CINXE.COM

Search results for: homology

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: homology</title> <meta name="description" content="Search results for: homology"> <meta name="keywords" content="homology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="homology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="homology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 77</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: homology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Local Homology Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Mohammadi%20Aghjeh%20Mashhad">Fatemeh Mohammadi Aghjeh Mashhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we give several ways for computing generalized local homology modules by using Gorenstein flat resolutions. Also, we find some bounds for vanishing of generalized local homology modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a-adic%20completion%20functor" title="a-adic completion functor">a-adic completion functor</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20local%20homology%20modules" title=" generalized local homology modules"> generalized local homology modules</a>, <a href="https://publications.waset.org/abstracts/search?q=Gorenstein%20flat%20modules" title=" Gorenstein flat modules"> Gorenstein flat modules</a> </p> <a href="https://publications.waset.org/abstracts/23188/local-homology-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuhier%20Altawallbeh">Zuhier Altawallbeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an explicit homotopic function is constructed to compute the Hochschild homology of a finite dimensional free k-module V. Because the polynomial algebra is of course fundamental in the computation of the Hochschild homology HH and the cyclic homology CH of commutative algebras, we concentrate our work to compute HH of the polynomial algebra.by providing certain homotopic function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hochschild%20homology" title="hochschild homology">hochschild homology</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopic%20function" title=" homotopic function"> homotopic function</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20and%20projective%20modules" title=" free and projective modules"> free and projective modules</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20resolution" title=" free resolution"> free resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20algebra" title=" exterior algebra"> exterior algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20algebra" title=" symmetric algebra"> symmetric algebra</a> </p> <a href="https://publications.waset.org/abstracts/20251/explicit-chain-homotopic-function-to-compute-hochschild-homology-of-the-polynomial-algebra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Persistent Homology of Convection Cycles in Network Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minh%20Quang%20Le">Minh Quang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Dane%20Taylor"> Dane Taylor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homology" title="homology">homology</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20homolgy" title=" persistent homolgy"> persistent homolgy</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chains" title=" markov chains"> markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=convection%20cycles" title=" convection cycles"> convection cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/146580/persistent-homology-of-convection-cycles-in-network-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20remote%20homology%20detection" title="protein remote homology detection">protein remote homology detection</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fold%20recognition" title=" protein fold recognition"> protein fold recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=profile-based%20features" title=" profile-based features"> profile-based features</a>, <a href="https://publications.waset.org/abstracts/search?q=Support%20Vector%20Machines%20%28SVMs%29" title=" Support Vector Machines (SVMs)"> Support Vector Machines (SVMs)</a> </p> <a href="https://publications.waset.org/abstracts/104054/protein-remote-homology-detection-and-fold-recognition-by-combining-profiles-with-kernel-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eashwar%20V.%20Somasundaram">Eashwar V. Somasundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20R.%20Wadhwa"> Raoul R. Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20G.%20Scott"> Jacob G. Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20biology" title="cancer biology">cancer biology</a>, <a href="https://publications.waset.org/abstracts/search?q=oncology" title=" oncology"> oncology</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20homology" title=" persistent homology"> persistent homology</a>, <a href="https://publications.waset.org/abstracts/search?q=radiomics" title=" radiomics"> radiomics</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis" title=" topological data analysis"> topological data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20imaging" title=" tumor imaging"> tumor imaging</a> </p> <a href="https://publications.waset.org/abstracts/125882/identification-of-clinical-characteristics-from-persistent-homology-applied-to-tumor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20remote%20homology%20detection" title="protein remote homology detection">protein remote homology detection</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fold%20recognition" title=" protein fold recognition"> protein fold recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=top%20frequency%20profile" title=" top frequency profile"> top frequency profile</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/abstracts/103989/protein-remote-homology-detection-by-using-profile-based-matrix-transformation-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh">Ravinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Gurao"> Ankita Gurao</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Bandhan"> Saroj Bandhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar%20Kashyap"> Sudhir Kumar Kashyap </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20defensin%203" title="beta defensin 3">beta defensin 3</a>, <a href="https://publications.waset.org/abstracts/search?q=bos%20taurus" title=" bos taurus"> bos taurus</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a> </p> <a href="https://publications.waset.org/abstracts/64346/homology-modelling-of-beta-defensin-3-of-bos-taurus-and-its-docking-studies-with-molecules-responsible-for-formation-of-biofilm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ruchi">Y. Ruchi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Prerna"> A. Prerna</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Deepshikha"> S. Deepshikha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALS" title="ALS">ALS</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20site" title=" binding site"> binding site</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20degeneration" title=" neuronal degeneration"> neuronal degeneration</a> </p> <a href="https://publications.waset.org/abstracts/20360/on-the-homology-modeling-structural-function-relationship-and-binding-site-prediction-of-human-alsin-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Interaction of Phytochemicals Present in Green Tea, Honey and Cinnamon to Human Melanocortin 4 Receptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinmayee%20Choudhury">Chinmayee Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Melanocortin 4 Receptor (HMC4R) is one of the most potential drug targets for the treatment of obesity which controls the appetite. A deletion of the residues 88-92 in HMC4R is sometimes the cause of severe obesity in the humans. In this study, two homology models are constructed for the normal as well as mutated HMC4Rs and some phytochemicals present in Green Tea, Honey and Cinnamon have been docked to them to study their differential binding to the normal and mutated HMC4R as compared to the natural agonist α- MSH. Two homology models have been constructed for the normal as well as mutated HMC4Rs using the Modeller9v7. Some of the phytochemicals present in Green Tea, Honey, and Cinnamon, which have appetite suppressant activities are constructed, minimized and docked to these normal and mutated HMC4R models using ArgusLab 4.0.1. The mode of binding of the phytochemicals with the Normal and Mutated HMC4Rs have been compared. Further, the mode of binding of these phytochemicals with that of the natural agonist α- Melanocyte Stimulating Hormone(α-MSH) to both normal and mutated HMC4Rs have also been studied. It is observed that the phytochemicals Kaempherol, Epigallocatechin-3-gallate (EGCG) present in Green Tea and Honey, Isorhamnetin, Chlorogenic acid, Chrysin, Galangin, Pinocambrin present in Honey, Cinnamaldehyde, Cinnamyl acetate and Cinnamyl alcohol present in Cinnamon have capacity to form more stable complexes with the Mutated HMC4R as compared to α- MSH. So they may be potential agonists of HMC4R to suppress the appetite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMC4R" title="HMC4R">HMC4R</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-MSH" title=" α-MSH"> α-MSH</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical" title=" photochemical"> photochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=appetite%20suppressant" title=" appetite suppressant"> appetite suppressant</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modelling" title=" homology modelling"> homology modelling</a> </p> <a href="https://publications.waset.org/abstracts/78541/interaction-of-phytochemicals-present-in-green-tea-honey-and-cinnamon-to-human-melanocortin-4-receptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The World View of Tere Liye in Negeri Para Bedebah an Analysis of Genetic Structuralism Lucien Goldmann</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fadli%20Muslimin">Muhammad Fadli Muslimin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Negeri Para Bedebah is known as one of the works of Tere Liye, an Indonesia author. In the literary works, the fiction as always tries to reflect the reality of the society where the author or the social groups lived in. The essential or nature of society is generally a reality while literary work is fiction and both of them are social fact. Negeri Para Bedebah