CINXE.COM
Search results for: magnetism
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetism</title> <meta name="description" content="Search results for: magnetism"> <meta name="keywords" content="magnetism"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetism" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetism"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 50</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetism</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwuer%20Jilili">Jiwuer Jilili</a>, <a href="https://publications.waset.org/abstracts/search?q=Iogann%20Tolbatov"> Iogann Tolbatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20U.%20Kahaly"> Mousumi U. Kahaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20magnetism" title=" interfacial magnetism"> interfacial magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-insulator%20transition" title=" metal-insulator transition"> metal-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20magnetism." title=" Ni magnetism."> Ni magnetism.</a> </p> <a href="https://publications.waset.org/abstracts/94575/theoretical-investigation-of-the-origin-of-interfacial-ferromagnetism-of-lanio3ncamno3m-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFC" title="NFC">NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a> </p> <a href="https://publications.waset.org/abstracts/2580/realization-of-autonomous-guidance-service-by-integrating-information-from-nfc-and-mems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Developement of a New Wearable Device for Automatic Guidance Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/21436/developement-of-a-new-wearable-device-for-automatic-guidance-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/63077/earphone-style-wearable-device-for-automatic-guidance-service-with-position-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Manufacturing of Twist-Free Surfaces by Magnetism Aided Machining Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Kov%C3%A1cs">Zs. Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Zs.%20J.%20Viharos"> Zs. J. Viharos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kod%C3%A1csy"> J. Kodácsy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a well-known conventional finishing process, the grinding is commonly used to manufacture seal mating surfaces and bearing surfaces, but is also creates twisted surfaces. The machined surfaces by turning or grinding usually have twist structure on the surfaces, which can convey lubricants such as conveyor screw. To avoid this phenomenon, have to use special techniques or machines, for example start-stop turning, tangential turning, ultrasonic protection or special toll geometries. All of these solutions have high cost and difficult usability. In this paper, we describe a system and summarize the results of the experimental research carried out mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Roller Burnishing (MRB). These technologies are simple and also green while able to produce twist-free surfaces. During the tests, C45 normalized steel was used as workpiece material which was machined by simple and Wiper geometrical turning inserts in a CNC turning lathe. After the turning, the MAP and MRB technologies can be used directly to reduce the twist of surfaces. The evaluation was completed by advanced measuring and IT equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetism" title="magnetism">magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=finishing" title=" finishing"> finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=polishing" title=" polishing"> polishing</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20burnishing" title=" roller burnishing"> roller burnishing</a>, <a href="https://publications.waset.org/abstracts/search?q=twist-free" title=" twist-free"> twist-free</a> </p> <a href="https://publications.waset.org/abstracts/54508/manufacturing-of-twist-free-surfaces-by-magnetism-aided-machining-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramadhani%20Yasyfi%20Cysela">Ramadhani Yasyfi Cysela</a>, <a href="https://publications.waset.org/abstracts/search?q=Adinda%20Syifa%20Azhari"> Adinda Syifa Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental" title="environmental">environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title=" magnetic susceptibility"> magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20magnetism" title=" rock magnetism"> rock magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/65586/measurements-of-environmental-pollution-in-chemical-fertilizer-industrial-area-using-magnetic-susceptibility-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Vacancy-Driven Magnetism of GdMnO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mat%C3%BA%C5%A1%20Mihalik">Matúš Mihalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Vavra"> Martin Vavra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kornel%20Csach"> Kornel Csach</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%C3%A1n%20Mihalik"> Marián Mihalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GdMnO₃ belongs to orthorhombically distorted, GdFeO₃-type family of perovskite compounds. These compounds are naturally vacant and the amount of vacancies depend on the sample preparation conditions. Our GdMnO₃ samples were prepared by float zone method and the vacancies were controlled using an air, Ar and O₂ preparation atmosphere. The highest amount of vacancies was found for sample prepared in Ar atmosphere, while the sample prepared in O₂ was observed to be almost vacancy-free. The magnetic measurements indicate that the preparation atmosphere has no impact on Néel temperature (TN ~ 42 K), however, it has strong impact on the incommensurate antiferromagnetic (IC) to canted A-type weak ferromagnetic (AWF) phase transition at T1: T1 = 23.4 K; 18 K and 6.7 K for samples prepared in Ar; air and O₂ atmosphere; respectively. The hysteresis loop measured at 2 K has a butterfly-type shape with the remnant magnetization (Mr) of 0.6 µB/f.u. for Ar and air sample, while Mr = 0.3 µB/f.u. for O₂ sample. The shape of the hysteresis loop depends on the preparation atmosphere in magnetic fields up to 1.5 T, but is independent for higher magnetic fields. The coercive field of less than 0.06 T and the maximum magnetic moment of 6 µB/f.u. at magnetic field µ0H = 7 T do not depend on the preparation atmosphere. All these findings indicate that only AWF phase of GdMnO₃ compound is directly affected by the vacancies in the system, while IC phase and the field induced ferroelectric phase are not affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetism" title="magnetism">magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskites" title=" perovskites"> perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20preparation" title=" sample preparation"> sample preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition" title=" magnetic phase transition"> magnetic phase transition</a> </p> <a href="https://publications.waset.org/abstracts/155808/vacancy-driven-magnetism-of-gdmno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abada">A. Abada</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hiadsi"> S. Hiadsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ouahrani"> T. Ouahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Amrani"> B. Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=half-metallic%20ferromagnets" title="half-metallic ferromagnets">half-metallic ferromagnets</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20Heusler%20alloys" title=" full Heusler alloys"> full Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a> </p> <a href="https://publications.waset.org/abstracts/24953/ab-initio-study-of-co2zrge-and-co2nbb-full-heusler-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Marcos%20Alves%20Vaz">Leandro Marcos Alves Vaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20physics%20books" title="Brazilian physics books">Brazilian physics books</a>, <a href="https://publications.waset.org/abstracts/search?q=didactic%20transposition" title=" didactic transposition"> didactic transposition</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism%20of%20matter" title=" magnetism of matter"> magnetism of matter</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20of%20physics" title=" teaching of physics"> teaching of physics</a> </p> <a href="https://publications.waset.org/abstracts/68437/the-didactic-transposition-in-brazilian-high-school-physics-textbooks-a-comparative-study-of-didactic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Correlation Results Based on Magnetic Susceptibility Measurements by in-situ and Ex-Situ Measurements as Indicators of Environmental Changes Due to the Fertilizer Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurin%20Amalina%20Widityani">Nurin Amalina Widityani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adinda%20Syifa%20%20Azhari"> Adinda Syifa Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Twin%20Aji%20Kusumagiani"> Twin Aji Kusumagiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20%20Agustine"> Eleonora Agustine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer industry activities contribute to environmental changes. Changes to the environment became one of a few problems in this era of globalization. Parameters that can be seen as criteria to identify changes in the environment can be seen from the aspects of physics, chemistry, and biology. One aspect that can be assessed quickly and efficiently to describe environmental change is the aspect of physics, one of which is the value of magnetic susceptibility (χ). The rock magnetism method can be used as a proxy indicator of environmental changes, seen from the value of magnetic susceptibility. The rock magnetism method is based on magnetic susceptibility studies to measure and classify the degree of pollutant elements that cause changes in the environment. This research was conducted in the area around the fertilizer plant, with five coring points on each track, each coring point a depth of 15 cm. Magnetic susceptibility measurements were performed by in-situ and ex-situ. In-situ measurements were carried out directly by using the SM30 tool by putting the tools on the soil surface at each measurement point and by that obtaining the value of the magnetic susceptibility. Meanwhile, ex-situ measurements are performed in the laboratory by using the Bartington MS2B tool’s susceptibility, which is done on a coring sample which is taken every 5 cm. In-situ measurement shows results that the value of magnetic susceptibility at the surface varies, with the lowest score on the second and fifth points with the -0.81 value and the highest value at the third point, with the score of 0,345. Ex-situ measurements can find out the