person</a>, <a href="https://publications.waset.org/abstracts/search?q=de-energization" title=" de-energization"> de-energization</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20utility" title=" distribution utility"> distribution utility</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=lock-out%20tag-out" title=" lock-out tag-out"> lock-out tag-out</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20lines" title=" overhead lines"> overhead lines</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20permit" title=" work permit"> work permit</a> </p> <a href="https://publications.waset.org/abstracts/102824/improving-electrical-safety-through-enhanced-work-permits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Overhead Reduction by Channel Estimation Using Linear Interpolation for Single Carrier Frequency Domain Equalization Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Su%20Song">Min-Su Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Haeng-Bok%20Kil"> Haeng-Bok Kil</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot is heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20interpolation" title=" linear interpolation"> linear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20overhead" title=" pilot overhead"> pilot overhead</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80487/overhead-reduction-by-channel-estimation-using-linear-interpolation-for-single-carrier-frequency-domain-equalization-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Modeling of Surge Corona Using Type94 in Overhead Power Lines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahira%20Anane">Zahira Anane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corona in the HV overhead transmission lines is an important source of attenuation and distortion of overvoltage surges. This phenomenon of distortion, which is superimposed on the distortion by skin effect, is due to the dissipation of energy by injection of space charges around the conductor, this process with place as soon as the instantaneous voltage exceeds the threshold voltage of the corona effect conductors. This paper presents a mathematical model to determine the corona inception voltage, the critical electric field and the corona radius, to predict the capacitive changes at conductor of transmission line due to corona. This model has been incorporated into the Alternative Transients Program version of the Electromagnetic Transients Program (ATP/EMTP) as a user defined component, using the MODELS interface with NORTON TYPE94 of this program and using the foreign subroutine. For obtained the displacement of corona charge hell, dichotomy mathematical method is used for this computation. The present corona model can be used for computing of distortion and attenuation of transient overvoltage waves being propagated in a transmission line of the very high voltage electric power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20voltage" title="high voltage">high voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=corona" title=" corona"> corona</a>, <a href="https://publications.waset.org/abstracts/search?q=Type94%20NORTON" title=" Type94 NORTON"> Type94 NORTON</a>, <a href="https://publications.waset.org/abstracts/search?q=dichotomy" title=" dichotomy"> dichotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=ATP%2FEMTP" title=" ATP/EMTP"> ATP/EMTP</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELS" title=" MODELS"> MODELS</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20model" title=" foreign model"> foreign model</a> </p> <a href="https://publications.waset.org/abstracts/13251/modeling-of-surge-corona-using-type94-in-overhead-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Boundary Feedback Stabilization of an Overhead Crane Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Elharfi">Abdelhadi Elharfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feedback%20stabilization" title="feedback stabilization">feedback stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20group%20and%20generator" title=" semi group and generator"> semi group and generator</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20crane%20system" title=" overhead crane system"> overhead crane system</a> </p> <a href="https://publications.waset.org/abstracts/27507/boundary-feedback-stabilization-of-an-overhead-crane-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20Abdelmageid">Zeyad Abdelmageid</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianbin%20Wang"> Xianbin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20assignment" title="channel assignment">channel assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=Wi-Fi%20networks" title=" Wi-Fi networks"> Wi-Fi networks</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=DBSCAN" title=" DBSCAN"> DBSCAN</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead" title=" overhead"> overhead</a> </p> <a href="https://publications.waset.org/abstracts/149614/low-overhead-dynamic-channel-selection-with-cluster-based-spatial-temporal-station-reporting-in-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Zheng">Chen Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Zhou"> Lin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Bao%20Xie"> Bao Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Du"> Xiao Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Nianbin%20Shao"> Nianbin Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSPVPs" title="LSPVPs">LSPVPs</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20impedance" title=" grid impedance"> grid impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20types%20of%20inverter" title=" different types of inverter"> different types of inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=PCC%20voltage" title=" PCC voltage"> PCC voltage</a> </p> <a href="https://publications.waset.org/abstracts/42321/the-stability-study-of-large-scale-grid-tied-photovoltaic-system-containing-different-types-of-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> Vibration Analysis of Power Lines with Moving Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bukhari">Mohammad Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumar%20Barry"> Oumar Barry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20performance" title="absorber performance">absorber performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Aeolian%20vibration" title=" Aeolian vibration"> Aeolian vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton%E2%80%99s%20principle" title=" Hamilton’s principle"> Hamilton’s principle</a>, <a href="https://publications.waset.org/abstracts/search?q=stockbridge%20damper" title=" stockbridge damper"> stockbridge damper</a> </p> <a href="https://publications.waset.org/abstracts/66478/vibration-analysis-of-power-lines-with-moving-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> An Improved Method to Eliminate the Distortion of Terrain Relief in DEM Generation Using Contour Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=RyongJin%20Ri">RyongJin Ri</a>, <a href="https://publications.waset.org/abstracts/search?q=SongChol%20Kim"> SongChol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=SungIl%20Jon"> SungIl Jon</a>, <a href="https://publications.waset.org/abstracts/search?q=KyongIl%20Ji"> KyongIl Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> : In this paper, an improved algorithm is proposed to eliminate the distortion of terrain relief when generating DEMs from digitized contour lines in the area bounded by inflectional contour lines such as narrow and long mountain ridges or valleys. To this end, mountain ridge lines (valley lines) are extracted from the area, and the steepest slope segment is detected based on ridge or valley lines. After detecting the steepest slope segment, the elevation of the grid points is interpolated on the profile section using the cubic Hermit function. The experiment shows that the accuracy of the DEM of the terrain-distortionable region generated by the proposed method is improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20lines" title=" contour lines"> contour lines</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge%20line" title=" ridge line"> ridge line</a>, <a href="https://publications.waset.org/abstracts/search?q=steepest%20slope%20segment" title=" steepest slope segment"> steepest slope segment</a> </p> <a href="https://publications.waset.org/abstracts/194164/an-improved-method-to-eliminate-the-distortion-of-terrain-relief-in-dem-generation-using-contour-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Electric Field Analysis of XLPE, Cross-Linked Polyethylene Covered Aerial Line and Insulator Lashing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Gu">Jyh-Cherng Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ta%20Yang"> Ming-Ta Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dai-Ling%20Tsai"> Dai-Ling Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both sparse lashing and dense lashing are applied to secure overhead XLPE (cross-linked polyethylene) covered power lines on ceramic insulators or HDPE polymer insulators. The distribution of electric field in and among the lashing wires, the XLPE power lines and insulators in normal clean condition and when conducting materials such as salt, metal particles, dust, smoke or acidic smog are present is studied in this paper. The ANSYS Maxwell commercial software is used in this study for electric field analysis. Although the simulation analysis is performed assuming ideal conditions due to the constraints of the simulation software, the result may not be the same as in real situation but still be of sufficient practical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20intensity" title="electric field intensity">electric field intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE%20covered%20aerial%20line" title=" XLPE covered aerial line"> XLPE covered aerial line</a>, <a href="https://publications.waset.org/abstracts/search?q=empty" title=" empty"> empty</a> </p> <a href="https://publications.waset.org/abstracts/54018/electric-field-analysis-of-xlpe-cross-linked-polyethylene-covered-aerial-line-and-insulator-lashing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejenie%20Birile%20Gemeda">Dejenie Birile Gemeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilhelm%20Stork"> Wilhelm Stork</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blackout" title="blackout">blackout</a>, <a href="https://publications.waset.org/abstracts/search?q=cascading%20outages" title=" cascading outages"> cascading outages</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20line%20rating" title=" dynamic line rating"> dynamic line rating</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20swing" title=" power swing"> power swing</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20transmission%20lines" title=" overhead transmission lines"> overhead transmission lines</a> </p> <a href="https://publications.waset.org/abstracts/144172/mitigation-of-cascading-power-outage-caused-power-swing-disturbance-using-real-time-dlr-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> Synthesis and Magnetic Properties of Six-Lines Ferrihydrite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandni%20Rani">Chandni Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrihydrite is one of the distinct minerals in the family of oxides, hydroxides and oxyhydroxides of iron. It is a nanocrystalline material. It occurs naturally in different sediments, soil systems and also found in the core of ferritin, an iron storage protien. This material can also be synthesized by suitable chemical methods in laboratories. This is known as less crystalline Iron (III) Oxyhydroxide. Due to its poor crystallinity, there are very broad peaks in x-ray diffraction. Depending on the number of peaks in x-ray diffraction pattern, it is classified as two lines and six lines ferrihydrite. The average crystallite size for these two forms is found to be about 2nm to 5nm. The exact crystal structure of this system is still under debate. Out of these two forms, the six lines ferrihydrite is more ordered in comparison to two lines ferrihydrite. The magnetic behavior of two lines ferrihydrite nanoparticles is somewhat well studied. But the magnetic behavior of six lines ferrihydrite nanoparticles could not attract the attention of researchers much. This motivated us to work on the magnetic properties of six lines ferrihydrite nanoparticles. In this work, we present synthesis, structural characterization and magnetic behavior of 5 nm six lines ferrihydrite nanoparticles. X-ray diffraction and transmission electron microscope are used for structural characterization of this system. Magnetization measurements are performed to fit the data at different temperatures. Then the effect of magnetic moment distribution is also found. All these observations