is a novel fiction which is a social fact and which holds an important role in reality. It is more likely as the representation of social, economy and politic aspects in Indonesia. The purpose of this study is to reveal the world view of Tere Liye throughout novel Negeri Para Bedebah. By analyzing the object using genetic structuralism Lucien Goldmann which chiefly focuses on world view, it is stated that the literary work is an structure and it has homology with the structure in society. The structure of literary work is not chiefly homolog to the structure of society but homolog to the world view which is growing and developing inside the society. The methodological research used in this paper is a dialectic method which focuses on the starting and ending points lied in the literary text by paying attention to the coherent meanings. The result of this study is that Tere Liye shows us his world view about the structure of the society where he is living in, but one is an imaginative form of the world and the homology to the reality itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homology" title="homology">homology</a>, <a href="https://publications.waset.org/abstracts/search?q=literary%20work" title=" literary work"> literary work</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20view" title=" world view"> world view</a> </p> <a href="https://publications.waset.org/abstracts/78926/the-world-view-of-tere-liye-in-negeri-para-bedebah-an-analysis-of-genetic-structuralism-lucien-goldmann" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> A Similarity/Dissimilarity Measure to Biological Sequence Alignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Khan">Muhammad A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shahzad"> Waseem Shahzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment" title="alignment">alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=distance" title=" distance"> distance</a>, <a href="https://publications.waset.org/abstracts/search?q=homology" title=" homology"> homology</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a> </p> <a href="https://publications.waset.org/abstracts/95183/a-similaritydissimilarity-measure-to-biological-sequence-alignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Isolation and Characterization White Spot Syndrome Protein Envelope Protein 19 from Black Tiger Shrimp (Penaeus monodon)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andi%20Aliah%20Hidayani">Andi Aliah Hidayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmi%20Citra%20Malina%20A.%20R.%20Tassakka"> Asmi Citra Malina A. R. Tassakka</a>, <a href="https://publications.waset.org/abstracts/search?q=Andi%20Parenrengi"> Andi Parenrengi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vanname Shrimp is one of the high yielding varieties that are more resistant to virus attacks. However, now this shrimp more death due to virus attack such as white spot disease caused by white spot syndrome virus (WSSV). Various efforts have done to prevent the disease, like immunostimulatory, probiotics, and vaccine. White spot syndrome virus (WSSV) envelope protein VP19 gene is important because of its involvement in the system infection of shrimp. This study aimed to isolate and characterize an envelope protein VP19 – encoding gene of WSSV using WSSV infected Vanname Shrimp sample from some areas in South Sulawesi (Pangkep, Barru and Pinrang). The genomic of DNA were isolated from shrimp muscle using DTAB-CTAB method. Isolation of gene encoding envelope protein VP19 WSSV ws successfully performed with the results of the length of DNA fragment was 387 bp. The results of homology analysis using BLASTn homology suggested that these isolates genes from Barru, Pangkep and Pinrang have closest relationship with isolates from Mexican. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanname" title="vanname">vanname</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=WSSV" title=" WSSV"> WSSV</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20protein%2019" title=" viral protein 19"> viral protein 19</a> </p> <a href="https://publications.waset.org/abstracts/20491/isolation-and-characterization-white-spot-syndrome-protein-envelope-protein-19-from-black-tiger-shrimp-penaeus-monodon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based on 16S rDNA Gene Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Norashirene">M. J. Norashirene</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zakiah"> Y. Zakiah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nurdiana"> S. Nurdiana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nur%20Hilwani"> I. Nur Hilwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Siti%20Khairiyah"> M. H. Siti Khairiyah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Muhamad%20Arif"> M. J. Muhamad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulolytic" title=" cellulolytic"> cellulolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20gene" title=" 16S rDNA gene"> 16S rDNA gene</a> </p> <a href="https://publications.waset.org/abstracts/13039/identification-of-cellulose-hydrolytic-thermophiles-isolated-from-sg-klah-hot-spring-based-on-16s-rdna-gene-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Revealing the