CINXE.COM
Search results for: autoregressive distributed lag model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: autoregressive distributed lag model</title> <meta name="description" content="Search results for: autoregressive distributed lag model"> <meta name="keywords" content="autoregressive distributed lag model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="autoregressive distributed lag model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="autoregressive distributed lag model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18395</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: autoregressive distributed lag model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18395</span> Identification of Classes of Bilinear Time Series Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Usoro">Anthony Usoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20model" title="autoregressive model">autoregressive model</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20autoregressive%20model" title=" bilinear autoregressive model"> bilinear autoregressive model</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20moving%20average%20model" title=" bilinear moving average model"> bilinear moving average model</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20average%20model" title=" moving average model"> moving average model</a> </p> <a href="https://publications.waset.org/abstracts/56430/identification-of-classes-of-bilinear-time-series-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18394</span> New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman%20Suparman">Suparman Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20%28AR%29%20model" title="autoregressive (AR) model">autoregressive (AR) model</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20white%20Noise" title=" exponential white Noise"> exponential white Noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20Markov%20Chain%20Monte%20Carlo%20%28MCMC%29" title=" reversible jump Markov Chain Monte Carlo (MCMC)"> reversible jump Markov Chain Monte Carlo (MCMC)</a> </p> <a href="https://publications.waset.org/abstracts/71720/new-estimation-in-autoregressive-models-with-exponential-white-noise-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18393</span> The Sustainability of Public Debt in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Ju%20Huang">Chiung-Ju Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines whether the Taiwan’s public debt is sustainable utilizing an unrestricted two-regime threshold autoregressive (TAR) model with an autoregressive unit root. The empirical results show that Taiwan’s public debt appears as a nonlinear series and is stationary in regime 1 but not in regime 2. This result implies that while Taiwan’s public debt was mostly sustainable over the 1996 to 2013 period examined in the study, it may no longer be sustainable in the most recent two years as the public debt ratio has increased cumulatively to 3.618%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title="nonlinearity">nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20debt" title=" public debt"> public debt</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20autoregressive%20model" title=" threshold autoregressive model"> threshold autoregressive model</a> </p> <a href="https://publications.waset.org/abstracts/10069/the-sustainability-of-public-debt-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18392</span> The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wong%20Hock%20Tsen">Wong Hock Tsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20rate%20volatility" title="exchange rate volatility">exchange rate volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag" title=" autoregressive distributed lag"> autoregressive distributed lag</a>, <a href="https://publications.waset.org/abstracts/search?q=export" title=" export"> export</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/53891/the-impact-of-exchange-rate-volatility-on-real-total-export-and-sub-categories-of-real-total-export-of-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18391</span> Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Daryasafar">Navid Daryasafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Farshidfar"> Nima Farshidfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=error%20steganography" title="error steganography">error steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20estimation" title=" unidirectional estimation"> unidirectional estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20estimation" title=" bidirectional estimation"> bidirectional estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=AR%20linear%20estimation" title=" AR linear estimation"> AR linear estimation</a> </p> <a href="https://publications.waset.org/abstracts/14175/estimating-lost-digital-video-frames-using-unidirectional-and-bidirectional-estimation-based-on-autoregressive-time-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18390</span> The Impact of Bitcoin on Stock Market Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Takawira">Oliver Takawira</a>, <a href="https://publications.waset.org/abstracts/search?q=Thembi%20Hope"> Thembi Hope</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitcoin" title="bitcoin">bitcoin</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market" title=" stock market"> stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20rates" title=" interest rates"> interest rates</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a> </p> <a href="https://publications.waset.org/abstracts/150006/the-impact-of-bitcoin-on-stock-market-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18389</span> Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ashiq%20Villanthenkodath">Muhammed Ashiq Villanthenkodath</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Pal"> Shreya Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20globalization" title="economic globalization">economic globalization</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model" title=" dynamic ARDL simulation model"> dynamic ARDL simulation model</a> </p> <a href="https://publications.waset.org/abstracts/156005/impact-of-economic-globalization-on-ecological-footprint-in-india-evidenced-with-dynamic-ardl-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18388</span> An Econometric Analysis of the Impacts of Inflation on the Economic Growth of South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gisele%20Mah">Gisele Mah</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Saah"> Paul Saah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rising rates of inflation are hindering economic growth in developing nations. Hence, this study investigated the effects of inflation rates on the economic growth of South Africa using the secondary time series data from 1987 to 2022. The main objectives of this study were to investigate the long run relationship between inflation and economic growth, and also to determine the causality direction between these two variables. The study utilized the Autoregressive Distributed Lag (ARDL) bounds test of co-integration to investigate whether there is a long-run relationship between inflation and economic growth. The Pairwise Granger causality approach was employed to determine the second