are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/59175/synthesis-and-magnetic-properties-of-six-lines-ferrihydrite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> Analysis and Improvement of Efficiency for Food Processing Assembly Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Savsar">Mehmet Savsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several factors affect productivity of Food Processing Assembly Lines (FPAL). Engineers and line managers usually do not recognize some of these factors and underutilize their production/assembly lines. In this paper, a special food processing assembly line is studied in detail, and procedures are presented to illustrate how productivity and efficiency of such lines can be increased. The assembly line considered produces ten different types of freshly prepared salads on the same line, which is called mixed model assembly line. Problems causing delays and inefficiencies on the line are identified. Line balancing and related tools are used to increase line efficiency and minimize balance delays. The procedure and the approach utilized in this paper can be useful for the operation managers and industrial engineers dealing with similar assembly lines in food processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20lines" title="assembly lines">assembly lines</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20efficiency" title=" production efficiency"> production efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bottleneck" title=" bottleneck"> bottleneck</a> </p> <a href="https://publications.waset.org/abstracts/68271/analysis-and-improvement-of-efficiency-for-food-processing-assembly-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Reaction of Nine Candidate Wheat Lines/Mutants against Leaf Rust: Lodging and Aphid Population under Field Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsan">Muhammad Mohsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehboob%20Ur-Rahman"> Mehboob Ur-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Zulfiqar"> Sana Zulfiqar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumila%20Ashfaq"> Shumila Ashfaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brown Rust (Puccinia triticina), also known as leaf rust, pose a serious threat to wheat cultivation in the world. Nine candidate wheat lines/mutants were subjected to rust inoculation, lodging and aphid population in vivo conditions. Four lines/mutants (E-284, E-505, 2008-6 MR and 2008-14MR) were found resistant to leaf rust attack. Two lines (PGMB 15-29 and 2011-1 MR) displayed moderately resistant reactions against the disease. Three lines/mutants were depicted as susceptible to leaf rust. The lowest population of aphids, i.e., 16.67, was observed on 2008-14MR. Three lines/mutants (NN1-47, NN1-89 and PGMB 15-29) were found under zero level of lodging. The presence and absence of different leaf rust-resistant genes like Lr13, Lr34, Lr46 and Lr67 were assessed with the help of molecular markers. All the wheat lines/mutants were found loaded with leaf rust-resistant genes such as Lr13 and Lr 34, while Lr46 and Lr67 were found in 66% of wheat lines/mutants. The resistant source can be exploited in the breeding program to develop rust, aphid and lodging with race-nonspecific resistant wheat variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20rust" title=" leaf rust"> leaf rust</a>, <a href="https://publications.waset.org/abstracts/search?q=lodging" title=" lodging"> lodging</a>, <a href="https://publications.waset.org/abstracts/search?q=aphid" title=" aphid"> aphid</a> </p> <a href="https://publications.waset.org/abstracts/162424/reaction-of-nine-candidate-wheat-linesmutants-against-leaf-rust-lodging-and-aphid-population-under-field-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Conversion of HVAC Lines into HVDC in Transmission Expansion Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20P.%20Novoa">Juan P. Novoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20A.%20Rios"> Mario A. Rios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a transmission planning methodology that considers the conversion of HVAC transmission lines to HVDC as an alternative of expansion of power systems, as a consequence of restrictions for the construction of new lines. The transmission expansion planning problem formulates an optimization problem that minimizes the total cost that includes the investment cost to convert lines from HVAC to HVDC and possible required reinforcements of the power system prior to the conversion. The costs analysis assesses the impact of the conversion on the reliability because transmission lines are out of service during the conversion work. The presented methodology is applied to a test system considering a planning a horizon of 10 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transmission%20expansion%20planning" title="transmission expansion planning">transmission expansion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20optimization" title=" cost optimization"> cost optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20non-supplied" title=" energy non-supplied"> energy non-supplied</a> </p> <a href="https://publications.waset.org/abstracts/58165/conversion-of-hvac-lines-into-hvdc-in-transmission-expansion-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> The Operating Behaviour of Unbalanced Unpaced Merging Assembly Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaaban">S. Shaaban</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20McNamara"> T. McNamara</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hudson"> S. Hudson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the performance of deliberately unbalanced, reliable, non-automated and assembly lines that merge, whose workstations differ in terms of their mean operation times. Simulations are carried out on 5- and 8-station lines with 1, 2 and 4 buffer capacity units, % degrees of line imbalance of 2, 5 and 12, and 24 different patterns of means imbalance. Data on two performance measures, namely throughput and average buffer level were gathered, statistically analysed and compared to a merging balanced line counterpart. It was found that the best configurations are a balanced line arrangement and a monotone decreasing order for each of the parallel merging lines, with the first generally resulting in a lower throughput and the second leading to a lower average buffer level than those of a balanced line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20buffer%20level" title="average buffer level">average