variations of magnetic susceptibility values at each depth point of coring. At a depth of 0-5 cm, the value of the highest XLF = 494.8 (x10-8m³/kg) is at the third point, while the value of the lowest XLF = 187.1 (x10-8m³/kg) at first. At a depth of 6-10 cm, the highest value of the XLF was at the second point, which was 832.7 (x10-8m³/kg) while the lowest XLF is at the first point, at 211 (x10-8m³/kg). At a depth of 11-15 cm, the XLF’s highest value = 857.7 (x10-8m³/kg) is at the second point, whereas the value of the lowest XLF = 83.3 (x10-8m³/kg) is at the fifth point. Based on the in situ and exsit measurements, it can be seen that the highest magnetic susceptibility values from the surface samples are at the third point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title="magnetic susceptibility">magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20plant" title=" fertilizer plant"> fertilizer plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartington%20MS2B" title=" Bartington MS2B"> Bartington MS2B</a>, <a href="https://publications.waset.org/abstracts/search?q=SM30" title=" SM30"> SM30</a> </p> <a href="https://publications.waset.org/abstracts/65609/correlation-results-based-on-magnetic-susceptibility-measurements-by-in-situ-and-ex-situ-measurements-as-indicators-of-environmental-changes-due-to-the-fertilizer-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Tiwari">Ankita Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Saini"> Jyoti Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Ghosh"> Subhasis Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waal%20ferromagnet" title="Van der Waal ferromagnet">Van der Waal ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20ferromagnetism" title=" 2D ferromagnetism"> 2D ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=itinerant%20ferromagnetism" title=" itinerant ferromagnetism"> itinerant ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20range%20order" title=" long range order"> long range order</a> </p> <a href="https://publications.waset.org/abstracts/175619/2d-ferromagnetism-in-van-der-waals-bonded-fe3gete2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Design and Development of Bioactive a-Hydroxy Carboxylate Group Modified MnFe₂O₄ Nanoparticle: Comparative Fluorescence Study, Magnetism and DNA Nuclease Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indranil%20Chakraborty">Indranil Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Mandal"> Kalyan Mandal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three new α-hydroxy carboxylate group functionalized MnFe₂O₄ nanoparticles (NPs) have been developed to explore the microscopic origin of ligand modified fluorescence and magnetic properties of nearly monodispersed MnFe₂O₄ NPs. The surface functionalization has been carried out with three small organic ligands (tartrate, malate, and citrate) having different number of α-hydroxy carboxylate functional group along with steric effect. Detailed study unveils that α-hydroxy carboxylate moiety of the ligands plays key role to generate intrinsic fluorescence in functionalized MnFe₂O₄ NPs through the activation of ligand to metal charge transfer transitions, associated with ligand-Mn²⁺/Fe³⁺ interactions along with d-d transition corresponding to d-orbital energy level splitting of Fe³⁺ ions on NP surface. Further, MnFe₂O₄ NPs show a maximum 140.88% increase in coercivity and 97.95% decrease in magnetization compared to its bare one upon functionalization. The ligands that induce smallest crystal field splitting of d-orbital energy level of transition metal ions are found to result in strongest ferromagnetic activation of the NPs. Finally, our developed tartrate functionalized MnFe₂O₄ (T-MnFe₂O₄) NPs have been utilized for studying DNA binding interaction and nuclease activity for stimulating their beneficial activities toward diverse biomedical applications. The spectroscopic measurements indicate that T-MnFe₂O₄ NPs bind calf thymus DNA by intercalative mode. The ability of T-MnFe₂O₄ NPs to induce DNA cleavage was studied by gel electrophoresis technique where the complex is found to promote the cleavage of pBR322 plasmid DNA from the super coiled form I to linear coiled form II and nicked coiled form III with good efficiency. This may be taken into account for designing new biomolecular detection agents and anti-cancer drug which can open up a new door toward diverse non-invasive biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MnFe%E2%82%82O%E2%82%84%20nanoparticle" title="MnFe₂O₄ nanoparticle">MnFe₂O₄ nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-hydroxy%20carboxylic%20acid" title=" α-hydroxy carboxylic acid"> α-hydroxy carboxylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20fluorescence" title=" comparative fluorescence"> comparative fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism%20study" title=" magnetism study"> magnetism study</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20interaction" title=" DNA interaction"> DNA interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclease%20activity" title=" nuclease activity"> nuclease activity</a> </p> <a href="https://publications.waset.org/abstracts/78897/design-and-development-of-bioactive-a-hydroxy-carboxylate-group-modified-mnfe2o4-nanoparticle-comparative-fluorescence-study-magnetism-and-dna-nuclease-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lahmer">M. A. Lahmer</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Guergouri"> K. Guergouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetism" title=" ferromagnetism"> ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20tight%20binding" title=" density functional tight binding"> density functional tight binding</a> </p> <a href="https://publications.waset.org/abstracts/10237/the-effect-of-hydrogen-on-the-magnetic-properties-of-zno-a-density-functional-tight-binding-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Synthesis and Characterisation of Bi-Substituted Magnetite Nanoparticles by Mechanochemical Processing (MCP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mohri%20Esfahani">Morteza Mohri Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20S.