objective, which is the direction of causality. The study discovered only one co-integration relationship between our variables and it was between inflation and economic growth. The results showed that there is a negative and significant relationship between inflation and economic growth. There appeared to be a positive and significant relationship between economic growth and exchange rate. The interest rates have shown to be negative and insignificant in explaining economic growth. The study also established that inflation does Granger cause economic growth which is given as GDP. Similarly, the study discovered that inflation Granger causes exchange rates. Therefore, the study recommends that inflation should be decreased in South Africa, in order for economic growth to increase. Contrary, this study recommends that South Africa should increase its exchange rates, in order for economic growth to also increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflation%20rate" title="inflation rate">inflation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model" title=" autoregressive distributed lag model"> autoregressive distributed lag model</a> </p> <a href="https://publications.waset.org/abstracts/185947/an-econometric-analysis-of-the-impacts-of-inflation-on-the-economic-growth-of-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18387</span> Diagonal Vector Autoregressive Models and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usoro%20Anthony%20E.">Usoro Anthony E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Udoh%20Emediong"> Udoh Emediong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VAR%20models" title="VAR models">VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20VAR%20models" title=" diagonal VAR models"> diagonal VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocovariance" title=" autocovariance"> autocovariance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocorrelations" title=" autocorrelations"> autocorrelations</a> </p> <a href="https://publications.waset.org/abstracts/157980/diagonal-vector-autoregressive-models-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18386</span> Method of Successive Approximations for Modeling of Distributed Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Torokhti">A. Torokhti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title=" non-linear system"> non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=spatially%20distributed%20sensors" title=" spatially distributed sensors"> spatially distributed sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20center" title=" fusion center"> fusion center</a> </p> <a href="https://publications.waset.org/abstracts/6226/method-of-successive-approximations-for-modeling-of-distributed-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18385</span> Application of Generalized Autoregressive Score Model to Stock Returns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katleho%20Daniel%20Makatjane">Katleho Daniel Makatjane</a>, <a href="https://publications.waset.org/abstracts/search?q=Diteboho%20Lawrence%20Xaba"> Diteboho Lawrence Xaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntebogang%20Dinah%20Moroke"> Ntebogang Dinah Moroke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20autoregressive%20score%20model" title="generalized autoregressive score model">generalized autoregressive score model</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20returns" title=" stock returns"> stock returns</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying" title=" time-varying"> time-varying</a> </p> <a href="https://publications.waset.org/abstracts/78817/application-of-generalized-autoregressive-score-model-to-stock-returns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18384</span> Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panudet%20Saengseedam">Panudet Saengseedam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanthachai%20Kantanantha"> Nanthachai Kantanantha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20method" title="Bayesian method">Bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20mixed%20model" title=" linear mixed model"> linear mixed model</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20conditional%20autoregressive%20model" title=" multivariate conditional autoregressive model"> multivariate conditional autoregressive model</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20time%20series" title=" spatial time series"> spatial time series</a> </p> <a href="https://publications.waset.org/abstracts/11875/spatial-time-series-models-for-rice-and-cassava-yields-based-on-bayesian-linear-mixed-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18383</span> Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukari%20Nassim">Boukari Nassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title="epilepsy">epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signals%20classification" title=" EEG signals classification"> EEG signals classification</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20odd%20pair%20autoregressive%20coefficients" title=" combined odd pair autoregressive coefficients"> combined odd pair autoregressive coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a> </p> <a href="https://publications.waset.org/abstracts/47454/combined-odd-pair-autoregressive-coefficients-for-epileptic-eeg-signals-classification-by-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18382</span> Impact of Financial System’s Development on Economic Development: An Empirical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vilma%20Deltuvait%C4%97">Vilma Deltuvaitė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banking%20sector" title="banking sector">banking sector</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20system%E2%80%99s%20development" title=" financial system’s development"> financial system’s development</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market" title=" stock market"> stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20bond%20market" title=" private bond market"> private bond market</a> </p> <a href="https://publications.waset.org/abstracts/16043/impact-of-financial-systems-development-on-economic-development-an-empirical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18381</span> Composite Forecasts Accuracy for Automobile Sales in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watchareeporn%20Chaimongkol">Watchareeporn Chaimongkol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20forecasting" title="composite forecasting">composite forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20exponential%20smoothing%20model" title=" simple exponential smoothing model"> simple exponential smoothing model</a>, <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20integrate%20moving%20average%20model%20selection" title=" autoregressive integrate moving average model selection"> autoregressive integrate moving average model selection</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy%20measurements" title=" accuracy measurements"> accuracy measurements</a> </p> <a href="https://publications.waset.org/abstracts/6189/composite-forecasts-accuracy-for-automobile-sales-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18380</span> Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Wibowo">Antoni Wibowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Pujianto"> Harry Pujianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Retno%20Sari%20Saputro"> Dewi Retno Sari Saputro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (<em>NARX)</em> to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NARX%20%28Nonlinear%20Autoregressive%20Exogenous%20Model%29" title="NARX (Nonlinear Autoregressive Exogenous Model)">NARX (Nonlinear Autoregressive Exogenous Model)</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market" title=" stock market"> stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/77854/combined-effect-of-heat-stimulation-and-delay-addition-of-superplasticizer-with-slag-on-fresh-and-hardened-property-of-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18379</span> Impact of Workers’ Remittances on Poverty in Pakistan: A Time Series Analysis by Ardl</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Aziz%20Rasool">Syed Aziz Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Zaman"> Ayesha Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poverty is one of the most important problems for any developing nation. Workers’ remittances and investment plays a crucial role in development of any country by reducing the poverty level in Pakistan. This research studies the relationship between workers’ remittances and poverty alleviation. It also focused the significant effect on poverty reduction. This study uses time series data for the period of 1972-2013. Autoregressive Distributed Lag (ARDL)Model and Error Correction (ECM)Model has been used in order to find out the long run and short run relationship between the worker’s remittances and poverty level respectively. Thus, inflow of remittances showed the significant and negative impact on poverty level. Moreover, coefficient of error correction model explains the adjustment towards convergence and it has highly significant and negative value. According to this research, Policy makers should strongly focus on positive and effective policies to attract more remittances. JELCODE: JEL: J61 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECM" title="ECM">ECM</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=AIC" title=" AIC"> AIC</a>, <a href="https://publications.waset.org/abstracts/search?q=SC" title=" SC"> SC</a> </p> <a href="https://publications.waset.org/abstracts/36982/impact-of-workers-remittances-on-poverty-in-pakistan-a-time-series-analysis-by-ardl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18378</span> The Primitive Code-Level Design Patterns for Distributed Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primitive%20APIs" title="primitive APIs">primitive APIs</a>, <a href="https://publications.waset.org/abstracts/search?q=primitive%20code-level%20design%20patterns" title=" primitive code-level design patterns"> primitive code-level design patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20distributed%20programming" title=" generic distributed programming"> generic distributed programming</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title=" distributed systems"> distributed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20patterned%20development%20environment" title=" highly patterned development environment"> highly patterned development environment</a>, <a href="https://publications.waset.org/abstracts/search?q=messaging" title=" messaging"> messaging</a> </p> <a href="https://publications.waset.org/abstracts/135687/the-primitive-code-level-design-patterns-for-distributed-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18377</span> Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shay%20Kee%20Tan">Shay Kee Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Haur%20Ng"> Kok Haur Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20So-Kuen%20Chan"> Jennifer So-Kuen Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=range-based%20volatility" title="range-based volatility">range-based volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20CARR-return%20model" title=" multivariate CARR-return model"> multivariate CARR-return model</a>, <a href="https://publications.waset.org/abstracts/search?q=value-at-risk" title=" value-at-risk"> value-at-risk</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20value-at-risk" title=" conditional value-at-risk"> conditional value-at-risk</a> </p> <a href="https://publications.waset.org/abstracts/159359/predicting-returns-volatilities-and-correlations-of-stock-indices-using-multivariate-conditional-autoregressive-range-and-return-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18376</span> Stock Market Prediction by Regression Model with Social Moods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Ohmura">Masahiro Ohmura</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Kakusho"> Koh Kakusho</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Okadome"> Takeshi Okadome</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stock%20market%20prediction" title="stock market prediction">stock market prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20moods" title=" social moods"> social moods</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=DJIA" title=" DJIA"> DJIA</a> </p> <a href="https://publications.waset.org/abstracts/8713/stock-market-prediction-by-regression-model-with-social-moods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18375</span> The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Qahtani">Abdulrahman M. Qahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary.%20B.%20Wills"> Gary. B. Wills</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy.%20M.%20Gravell"> Andy. M. Gravell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customisation%20software%20products" title="customisation software products">customisation software products</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20software%20engineering" title=" global software engineering"> global software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20decision%20making" title=" local decision making"> local decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=requirement%20engineering" title=" requirement engineering"> requirement engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a> </p> <a href="https://publications.waset.org/abstracts/17567/the-impacts-of-local-decision-making-on-customisation-process-speed-across-distributed-boundaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18374</span> Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davies%20Obaromi">Davies Obaromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Yongsong"> Qin Yongsong</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ndege"> James Ndege</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Adeboye"> Azeez Adeboye</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinwumi%20Odeyemi"> Akinwumi Odeyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Besag2" title="Besag2">Besag2</a>, <a href="https://publications.waset.org/abstracts/search?q=CAR%20models" title=" CAR models"> CAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20mapping" title=" disease mapping"> disease mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=INLA" title=" INLA"> INLA</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20models" title=" spatial models"> spatial models</a> </p> <a href="https://publications.waset.org/abstracts/77683/bayesian-flexibility-modelling-of-the-conditional-autoregressive-prior-in-a-disease-mapping-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18373</span> Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20Nwamaka%20Ogbeide-Osaretin">Evelyn Nwamaka Ogbeide-Osaretin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bright%20Orhewere"> Bright Orhewere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/148993/energy-consumption-population-and-economic-development-dynamics-in-nigeria-an-empirical-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18372</span> Relationship between Food Inflation and Agriculture Lending Rate in Ghana: A Vector Autoregressive Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20K.