Structural and Dynamic Properties of Betaine Aldehyde Dehydrogenase 2 from Rice (Oryza sativa): Simulation Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apisaraporn%20Baicharoen">Apisaraporn Baicharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Prapasiri%20Pongprayoon"> Prapasiri Pongprayoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Betaine aldehyde dehydrogenase 2 (BADH2) is an enzyme that inhibits the accumulation of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice fragrance. BADH2 contains three domains (NAD-binding, substrate-binding, and oligomerization domains). It catalyzes the oxidation of amino aldehydes. The lack of BADH2 results in the formation of 2AP and consequently an increase in rice fragrance. To date, inadequate data on BADH2 structure and function are available. An insight into the nature of BADH2 can serve as one of key starting points for the production of high quality fragrant rice. In this study, we therefore constructed the homology model of BADH2 and employed 500-ns Molecular Dynamics simulations (MD) to primarily understand the structural and dynamic properties of BADH2. Initially, Ramachandran plot confirms the good quality of modeled protein structure. Principle Component Analysis (PCA) was also calculated to capture the protein dynamics. Among 3 domains, the results show that NAD binding site is found to be more flexible. Moreover, interactions from key amino acids (N162, E260, C294, and Y419) that are crucial for function are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betaine%20aldehyde%20dehydrogenase%202" title="betaine aldehyde dehydrogenase 2">betaine aldehyde dehydrogenase 2</a>, <a href="https://publications.waset.org/abstracts/search?q=fragrant%20rice" title=" fragrant rice"> fragrant rice</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulations" title=" molecular dynamics simulations"> molecular dynamics simulations</a> </p> <a href="https://publications.waset.org/abstracts/54917/revealing-the-structural-and-dynamic-properties-of-betaine-aldehyde-dehydrogenase-2-from-rice-oryza-sativa-simulation-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Stem Covers of Leibniz n-Algebras</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nat%C3%A1lia%20Maria%20Rego">Natália Maria Rego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ALeibnizn-algebraGis aK-vector space endowed whit a n-linearbracket operation [-,…-] : GG … G→ Gsatisfying the fundamental identity, which can be expressed saying that the right multiplication map Ry2, …, ᵧₙ: Gn→ G, Rᵧ₂, …, ᵧₙn(ˣ¹, …, ₓₙ) = [[ˣ¹, …, ₓₙ], ᵧ₂, …, ᵧₙ], is a derivation. This structure, together with its skew-symmetric version, named as Lie n-algebra or Filippov algebra, arose in the setting of Nambumechanics, an n-ary generalization of the Hamiltonian mechanics. Thefirst goal of this work is to provide a characterization of various classes of central extensions of Leibniz n-algebras in terms of homological properties. Namely, Commutator extension, Quasi-commutator extension, Stem extension, and Stem cover. These kind of central extensions are characterized by means of the character of the map *(E): nHL1(G) → M provided by the five-term exact sequence in homology with trivial coefficients of Leibniz n-algebras associated to an extension E : 0 → M → K → G → 0. For a free presentation 0 →R→ F →G→ 0of a Leibniz n-algebra G,the term M(G) = (R[F,…n.., F])/[R, F,..n-1..,F] is called the Schur multiplier of G, which is a Baer invariant, i.e., it does not depend on the chosen free presentation, and it is isomorphic to the first Leibniz n-algebras homology with trivial coefficients of G. A central extension of Leibniz n-algebras is a short exact sequenceE : 0 →M→K→G→ 0such that [M, K,.. ⁿ⁻¹.., K]=0. It is said to be a stem extension if M⊆[G, .. n.., G]. Additionally, if the induced map M(K) → M(G) is the zero map, then the stem extension Eis said to be a stem cover. The second aim of this work is to analyze the interplay between stem covers of Leibniz n-algebras and the Schur multiplier. Concretely, in the case of finite-dimensional Leibniz n-algebras, we show the existence of coverings, and we prove that all stem covers with finite-dimensional Schur multiplier are isoclinic. Additionally, we characterize stem covers of perfect Leibniz n-algebras. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leibniz%20n-algebras" title="leibniz n-algebras">leibniz n-algebras</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20extensions" title=" central extensions"> central extensions</a>, <a href="https://publications.waset.org/abstracts/search?q=Schur%20multiplier" title=" Schur multiplier"> Schur multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cover" title=" stem cover"> stem cover</a> </p> <a href="https://publications.waset.org/abstracts/140090/stem-covers-of-leibniz-n-algebras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Mechanism of Melanin Inhibition of Morello Flavone- 7″- Sulphate and Sargaol extracts from Garcinia livingstonei (Clusiaceae): Homology Modelling, Molecular Docking, and Molecular Dynamics Simulations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ncoza%20Dlova">Ncoza Dlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tivani%20Mashamba-Thompson"> Tivani