%20H.%20Rozatian"> Amir S. H. Rozatian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mozaffari"> Morteza Mozaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase magnetite nanoparticles and Bi-substituted ones were prepared by mechanochemical processing (MCP). The effects of Bi-substitution on the structural and magnetic properties of the nanoparticles were studied by X-ray Diffraction (XRD) and magnetometry techniques, respectively. The XRD results showed that all samples have spinel phase and by increasing Bi content, the main diffraction peaks were shifted to higher angles, which means the lattice parameter decreases from 0.843 to 0.838 nm and then increases to 0.841 nm. Also, the results revealed that increasing Bi content lead to a decrease in saturation magnetization (Ms) from 74.9 to 48.8 emu/g and an increase in coercivity (Hc) from 96.8 to 137.1 Oe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-substituted%20magnetite%20nanoparticles" title="bi-substituted magnetite nanoparticles">bi-substituted magnetite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical%20processing" title=" mechanochemical processing"> mechanochemical processing</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a> </p> <a href="https://publications.waset.org/abstracts/28462/synthesis-and-characterisation-of-bi-substituted-magnetite-nanoparticles-by-mechanochemical-processing-mcp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walter%20Evaldo%20Kuchenbecker">Walter Evaldo Kuchenbecker</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Carlos%20Teixeira"> Julio Carlos Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators%20%28pmg%29" title="permanent magnet generators (pmg)">permanent magnet generators (pmg)</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters" title=" synchronous machine parameters"> synchronous machine parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20procedures" title=" test procedures"> test procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=inductances" title=" inductances"> inductances</a> </p> <a href="https://publications.waset.org/abstracts/53174/comparison-of-instantaneous-short-circuit-versus-step-dc-voltage-to-determine-pmg-inductances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojgan%20Zendehdel">Mojgan Zendehdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Safura%20Molla%20Mohammad%20Zamani"> Safura Molla Mohammad Zamani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeolite" title="zeolite">zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocompsite" title=" nanocompsite"> nanocompsite</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a> </p> <a href="https://publications.waset.org/abstracts/10139/synthesis-and-characterization-of-zeolitefe3o4-nanocomposite-material-and-investigation-of-its-catalytic-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Youssef%20El%20Hafidi">Moulay Youssef El Hafidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20cooling" title="magnetic cooling">magnetic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/164794/an-enhanced-room-temperature-magnetic-refrigerator-based-on-nanofluid-from-theoretical-study-to-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayla%20Roberta%20Galaco">Ayla Roberta Galaco</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Fonseca%20De%20Lima"> Juliana Fonseca De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20Antonio%20Serra"> Osvaldo Antonio Serra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isostructural" title="isostructural">isostructural</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanoids" title=" lanthanoids"> lanthanoids</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanoids%20organic%20frameworks%20%28LOFs%29" title=" lanthanoids organic frameworks (LOFs)"> lanthanoids organic frameworks (LOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29" title=" metal organic frameworks (MOFs)"> metal organic frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetry" title=" thermogravimetry"> thermogravimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20diffraction" title=" X-Ray diffraction"> X-Ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/65646/study-of-lanthanoide-organic-frameworks-properties-and-synthesis-multicomponent-ligands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Azri">M. Al Azri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elzain"> M. Elzain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouziane"> K. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ch%C3%A9rif"> S. M. Chérif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20calculations" title="ab-initio calculations">ab-initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title=" diluted magnetic semiconductors"> diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/34017/first-principle-calculation-of-the-magnetic-properties-of-mn-doped-6h-sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Alan">Emre Alan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Yamanturk"> Yusuf Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokay%20Bas"> Gokay Bas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steels" title="electrical steels">electrical steels</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=roughing%20mill" title=" roughing mill"> roughing mill</a> </p> <a href="https://publications.waset.org/abstracts/56727/effect-of-hot-rolling-conditions-on-magnetic-properties-of-fe-3si-non-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> FC and ZFC Studies of Nickel Nano Ferrites and Ni Doped Lithium Nano Ferrites by Citrate-Gel Auto Combustion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Ravinder">D. Ravinder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel ferrites and Ni doped Lithium nano ferrites [Li0.5Fe0.5]1-xNixFe2O4 with x= 0.8 and 1.0 synthesized by citrate-gel auto combustion method. The broad peaks in the X-ray diffraction pattern (XRD) indicate a crystalline behavior of the prepared samples. Low temperature magnetization studies i,e Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the investigated samples are measured by using vibrating sample magnetometer (VSM). The magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5–375 K were carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferro-spinels" title="ferro-spinels">ferro-spinels</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20cooled%20%28FC%29" title=" field cooled (FC)"> field cooled (FC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Zero%20Field%20Cooled%20%28ZFC%29%20and%20blocking%20temperature" title=" Zero Field Cooled (ZFC) and blocking temperature"> Zero Field Cooled (ZFC) and blocking temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=superpara%20magnetism" title=" superpara magnetism"> superpara magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20applications" title=" drug delivery applications"> drug delivery applications</a> </p> <a href="https://publications.waset.org/abstracts/36077/fc-and-zfc-studies-of-nickel-nano-ferrites-and-ni-doped-lithium-nano-ferrites-by-citrate-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Nazmunnahar">Mst Nazmunnahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20del%20Val"> Juan del Val</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Vimmrova"> Alena Vimmrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanca%20Hernando"> Blanca Hernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Gonz%C3%A1lez"> Julian González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=as-cast%20ribbon" title="as-cast ribbon">as-cast ribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20alloys" title=" Heusler alloys"> Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20transformation" title=" structural transformation"> structural transformation</a> </p> <a href="https://publications.waset.org/abstracts/23193/microstructural-and-magnetic-properties-of-ni50mn39sn11-and-ni50mn36sn14-heusler-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Effect of Magnetic Water on the Growth of Radish Cherry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisha%20Didam%20Markus">Elisha Didam Markus</a>, <a href="https://publications.waset.org/abstracts/search?q=Thapelo%20Maqame"> Thapelo Maqame</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on studying the effects of magnetism on water and their impact to plant growth. Magnetic fields are known to induce higher rate of biochemical reaction and therefore can be used for growth related reactions in plants. For the purpose of this study, two 2 litres bottles were taken, one with two opposite poles magnets (500 mT) one on top and one at the bottom of the bottle. Another bottle was not altered in any way (used as control). Each bottle contained tap water stored up for 24 hours. Plants planted into different pots were watered using water from these bottles. Four pots with soil and manure equally mixed were used and equal volume of radish berry seeds were planted. Two pots were watered with magnetised water and the other two with normal tap water. The developments of plants were monitored in terms of their lengths for a period of 21 days. After 21 days, the lengths of plants watered with magnetised water were found to be 5.6% longer than those watered with tap water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetised%20water" title="magnetised water">magnetised water</a>, <a href="https://publications.waset.org/abstracts/search?q=radish%20berry" title=" radish berry"> radish berry</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20percentage" title=" growth percentage"> growth percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fields" title=" magnetic fields"> magnetic fields</a> </p> <a href="https://publications.waset.org/abstracts/54789/the-effect-of-magnetic-water-on-the-growth-of-radish-cherry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Synthesis, Characterization, and Properties Study of New