%20Dziwornu">Raymond K. Dziwornu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lending rate of agriculture loan has persistently been high and attributed to risk in the sector. This study examined how food inflation and agriculture lending rate react to each other in Ghana using vector autoregressive approach. Quarterly data from 2006 to 2018 was obtained from the Bank of Ghana quarterly bulletin and the Ghana Statistical Service reports. The study found that a positive standard deviation shock to food inflation causes lending rate of agriculture loan to react negatively in the short run, but positively and steadily in the long run. This suggests the need to direct appropriate policy measures to reduce food inflation and consequently, the cost of credit to the agricultural sector for its growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20inflation" title="food inflation">food inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=lending%20rate" title=" lending rate"> lending rate</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20autoregressive" title=" vector autoregressive"> vector autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a> </p> <a href="https://publications.waset.org/abstracts/115221/relationship-between-food-inflation-and-agriculture-lending-rate-in-ghana-a-vector-autoregressive-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18371</span> Model-Free Distributed Control of Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khazaei">Javad Khazaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Blum"> Rick Blum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus%20tracking" title="consensus tracking">consensus tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20control" title=" distributed control"> distributed control</a>, <a href="https://publications.waset.org/abstracts/search?q=model-free%20control" title=" model-free control"> model-free control</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20identification%20of%20dynamical%20systems" title=" sparse identification of dynamical systems"> sparse identification of dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/144452/model-free-distributed-control-of-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18370</span> A Survey on Concurrency Control Methods in Distributed Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Jameii">Seyed Mohsen Jameii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20database" title="distributed database">distributed database</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20locking%20protocol" title=" two phase locking protocol"> two phase locking protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=transaction" title=" transaction"> transaction</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrency" title=" concurrency"> concurrency</a> </p> <a href="https://publications.waset.org/abstracts/69917/a-survey-on-concurrency-control-methods-in-distributed-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18369</span> Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niya%20Chen">Niya Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chan"> Jennifer Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expectile" title="expectile">expectile</a>, <a href="https://publications.waset.org/abstracts/search?q=CARE%20Model" title=" CARE Model"> CARE Model</a>, <a href="https://publications.waset.org/abstracts/search?q=CARR%20Model" title=" CARR Model"> CARR Model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile" title=" quantile"> quantile</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title=" cryptocurrency"> cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=Value%20at%20Risk" title=" Value at Risk"> Value at Risk</a> </p> <a href="https://publications.waset.org/abstracts/159362/bayesian-value-at-risk-forecast-using-realized-conditional-autoregressive-expectiel-mdodel-with-an-application-of-cryptocurrency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18368</span> Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Su">Ying Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20C.%20Wang"> Morgan C. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20machines%20learning" title="automated machines learning">automated machines learning</a>, <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20integrated%20moving%20average" title=" autoregressive integrated moving average"> autoregressive integrated moving average</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/173817/automated-machine-learning-algorithm-using-recurrent-neural-network-to-perform-long-term-time-series-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18367</span> Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Qayumi">Karima Qayumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Norta"> Alex Norta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-oriented%20modeling%20%28AOM%29" title="agent-oriented modeling (AOM)">agent-oriented modeling (AOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence%20model%20%28BIM%29" title=" business intelligence model (BIM)"> business intelligence model (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining%20%28DDM%29" title=" distributed data mining (DDM)"> distributed data mining (DDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%20%28MAS%29" title=" multi-agent system (MAS)"> multi-agent system (MAS)</a> </p> <a href="https://publications.waset.org/abstracts/44164/business-intelligence-mining-of-large-decentralized-multimedia-datasets-with-a-distributed-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18366</span> Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kassahun%20Birhanu%20Tadesse">Kassahun Birhanu Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Megersa%20Olumana%20Dinka"> Megersa Olumana Dinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heteroscedasticity" title="heteroscedasticity">heteroscedasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=stationarity%20test" title=" stationarity test"> stationarity test</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20noise" title=" white noise"> white noise</a> </p> <a href="https://publications.waset.org/abstracts/82308/application-of-seasonal-autoregressive-integrated-moving-average-model-for-forecasting-monthly-flows-in-waterval-river-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=613">613</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=614">614</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autoregressive%20distributed%20lag%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>