buffer level</a>, <a href="https://publications.waset.org/abstracts/search?q=merging%20lines" title=" merging lines"> merging lines</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced" title=" unbalanced"> unbalanced</a> </p> <a href="https://publications.waset.org/abstracts/42374/the-operating-behaviour-of-unbalanced-unpaced-merging-assembly-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> Farmer-Participatory Variety Trials for Tomato and Chili Pepper in East Java</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanik%20Anggraeni">Hanik Anggraeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Evy%20Latifah"> Evy Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Putu%20Bagus"> Putu Bagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Mariyono"> Joko Mariyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to test the adaptation capacity of several selected lines and varieties of chili and tomato in farmers’ lands. Five improved lines and varieties of tomato and chili were selected based on the best performance in previous trials. Two participating farmers managed the trials. Agronomic aspects were used as performance indicators. The results show that several improved lines of tomato and chili performed better than others. However, the performance was dependent on the altitude and season. Lines performed better and high altitude could not do the same in low altitude, and vice versa. This is the same case as different season. Farmers were expected to select the best lines according to the locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variety%20trials" title="variety trials">variety trials</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20and%20chili" title=" tomato and chili"> tomato and chili</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20farmers" title=" participatory farmers"> participatory farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=East%20Java" title=" East Java"> East Java</a> </p> <a href="https://publications.waset.org/abstracts/73832/farmer-participatory-variety-trials-for-tomato-and-chili-pepper-in-east-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1289</span> Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Eddien%20Abdallah">Alaa Eddien Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bajes%20Yousef%20Alskarnah"> Bajes Yousef Alskarnah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant colony based routing algorithms are known to grantee the packet delivery, but they su ffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ad-hoc%20network" title="ad-hoc network">ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=MANET" title=" MANET"> MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20routing" title=" ant colony routing"> ant colony routing</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20based%20routing" title=" position based routing"> position based routing</a> </p> <a href="https://publications.waset.org/abstracts/13698/cluster-based-ant-colony-routing-algorithm-for-mobile-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1288</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1287</span> A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakhon%20Woothipatanapan">Sakhon Woothipatanapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surasit%20Prakobkit"> Surasit Prakobkit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transmission%20system" title="transmission system">transmission system</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20voltage" title=" induced voltage"> induced voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=off-line%20operation" title=" off-line operation"> off-line operation</a> </p> <a href="https://publications.waset.org/abstracts/5933/a-model-for-analysis-the-induced-voltage-of-115-kv-on-line-acting-on-neighboring-22-kv-off-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1286</span> The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Larrousi">A. Larrousi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemouli"> M. Zemouli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20H.%20Coudert"> L. H. Coudert</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20R.%20Medvedev"> I. R. Medvedev</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20De%20Lucia"> F. C. De Lucia</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuko%20Maeda"> Atsuko Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20C.%20McKellar"> R. W. C. McKellar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Appadoo"> D. Appadoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CH3COD" title="CH3COD">CH3COD</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20microwave%20spectra" title=" the microwave spectra"> the microwave spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=far%20infrared%20spectra%20high%20resolution" title=" far infrared spectra high resolution"> far infrared spectra high resolution</a> </p> <a href="https://publications.waset.org/abstracts/18891/the-microwave-and-far-infrared-spectra-of-acetaldehyde-d1-in-vt2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1285</span> Factors Influencing Site Overhead Cost of Construction Projects in Egypt: A Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Effat">Aya Effat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ossama%20A.%20Hosny"> Ossama A. Hosny</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkhayam%20M.%20Dorra"> Elkhayam M. Dorra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimating costs is a crucial step in construction management and should be completed at the beginning of every project to establish the project's budget. The precision of the cost estimate plays a significant role in the success of construction projects as it allows project managers to effectively manage the project's costs. Site overhead costs constitute a significant portion of construction project budgets, necessitating accurate prediction and management. These costs are influenced by a multitude of factors, requiring a thorough examination and analysis to understand their relative importance and impact. Thus, the main aim of this research is to enhance the contractor’s ability to predict and manage site overheads by identifying and analyzing the main factors influencing the site overheads costs in the Egyptian construction industry. Through a comprehensive literature review, key factors were first identified and subsequently validated using a thorough comparative analysis of data from 55 real-life