Magnetic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Messai%20Amel">Messai Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Badis%20Zakaria"> Badis Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Benali-Cherif%20Nourredine"> Benali-Cherif Nourredine</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Luneaub"> Dominique Luneaub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster-assembled%20materials" title="cluster-assembled materials">cluster-assembled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20compounds" title=" magnetic compounds"> magnetic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=Sciff%20base" title=" Sciff base"> Sciff base</a>, <a href="https://publications.waset.org/abstracts/search?q=cupper" title=" cupper"> cupper</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a> </p> <a href="https://publications.waset.org/abstracts/19982/synthesis-characterization-and-properties-study-of-new-magnetic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Analysis of Pollution in Agriculture Land Using Decagon Em-50 and Rock Magnetism Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinda%20Syifa%20Azhari">Adinda Syifa Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a>, <a href="https://publications.waset.org/abstracts/search?q=Dini%20Fitriani"> Dini Fitriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This measurement has been done to analyze the impact of industrial pollution on the environment. Our research is to indicate the soil which has contained some pollution by industrial activity around the area, especially in Sumedang, West Java. The parameter phsyics such as total dissolved solid, volumetric water content, electrical conductivity bulk and FD have shown that the soil has polluted and measured by Decagon EM 50. Decagon EM 50 is one of the geophysical environment instrumentation that is used to interpret the soil condition. This experiment has given a result of these parameter physics, these are: Volumetric water content (m³/m³) = 0,154 – 0,384; Electrical Conductivity Bulk (dS/m) = 0,29 – 1,11 ; Dielectric Permittivity (DP) = 77,636 – 78, 339.Based on these data, we have got the conclusion that the area has, in fact, been contaminated by dangerous materials. VWC is parameter physics that has shown water in soil. The data show the pollution of the soil at the place, of which the specifications are PH, Total Dissolved Solid (TDS), Electrical Conductivity (EC) bigger (>>) and Frequency Dependent (FD) smaller (<<); that means the soil is alkali with big grain and has high salt concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Decagon%20EM%2050" title="Decagon EM 50">Decagon EM 50</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20textiles" title=" industrial textiles"> industrial textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=land" title=" land"> land</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/65115/analysis-of-pollution-in-agriculture-land-using-decagon-em-50-and-rock-magnetism-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Synthesis and Magnetic Properties of Six-Lines Ferrihydrite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandni%20Rani">Chandni Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrihydrite is one of the distinct minerals in the family of oxides, hydroxides and oxyhydroxides of iron. It is a nanocrystalline material. It occurs naturally in different sediments, soil systems and also found in the core of ferritin, an iron storage protien. This material can also be synthesized by suitable chemical methods in laboratories. This is known as less crystalline Iron (III) Oxyhydroxide. Due to its poor crystallinity, there are very broad peaks in x-ray diffraction. Depending on the number of peaks in x-ray diffraction pattern, it is classified as two lines and six lines ferrihydrite. The average crystallite size for these two forms is found to be about 2nm to 5nm. The exact crystal structure of this system is still under debate. Out of these two forms, the six lines ferrihydrite is more ordered in comparison to two lines ferrihydrite. The magnetic behavior of two lines ferrihydrite nanoparticles is somewhat well studied. But the magnetic behavior of six lines ferrihydrite nanoparticles could not attract the attention of researchers much. This motivated us to work on the magnetic properties of six lines ferrihydrite nanoparticles. In this work, we present synthesis, structural characterization and magnetic behavior of 5 nm six lines ferrihydrite nanoparticles. X-ray diffraction and transmission electron microscope are used for structural characterization of this system. Magnetization measurements are performed to fit the data at different temperatures. Then the effect of magnetic moment distribution is also found. All these observations are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/59175/synthesis-and-magnetic-properties-of-six-lines-ferrihydrite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Synthesis, Structural Characterization and Biological Activity of Bis{(E)-1-[(2,4,6-Tribromophenyl) Diazenyl] Naphthalen-2-Olato} Copper (II) Dimethyl Sulfoxide Monosolvate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassiba%20Bougueria">Hassiba Bougueria</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Benarous"> Nesrine Benarous</a>, <a href="https://publications.waset.org/abstracts/search?q=Souheyla%20Chetioui"> Souheyla Chetioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azo dyes are one of