Mashamba-Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Garcinia livingstonei (Clusiaceae) extracts, morelloflavone- 7″- sulphate and sargaol were shown to be effective against hyper-pigmentation through inhibition of tyrosinase enzyme, in vitro . The aim of this study is to elucidate the structural mechanism through which morelloflavone- 7″- sulphate and sargaol binds human tyrosinase. Implementing a homology model to construct a tyrosinase model using the crystal structure of a functional unit from Octopus hemocyanin (PDB: 1JS8) as a reference template enabled us to create a human tyrosinase model. Molecular dynamics and binding free energy calculations were optimized to enable molecular dynamics simulation of the copper dependent inhibitors. Results show the importance of the hydrogen bond formation morelloflavone- 7″- sulphate and sargaol between compound and active site residues. Both complexes demonstrated the metallic coordination between compound and arginine residue as well as copper ions within the active site. The comprehensive molecular insight gained from this study should be vital in understanding the binding mechanism morelloflavone- 7″- sulphate and sargaol. Moreover, these results will assist in the design of novel of metal ion dependent enzyme inhibitors as potential anti-hyper-pigmentation disorder therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyper-pigmentation%20disorders" title="hyper-pigmentation disorders">hyper-pigmentation disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=dyschromia%20African%20skin" title=" dyschromia African skin"> dyschromia African skin</a>, <a href="https://publications.waset.org/abstracts/search?q=morelloflavone-%207%E2%80%B3-%20sulphate" title=" morelloflavone- 7″- sulphate"> morelloflavone- 7″- sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=sagoal" title=" sagoal"> sagoal</a> </p> <a href="https://publications.waset.org/abstracts/14126/mechanism-of-melanin-inhibition-of-morello-flavone-7-sulphate-and-sargaol-extracts-from-garcinia-livingstonei-clusiaceae-homology-modelling-molecular-docking-and-molecular-dynamics-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selisha%20A.%20Sooklal">Selisha A. Sooklal</a>, <a href="https://publications.waset.org/abstracts/search?q=Phelelani%20Mpangase"> Phelelani Mpangase</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaun%20Aron"> Shaun Aron</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Rumbold"> Karl Rumbold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalyst" title="biocatalyst">biocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorinase" title=" fluorinase"> fluorinase</a>, <a href="https://publications.waset.org/abstracts/search?q=gifblaar" title=" gifblaar"> gifblaar</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome" title=" transcriptome"> transcriptome</a> </p> <a href="https://publications.waset.org/abstracts/36775/de-novo-assembly-and-characterization-of-the-transcriptome-from-the-fluoroacetate-producing-plant-dichapetalum-cymosum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> The New Insight about Interspecies Transmission of Iranian H9N2 Influenza Viruses from Avian to Human</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Soltanialvar">Masoud Soltanialvar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bagherpour"> Ali Bagherpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Documented cases of human infection with H9N2 avian influenza viruses, first detected in 1999 in Hong Kong and China, indicate that these viruses can be directly transmitted from birds to humans. In this study, we characterized the mutation in the Hemagglutinin (HA) genes and proteins that correlates with a shift in affinity of the Hemagglutinin (HA) protein from the “avian” type sialic receptors to the “human” type in 10 Iranian isolates. We delineated the genomes and receptor binding profile of HA gene of some field isolates and established their phylogenetic relationship to the other Asian H9N2 sub lineages. A total of 1200 tissue samples collected from 40 farms located in various states of Iran during 2008 – 2010 as part of a program to monitor Avian Influenza Viruses (AIV) infection. To determine the genetic relationship of Iranian viruses, the Hemagglutinin (HA) genes from ten isolates were amplified and sequenced (by RT-PCR method). Nucleotide sequences (orf) of the (HA) genes were used for phylogenetic tree construction. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) in all ten Iranian isolates which indicates a preference to binding of α (2–6) sialic acid receptors, so these Iranian H9N2 viruses have the potential to infect human beings. These isolates showed high degree of homology with 2 human H9N2 isolates A/HK/1073/99, A/HK/1074/99. Phylogenetic analysis of showed that all the HA genes of the Iranian H9N2 viruses fall into a single group within a G1-like sublineage which had contributed as donor of six internal genes to H5N1 highly pathogenic avian influenza. The results of this study indicated that all Iranian viruses have the potential to emerge as highly pathogenic influenza virus, and considering the homology of these isolates with human H9N2 strains, it seems that the potential of these avian influenza isolates to infect human should not be overlooked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title="influenza virus">influenza virus</a>, <a href="https://publications.waset.org/abstracts/search?q=hemagglutinin" title=" hemagglutinin"> hemagglutinin</a>, <a href="https://publications.waset.org/abstracts/search?q=neuraminidase" title=" neuraminidase"> neuraminidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/34227/the-new-insight-about-interspecies-transmission-of-iranian-h9n2-influenza-viruses-from-avian-to-human" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alaklabi">Abdullah Alaklabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20Arif"> Ibrahim A. Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameera%20O.%20Bafeel"> Sameera O. Bafeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20H.%20Alfarhan"> Ahmad H. Alfarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Ahamed"> Anis Ahamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Thomas"> Jacob Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Bakir"> Mohammad A. Bakir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diospyros%20mespiliformis" title="Diospyros mespiliformis">Diospyros mespiliformis</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered%20plant" title=" endangered plant"> endangered plant</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20partial%20rbcL" title=" identification partial rbcL"> identification partial rbcL</a> </p> <a href="https://publications.waset.org/abstracts/15990/nucleotide-based-validation-of-the-endangered-plant-diospyros-mespiliformis-ebenaceae-by-evaluating-short-sequence-region-of-plastid-rbcl-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=German%20Hernandez-Alonso">German Hernandez-Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Lazcano"> Antonio Lazcano</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Becerra"> Arturo Becerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20tools" title="bioinformatics tools">bioinformatics tools</a>, <a href="https://publications.waset.org/abstracts/search?q=distant%20homology" title=" distant homology"> distant homology</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-binding%20domains" title=" RNA-binding domains"> RNA-binding domains</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20evolution" title=" viral evolution"> viral evolution</a> </p> <a href="https://publications.waset.org/abstracts/85324/cellular-rna-binding-domains-with-distant-homology-in-viral-proteomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulhikma%20Md%20Isa">Nurulhikma Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Intan%20Elya%20Suka"> Intan Elya Suka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Farhana%20Roslan"> Nur Farhana Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20Bee%20Lynn"> Chew Bee Lynn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERFs" title="ERFs">ERFs</a>, <a href="https://publications.waset.org/abstracts/search?q=PRT6" title=" PRT6"> PRT6</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin" title=" ubiquitin"> ubiquitin</a> </p> <a href="https://publications.waset.org/abstracts/72837/sequence-analysis-and-molecular-cloning-of-proteolysis-6-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Remarkable Difference in Neurotoxicity Between Two Phospholipases from Russell&#039;s Viper Venom: Insight Through Molecular Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20S.%20Ghosh">Kalyan S. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20L.%20Dhananjaya"> B. L. Dhananjaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Snake bite causes fatal injuries in multi-organs and even many deaths due to several adverse physiological effects of various phospholipases (PLA2s) present in snake venom. Though these PLA2s bear highly homologues sequences and also structure but exhibit a different extent of those pharmacological effects. In this study, we have explored the difference in the neurotoxicity of two PLA2 namely PLA2-V, PLA2-VIIIa present in the venom from Vipera russellii. Bioinformatics studies on sequences of these two proteins along with detailed structural comparison enable us to explore the differences unambiguously. The identification of the residues involved in neurotoxicity will further lead towards proper designing of inhibitors against such killing effects of the venom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20potential" title="electrostatic potential">electrostatic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Phospholipase%20A2" title=" Phospholipase A2"> Phospholipase A2</a> </p> <a href="https://publications.waset.org/abstracts/15662/remarkable-difference-in-neurotoxicity-between-two-phospholipases-from-russells-viper-venom-insight-through-molecular-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Chaudhary">Amit Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Yadav"> B. S. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Maurya"> P. K. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M."> A. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srivastava"> S. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh"> S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mani"> A. Mani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CspA" title="CspA">CspA</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modelling" title=" homology modelling"> homology modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a> </p> <a href="https://publications.waset.org/abstracts/78173/effect-of-low-temperature-on-structure-and-rna-binding-of-ecoli-cspa-a-molecular-dynamics-based-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> A Topological Approach for Motion Track Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tegan%20H.%20Emerson">Tegan H. Emerson</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20C.%20Olson"> Colin C. Olson</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Stantchev"> George Stantchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20A.%20Edelberg"> Jason A. Edelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Wilson"> Michael Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20tracks" title="motion tracks">motion tracks</a>, <a href="https://publications.waset.org/abstracts/search?q=persistence%20images" title=" persistence images"> persistence images</a>, <a href="https://publications.waset.org/abstracts/search?q=time-delay%20embedding" title=" time-delay embedding"> time-delay embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis" title=" topological data analysis"> topological data analysis</a> </p> <a href="https://publications.waset.org/abstracts/128723/a-topological-approach-for-motion-track-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Characterization of the Queuine Salvage Pathway From Bacteria in the Human Parasite Entamoeba Histolytica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotem%20Sarid">Lotem Sarid</a>, <a href="https://publications.waset.org/abstracts/search?q=Meirav%20Trebicz-Geffen"> Meirav Trebicz-Geffen</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Ankri"> Serge Ankri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the nucleobase of queuosine, they must obtain it from their diet or gut microbiota. Our previous work investigated the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and defined the enzyme EhTGT responsible for its incorporation into tRNA. To our best knowledge, it is unknown how E. histolytica salvages Q from gut bacteria. We used N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. Next, we examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. When EhDUF2419 expression is silenced, it inhibits Q's conversion to queuine, resulting in a decrease in Q-tRNA levels. We also observed that Q protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the salvaging of queuine from bacteria and for the resistance of the parasite to OS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entamoeba%20histolytica" title="entamoeba histolytica">entamoeba histolytica</a>, <a href="https://publications.waset.org/abstracts/search?q=epitranscriptomics" title="epitranscriptomics">epitranscriptomics</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=queuine" title=" queuine"> queuine</a>, <a href="https://publications.waset.org/abstracts/search?q=queuosine" title=" queuosine"> queuosine</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20to%20oxidative%20stress" title=" response to oxidative stress"> response to oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=tRNA%20modification." title=" tRNA modification."> tRNA modification.</a> </p> <a href="https://publications.waset.org/abstracts/151367/characterization-of-the-queuine-salvage-pathway-from-bacteria-in-the-human-parasite-entamoeba-histolytica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Ilyas">Sadaf Ilyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Interleukin%2015" title="Interleukin 15">Interleukin 15</a>, <a href="https://publications.waset.org/abstracts/search?q=pET%20expression%20system" title=" pET expression system"> pET expression system</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20therapy" title=" immune therapy"> immune therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20purification" title=" protein purification"> protein purification</a> </p> <a href="https://publications.waset.org/abstracts/43003/cloning-and-expression-of-human-interleukin-15-a-promising-candidate-for-cytokine-immunotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Badr">Ghada Badr</a>, <a href="https://publications.waset.org/abstracts/search?q=Arwa%20Alturki"> Arwa Alturki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment" title="alignment">alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20secondary%20structure" title=" RNA secondary structure"> RNA secondary structure</a>, <a href="https://publications.waset.org/abstracts/search?q=pairwise" title=" pairwise"> pairwise</a>, <a href="https://publications.waset.org/abstracts/search?q=component-based" title=" component-based"> component-based</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/70264/comppsa-a-component-based-pairwise-rna-secondary-structure-alignment-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Point-Mutation in a Rationally Engineered Esterase Inverts its Enantioselectivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Gaber">Yasser Gaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ismail"> Mohamed Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Serena%20Bisagni"> Serena