construction projects. Through this comparative analysis, the relationship between each factor and site overheads percentage as well as each site overheads subcategory and each project construction phase was identified and examined. Furthermore, correlation analysis was done to check for multicollinearity and identify factors with the highest impact. The findings of this research offer valuable insights into the key drivers of site overhead costs in the Egyptian construction industry. By understanding these factors, construction professionals can make informed decisions regarding the estimation and management of site overhead costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title="comparative analysis">comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20estimation" title=" cost estimation"> cost estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20overheads" title=" site overheads"> site overheads</a> </p> <a href="https://publications.waset.org/abstracts/192563/factors-influencing-site-overhead-cost-of-construction-projects-in-egypt-a-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1284</span> Improved Wi-Fi Backscatter System for Multi-to-Multi Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha">Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hyun%20Ha"> Dong-Hyun Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional Wi-Fi back scatter system can only process one-to-one communication between the Wi-Fi reader and the Wi-Fi tag. For improvement of throughput of the conventional system, this paper proposes the multi-to-multi communication system. In the proposed system, the interference by the multi-to-multi communication is effectively cancelled by the orthogonal multiple access based on the identification code of the tag. Although the overhead is generated by the procedure for the multi-to-multi communication, because the procedure is processed by the Wi-Fi protocol, the overhead is insignificant for the entire communication procedure. From the numerical results, it is confirmed that the proposed system has nearly proportional increased throughput in according to the number of the tag that simultaneously participates in communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backscatter" title="backscatter">backscatter</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-to-multi%20communication" title=" multi-to-multi communication"> multi-to-multi communication</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonality" title=" orthogonality"> orthogonality</a>, <a href="https://publications.waset.org/abstracts/search?q=Wi-Fi" title=" Wi-Fi "> Wi-Fi </a> </p> <a href="https://publications.waset.org/abstracts/32788/improved-wi-fi-backscatter-system-for-multi-to-multi-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1283</span> Magnetic Lines of Force and Diamagnetism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamagnetism" title="diamagnetism">diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation" title=" magnetic levitation"> magnetic levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title=" magnetic lines of force"> magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20magnetic%20lines" title=" enhancing magnetic lines"> enhancing magnetic lines</a> </p> <a href="https://publications.waset.org/abstracts/163614/magnetic-lines-of-force-and-diamagnetism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1282</span> Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang-Yao%20Zheng">Xiang-Yao Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Cheng%20Wang"> Jen-Cheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe-Air%20Jiang"> Joe-Air Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20dispatch" title="electricity dispatch">electricity dispatch</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20ampacity%20prediction" title=" line ampacity prediction"> line ampacity prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20thermal%20rating" title=" dynamic thermal rating"> dynamic thermal rating</a>, <a href="https://publications.waset.org/abstracts/search?q=long-short-term%20memory%20neural%20network" title=" long-short-term memory neural network"> long-short-term memory neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/63755/power-grid-line-ampacity-forecasting-based-on-a-long-short-term-memory-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1281</span> Experimental and Theoretical Study of the Electric and Magnetic Fields Behavior in the Vicinity of High-Voltage Power Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tourab%20Wafa">Tourab Wafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemamcha%20Mohamed"> Nemamcha Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Babouri%20Abdessalem"> Babouri Abdessalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper consists on an experimental and analytical characterization of the electromagnetic environment in the in the medium surrounding a circuit of two 220 Kv power lines running in parallel. The analysis presented in this paper is divided into two main parts. The first part concerns the experimental study of the behavior of the electric field and magnetic field generated by the selected double-circuit at ground level (0 m). While the second part simulate and calculate the fields profiles generated by the both lines at different levels above the ground, from (0 m) to the level close to the lines conductors (20 m above the ground) using the electrostatic and magneto-static modules of the COMSOL multi-physics software. The implications of the results are discussed and compared with the ICNIRP reference levels for occupational and non occupational exposures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HV%20power%20lines" title="HV power lines">HV power lines</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20frequency%20electromagnetic%20fields" title=" low frequency electromagnetic fields"> low frequency electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title=" electromagnetic compatibility"> electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20and%20capacitive%20coupling" title=" inductive and capacitive coupling"> inductive and capacitive coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/22336/experimental-and-theoretical-study-of-the-electric-and-magnetic-fields-behavior-in-the-vicinity-of-high-voltage-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=overhead%20lines&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10