the most widely used compounds in organic chemistry, primarily due to their relatively simple preparation methods. They have therefore been widely used, in particular as colorants for textiles, printing inks, cosmetics, and food additives. In addition to their use as dyes, azo compounds have attracted much attention from chemists as their potential applications are important in coordination chemistry, metal-organic frameworks (MOF) structures, COF (covalent-organic frameworks), and catalysis. Moreover, they have found many applications in different fields, such as nonlinear optics, optical storage, photoluminescence, and magnetism. The compound bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate, the CuII atom is tetracoordinate with a square-planar geometry, surrounded by two bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalene-2-olate ligands via two N atoms and two O atoms. The O-Cu-O angles and N-Cu-N are of the order of 177.90(16)° and 177.8(2)°, respectively. The distances Cu-O and Cu- N are 1.892(4) Å and 1.976(4) Å, respectively. The cohesion of the crystal is ensured by hydrogen bonds of the C—H…O type and by π=π staking interactions [centroid–centroid distance = 3.679(4)Å]. The DMSO solvent molecule is disordered at two positions with occupancy rates of 0.70 and 0.30. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization" title=" structural characterization"> structural characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activity" title=" biological activity"> biological activity</a> </p> <a href="https://publications.waset.org/abstracts/158136/synthesis-structural-characterization-and-biological-activity-of-bise-1-246-tribromophenyl-diazenyl-naphthalen-2-olato-copper-ii-dimethyl-sulfoxide-monosolvate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Berrouachedi">N. Berrouachedi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouslama"> M. Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rioual"> S. Rioual</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lescop"> B. Lescop</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Langlois"> J. Langlois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zincblend%20structure" title="zincblend structure">zincblend structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20metallic%20ferromagnet" title=" half metallic ferromagnet"> half metallic ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20moments" title=" spin moments"> spin moments</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20and%20partial%20DOS" title=" total and partial DOS"> total and partial DOS</a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=Wien2k" title=" Wien2k"> Wien2k</a> </p> <a href="https://publications.waset.org/abstracts/39717/half-metallic-ferromagnetism-in-ternary-zinc-blende-fein05ga05-asin-psuperlattice-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Exchange Bias in Ceramics: From Polyol Made CoFe₂O₄-core@CoO-Shell NPs to Nanostructured Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Flores-Martinez">N. Flores-Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Franceschin"> G. Franceschin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gaudisson"> T. Gaudisson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-M.%20Greneche"> J.-M. Greneche</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Valenzuela-Monjaras"> R. Valenzuela-Monjaras</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ammar"> S. Ammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tailoring bulk materials keeping their nanoscale properties is the daydream of material scientists. But especially in magnetism, this single desire can revolutionize our everyday life. Now, thanks to the methods of synthesis, based on the combination of colloidal chemistry (CC) to flash sintering (FS), customizing magnets becomes each time more 'easy', 'cheap' and 'clean'. Although by CC we can obtain straightway nanopowders with good magnetic featuring, like exchange bias (EB) phenomenon, it does not result so attractive for applications. Since a solid material is simple to manipulate and integrate in a device, many consolidation methods have been tested aiming to keep the nanopowders characteristics after consolidation. Unfortunately, the lack of structural crystalline arrangement and the grain growth worsen the magnetic properties. In this work, we exhibit, for the first-time author’s best knowledge, the EB in sintered ceramics, starting from CoFe₂O₄-core@CoO-shell NPs obtained by CC. Despite the fact that EB field is about 28 mT in ceramics and it is not yet considered for applications, this work opens an alternative in the permanent magnets fabrication through a FS method, the spark plasma sintering, starting from CC synthesized nanopowders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell%20nanoparticles" title="core-shell nanoparticles">core-shell nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20bias" title=" exchange bias"> exchange bias</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20ceramics" title=" nanostructured ceramics"> nanostructured ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/99792/exchange-bias-in-ceramics-from-polyol-made-cofe2o4-core-at-coo-shell-nps-to-nanostructured-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetism&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetism&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>