Bisagni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Takwa"> Mohamad Takwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Hatti-Kaul"> Rajni Hatti-Kaul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are safe and selective catalysts. They skillfully catalyze chemical reactions; however, the native form is not usually suitable for industrial applications. Enzymes are therefore engineered by several techniques to meet the required catalytic task. Clopidogrel is recorded among the five best selling pharmaceutical in 2010 under the brand name Plavix. The commonly used route for production of the drug on an industrial scale is the synthesis of the racemic mixture followed by diastereomeric resolution to obtain the pure S isomer. The process consumes a lot of solvents and chemicals. We have evaluated a biocatalytic cleaner approach for asymmetric hydrolysis of racemic clopidogrel. Initial screening of a selected number of hydrolases showed only one enzyme EST to exhibit activity and selectivity towards the desired stereoisomer. As the crude EST is a mixture of several isoenzymes, a homology model of EST-1 was used in molecular dynamic simulations to study the interaction of the enzyme with R and S isomers of clopidogrel. Analysis of the geometric hindrances of the tetrahedral intermediates revealed a potential site for mutagenesis in order to improve the activity and the selectivity. Single point mutation showed dramatic increase in activity and inversion of the enantioselectivity (400 fold change in E value). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20engineering" title=" protein engineering"> protein engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/35951/point-mutation-in-a-rationally-engineered-esterase-inverts-its-enantioselectivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> In-Vivo Association of Multivalent 11 Zinc Fingers Transcriptional Factors CTCF and Boris to YB-1 in Multiforme Glioma-RGBM Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daruliza%20Kernain">Daruliza Kernain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaharum%20Shamsuddin"> Shaharum Shamsuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=See%20Too%20Wei%20Cun"> See Too Wei Cun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CTCF is a unique, highly conserved and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple target sites. It is able to bind to various target sequences to perform different regulatory roles including promoter activation or repression, creating hormone-responsive gene silencing element, and functional block of enhancer-promoter interactions. The binding of CTCF to the essential binding site is through the combination of different ZF domain. On the other hand, BORIS for brother of the regulator of imprinted sites, which expressed only in the testis and certain cancer cell line is homology to CTCF 11 ZF domains. Since both transcriptional factors share the same ZF domains hence there is a possibility for both to bind to the same target sequences. In this study, the interaction of these two proteins to multi-functional Y-box DNA/RNA-binding factor, YB-1 was determined. The protein-protein interaction between CTCF/YB-1 and BORIS/YB-1 were discovered by Co-immuno-precipitation (CO-IP) technique through reciprocal experiment from RGBM total cell lysate. The results showed that both CTCF and BORIS were able to interact with YB-1 in Glioma RGBM cell line. To the best of our knowledge, this is the first findings demonstrating the ability of BORIS and YB-1 to form a complex in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunoprecipitation" title="immunoprecipitation">immunoprecipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=CTCF%2FBORIS%2FYB-1" title=" CTCF/BORIS/YB-1"> CTCF/BORIS/YB-1</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20medicine" title=" molecular medicine"> molecular medicine</a> </p> <a href="https://publications.waset.org/abstracts/7112/in-vivo-association-of-multivalent-11-zinc-fingers-transcriptional-factors-ctcf-and-boris-to-yb-1-in-multiforme-glioma-rgbm-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romasa%20Qasim">Romasa Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Sayedur%20Rahman"> G. M. Sayedur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hasan"> Nahid Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shazzad%20Hosain"> M. Shazzad Hosain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacophore-based%20drug%20design" title="pharmacophore-based drug design">pharmacophore-based drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silico%20drug%20design" title=" in-silico drug design"> in-silico drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatitis%20C%20virus%20%28HCV%29" title=" Hepatitis C virus (HCV)"> Hepatitis C virus (HCV)</a> </p> <a href="https://publications.waset.org/abstracts/64266/an-in-silico-pharmacophore-based-anti-viral-drug-development-for-hepatitis-c-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=homology&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=homology&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=homology&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10